
RFCs in Hypertext
Copyright © 1991 InfoMagic, Inc.

Volume 1 Number 1
1 October 1991

Choose a topic below to access material giving a general overview of the Internet, 
information relating to a particular protocol layer, or a specific RFC.    Please refer to 
the Disclaimer for important information before using this system.

Introduction
Overview and General Advice
Security Considerations
Link Layer
Internet Layer
Transport Layer
Application Layer
The Internet Activities Board

IAB Official Protocols (RFC-1250)
FYI's

FYI 2: Network Management Tools Directory
FYI 4: Q & A for New Internet Users
FYI 7: Q & A for Experienced Internet Users

Numerical Index of Included RFC's



Introduction
This system is intended to provide guidance for vendors, implementors, and users of 
Internet communication software.    The inlcuded material represents the consensus of a 
large body of technical experience and wisdom, contributed by the members of the Internet 
research and vendor communities.
This system enumerates standard protocols that a host connected to the Internet must use, 
and it includes the Request For Comments (RFCs) and other documents describing the 
current specifications for these protocols.    It corrects errors in the included documents and 
adds additional discussion and guidance for an implementor.    These corrections and 
additions have been incorporated into the original text of the relevant RFCs both directly and
via links to other documents.
The specifications of this system must be followed to meet the general goal of arbitrary host 
interoperation across the diversity and complexity of the Internet system.    Although most 
current implementations fail to meet these requirements in various ways, some minor and 
some major, this specification is the ideal towards which we need to move.
These requirements are based on the current level of Internet architecture.    This system will
be updated on a regular basis to provide additional clarifications and to include new and/or 
additional information in those areas in which specifications are still evolving.



Overview
The Internet Architecture
Internet Hosts
Architectural Assumptions
Internet Protocol Suite
Embedded Gateway Code
General Considerations
Continuing Internet Evolution
Robustness Principle
Error Logging
Configuration
Requirements
Terminology
Acknowledgments



Link Layer

Introduction
Specific Networks

Public data networks via X.25
ARPANET via 1822 LH, DH, or HDH
ARPANET via DDN Standard X.25
Ethernet and IEEE 802
Serial-Line Protocols

Address Resolution Protocol
Specification
ARP Packet Queue

Point-to-Point Protocol
Trailer Protocol
Ethernet and IEEE 802 Encapsulation
Link/Internet Layer Interface



Internet Layer

Introduction
Internet Protocol

Specification
Internet Control Message Protocol -- ICMP

Specification
Summary

Internet Group Management Protocol -- IGMP
IP Multicasting

Error Reporting
Internet/Transport Layer Interface



Transport Layer

User Datagram Protocol -- UDP
Introduction
Specification

Transmission Control Protocol -- TCP
Introduction
Specification
Specific Issues
TCP/Application Layer Iinterface

Asynchronous Reports
Type-of-Service
Flush Call
Multihoming

ISO Transport Services on top of the TCP



TCP Specific Issues
When to Send an ACK Segment
When to Send a Window Update
When to Send Data
TCP Connection Failures
TCP Keep-Alives
TCP Multihoming
IP Options
ICMP Messages
Remote Address Validation
TCP Traffic Patterns
Efficiency



Application layer

User Level Protocols
Finger (User Information)
FTP (File Transfer Protocol)
NICName/Whois
POP-2 (Post Office Protocol - Version 2)
POP-3 (Post Office Protocol - Version 3)
SMTP (Electronic Mail Delivery)
Telnet (Remote Login)
TFTP (Trivial File Transfer Protocol)

Support Protocols
Cooperative Processing

XDR (External Data Representation)
RPC (Remote Procedure Calls)
NFS (Network File System)

Host Initialization
BOOTP (Bootstrap Protocol)
ARP (Address Resolution Protocol)
RARP (Reverse Address Resolution Protocol)

Domain Name System
Network Management

Structure and ID of Management Information Base
Management Information Base (MIB I)
Management Information Base (MIB II)
Concise MIB Definitions
SNMP (Simple Network Management Protocol)

Protocol Walk-Through



Security Considerations
There are many security issues in the communication layers of host software, but a full 
discussion is beyond the scope of this system.
The Internet architecture generally provides little protection against spoofing of IP source 
addresses, so any security mechanism that is based upon verifying the IP source address of 
a datagram should be treated with suspicion.    However, in restricted environments some 
source-address checking may be possible.    For example, there might be a secure LAN 
whose gateway to the rest of the Internet discarded any incoming datagram with a source 
address that spoofed the LAN address.    In this case, a host on the LAN could use the source 
address to test for local vs. remote source.    This problem is complicated by source routing, 
and some have suggested that source-routed datagram forwarding by hosts should be 
outlawed for security reasons.
Security-related issues are mentioned in sections concerning the IP Security option, the ICMP
Parameter Problem Message, IP options in UDP datagrams, and reserved TCP ports.
It is standard practice in RFC authoring to include a section titled "Security Considerations", 
although in most cases the text of this section reads "Security issues are not addressed in 
this memo.".    These sections have been eliminated from the included documents.



Disclaimer
Neither InfoMagic, nor the Internet Engineering Task Force, nor the Internet Activities Board, 
nor the United States Government, nor the National Science Foundation, nor any of their 
employees makes any warranty or assumes the legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights.    References 
to any special commercial products, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the above 
mentioned parties.    The views and opinions of the author(s) do not necessarily state or 
reflect those of the parties named above and shall not be used for advertising or product 
endorsement.
InfoMagic has proceeded in good faith to accurately present both the original protocol 
specifications and all of the updates and corrections to those specifications available at the 
time of publication.    We cannot, however, warranty that we have succeeded in this effort.    
Errors and omissions will be corrected in future releases of this system as we become aware 
of them.



Overview

The Internet Architecture
General background and discussion on the Internet architecture and supporting protocol 
suite can be found in the DDN Protocol Handbook [INTRO:3]; for background see for example
[INTRO:9], [INTRO:10], and [INTRO:11].    Reference [INTRO:5] describes the procedure for 
obtaining Internet protocol documents, while RFC-1060 contains a list of the numbers 
assigned within Internet protocols.



Overview

Internet Hosts
A host computer, or simply "host," is the ultimate consumer of communication services.    A 
host generally executes application programs on behalf of user(s), employing network and/or
Internet communication services in support of this function. An Internet host corresponds to 
the concept of an "End-System" used in the OSI protocol suite [INTRO:13].

An Internet communication system consists of interconnected packet networks supporting 
communication among host computers using the Internet protocols.    The networks are 
interconnected using packet-switching computers called "gateways" or "IP routers" by the 
Internet community, and "Intermediate Systems" by the OSI world [INTRO:13].    The RFC 
"Requirements for Internet Gateways" [RFC-1009] contains the official specifications for 
Internet gateways.

Internet hosts span a wide range of size, speed, and function. They range in size from small 
microprocessors through workstations to mainframes and supercomputers.    In function, 
they range from single-purpose hosts (such as terminal servers) to full-service hosts that 
support a variety of online network services, typically including remote login, file transfer, 
and electronic mail.



Overview

Architectural Assumptions
The current Internet architecture is based on a set of assumptions about the communication 
system.    The assumptions most relevant to hosts are as follows:

(a) The Internet is a network of networks.
Each host is directly connected to some particular network(s); its 
connection to the Internet is only conceptual.    Two hosts on the same 
network communicate with each other using the same set of protocols 
that they would use to communicate with hosts on distant networks.

(b) Gateways don't keep connection state information.
To improve robustness of the communication system, gateways are 
designed to be stateless, forwarding each IP datagram independently 
of other datagrams.    As a result, redundant paths can be exploited to 
provide robust service in spite of failures of intervening gateways and 
networks.
All state information required for end-to-end flow control and reliability 
is implemented in the hosts, in the transport layer or in application 
programs.    All connection control information is thus co-located with 
the end points of the communication, so it will be lost only if an end 
point fails.

(c) Routing complexity should be in the gateways.
Routing is a complex and difficult problem, and ought to be performed 
by the gateways, not the hosts.    An important objective is to insulate 
host software from changes caused by the inevitable evolution of the 
Internet routing architecture.

(d) The System must tolerate wide network variation.
A basic objective of the Internet design is to tolerate a wide range of 
network characteristics -- e.g., bandwidth, delay, packet loss, packet 
reordering, and maximum packet size.    Another objective is 
robustness against failure of individual networks, gateways, and hosts, 
using whatever bandwidth is still available.    Finally, the goal is full 
"open system interconnection": an Internet host must be able to 
interoperate robustly and effectively with any other Internet host, 
across diverse Internet paths.

Sometimes host implementors have designed for less ambitious goals.    For example, the 
LAN environment is typically much more benign than the Internet as a whole; LANs have low
packet loss and delay and do not reorder packets.    Some vendors have fielded host 
implementations that are adequate for a simple LAN environment, but work badly for 
general interoperation.    The vendor justifies such a product as being economical within the 
restricted LAN market.    However, isolated LANs seldom stay isolated for long; they are soon 
gatewayed to each other, to organization-wide internets, and eventually to the global 
Internet system.    In the end, neither the customer nor the vendor is served by incomplete 
or substandard Internet host software.
The requirements spelled out in this document are designed for a full-function Internet host, 
capable of full interoperation over an arbitrary Internet path.



Overview

Internet Protocol Suite
To communicate using the Internet system, a host must implement the layered set of 
protocols comprising the Internet protocol suite.    A host typically must implement at least 
one protocol from each layer.
The protocol layers used in the Internet architecture are as follows [RFC-1011]:

Application Layer
Transport Layer
Internet Layer
Link Layer



Overview

Application Layer Protocols
The application layer is the top layer of the Internet protocol suite.    The Internet suite does 
not further subdivide the application layer, although some of the Internet application layer 
protocols do contain some internal sub-layering.    The application layer of the Internet suite 
essentially combines the functions of the top two layers -- Presentation and Application -- of 
the OSI reference model.
We distinguish two categories of application layer protocols:    user protocols that provide 
service directly to users, and support protocols that provide common system functions.
The most common Internet user protocols are:

o Telnet (remote login)
o FTP (file transfer)
o TFTP (trivial file transfer)
o SMTP (electronic mail delivery)

There are a number of other standardized user protocols and many private user protocols.    
Refer to "IAB Official Protocols" [RFC-1250] for the current status of these protocols.
Support protocols, used for host name mapping, booting, and management, include SNMP, 
BOOTP, RARP, and the Domain Name System (DNS) protocols.    See Application Layer 
General Issues for an overview.



Overview

Transport Layer Protocols
The transport layer provides end-to-end communication services for applications.    There are
two primary transport layer protocols at present:

o Transmission Control Protocol (TCP)
o User Datagram Protocol (UDP)

TCP is a reliable connection-oriented transport service that provides end-to-end reliability, 
resequencing, and flow control.    UDP is a connectionless ("datagram") transport service.
Other transport protocols have been developed by the research community, and the set of 
official Internet transport protocols may be expanded in the future.



Overview

Internet Layer Protocols
All Internet transport protocols use the Internet Protocol (IP) to carry data from source host 
to destination host. IP is a connectionless or datagram internetwork service, providing no 
end-to-end delivery guarantees. Thus, IP datagrams may arrive at the destination host 
damaged, duplicated, out of order, or not at all.    The layers above IP are responsible for 
reliable delivery service when it is required.    The IP protocol includes provision for 
addressing, type-of-service specification, fragmentation and reassembly, and security 
information.
The datagram or connectionless nature of the IP protocol is a fundamental and characteristic
feature of the Internet architecture.    Internet IP was the model for the OSI Connectionless 
Network Protocol [INTRO:12].
ICMP is a control protocol that is considered to be an integral part of IP, although it is 
architecturally layered upon IP, i.e., it uses IP to carry its data end- to-end just as a transport
protocol like TCP or UDP does. ICMP provides error reporting, congestion reporting, and first-
hop gateway redirection.
IGMP is an Internet layer protocol used for establishing dynamic host groups for IP 
multicasting.



Overview

Embedded Gateway Code
Some Internet host software includes embedded gateway functionality, so that these hosts 
can forward packets as a gateway would, while still performing the application layer 
functions of a host.
Such dual-purpose systems must follow the Gateway Requirements RFC [RFC-1009]    with 
respect to their gateway functions, and must follow the present document with respect to 
their host functions.    In all overlapping cases, the two specifications should be in 
agreement.
There are varying opinions in the Internet community about embedded gateway 
functionality.    The main arguments are as follows:

Pro: In a local network environment where networking is informal, or in 
isolated internets, it may be convenient and economical to use existing
host systems as gateways.
There is also an architectural argument for embedded gateway 
functionality: multihoming is much more common than originally 
foreseen, and multihoming forces a host to make routing decisions as if
it were a gateway.    If the multihomed    host contains an embedded 
gateway, it will have full routing knowledge and as a result will be able 
to make more optimal routing decisions.

Con: Gateway algorithms and protocols are still changing, and they will 
continue to change as the Internet system grows larger.    Attempting to
include a general gateway function within the host IP layer will force 
host system maintainers to track these (more frequent) changes.    
Also, a larger pool of gateway implementations will make coordinating 
the changes more difficult.    Finally, the complexity of a gateway IP 
layer is somewhat greater than that of a host, making the 
implementation and operation tasks more complex.
In addition, the style of operation of some hosts is not appropriate for 
providing stable and robust gateway service.

There is considerable merit in both of these viewpoints.    One conclusion can be drawn: an 
host administrator must have conscious control over whether or not a given host acts as a 
gateway.    See Internet Layer Protocols for the detailed requirements.



Overview

General Considerations
There are two important lessons that vendors of Internet host software have learned and 
which a new vendor should consider seriously.

Continuing Internet Evolution
Robustness Principle



Overview

Continuing Internet Evolution
The enormous growth of the Internet has revealed problems of management and scaling in a
large datagram-based packet communication system.    These problems are being 
addressed, and as a result there will be continuing evolution of the specifications described 
in this document.    These changes will be carefully planned and controlled, since there is 
extensive participation in this planning by the vendors and by the organizations responsible 
for operations of the networks.
Development, evolution, and revision are characteristic of computer network protocols 
today, and this situation will persist for some years.    A vendor who develops computer 
communication software for the Internet protocol suite (or any other protocol suite!) and 
then fails to maintain and update that software for changing specifications is going to leave 
a trail of unhappy customers.    The Internet is a large communication network, and the users
are in constant contact through it.    Experience has shown that knowledge of deficiencies in 
vendor software propagates quickly through the Internet technical community.



Overview

Robustness Principle
At every layer of the protocols, there is a general rule whose application can lead to 
enormous benefits in robustness and interoperability.    The following principle originally 
appeared in [RFC-791]:

"Be liberal in what you accept, and conservative in what you send"
Software should be written to deal with every conceivable error, no matter how unlikely; 
sooner or later a packet will come in with that particular combination of errors and 
attributes, and unless the software is prepared, chaos can ensue.    In general, it is best to 
assume that the network is filled with malevolent entities that will send in packets designed 
to have the worst possible effect.    This assumption will lead to suitable protective design, 
although the most serious problems in the Internet have been caused by unenvisaged 
mechanisms triggered by low-probability events; mere human malice would never have 
taken so devious a course!
Adaptability to change must be designed into all levels of Internet host software.    As a 
simple example, consider a protocol specification that contains an enumeration of values for
a particular header field -- e.g., a type field, a port number, or an error code; this 
enumeration must be assumed to be incomplete.    Thus, if a protocol specification defines 
four possible error codes, the software must not break when a fifth code shows up.    An 
undefined code might be logged, but it must not cause a failure.
The second part of the principle is almost as important: software on other hosts may contain
deficiencies that make it unwise to exploit legal but obscure protocol features.    It is unwise 
to stray far from the obvious and simple, lest untoward effects result elsewhere.    A corollary
of this is "watch out for misbehaving hosts"; host software should be prepared, not just to 
survive other misbehaving hosts, but also to cooperate to limit the amount of disruption 
such hosts can cause to the shared communication facility.



Overview

Error Logging
The Internet includes a great variety of host and gateway systems, each implementing many
protocols and protocol layers, and some of these contain bugs and mis-features in their 
Internet protocol software.    As a result of complexity, diversity, and distribution of function, 
the diagnosis of Internet problems is often very difficult.
Problem diagnosis will be aided if host implementations include a carefully designed facility 
for logging erroneous or "strange" protocol events.    It is important to include as much 
diagnostic information as possible when an error is logged.    In particular, it is often useful to
record the header(s) of a packet that caused an error.    However, care must be taken to 
ensure that error logging does not consume prohibitive amounts of resources or otherwise 
interfere with the operation of the host.
There is a tendency for abnormal but harmless protocol events to overflow error logging 
files; this can be avoided by using a "circular" log, or by enabling logging only while 
diagnosing a known failure.    It may be useful to filter and count duplicate successive 
messages.    One strategy that seems to work well is: (1) always count abnormalities and 
make such counts accessible through the management protocol; and (2) allow the logging of
a great variety of events to be selectively enabled.    For example, it might useful to be able 
to "log everything" or to "log everything for host X".
Note that different managements may have differing policies about the amount of error 
logging that they want normally enabled in a host.    Some will say, "if it doesn't hurt me, I 
don't want to know about it", while others will want to take a more watchful and aggressive 
attitude about detecting and removing protocol abnormalities.



Overview

Configuration
It would be ideal if a host implementation of the Internet protocol suite could be entirely self-
configuring.    This would allow the whole suite to be implemented in ROM or cast into silicon,
it would simplify diskless workstations, and it would be an immense boon to harried LAN 
administrators as well as system vendors.    We have not reached this ideal; in fact, we are 
not even close.
At many points in this document, you will find a requirement that a parameter be a 
configurable option.    There are several different reasons behind such requirements.    In a 
few cases, there is current uncertainty or disagreement about the best value, and it may be 
necessary to update the recommended value in the future.    In other cases, the value really 
depends on external factors -- e.g., the size of the host and the distribution of its 
communication load, or the speeds and topology of nearby networks -- and self-tuning 
algorithms are unavailable and may be insufficient.    In some cases, configurability is 
needed because of administrative requirements.
Finally, some configuration options are required to communicate with obsolete or incorrect 
implementations of the protocols, distributed without sources, that unfortunately persist in 
many parts of the Internet.    To make correct systems coexist with these faulty systems, 
administrators often have to "mis- configure" the correct systems.    This problem will correct 
itself gradually as the faulty systems are retired, but it cannot be ignored by vendors.
When we say that a parameter must be configurable, we do not intend to require that its 
value be explicitly read from a configuration file at every boot time.    We recommend that 
implementors set up a default for each parameter, so a configuration file is only necessary 
to override those defaults that are inappropriate in a particular installation.    Thus, the 
configurability requirement is an assurance that it will be possible to override the default 
when necessary, even in a binary-only or ROM-based product.
This document requires a particular value for such defaults in some cases.    The choice of 
default is a sensitive issue when the configuration item controls the accommodation to 
existing faulty systems.    If the Internet is to converge successfully to complete 
interoperability, the default values built into implementations must implement the official 
protocol, not "mis-configurations" to accommodate faulty implementations. Although 
marketing considerations have led some vendors to choose mis-configuration defaults, we 
urge vendors to choose defaults that will conform to the standard.
Finally, we note that a vendor needs to provide adequate documentation on all configuration
parameters, their limits and effects.



Overview

Requirements
In this document, the words that are used to define the significance of each particular 
requirement appear in bold face.
These words are:
*        "must"
This word or the adjective "required" means that the item is an absolute requirement of the
specification.
*        "should"
This word or the adjective "recommended" means that there may exist valid reasons in 
particular circumstances to ignore this item, but the full implications should be understood 
and the case carefully weighed before choosing a different course.
*        "may"
This word or the adjective "optional" means that this item is truly optional.    One vendor 
may choose to include the item because a particular marketplace requires it or because it 
enhances the product, for example; another vendor may omit the same item.
An implementation is not compliant if it fails to satisfy one or more of the must 
requirements for the protocols it implements.    An implementation that satisfies all the must
and all the should requirements for its protocols is said to be "unconditionally compliant"; 
one that satisfies all the must requirements but not all the should requirements for its 
protocols is said to be "conditionally compliant".



Overview

Terminology
This document uses the following technical terms:

Segment
Message
IP Datagram
Packet
Frame
Connected Network
Multihomed
Physical network interface
Logical [network] interface
Specific-destination address
Path
MTU



Overview

Acknowledgments
RFC-1122 and RFC-1123 which formed the basis for    this system incorporate contributions 
and comments from a large group of Internet protocol experts, including representatives of 
university and research labs, vendors, and government agencies. They were assembled 
primarily by the Host Requirements Working Group of the Internet Engineering Task Force 
(IETF).
The Editor of RFC-1122 and RFC-1123 (Bob Braden) acknowledges the tireless dedication of 
the following people, who attended many long meetings and generated 3 million bytes of 
electronic mail over an 18 month period in pursuit of these two documents: Philip Almquist, 
Dave Borman (Cray Research), Noel Chiappa, Dave Crocker (DEC), Steve Deering (Stanford), 
Mike Karels (Berkeley), Phil Karn (Bellcore), John Lekashman (NASA), Charles Lynn (BBN), 
Keith McCloghrie (TWG), Paul Mockapetris (ISI), Thomas Narten (Purdue), Craig Partridge 
(BBN), Drew Perkins (CMU), and James Van Bokkelen (FTP Software).
In addition, the following people made major contributions to the effort: Bill Barns (Mitre), 
Steve Bellovin (AT&T), Mike Brescia (BBN), Ed Cain (DCA), Annette DeSchon (ISI), Martin 
Gross (DCA), Phill Gross (NRI), Charles Hedrick (Rutgers), Van Jacobson (LBL), John Klensin 
(MIT), Mark Lottor (SRI), Milo Medin (NASA), Bill Melohn (Sun Microsystems), Greg Minshall 
(Kinetics), Jeff Mogul (DEC), John Mullen (CMC), Jon Postel (ISI), John Romkey (Epilogue 
Technology), and Mike StJohns (DCA).    The following also made significant contributions to 
particular areas: Eric Allman (Berkeley), Rob Austein (MIT), Art Berggreen (ACC), Keith Bostic 
(Berkeley), Vint Cerf (NRI), Wayne Hathaway (NASA), Matt Korn (IBM), Erik Naggum (Naggum
Software, Norway), Robert Ullmann (Prime Computer), David Waitzman (BBN), Frank Wancho
(USA), Arun Welch (Ohio State), Bill Westfield (Cisco), and Rayan Zachariassen (Toronto).
The editors of this system (Joel Goldberger and Ken Berger of InfoMagic, Inc.) would like to 
thank everyone named above (including Bob Braden), and also the following individuals who
provided both encouragement and assistance in the preparation of this system: Billy 
Brackenridge (The Voyager Company), Steve Knowles and Bruce Campbell (FTP Software), 
John Romkey (Epilogue Technologies), Vint Cerf (CNRI), Daniel Lynch (InterOp), and Zvi Alon 
(NetManage).



Link Layer Protocols
 Introduction

To communicate on its directly-connected network, a host must implement the 
communication protocol used to interface to that network.    We call this a link layer or 
media-access layer protocol.

There are a wide variety of link layer protocols, corresponding to the many different types of 
networks, several of which are mentioned below.      The Address Resolution Protocol 
described in RFC-826, is a techique hosts and gateways must use to determine the mapping
of Internet Addresses to Hardware Addresses.      Trailer Encapsulations described in RFC-893 
is an optional protocol hosts and gateways may negotiate to use for performance 
improvements.

Public data networks via X.25
ARPANET via 1822 LH, DH, or HDH
ARPANET via DDN Standard X.25
Ethernet and IEEE 802
NetBIOS Networks
Serial-Line Protocols



Link Layer Protocols - Specific Networks

Public data networks via X.25
The formats specified for public data networks accessed via X.25 are described in RFC-877.   
Datagrams are transmitted over standard level-3 virtual circuits as complete packet 
sequences.    Virtual circuits are usually established dynamically as required and time-out 
after a period of no traffic.    Link-level retransmission, resequencing and flow control are 
performed by the network for each virtual circuit and by the LAPB link-level protocol.    Note 
that a single X.25 virtual circuit may be used to multiplex all IP traffic between a pair of 
hosts.    However, multiple parallel virtual circuits may be used in order to improve the 
utilization of the subscriber access line, in spite of small X.25 window sizes; this can result in
random resequencing.

The correspondence between Internet and X.121 addresses is usually established by table-
lookup.    It is expected that this will be replaced by some sort of directory procedure in the 
future.    The table of the hosts on the Public Data Network is in the Assigned Numbers.

The normal MTU is 576; however, the two DTE's (hosts or gateways) can use X.25 packet 
size negotiation to increase this value.



Link Layer Protocols - Specific Networks

 ARPANET via 1822 LH, DH, or HDH
The formats specified for ARPANET networks using 1822 access are described in BBN Report 
1822 [3], which includes the procedures for several subscriber access methods.    The Distant
Host (DH) method is used when the host and IMP (the Defense Communication Agency calls 
it a Packet Switch Node or PSN) are separated by not more than about 2000 feet of cable, 
while the HDLC Distant Host (HDH) is used for greater distances where a modem is required. 
Under HDH, retransmission, resequencing and flow control are performed by the network 
and by the HDLC link-level protocol.
The IP encapsulation format is simply to include the IP datagram as the data portion of an 
1822 message.    In addition, the high-order 8 bits of the Message Id field (also known as the 
"link" field") should be set to 155.    The MTU is 1007 octets.
The original IP address mapping (RFC-796) is in the process of being replaced by a new 
interface specification called AHIP-E; see RFC-1005 [61] for the proposal.
Gateways connected to ARPANET or MILNET IMPs using 1822 access must incorporate 
features to avoid host-port blocking (i.e., RFNM counting) and to detect and report as ICMP 
Unreachable messages the failure of destination hosts or gateways (i.e., convert the 1822 
error messages to the appropriate ICMP messages).
In the development of a network interface it will be useful to review the IMP end-to-end 
protocol described in RFC-979.



Link Layer Protocols - Specific Networks

ARPANET via DDN Standard X.25
The formats specified for ARPANET networks via X.25 are described in the Defense Data 
Network X.25 Host Interface Specification [6], which describes two sets of procedures: the 
DDN Basic X.25, and the DDN Standard X.25.    Only DDN Standard X.25 provides the 
functionality required for interoperability assumptions of the Internet protocol.
The DDN Standard X.25 procedures are similar to the public data network X.25 procedures, 
except in the address mappings.    Retransmission, resequencing and flowcontrol are 
performed by the network and by the LAPB link-level protocol.    Multiple parallel virtual 
circuits may be used in order to improve the utilization of the subscriber access line; this can
result in random resequencing.
Gateways connected to ARPANET or MILNET using Standard X.25 access must detect and 
report as ICMP Unreachable messages the failure of destination hosts or gateways (i.e., 
convert the X.25 diagnostic codes to the appropriate ICMP messages).
To achieve compatibility with 1822 interfaces, the effective MTU for a Standard X.25 
interface is 1007 octets.



Link Layer Protocols - Specific Networks

Serial-Line Protocols
In some configurations, gateways may be interconnected with each other by means of serial 
asynchronous or synchronous lines, with or without modems.    When justified by the 
expected error rate and other factors, a link-level protocol may be required on the serial line.
While there is no single Internet standard for this protocol, it is suggested that one of the 
following protocols be used.
o X.25 LAPB    (Synchronous Lines)

This is the link-level protocol used for X.25 network access.    It includes
HDLC "bit-stuffing" as well as rotating-window flow control and reliable 
delivery.

A gateway must be configurable to play the role of either the DCE or the DTE.
o HDLC Framing    (Synchronous Lines)

This is just the bit-stuffing and framing rules of LAPB.    It is the simplest
choice, although it provides no flow control or reliable delivery; 
however, it does provide error detection.

o Xerox Synchronous Point-to-Point    (Synchronous Lines)
This Xerox protocol is an elaboration upon HDLC framing that includes 
negotiation of maximum packet sizes, dial-up or dedicated circuits, and
half- or full-duplex operation [12].

o Serial Line IP (SLIP)    (Asynchronous Lines)
This protocol is included as part of the Berkeley and Sun UNIX 
Distributions, and is described in RFC-1055 "A Non-Standard for the 
Transmission of IP Datagrams over Serial Lines".

It will be important to make efficient use of the bandwidth available on a serial line between 
gateways.    For example, it is desirable to provide some form of data compression.    One 
possible standard compression algorithm is described if RFC-1144 "Compressing IP Headers 
for Low Speed Serial Lines".    This and similar algorithms are tuned to the particular types of 
redundancy which occur in IP and TCP headers; however, more work is necessary to define a
standard serial-line compression protocol for Internet gateways.    Until a standard has been 
adopted, each vendor is free to choose a compression algorithm; of course, the result will 
only be useful on a serial line between two gateways using the same compression algorithm.
Another way to ensure maximum use of the bandwidth is to avoid unnecessary 
retransmissions at the link level.    For some kinds of IP traffic, low delay is more important 
than reliable delivery.    The serial line driver could distinguish such datagrams by their IP 
TOS field, and place them on a special high-priority, no-retransmission queue.
A serial point-to-point line between two gateways may be considered to be a (particularly 
simple) network, a "null net".    Considered in this way, a serial linerequires no special 
considerations in the routing algorithms of the connected gateways, but does need an IP 
network number.    To avoid the wholesale consumptionof Internet routing data-base space 
by null nets, we strongly recommend that subnetting be used for null net numbering, 
whenever possible.
For example, assume that network 128.203 is to be constructed of gateways joined by null 
nets; these nets are given (sub-)net numbers 128.203.1, 128.203.2, etc., and the two 
interfaces on each end of null net 128.203.s might have IP addresses 128.203.s.1 and 
128.203.s.2.



An alternative model of a serial line is that it is not a network, but rather an internal 
communication path joining two "half gateways".    It is possible to design an IGP and routing 
algorithm that treats a serial line in this manner [RFC-891, 52].



Link Layer Protocols

Ethernet and IEEE 802 Encapsulation
The IP encapsulation for Ethernets is described in RFC-894, while RFC-1042 describes the IP 
encapsulation for IEEE 802 networks.
Every Internet host connected to a 10Mbps Ethernet cable:
o        must be able to send and receive packets using RFC-894 encapsulation;
o        should be able to receive RFC-1042 packets, intermixed with RFC-894 packets; and
o        may be able to send packets using RFC-1042 encapsulation.
An Internet host that implements sending both the RFC-894 and the RFC-1042 
encapsulations must provide a configuration switch to select which is sent, and this switch 
must default to RFC- 894.
Note that the standard IP encapsulation in RFC-1042 does not use the protocol id value 
(K1=6) that IEEE reserved for IP; instead, it uses a value (K1=170) that implies an extension 
(the "SNAP") which can be used to hold the Ether-Type field. An Internet system must not 
send 802 packets using K1=6.
Address translation from Internet addresses to link-layer addresses on Ethernet and IEEE 802
networks must be managed by the Address Resolution Protocol (ARP).
The MTU for an Ethernet is 1500 and for 802.3 is 1492.

Discussion
The IEEE 802.3 specification provides for operation over a 10Mbps Ethernet 
cable, in which case Ethernet and IEEE 802.3 frames can be physically 
intermixed.    A receiver can distinguish Ethernet and 802.3 frames by the 
value of the 802.3 Length field; this two-octet field coincides in the header 
with the Ether-Type field of an Ethernet frame.    In particular, the 802.3 Length
field must be less than or equal to 1500, while all valid Ether-Type values are 
greater than 1500.
Another compatibility problem arises with link-layer broadcasts.    A broadcast 
sent with one framing will not be seen by hosts that can receive only the other
framing.
The provisions of this section were designed to provide direct interoperation 
between 894-capable and 1042-capable systems on the same cable, to the 
maximum extent possible. It is intended to support the present situation 
where 894-only systems predominate, while providing an easy transition to a 
possible future in which 1042-capable systems become common.
Note that 894-only systems cannot interoperate directly with 1042-only 
systems.    If the two system types are set up as two different logical networks 
on the same cable, they can communicate only through an IP gateway. 
Furthermore, it is not useful or even possible for a dual-format host to discover
automatically which format to send, because of the problem of link-layer 
broadcasts.



Link Layer Protocols

ARP Packet Queue
The link layer should save (rather than discard) at least one (the latest) packet of each set 
of packets destined to the same unresolved IP address, and transmit the saved packet when 
the address has been resolved.

Discussion
Failure to follow this recommendation causes the first packet of every 
exchange to be lost.    Although higher- layer protocols can generally cope with
packet loss by retransmission, packet loss does impact performance. For 
example, loss of a TCP open request causes the initial round-trip time estimate
to be inflated.    UDP- based applications such as the Domain Name System are
more seriously affected.



Link Layer Protocols

Link/Internet Layer Interface
The packet receive interface between the IP layer and the link layer must include a flag to 
indicate whether the incoming packet was addressed to a link-layer broadcast address.

Discussion
Although the IP layer does not generally know link layer addresses (since 
every different network medium typically has a different address format), the 
broadcast address on a broadcast-capable medium is an important special 
case.
The packet send interface between the IP and link layers must include the 5-
bit TOS field.
The link layer must not report a Destination Unreachable error to IP solely 
because there is no ARP cache entry for a destination.



Internet Layer Protocols

Introduction
The Robustness Principle: "Be liberal in what you accept, and conservative in what you send"
is particularly important in the Internet layer, where one misbehaving host can deny Internet
service to many other hosts.
The protocol standards used in the Internet layer are:

o RFC-791 defines IP (the Internet Protocol) and gives an introduction to 
the architecture of the Internet.

o RFC-792 defines ICMP, (the Internet Control Message Protocol) which 
provides routing, diagnostic and error functionality for IP.    Although 
ICMP messages are encapsulated within IP datagrams, ICMP processing
is considered to be (and is typically implemented as) part of the IP 
layer.    

o RFC-950 defines the mandatory subnet extension to the addressing 
architecture.

o The Internet Group Management Protocol IGMP, is part of a 
recommended extension to hosts and to the host-gateway interface to 
support Internet-wide multicasting at the IP level.    This specification 
originally appeared as part of RFC-1112.

The target of an IP multicast may be an arbitrary group of Internet hosts.    IP multicasting is 
designed as a natural extension of the link-layer multicasting facilities of some networks, 
and it provides a standard means for local access to such link-layer multicasting facilities.
Other important references are listed in References.
The Internet layer of host software must implement both IP and ICMP.    See IP Multicasting 
for the requirements on support of IGMP.
The host IP layer has two basic functions:    (1) choose the "next hop" gateway or host for 
outgoing IP datagrams and (2) reassemble incoming IP datagrams.    The IP layer may also 
(3) implement intentional fragmentation of outgoing datagrams.    Finally, the IP layer must 
(4) provide diagnostic and error functionality.    We expect that IP layer functions may 
increase somewhat in the future, as further Internet control and management facilities are 
developed.
For normal datagrams, the processing is straightforward.    For incoming datagrams, the IP 
layer:

(1) verifies that the datagram is correctly formatted;
(2) verifies that it is destined to the local host;
(3) processes options;
(4) reassembles the datagram if necessary; and
(5) passes the encapsulated message to the appropriate transport-layer protocol 

module.
For outgoing datagrams, the IP layer:

(1) sets any fields not set by the transport layer;
(2) selects the correct first hop on the connected network (a process called 

"routing");
(3) fragments the datagram if necessary and if intentional fragmentation is 



implemented; and
(4) passes the packet(s) to the appropriate link-layer driver.

A host is said to be multihomed if it has multiple IP addresses. Multihoming introduces 
considerable confusion and complexity into the protocol suite, and it is an area in which the 
Internet architecture falls seriously short of solving all problems.    There are two distinct 
problem areas in multihoming:

(1) Local multihoming --    the host itself is multihomed; or
(2) Remote multihoming -- the local host needs to communicate with a remote 

multihomed host.
At present, remote multihoming must be handled at the application layer.    A host may 
support local multihoming, which is discussed in this document, and in particular in Local 
Multihoming.
Any host that forwards datagrams generated by another host is acting as a gateway and 
must also meet the specifications laid out in the gateway requirements RFC [RFC-1009].    
An Internet host that includes embedded gateway code must have a configuration switch to
disable the gateway function, and this switch must default to the non-gateway mode.    In 
this mode, a datagram arriving through one interface will not be forwarded to another host 
or gateway (unless it is source-routed), regardless of whether the host is single- homed or 
multihomed.    The host software must not automatically move into gateway mode if the 
host has more than one interface, as the operator of the machine may neither want to 
provide that service nor be competent to do so.
In the following, the action specified in certain cases is to "silently discard" a received 
datagram.    This means that the datagram will be discarded without further processing and 
that the host will not send any ICMP error message as a result.    However, for diagnosis of 
problems a host should provide the capability of logging the error, including the contents of 
the silently-discarded datagram, and should record the event in a statistics counter.
Silent discard of erroneous datagrams is generally intended to prevent "broadcast storms".



Internet Layer Protocols

Internet Control Message Protocol
Summary

ICMP is specified in RFC-792.
If an ICMP message of unknown type is received, it must be silently discarded.
Every ICMP error message includes the Internet header and at least the first 8 data octets of 
the datagram that triggered the error; more than 8 octets may be sent; this header and data
must be unchanged from the received datagram.
In those cases where the Internet layer is required to pass an ICMP error message to the 
transport layer, the IP protocol number must be extracted from the original header and 
used to select the appropriate transport protocol entity to handle the error.
An ICMP error message should be sent with normal (i.e., zero) TOS bits.
An ICMP error message must not be sent as the result of receiving:

* an ICMP error message, or
* a datagram destined to an IP broadcast or IP multicast address, or
* a datagram sent as a link-layer broadcast, or
* a non-initial fragment, or
* a datagram whose source address does not define a single host -- e.g., 

a zero address, a loopback address, a broadcast address, a multicast 
address, or a Class E address.

NOTE:THESE RESTRICTIONS TAKE PRECEDENCE OVER ANY REQUIREMENT 
ELSEWHERE IN THIS DOCUMENT FOR SENDING ICMP ERROR MESSAGES.

These rules will prevent the "broadcast storms" that have resulted from hosts returning ICMP
error messages in response to broadcast datagrams.    For example, a broadcast UDP 
segment to a non-existent port could trigger a flood of ICMP Destination Unreachable 
datagrams from all machines that do not have a client for that destination port.    On a large 
Ethernet, the resulting collisions can render the network useless for a second or more.
Every datagram that is broadcast on the connected network should have a valid IP broadcast
address as its IP destination.    However, some hosts violate this rule.    To be certain to detect
broadcast datagrams, therefore, hosts are required to check for a link-layer broadcast as 
well as an IP-layer broadcast address.
This requires that the link layer inform the IP layer when a link-layer broadcast datagram has
been received; see Link/Internet Layer Interface.



Internet Layer Protocols

IP Multicasting
A host should support local IP multicasting on all connected networks for which a mapping 
from Class D IP addresses to link-layer addresses has been specified (see below).    Support 
for local IP multicasting includes sending multicast datagrams, joining multicast groups and 
receiving multicast datagrams, and leaving multicast groups.    This implies support for all of 
RFC-1112,    "Host Extensions for IP Multicasting" except the IGMP protocol itself, which is 
optional.

Discussion
IGMP provides gateways that are capable of multicast routing with the 
information required to support IP multicasting across multiple networks.    At 
this time, multicast-routing gateways are in the experimental stage and are 
not widely available.    For hosts that are not connected to networks with 
multicast-routing gateways or that do not need to receive multicast 
datagrams originating on other networks, IGMP serves no purpose and is 
therefore optional for now.    However, the rest of RFC-1112 is currently 
recommended for the purpose of providing IP-layer access to local network 
multicast addressing, as a preferable alternative to local broadcast 
addressing.    It is expected that IGMP will become recommended at some 
future date, when multicast-routing gateways have become more widely 
available.

If IGMP is not implemented, a host should still join the "all- hosts" group (224.0.0.1) when 
the IP layer is initialized and remain a member for as long as the IP layer is active.

Discussion
Joining the "all-hosts" group will support strictly local uses of multicasting, 
e.g., a gateway discovery protocol, even if IGMP is not implemented.
The mapping of IP Class D addresses to local addresses is currently specified 
for the following types of networks:
o Ethernet/IEEE 802.3, as defined in RFC-1112.
o Any network that supports broadcast but not multicast, addressing: all 

IP Class D addresses map to the local broadcast address.
o Any type of point-to-point link (e.g., SLIP or HDLC links): no mapping 

required.    All IP multicast datagrams are sent as-is, inside the local 
framing.

Mappings for other types of networks will be specified in the future.
A host should provide a way for higher-layer protocols or applications to 
determine which of the host's connected network(s) support IP multicast 
addressing.



Internet Layer Protocols

Error Reporting
Wherever practical, hosts must return ICMP error datagrams on detection of an error, except
in those cases where returning an ICMP error message is specifically prohibited.

Discussion
A common phenomenon in datagram networks is the "black hole disease": 
datagrams are sent out, but nothing comes back.    Without any error 
datagrams, it is difficult for the user to figure out what the problem is.



Internet Layer Protocols

Internet/Transport Layer Interface
The interface between the IP layer and the transport layer must provide full access to all the
mechanisms of the IP layer, including options, Type-of-Service, and Time-to-Live.    The 
transport layer must either have mechanisms to set these interface parameters, or provide 
a path to pass them through from an application, or both.

Discussion
Applications are urged to make use of these mechanisms where applicable, 
even when the mechanisms are not currently effective in the Internet (e.g., 
TOS).    This will allow these mechanisms to be immediately useful when they 
do become effective, without a large amount of retrofitting of host software.

We now describe a conceptual interface between the transport layer and the IP layer, as a 
set of procedure calls.    This is an extension of the information in IP Interfaces.

*        Send Datagram
SEND(src, dst, prot, TOS, TTL, BufPTR, len, Id, DF, opt => result )
where the parameters are defined in RFC-791.    Passing an Id parameter is 
optional; see Identification.
*        Receive Datagram
RECV(BufPTR, prot => result, src, dst, SpecDest, TOS, len, opt)
All the parameters are defined in RFC-791, except for:
SpecDest = specific-destination address of datagram (defined in Addressing)
The result parameter dst contains the datagram's destination address.    Since 
this may be a broadcast or multicast address, the SpecDest parameter (not 
originally shown in RFC-791) must be passed. The parameter opt contains all 
the IP options received in the datagram; these must also be passed to the 
transport layer.
*        Select Source Address
GET_SRCADDR(remote, TOS)    -> local
remote = remote IP address
TOS = Type-of-Service
local = local IP address
*        Find Maximum Datagram Sizes
GET_MAXSIZES(local, remote, TOS) -> MMS_R, MMS_S
MMS_R = maximum receive transport-message size.
MMS_S = maximum send transport-message size.
(local, remote, TOS defined above)
*        Advice on Delivery Success
ADVISE_DELIVPROB(sense, local, remote, TOS)
Here the parameter sense is a 1-bit flag indicating whether positive or 
negative advice is being given; see the discussion in Dead Gateway Detection.
The other parameters were defined earlier.
*        Send ICMP Message
SEND_ICMP(src, dst, TOS, TTL, BufPTR, len, Id, DF, opt) -> result



(Parameters defined in RFC-791 and RFC-792).
Passing an Id parameter is optional; see Identification. The transport layer 
must be able to send certain ICMP messages:    Port Unreachable or any of the
query-type messages.    This function could be considered to be a special case 
of the SEND() call, of course; we describe it separately for clarity.
*        Receive ICMP Message
RECV_ICMP(BufPTR ) -> result, src, dst, len, opt

The IP layer must pass certain ICMP messages up to the appropriate transport-layer routine. 
This function could be considered to be a special case of the RECV() call, of course; we 
describe it separately for clarity.
For an ICMP error message, the data that is passed up must include the original Internet 
header plus all the octets of the original message that are included in the ICMP message. 
This data will be used by the transport layer to locate the connection state information, if 
any.
In particular, the following ICMP messages are to be passed up:

o Destination Unreachable
o Source Quench
o Echo Reply (to ICMP user interface, unless the Echo Request originated 

in the IP layer)
o Timestamp Reply (to ICMP user interface)
o Time Exceeded
Discussion

In the future, there may be additions to this interface to pass path data (see Route Cache) 
between the IP and transport layers.



Transport Layer Protocols

User Datagram Protocol -- UDP
Introduction

The User Datagram Protocol (UDP),defined in RFC-768, offers only a minimal transport 
service -- non-guaranteed datagram delivery -- and gives applications direct access to the 
datagram service of the IP layer.    UDP is used by applications that do not require the level of
service of TCP or that wish to use communications services (e.g., multicast or broadcast 
delivery) not available from TCP.
UDP is almost a null protocol; the only services it provides over IP are checksumming of data
and multiplexing by port number.    Therefore, an application program running over UDP 
must deal directly with end-to-end communication problems that a connection-oriented 
protocol would have handled -- e.g., retransmission for reliable delivery, packetization and 
reassembly, flow control, congestion avoidance, etc., when these are required.    The fairly 
complex coupling between IP and TCP will be mirrored in the coupling between UDP and 
many applications using UDP.



Transport Layer Protocols

Transmission Control Protocol -- TCP
Introduction

The Transmission Control Protocol TCP is defined in RFC-793 is the primary virtual-circuit 
transport protocol for the Internet suite.    TCP provides reliable, in-sequence delivery of a 
full-duplex stream of octets (8-bit bytes).    TCP is used by those applications needing 
reliable, connection-oriented transport service, e.g., mail (SMTP), file transfer (FTP), and 
virtual terminal service (Telnet).



Transport Layer Protocols

TCP -- Specific Issues
When to Send an ACK Segment
When to Send a Window Update
When to Send Data
TCP Connection Failures
TCP Keep-Alives
TCP Multihoming
IP Options
ICMP Messages
Remote Address Validation
TCP Traffic Patterns
Efficiency



Transport Layer Protocols

When to Send a TCP ACK Segment
A host that is receiving a stream of TCP data segments can increase efficiency in both the 
Internet and the hosts by sending fewer than one ACK (acknowledgment) segment per data 
segment received; this is known as a "delayed ACK" and is described in RFC-813 "Window 
and Acknowledgement Strategy in TCP.

A TCP should implement a delayed ACK, but an ACK should not be excessively delayed; in 
particular, the delay must be less than 0.5 seconds, and in a stream of full-sized segments 
there should be an ACK for at least every second segment.

Discussion
A delayed ACK gives the application an opportunity to update the window and 
perhaps to send an immediate response.    In particular, in the case of 
character-mode remote login, a delayed ACK can reduce the number of 
segments sent by the server by a factor of 3 (ACK, window update, and echo 
character all combined in one segment).

In addition, on some large multi-user hosts, a delayed ACK can substantially 
reduce protocol processing overhead by reducing the total number of packets 
to be processed.    However, excessive delays on ACK's can disturb the round-
trip timing and packet "clocking" algorithms [TCP:7].



Transport Layer Protocols

When to Send a TCP Window Update
A TCP must include a SWS avoidance algorithm in the receiver as described in RFC-813 
"Window and Acknowledgement Strategy in TCP".

Implementation
The receiver's SWS avoidance algorithm determines when the right window 
edge may be advanced; this is customarily known as "updating the window".    
This algorithm combines with the delayed ACK algorithm (see When to Send 
an ACK Segment) to determine when an ACK segment containing the current 
window will really be sent to the receiver.    We use the notation of RFC-793; 
see Figures 4 and 5 in that document.

The solution to receiver SWS is to avoid advancing the right window edge 
RCV.NXT+RCV.WND in small increments, even if data is received from the 
network in small segments.

Suppose the total receive buffer space is RCV.BUFF.    At any given moment, 
RCV.USER octets of this total may be tied up with data that has been received 
and acknowledged but which the user process has not yet consumed.    When 
the connection is quiescent, RCV.WND = RCV.BUFF and RCV.USER = 0.

Keeping the right window edge fixed as data arrives and is acknowledged 
requires that the receiver offer less than its full buffer space, i.e., the receiver 
must specify a RCV.WND that keeps RCV.NXT+RCV.WND constant as RCV.NXT 
increases.    Thus, the total buffer space RCV.BUFF is generally divided into 
three parts:

|<------- RCV.BUFF ---------------->|
            1                                                  2                                  3
------------|----------|------------------------|---------|----
                                          RCV.NXT                                            ^
                                                                                                                  (Fixed)

1 - RCV.USER =    data received but not yet consumed;
2 - RCV.WND =      space advertised to sender;
3 - Reduction = space available but not yet advertised.

The suggested SWS avoidance algorithm for the receiver is to keep 
RCV.NXT+RCV.WND fixed until the reduction satisfies:



RCV.BUFF - RCV.USER - RCV.WND    >= min( Fr * RCV.BUFF, Eff.snd.MSS )

where Fr is a fraction whose recommended value is 1/2, and Eff.snd.MSS is the
effective send MSS for the connection (see Maximum Segement Size).    When 
the inequality is satisfied, RCV.WND is set to RCV.BUFF-RCV.USER.

Note that the general effect of this algorithm is to advance RCV.WND in 
increments of Eff.snd.MSS (for realistic receive buffers:    Eff.snd.MSS < 
RCV.BUFF/2). Note also that the receiver must use its own Eff.snd.MSS, 
assuming it is the same as the sender's.



Transport Layer Protocols

When to Send TCP Data
A TCP must include a SWS avoidance algorithm in the sender.

A TCP should implement the Nagle Algorithm as described in RFC-896 "Congestion Control 
in IP/TCP" to coalesce short segments.    However, there must be a way for an application to 
disable the Nagle algorithm on an individual connection.    In all cases, sending data is also 
subject to the limitation imposed by the Slow Start algorithm (Retransmission Timeout).

Discussion
The Nagle algorithm is generally as follows:

If there is unacknowledged data (i.e., SND.NXT > SND.UNA), 
then the sending TCP buffers all user data (regardless of the 
PSH bit), until the outstanding data has been acknowledged or 
until the TCP can send a full-sized segment (Eff.snd.MSS bytes; 
see Maximum Segment Size).

Some applications (e.g., real-time display window updates) require that the Nagle algorithm 
be turned off, so small data segments can be streamed out at the maximum rate.    (See 
Implementation).



Transport Layer Protocols

When to Send TCP Data
Implementation

The sender's SWS avoidance algorithm is more difficult than the receivers's, because the 
sender does not know (directly) the receiver's total buffer space RCV.BUFF. An approach 
which has been found to work well is for the sender to calculate Max(SND.WND), the 
maximum send window it has seen so far on the connection, and to use this value as an 
estimate of RCV.BUFF.    Unfortunately, this can only be an estimate; the receiver may at any 
time reduce the size of RCV.BUFF.    To avoid a resulting deadlock, it is necessary to have a 
timeout to force transmission of data, overriding the SWS avoidance algorithm.    In practice, 
this timeout should seldom occur.

The "useable window" (as discussed the Silly Window Syndrome section of 
RFC-813) is:

U = SND.UNA + SND.WND - SND.NXT

i.e., the offered window less the amount of data sent but not 
acknowledged.    If D is the amount of data queued in the 
sending TCP but not yet sent, then the following set of rules is 
recommended.

Send data:

(1) if a maximum-sized segment can be sent, i.e, if:
min(D,U) >= Eff.snd.MSS;

(2) or if the data is pushed and all queued data can be sent 
now, i.e., if:
[SND.NXT = SND.UNA and] PUSHED,and
 D <= U

(the bracketed condition is imposed by the Nagle 
algorithm);

(3) or if at least a fraction Fs of the maximum window can 
be sent, i.e., if:
[SND.NXT = SND.UNA], and
min(D.U) >= Fs * Max(SND.WND);

(4) or if data is PUSHed and the override timeout occurs.



Here Fs is a fraction whose recommended value is 1/2. The override timeout 
should be in the range 0.1 - 1.0 seconds.    It may be convenient to combine 
this timer with the timer used to probe zero windows (Probing Zero Windows).

Finally, note that the SWS avoidance algorithm just specified is to be used 
instead of the sender-side algorithm contained in RFC-813 "Window and 
Acknowledgement Strategy in TCP.



Transport Layer Protocols -- TCP

Connection Failures

Excessive retransmission of the same segment by TCP indicates some failure of the remote 
host or the Internet path.    This failure may be of short or long duration.    The following 
procedure must be used to handle excessive retransmissions of data segments (See RFC-
816 "Fault Isolation and Recovery":

(a) There are two thresholds R1 and R2 measuring the amount of 
retransmission that has occurred for the same segment.    R1 and R2 
might be measured in time units or as a count of retransmissions.

(b) When the number of transmissions of the same segment reaches or 
exceeds threshold R1, pass negative advice to the IP layer, to trigger 
dead-gateway diagnosis.

(c) When the number of transmissions of the same segment reaches a 
threshold R2 greater than R1, close the connection.

(d) An application must be able to set the value for R2 for a particular 
connection.    For example, an interactive application might set R2 to 
"infinity," giving the user control over when to disconnect.

(e) TCP should inform the application of the delivery problem (unless such
information has been disabled by the application; see Asynchronous 
Reports), when R1 is reached and before R2.    This will allow a remote 
login (User Telnet) application program to inform the user, for example.

The value of R1 should correspond to at least 3 retransmissions, at the current RTO.    The 
value of R2 should correspond to at least 100 seconds.
An attempt to open a TCP connection could fail with excessive retransmissions of the SYN 
segment or by receipt of a RST segment or an ICMP Port Unreachable.    SYN retransmissions 
must be handled in the general way just described for data retransmissions, including 
notification of the application layer.
However, the values of R1 and R2 may be different for SYN and data segments.    In 
particular, R2 for a SYN segment must be set large enough to provide retransmission of the 
segment for at least 3 minutes.    The application can close the connection (i.e., give up on 
the open attempt) sooner, of course.

Discussion
Some Internet paths have significant setup times, and the number of such 
paths is likely to increase in the future.



Transport Layer Protocols

TCP Keep-Alives
Implementors may include "keep-alives" in their TCP implementations, although this 
practice is not universally accepted.    If keep-alives are included, the application must be 
able to turn them on or off for each TCP connection, and they must default to off.

Keep-alive packets must only be sent when no data or acknowledgement packets have been
received for the connection within an interval.    This interval must be configurable and 
must default to no less than two hours.

It is extremely important to remember that ACK segments that contain no data are not 
reliably transmitted by TCP. Consequently, if a keep-alive mechanism is implemented it 
must not interpret failure to respond to any specific probe as a dead connection.

An implementation should send a keep-alive segment with no data; however, it may be 
configurable to send a keep-alive segment containing one garbage octet, for compatibility 
with erroneous TCP implementations.    (See Discussion).



Transport Layer Protocols

TCP Keep-Alives
Discussion

A "keep-alive" mechanism periodically probes the other end of a connection when the 
connection is otherwise idle, even when there is no data to be sent.    The TCP specification 
does not include a keep-alive mechanism because it could:    (1) cause perfectly good 
connections to break during transient Internet failures; (2) consume unnecessary bandwidth 
("if no one is using the connection, who cares if it is still good?"); and (3) cost money for an 
Internet path that charges for packets.

Some TCP implementations, however, have included a keep-alive mechanism.    To confirm 
that an idle connection is still active, these implementations send a probe segment designed
to elicit a response from the peer TCP.    Such a segment generally contains SEG.SEQ = 
SND.NXT-1 and may or may not contain one garbage octet of data.    Note that on a quiet 
connection SND.NXT = RCV.NXT, so that this SEG.SEQ will be outside the window.    
Therefore, the probe causes the receiver to return an acknowledgment segment, confirming 
that the connection is still live.    If the peer has dropped the connection due to a network 
partition or a crash, it will respond with a RST instead of an acknowledgment segment.

Unfortunately, some misbehaved TCP implementations fail to respond to a segment with 
SEG.SEQ = SND.NXT-1 unless the segment contains data.    Alternatively, an implementation 
could determine whether a peer responded correctly to keep-alive packets with no garbage 
data octet.

A TCP keep-alive mechanism should only be invoked in server applications that might 
otherwise hang indefinitely and consume resources unnecessarily if a client crashes or 
aborts a connection during a network failure.



Transport Layer Protocols

TCP Multihoming Issues
If an application on a multihomed host does not specify the local IP address when actively 
opening a TCP connection, then the TCP must ask the IP layer to select a local IP address 
before sending the (first) SYN.    See the function GET_SRCADDR() in Internet/Transport Layer
Interface.

At all other times, a previous segment has either been sent or received on this connection, 
and TCP must use the same local address is used that was used in those previous 
segments.



Transport Layer Protocols

IP Options
When received options are passed up to TCP from the IP layer, TCP must ignore options that 
it does not understand.

A TCP may support the Time Stamp and Record Route options.

An application must be able to specify a source route when it actively opens a TCP 
connection, and this must take precedence over a source route received in a datagram.

When a TCP connection is OPENed passively and a packet arrives with a completed IP Source
Route option (containing a return route), TCP must save the return route and use it for all 
segments sent on this connection.    If a different source route arrives in a later segment, the 
later definition should override the earlier one.



Transport Layer Protocols

ICMP Messages
TCP must act on an ICMP error message passed up from the IP layer, directing it to the 
connection that created the error.    The necessary demultiplexing information can be found 
in the IP header contained within the ICMP message.

o Source Quench

TCP must react to a Source Quench by slowing transmission on the 
connection.    The RECOMMENDED procedure is for a Source Quench to 
trigger a "slow start," as if a retransmission timeout had occurred.

o Destination Unreachable -- codes 0, 1, 5

Since these Unreachable messages indicate soft error conditions, TCP 
must not abort the connection, and it should make the information 
available to the application.

Discussion
TCP could report the soft error condition directly to the 
application layer with an upcall to the ERROR_REPORT 
routine, or it could merely note the message and report 
it to the application only when and if the TCP connection 
times out.

o Destination Unreachable -- codes 2-4

These are hard error conditions, so TCP should abort the connection.

o Time Exceeded -- codes 0, 1

This should be handled the same way as Destination Unreachable 
codes 0, 1, 5 (see above).

o Parameter Problem

This should be handled the same way as Destination Unreachable 
codes 0, 1, 5 (see above).



Transport Layer Protocols

Remote Address Validation
A TCP implementation must reject as an error a local OPEN call for an invalid remote IP 
address (e.g., a broadcast or multicast address).
An incoming SYN with an invalid source address must be ignored either by TCP or by the IP 
layer.
A TCP implementation must silently discard an incoming SYN segment that is addressed to a
broadcast or multicast address.



Transport Layer Protocols

TCP Traffic Patterns
Implementation
The TCP protocol specification RFC-793 gives the implementor much freedom in designing 
the algorithms that control the message flow over the connection -- packetizing, managing 
the window, sending acknowledgments, etc.    These design decisions are difficult because a 
TCP must adapt to a wide range of traffic patterns.    Experience has shown that a TCP 
implementor needs to verify the design on two extreme traffic patterns:

o Single-character Segments

Even if the sender is using the Nagle Algorithm, when a TCP connection
carries remote login traffic across a low-delay LAN the receiver will 
generally get a stream of single-character segments.    If remote 
terminal echo mode is in effect, the receiver's system will generally 
echo each character as it is received.

o Bulk Transfer

When TCP is used for bulk transfer, the data stream should be made up
(almost) entirely of segments of the size of the effective MSS. Although
TCP uses a sequence number space with byte (octet) granularity, in 
bulk-transfer mode its operation should be as if TCP used a sequence 
space that counted only segments.

Experience has furthermore shown that a single TCP can effectively and efficiently handle 
these two extremes.

The most important tool for verifying a new TCP implementation is a packet trace program.    
There is a large volume of experience showing the importance of tracing a variety of traffic 
patterns with other TCP implementations and studying the results carefully.



Transport Layer Protocols

TCP Efficiency
Implementation
Extensive experience has led to the following suggestions for efficient implementation of 
TCP:

(a) Don't Copy Data

In bulk data transfer, the primary CPU-intensive tasks are copying data 
from one place to another and checksumming the data.    It is vital to 
minimize the number of copies of TCP data.    Since the ultimate speed 
limitation may be fetching data across the memory bus, it may be 
useful to combine the copy with checksumming, doing both with a 
single memory fetch.

(b) Hand-Craft the Checksum Routine

A good TCP checksumming routine is typically two to five times faster 
than a simple and direct implementation of the definition.    Great care 
and clever coding are often required and advisable to make the 
checksumming code "blazing fast".    See RFC-1071 "Computing the 
Internet Checksum".

(c) Code for the Common Case

TCP protocol processing can be complicated, but for most segments 
there are only a few simple decisions to be made.    Per-segment 
processing will be greatly speeded up by coding the main line to 
minimize the number of decisions in the most common case.



Transport Layer Protocols

TCP/Application Layer Interface
Asynchronous Reports
Type-of-Service
Flush Call
Multihoming



Transport Layer Protocols

TCP Asynchronous Reports
There must be a mechanism for reporting soft TCP error conditions to the application.    
Generically, we assume this takes the form of an application-supplied ERROR_REPORT 
routine that may be upcalled [INTRO:7] asynchronously from the transport layer:

ERROR_REPORT(local connection name, reason, subreason)

The precise encoding of the reason and subreason parameters is not specified here.    
However, the conditions that are reported asynchronously to the application must include:

* ICMP error message arrived (ICMP Messages)

* Excessive retransmissions (Connection Failures)

* Urgent pointer advance (Urgent Pointer).

However, an application program that does not want to receive such ERROR_REPORT calls 
should be able to effectively disable these calls.

Discussion
These error reports generally reflect soft errors that can be ignored without 
harm by many applications.    It has been suggested that these error report 
calls should default to "disabled," but this is not required.



Transport Layer Protocols

TCP Type-of-Service
The application layer must be able to specify the Type-of- Service (TOS) for segments that 
are sent on a connection. It not required, but the application should be able to change the 
TOS during the connection lifetime.    TCP should pass the current TOS value without change
to the IP layer, when it sends segments on the connection.

The TOS will be specified independently in each direction on the connection, so that the 
receiver application will specify the TOS used for ACK segments.

TCP may pass the most recently received TOS up to the application.

Discussion
Some applications (e.g., SMTP) change the nature of their communication 
during the lifetime of a connection, and therefore would like to change the 
TOS specification.

Note also that the OPEN call specified in RFC-793 includes a parameter 
("options") in which the caller can specify IP options such as source route, 
record route, or timestamp.



Transport Layer Protocols

TCP Flush Call
Some TCP implementations have included a FLUSH call, which will empty the TCP send 
queue of any data for which the user has issued SEND calls but which is still to the right of 
the current send window.    That is, it flushes as much queued send data as possible without 
losing sequence number synchronization.    This is useful for implementing the "abort output"
function of Telnet.



Transport Layer Protocols

TCP Multihoming
The user interface outlined in sections 2.7 and 3.8 of RFC- 793 needs to be extended for 
multihoming.    The OPEN call must have an optional parameter:

OPEN( ... [local IP address,] ... )

to allow the specification of the local IP address.

Discussion
Some TCP-based applications need to specify the local IP address to be used 
to open a particular connection; FTP is an example.

Implementation
A passive OPEN call with a specified "local IP address" parameter will await an 
incoming connection request to that address.    If the parameter is unspecified,
a passive OPEN will await an incoming connection request to any local IP 
address, and then bind the local IP address of the connection to the particular 
address that is used.

For an active OPEN call, a specified "local IP address" parameter will be used 
for opening the connection.    If the parameter is unspecified, the networking 
software will choose an appropriate local IP address (see Multihoming 
Requirements) for the connection.



Silly Window Syndrome (SWS): a stable pattern of small incremental window movements 
resulting in extremely poor TCP performance.



[INTRO:1] "Requirements for Internet Hosts -- Application and Support," IETF Host 
Requirements Working Group, R. Braden, Ed., RFC-1123, October 1989.



[INTRO:2]    "Requirements for Internet Gateways,"    R. Braden and J. Postel, RFC-1009, June 
1987.



[INTRO:3]    "DDN Protocol Handbook," NIC-50004, NIC-50005, NIC-50006, (three 
volumes), SRI International, December 1985.



[INTRO:4]    "Official Internet Protocols," J. Reynolds and J. Postel, RFC-1011, May 1987.

This document is republished periodically with new RFC numbers; the latest version must be 
used.



[INTRO:5]    "Protocol Document Order Information," O. Jacobsen and J. Postel, RFC-980, 
March 1986.



[INTRO:6]    "Assigned Numbers," J. Reynolds and J. Postel, RFC-1060, March 1990.

This document is republished periodically with new RFC numbers; the latest version must be 
used.



[INTRO:7] "Modularity and Efficiency in Protocol Implementations," D. Clark, RFC-817, July 
1982.



[INTRO:8] "The Structuring of Systems Using Upcalls," D. Clark, 10th ACM SOSP, Orcas 
Island, Washington, December 1985.



[INTRO:9]    "A Protocol for Packet Network Intercommunication," V. Cerf and R. Kahn, IEEE 
Transactions on Communication, May 1974.



[INTRO:10]    "The ARPA Internet Protocol," J. Postel, C. Sunshine, and D. Cohen, Computer 
Networks, Vol. 5, No. 4, July 1981.



[INTRO:11]    "The DARPA Internet Protocol Suite," B. Leiner, J. Postel, R. Cole and D. Mills, 
Proceedings INFOCOM 85, IEEE, Washington DC, March 1985.    Also in: IEEE Communications
Magazine, March 1985. Also available as ISI-RS-85-153.



[INTRO:12] "Final Text of DIS8473, Protocol for Providing the Connectionless Mode Network 
Service," ANSI, published as RFC-994, March 1986.



[INTRO:13] "End System to Intermediate System Routing Exchange Protocol," ANSI X3S3.3, 
published as RFC-995, April 1986.



[LINK:1] "Trailer Encapsulations," S. Leffler and M. Karels, RFC-893, April 1984.



[LINK:2] "An Ethernet Address Resolution Protocol," D. Plummer, RFC-826, November 1982.



[LINK:3] "A Standard for the Transmission of IP Datagrams over Ethernet Networks," C. 
Hornig, RFC-894, April 1984.



[LINK:4] "A Standard for the Transmission of IP Datagrams over IEEE 802 "Networks," J. 
Postel and J. Reynolds, RFC-1042, February 1988.

This RFC contains a great deal of information of importance to Internet implementers 
planning to use IEEE 802 networks.



[IP:1] "Internet Protocol (IP)," J. Postel, RFC-791, September 1981.



[IP:2] "Internet Control Message Protocol (ICMP)," J. Postel, RFC-792, September 1981.



[IP:3] "Internet Standard Subnetting Procedure," J. Mogul and J. Postel, RFC-950, August 
1985.



[IP:4]    "Host Extensions for IP Multicasting," S. Deering, RFC-1112, August 1989.



[IP:5] "Military Standard Internet Protocol," MIL-STD-1777, Department of Defense, August 
1983.

This specification, as amended by RFC-963, is intended to describe the Internet Protocol but 
has some serious omissions (e.g., the mandatory subnet extension [IP:3] and the optional 
multicasting extension [IP:4]).    It is also out of date.    If there is a conflict, RFC-791, RFC-
792, and RFC-950 must be taken as authoritative, while the present document is 
authoritative over all.



[IP:6] "Some Problems with the Specification of the Military Standard Internet Protocol," D. 
Sidhu, RFC-963, November 1985.



[IP:7] "The TCP Maximum Segment Size and Related Topics," J. Postel, RFC-879, November 
1983.

Discusses and clarifies the relationship between the TCP Maximum Segment Size option and 
the IP datagram size.



[IP:8] "Internet Protocol Security Options,"    B. Schofield, RFC-1108, October 1989.



[IP:9] "Fragmentation Considered Harmful," C. Kent and J. Mogul, ACM SIGCOMM-87, August 
1987.    Published as ACM Comp Comm Review, Vol. 17, no. 5.

This useful paper discusses the problems created by Internet fragmentation and presents 
alternative solutions.



[IP:10] "IP Datagram Reassembly Algorithms," D. Clark, RFC-815, July 1982.

This and the following paper should be read by every implementor.



[IP:11] "Fault Isolation and Recovery," D. Clark, RFC-816, July 1982.



[IP:12] "Broadcasting Internet Datagrams in the Presence of Subnets," J. Mogul, RFC-922, 
October 1984.



[IP:13] "Name, Addresses, Ports, and Routes," D. Clark, RFC-814, July 1982.



[IP:14] "Something a Host Could Do with Source Quench: The Source Quench Introduced 
Delay (SQUID)," W. Prue and J. Postel, RFC-1016, July 1987.

This RFC first described directed broadcast addresses.    However, the bulk of the RFC is 
concerned with gateways, not hosts.



[UDP:1] "User Datagram Protocol," J. Postel, RFC-768, August 1980.



[TCP:1] "Transmission Control Protocol," J. Postel, RFC-793, September 1981.



[TCP:2] "Transmission Control Protocol," MIL-STD-1778, US Department of Defense, August 
1984.

This specification as amended by RFC-964 is intended to describe the same protocol as RFC-
793 [TCP:1].    If there is a conflict, RFC-793 takes precedence, and the present document is 
authoritative over both.



[TCP:3] "Some Problems with the Specification of the Military Standard Transmission Control 
Protocol," D. Sidhu and T. Blumer, RFC-964, November 1985.



[TCP:4] "The TCP Maximum Segment Size and Related Topics," J. Postel, RFC-879, November
1983.



[TCP:5] "Window and Acknowledgment Strategy in TCP," D. Clark, RFC-813, July 1982.



[TCP:6] "Round Trip Time Estimation," P. Karn & C. Partridge, ACM SIGCOMM-87, August 
1987.



[TCP:7] "Congestion Avoidance and Control," V. Jacobson, ACM SIGCOMM-88, August 1988.



[TCP:8] "Modularity and Efficiency in Protocol Implementation," D. Clark, RFC-817, July 
1982.



[TCP:9] "Congestion Control in IP/TCP," J. Nagle, RFC-896, January 1984.



[TCP:10] "Computing the Internet Checksum," R. Braden, D. Borman, and C. Partridge, RFC-
1071, September 1988.



[TCP:11] "TCP Extensions for Long-Delay Paths," V. Jacobson & R. Braden, RFC-1072, 
October 1988.



A segment is the unit of end-to-end transmission in the TCP protocol.    A segment consists of
a TCP header followed by application data.    A segment is transmitted by encapsulation 
inside an IP datagram.



In this description of the lower-layer protocols, a message is the unit of transmission in a 
transport layer protocol.    In particular, a TCP segment is a message.    A message consists of
a transport protocol header followed by application protocol data.    To be transmitted end-to-
end through the Internet, a message must be encapsulated inside a datagram.



An IP datagram is the unit of end-to-end transmission in the IP protocol.    An IP datagram 
consists of an IP header followed by transport layer data, i.e., of an IP header followed by a 
message.

In the description of the internet layer, the unqualified term "datagram" should be 
understood to refer to an IP datagram.



A packet is the unit of data passed across the interface between the internet layer and the 
link layer.    It includes an IP header and data.    A packet may be a complete IP datagram or a
fragment of an IP datagram.



A frame is the unit of transmission in a link layer protocol, and consists of a link-layer header
followed by a packet.



A network to which a host is interfaced is often known as the "local network" or the 
"subnetwork" relative to that host.    However, these terms can cause confusion, and 
therefore we use the term "connected network" in this document.



A host is said to be multihomed if it has multiple IP addresses.



This is a physical interface to a connected network and has a (possibly unique) link-layer 
address.    Multiple physical network interfaces on a single host may share the same link-
layer address, but the address must be unique for different hosts on the same physical 
network.



We define a logical [network] interface to be a logical path, distinguished by a unique IP 
address, to a connected network.



This is the effective destination address of a datagram, even if it is broadcast or multicast.



At a given moment, all the IP datagrams from a particular source host to a particular 
destination host will typically traverse the same sequence of gateways.    We use the term 
"path" for this sequence.    Note that a path is uni-directional; it is not unusual to have 
different paths in the two directions between a given host pair.



The maximum transmission unit, i.e., the size of the largest packet that can be transmitted.



File Transfer Protocol
FTP

Introduction

The File Transfer Protocol FTP is the primary Internet standard for file transfer.    The current 
specification is contained in RFC-959.
FTP uses separate simultaneous TCP connections for control and for data transfer.    The FTP 
protocol includes many features, some of which are not commonly implemented.    However, 
for every feature in FTP, there exists at least one implementation.
Internet users have been unnecessarily burdened for years by deficient FTP 
implementations.    Protocol implementors have suffered from the erroneous opinion that 
implementing FTP ought to be a small and trivial task.    This is wrong, because FTP has a 
user interface, because it has to deal (correctly) with the whole variety of communication 
and operating system errors that may occur, and because it has to handle the great 
diversity of real file systems in the world.

Specific Issues
FTP/User Interface



File Transfer Protocol

Specific Issues

Non-standard Command Verbs
Idle Timeout
Concurrency of Data and Control



File Transfer Protocol

Non-standard Command Verbs
FTP allows "experimental" commands, whose names begin with "X".    If these commands are
subsequently adopted as standards, there may still be existing implementations using the 
"X" form.    At present, this is true for the directory commands:

RFC-959           "Experimental"  
MKD XMKD
RMD XRMD
PWD XPWD
CDUP XCUP
CWD XCWD

All FTP implementations should recognize both forms of these commands, by simply 
equating them with extra entries in the command lookup table.

Implementation
A User-FTP can access a server that supports only the "X" forms by 
implementing a mode switch, or automatically using the following procedure: 
if the RFC-959 form of one of the above commands is rejected with a 500 or 
502 response code, then try the experimental form; any other response would 
be passed to the user.



File Transfer Protocol

Idle Timeout
A Server-FTP process should have an idle timeout, which will terminate the process and 
close the control connection if the server is inactive (i.e., no commandor data transfer in 
progress) for a long period of time.    The idle timeout time should be configurable, and the 
default should be at least 5 minutes.
A client FTP process ("User-PI" in RFC-959) will need timeouts on responses only if it is 
invoked from a program.

Discussion
Without a timeout, a Server-FTP process may be left pending indefinitely if the 
corresponding client crashes without closing the control connection.



File Transfer Protocol

Concurrency of Data and Control
Discussion
The intent of the designers of FTP was that a user should be able to send a 
STAT command at any time while data transfer was in progress and that the 
server-FTP would reply immediately with status -- e.g., the number of bytes 
transferred so far.    Similarly, an ABOR command should be possible at any 
time during a data transfer.
Unfortunately, some small-machine operating systems make such concurrent 
programming difficult, and some other implementers seek minimal solutions, 
so some FTPimplementations do not allow concurrent use of the data and 
control connections.    Even such a minimal server must be prepared to accept 
and defer a STAT or ABOR command that arrives during data transfer.



File Transfer Protocol

User Interface
This section discusses the user interface for a User-FTP program.

Pathname Specification
Displaying Replies to User
Maintaining Synchronization



File Transfer Protocol

Pathname Specification
Since FTP is intended for use in a heterogeneous environment, User-FTP implementations 
must support remote pathnames as arbitrary character strings, so that their form and 
content are not limited by the conventions of the local operating system.

Discussion
In particular, remote pathnames can be of arbitrary length, and all the printing
ASCII characters as well as space (0x20) must be allowed.    RFC-959allows a 
pathname to contain any 7-bit ASCII character except CR or LF.



File Transfer Protocol

Displaying Replies to User
A User-FTP should display to the user the full text of all error reply messages it receives.    It 
should have a "verbose" mode in which all commands it sends and the full text and reply 
codes it receives are displayed, for diagnosis of problems.



File Transfer Protocol

Maintaining Synchronization
The state machine in a User-FTP should be forgiving of missing and unexpected reply 
messages, in order to maintain command synchronization with the server.



Application Layer General Issues

This section contains general requirements that may be applicable to all application-layer 
protocols.

Host Names and Numbers
Using Domain Name Service
Applications on Multihomed Hosts
Type of Service



General Issues

Host Names and Numbers
The syntax of a legal Internet host name was specified in "DoD Internet Host Table 
Specification" [RFC-952].    One aspect of host name syntax is hereby changed: the 
restriction on the first character is relaxed to allow either a letter or a digit.    Host software 
must support this more liberal syntax.

Host software must handle host names of up to 63 characters and should handle host 
names of up to 255 characters.

Whenever a user inputs the identity of an Internet host, it should be possible to enter either
(1) a host domain name or (2) an IP address in dotted-decimal ("#.#.#.#") form.    The host 
should check the string syntactically for a dotted-decimal number before looking it up in the
Domain Name System.

Disscussion
This last requirement is not intended to specify the complete syntactic form 
for entering a dotted-decimal host number; that is considered to be a user-
interface issue.    For example, a dotted-decimal number must be enclosed 
within "[ ]" brackets for SMTP mail.    This notation could be made universal 
within a host system, simplifying the syntactic checking for a dotted-decimal 
number.

If a dotted-decimal number can be entered without such identifying delimiters,
then a full syntactic check must be made, because a segment of a host 
domain name is now allowed to begin with a digit and could legally be entirely
numeric.    However, a valid host name can never have the dotted-decimal 
form #.#.#.#, since at least the highest-level component label will be 
alphabetic.



General Issues

Using Domain Name Service
Host domain names must be translated to IP addresses as described in Domain Name 
Translation.

Applications using domain name services must be able to cope with soft error conditions.    
Applications must wait a reasonable interval between successive retries due to a soft error, 
and must allow for the possibility that network problems may deny service for hours or even
days.

An application should not rely on the ability to locate a WKS record containing an accurate 
listing of all services at a particular host address, since the WKSRR type is not often used by 
Internet sites.    To confirm that a service is present, simply attempt to use it.



General Issues

Applications on Multihomed hosts
When the remote host is multihomed, the name-to-address translation will return a list of 
alternative IP addresses.    This listshould be in order of decreasing preference.    Application 
protocol implementations should be prepared to try multiple addresses from the list until 
success is obtained.    More specific requirements for SMTP are given in SMTP Overview.

When the local host is multihomed, a UDP-based request/response application should send 
the response with an IP source address that is the same as the specific destination address 
of the UDP request datagram.    The "specific destination address" is defined in the 
"Additional Addressing Notes" section of    RFC-791 [RFC-791].

Similarly, a server application that opens multiple TCP connections to the same client 
should use the same local IP address for all.



General Issues

Type-of-Service Issues for Applications
Applications must select appropriate TOS values when they invoke transport layer services, 
and these values must be configurable.    Note that a TOS value contains 5 bits, of which 
only the most- significant 3 bits are currently defined; the other two bits must be zero.

Discussion
As gateway algorithms are developed to implement Type-of- Service, the 
recommended values for various application protocols may change.    In 
addition, it is likely that particular combinations of users and Internet paths 
will want non-standard TOS values.    For these reasons, the TOS values must 
be configurable.

See the latest version of the "Assigned Numbers" RFC [RFC-1060] for the 
recommended TOS values for the major application protocols.



Host Initialization
Introduction
Requirements
Dynamic Configuration
Loading Phase



Host Initialization

Introduction

This section discusses the initialization of host software across a connected network, or more
generally across an Internet path.    This is necessary for a diskless host, and may optionally 
be used for a host with disk drives.    For a diskless host, the initialization process is called 
"network booting" and is controlled by a bootstrap program located in a boot ROM.
To initialize a diskless host across the network, there are two distinct phases:

(1) Configure the IP layer.
Diskless machines often have no permanent storage in which to store 
network configuration information, so that sufficient configuration 
information must be obtained dynamically to support the loading phase
that follows.    This information must include at least the IP addresses of
the host and of the boot server.    To support booting across a gateway, 
the address mask and a list of default gateways are also required.

(2) Load the host system code.
During the loading phase, an appropriate file transfer protocol is used 
to copy the system code across the network from the boot server.

A host with a disk may perform the first step, dynamic configuration.    This is important for 
microcomputers, whose floppy disks allow network configuration information to be 
mistakenly duplicated on more than one host.    Also, installation of new hosts is much 
simpler if they automatically obtain their configuration information from a central server, 
saving administrator time and decreasing the probability of mistakes.



Host Intialization

Dynamic Configuration

A number of protocol provisions have been made for dynamic configuration.
o ICMP Information Request/Reply messages

This obsolete message pair was designed to allow a host to find the 
number of the network it is on.    Unfortunately, it was useful only if the 
host already knewthe host number part of its IP address, information 
that hosts requiring dynamic configuration seldom had.

o Reverse Address Resolution Protocol (RARP)
RARP is a link-layer protocol for a broadcast medium that allows a host 
to find its IP address given its link layer address.    Unfortunately, RARP 
does not workacross IP gateways and therefore requires a RARP server 
on every network.    In addition, RARP does not provide any other 
configuration information.

o ICMP Address Mask Request/Reply messages
These ICMP messages allow a host to learn the address mask for a 
particular network interface.

o BOOTP Protocol
This protocol allows a host to determine the IP addresses of the local 
host and the boot server, the name of an appropriate boot file, and 
optionally the address mask and list of default gateways.    To locate a 
BOOTP server, the host broadcasts a BOOTP request using UDP.    Ad 
hoc gateway extensions have been used to transmit the BOOTP 
broadcast through gateways, and in the future the IP Multicasting 
facility will provide a standard mechanism for this purpose.

The suggested approach to dynamic configuration is to use the BOOTP protocol with the 
extensions defined in "BOOTP Vendor Information Extensions" RFC-1084.    RFC-1084 defines 
some important general (not vendor-specific) extensions.    In particular, these extensions 
allow the address mask to be supplied in BOOTP; we recommend that the address mask be 
supplied in this manner.

Discussion
Historically, subnetting was defined long after IP, and so a separate 
mechanism (ICMP Address Mask messages) was designed to supply the 
address mask to a host.    However, the IP address mask and the 
corresponding IP address conceptually form a pair, and for operational 
simplicity they ought to be defined at the same time and by the same 
mechanism, whether a configuration file or a dynamic mechanism like BOOTP.
Note that BOOTP is not sufficiently general to specify the configurations of all 
interfaces of a multihomed host.    A multihomed host must either use BOOTP 
separately for each interface, or configure one interface using BOOTP to 
perform the loading, and perform the complete initialization from a file later.
Application layer configuration information is expected to be obtained from 
files after loading of the system code.



Host Initialization

Loading Phase
A suggested approach for the loading phase is to use TFTP [RFC-906] between the IP 
addresses established by BOOTP [RFC-951].
TFTP to a broadcast address   should not   be used  .



Remote Management

Introduction
The Internet community has recently put considerable effort into the development of 
network management protocols.    The result has been a two-pronged approach [RFC-1052, 
RFC-1109]: the Simple Network Management Protocol (SNMP) [RFC-1157] and the Common 
Management Information Protocol over TCP (CMOT) [RFC-1189].
In order to be managed using SNMP or CMOT, a host will need to implement an appropriate 
management agent.    An Internet host should include an agent for either SNMP or CMOT.
Both SNMP and CMOT operate on a Management Information Base (MIB) that defines a 
collection of management values.    By reading and setting these values, a remote 
application may query and change the state of the managed system.
A standard MIB [RFC-1156] has been defined for use by both management protocols, using 
data types defined by the Structure of Management Information (SMI) defined in [RFC-1155].
Additional MIB variables can be introduced under the "enterprises" and "experimental" 
subtrees of the MIB naming space [RFC-1155].
Every protocol module in the host should implement the relevant MIB variables.    A host 
should implement the MIB variables as defined in the most recent standard MIB, and may 
implement other MIB variables when appropriate and useful.



Remote Management

Protocol Walk-Through
The MIB is intended to cover both hosts and gateways, although there may be detailed 
differences in MIB application to the two cases.    This section contains the appropriate 
interpretation of the MIB for hosts.    It is likely that later versions of the MIB will include more
entries for host management.

A managed host must implement the following groups of MIB object definitions: System, 
Interfaces, Address Translation, IP, ICMP, TCP, and UDP.

The following specific interpretations apply to hosts:

o ipInHdrErrors
Note that the error "time-to-live exceeded" can occur in a host only 
when it is forwarding a source-routed datagram.

o ipOutNoRoutes
This object counts datagrams discarded because no route can be 
found.    This may happen in a host if all the default gateways in the 
host's configuration are down.

o ipFragOKs, ipFragFails, ipFragCreates
A host that does not implement intentional fragmentation (see 
"Fragmentation" section of [INTRO:1]) MUST return the value zero for 
these three objects.

o icmpOutRedirects
For a host, this object MUST always be zero, since hosts do not send 
Redirects.

o icmpOutAddrMaskReps
For a host, this object MUST always be zero, unless the host is an 
authoritative source of address mask information.

o ipAddrTable
For a host, the "IP Address Table" object is effectively a table of logical 
interfaces.

o ipRoutingTable
For a host, the "IP Routing Table" object is effectively a combination of 
the host's Routing Cache and the static route table described in 
Routing Outbound Datagrams.
Within each ipRouteEntry, ipRouteMetric1...4 normally will have no 
meaning for a host and should always be -1, while ipRouteType will 
normally have the value "remote".

If destinations on the connected network do not appear in the Route Cache, 
there will be no entries withipRouteType of "direct".
Discussion
The current MIB does not include Type-of-Service in an ipRouteEntry, but a 
future revision is expected to make this addition.



We also expect the MIB to be expanded to allow the remote management of 
applications (e.g., the ability to partially reconfigure mail systems).    Network 
service applications such as mail systems should therefore be written with the
"hooks" for remote management.



Electronic Mail -- SMTP and RFC-822
Introduction

In the TCP/IP protocol suite, electronic mail in a format specified in RFC-822 is transmitted 
using the Simple Mail Transfer Protocol (SMTP) defined in RFC-821.

While SMTP has remained unchanged over the years, the Internet community has made 
several changes in the way SMTP is used.    In particular, the conversion to the Domain Name
System (DNS) has caused changes in address formats and in mail routing.    In this section, 
we assume familiarity with the concepts and terminologyof the DNS, whose requirements 
are given in Domain Name Service.

RFC-822 entitled Standard for the Format of ARPA Internet Text Messagessupercedes an 
older standard, RFC-733, that may still be in use in a few places, although it is obsolete.    
The two formats are sometimes referred to simply by number ("822" and "733").

RFC-822 is used in some non-Internet mail environments with different mail transfer 
protocols than SMTP, and SMTP has also been adapted for use in some non-Internet 
environments.    Note that this document presents the rules for the use of SMTP and RFC-822
for the Internet environment only; other mail environments thatuse these protocols may be 
expected to have their own rules.

Specific Issues





Simple Mail Transfer Protocol

Specific Issues

SMTP Queueing Strategies
Sending Strategy
Receiving Strategy
Timeouts in SMTP
Reliable Mail Receipt
Reliable Mail Transmission
Domain Name Support
Mailing Lists and Aliases
Mail Gatewaying
Maximum Message Size



Simple Mail Transfer Protocol

Queueing Strategies
The common structure of a host SMTP implementation includes user mailboxes, one or more 
areas for queueing messages in transit, and one or more daemon processes for sending and 
receiving mail.    The exact structure will vary depending on the needs of the users on the 
host and the number and size of mailing lists supported by the host.    We describe several 
optimizations that have proved helpful, particularly for mailers supporting high traffic levels.

Any queueing strategy must include:

o Timeouts on all activities.

o Never sending error messages in response to error messages.



Simple Mail Transfer Protocol

Sending Strategy
The general model of a sender-SMTP is one or more processes that periodically attempt to 
transmit outgoing mail.    In a typical system, the program that composes a message has 
some method for requesting immediate attention for a new piece of outgoing mail, while 
mail that cannot be transmitted immediately must be queued and periodically retried by the
sender.    A mail queue entry will include not only the message itself but also the envelope 
information.

The sender must delay retrying a particular destination after one attempt has failed.    In 
general, the retry interval should be at least 30 minutes; however, more sophisticated and 
variable strategies will be beneficial when the sender-SMTP can determine the reason for 
non- delivery.

Retries continue until the message is transmitted or the sender gives up; the give-up time 
generally needs to be at least 4-5 days.    The parameters to the retry algorithm must be 
configurable.

A sender should keep a list of hosts it cannot reach and corresponding timeouts, rather than
just retrying queued mail items.

Discussion
Experience suggests that failures are typically transient (the target system 
has crashed), favoring a policy of two connection attempts in the first hour the
message is in the queue, and then backing off to once every two or three 
hours.

The sender-SMTP can shorten the queueing delay by cooperation with the 
receiver-SMTP.    In particular, if mail is received from a particular address, it is 
goodevidence that any mail queued for that host can now be sent.

The strategy may be further modified as a result of multiple addresses per 
host, to optimize delivery time vs. resource usage.

A sender-SMTP may have a large queue of messages for each unavailable 
destination host, and if it retried all these messages in every retry cycle, there
would be excessive Internet overhead and the daemon would be blocked for a 
long period.    Note that an SMTP can generally determine that a delivery 
attempt has failedonly after a timeout of a minute or more; a one minute 
timeout per connection will result in a very large delay if it is repeated for 
dozens or even hundreds of queued messages.

When the same message is to be delivered to several users on the same host, only one copy
of the message should be transmitted.    That is, the sender-SMTP should use the command 
sequence: RCPT, RCPT,... RCPT, DATA instead of the sequence: RCPT, DATA, RCPT, DATA,... 
RCPT, DATA.    Implementation of this efficiency feature is strongly urged.

Similarly, the sender-SMTP may support multiple concurrent outgoing mail transactions to 



achieve timely delivery.    However, some limit should be imposed to protect the host from 
devoting all its resources to mail.



Simple Mail Transfer Protocol

Receiving Strategy
The receiver-SMTP should attempt to keep a pending listen on the SMTP port at all times.    
This will require the support of multiple incoming TCP connections for SMTP.    Some limit 
may be imposed.

Implementation
When the receiver-SMTP receives mail from a particular host address, it could 
notify the sender-SMTP to retry any mail pending for that host address.



Simple Mail Transfer Protocol

Timeouts
There are two approaches to timeouts in the sender-SMTP: (a) limit the time for each SMTP 
command separately, or (b) limit the time for the entire SMTP dialogue for a single mail 
message.    A sender-SMTP should use option (a), per-command timeouts.    Timeouts 
should be easily reconfigurable, preferably without recompiling the SMTP code.

Discussion
Timeouts are an essential feature of an SMTP implementation.    If the timeouts
are too long (or worse, there are no timeouts), Internet communication failures
or software bugs in receiver-SMTP programs can tie up SMTP processes 
indefinitely.    If the timeouts are too short, resources will be wasted with 
attempts that time out part way through message delivery.

If option (b) is used, the timeout has to be very large, e.g., an hour, to allow 
time to expand very large mailing lists.    The timeout may also need to 
increase linearly with the size of the message, to account for the time to 
transmit a very large message.    A large fixed timeout leads to two problems: 
a failure can still tie up the sender for a very long time, and very large 
messages may still spuriously time out (which is a wasteful failure!).

Using the recommended option (a), a timer is set for each SMTP command 
and for each buffer of the data transfer.    The latter means that the overall 
timeout is inherently proportional to the size of the message.



Simple Mail Transfer Protocol

Per Command Timeouts
Based on extensive experience with busy mail-relay hosts, the minimum per-command 
timeout values should be as follows:

o Initial 220 Message: 5 minutes

A Sender-SMTP process needs to distinguish between a failed TCP 
connection and a delay in receiving the initial 220 greeting message.    
Many receiver-SMTPs willaccept a TCP connection but delay delivery of 
the 220 message until their system load will permit more mail to be 
processed.

o MAIL Command: 5 minutes

o RCPT Command: 5 minutes

A longer timeout would be required if processing of mailing lists and 
aliases were not deferred until after the message was accepted.

o DATA Initiation: 2 minutes

This is while awaiting the "354 Start Input" reply to a DATA command.

o Data Block: 3 minutes

This is while awaiting the completion of each TCP SEND call 
transmitting a chunk of data.

o DATA Termination: 10 minutes.

This is while awaiting the "250 OK" reply. When the receiver gets the 
final period terminating the message data, it typically performs 
processing to deliver the message to a user mailbox.    A spurious 
timeout at this point would be very wasteful, since the message has 
been successfully sent.

A receiver-SMTP should have a timeout of at least 5 minutes while it is awaiting the next 
command from the sender.



Simple Mail Transfer Protocol

Reliable Mail Receipt
When the receiver-SMTP accepts a piece of mail (by sending a "250 OK" message in 
response to DATA), it is accepting responsibility for delivering or relaying the message.    It 
must take this responsibility seriously, i.e., it must not lose the message for frivolous 
reasons, e.g., because the host later crashes or because of a predictable resource shortage.

If there is a delivery failure after acceptance of a message, the receiver-SMTP must 
formulate and mail a notification message.    This notification must be sentusing a null 
("<>") reverse path in the envelope; see Section 3.6 of RFC-821.    The recipient of this 
notification should be the address from the envelope return path (or the Return-Path: line).   
However, if this address is null ("<>"), the receiver-SMTP must not send a notification.    If 
the address is an explicit source route, it should be stripped down to its final hop.

Discussion
For example, suppose that an error notification must be sent for a message 
that arrived with: "MAIL FROM:<@a,@b:user@d>".    The notification 
messageshould be sent to: "RCPT TO:<user@d>".

Some delivery failures after the message is accepted by SMTP will be 
unavoidable.    For example, it may be impossible for the receiver-SMTP to 
validate all the delivery addresses in RCPT command(s) due to a "soft" domain
system error or because the target is a mailing list (see earlier discussion of 
RCPT).

To avoid receiving duplicate messages as the result of timeouts, a receiver-SMTP must seek 
to minimize the time required to respond to the final "." that ends a message transfer.    See 
RFC-1047 [SMTP:4] for a discussion of this problem.



Simple Mail Transfer Protocol

Reliable Mail Transmission
To transmit a message, a sender-SMTP determines the IP address of the target host from the 
destination address in the envelope.    Specifically, it maps the string to the right of the "@" 
sign into an IP address.    This mapping or the transfer itself may fail with a soft error, in 
which case the sender- SMTP will requeue the outgoing mail for a later retry.

When it succeeds, the mapping can result in a list of alternative delivery addresses rather 
than a single address, because of (a) multiple MX records, (b) multihoming, or both.    To 
provide reliable mail transmission, the sender-SMTP must be able to try (and retry) each of 
the addresses in this list in order, until a delivery attempt succeeds.    However, there may 
also be a configurable limit on the number of alternate addresses that can be tried.    In any 
case, a host should try at least two addresses.

The following information is to be used to rank the host addresses:

(1) Multiple MX Records -- these contain a preference indication that 
should be used in sorting.    If there are multiple destinations with the 
same preference and there is no clear reason to favor one (e.g., by 
address preference), then the sender-SMTP should pick one at random
to spread the load across multiple mail exchanges for a specific 
organization; note that this is a refinement of the procedure in [DNS:3].

(2) Multihomed host -- The destination host (perhaps taken from the 
preferred MX record) may be multihomed, in which case the domain 
name resolver will return a list of alternative IP addresses.    It is the 
responsibility of the domain name resolver interface (see Section 
6.1.3.4 below) to have ordered this list by decreasing preference, and 
SMTP must try them in the order presented.

Discussion
Although the capability to try multiple alternative addresses is required, there 
may be circumstances where specific installations want to limit ordisable the 
use of alternative addresses.    The question of whether a sender should 
attempt retries using the different addresses of a multihomed host has been 
controversial.    The main argument for using the multiple addresses is that it 
maximizes the probability of timely delivery, and indeed sometimes the 
probability of any delivery; the counter argument is that it may result in 
unnecessary resource use.

Note that resource use is also strongly determined by the sending strategy.



Simple Mail Transfer Protocol

Domain Name Support
SMTP implementations must use the mechanism defined in Section 6.1 for mapping 
between domain names and IP addresses.    This means that every Internet SMTP must 
include support for the Internet DNS.

In particular, a sender-SMTP must support the MX record scheme [SMTP:3].    See also 
Section 7.4 of [DNS:2] for information on domain name support for SMTP.



Simple Mail Transfer Protocol

Mailing Lists and Aliases
An SMTP-capable host should support both the alias and the list form of address expansion 
for multiple delivery.    When a message is delivered or forwarded to each address of an 
expanded list form, the return address in the envelope ("MAIL FROM:") must be changed to 
be the address of a person who administers the list,but the message header must be left 
unchanged; in particular, the "From" field of the message is unaffected.

Discussion
An important mail facility is a mechanism for multi- destination delivery of a 
single message, by transforming or "expanding" a pseudo-mailbox address 
into a list of destination mailbox addresses.    When a message is sent to such 
a pseudo-mailbox (sometimes called an "exploder"), copies are forwarded or 
redistributed to each mailbox in the expanded list.    We classify such a 
pseudo-mailbox as an "alias" or a "list", depending upon the expansion rules:

(a) Alias

To expand an alias, the recipient mailer simply replaces the pseudo-
mailbox address in the envelope with each of the expanded addresses 
in turn; the rest of the envelope and the message body are left 
unchanged.    The message is then delivered or forwarded to each 
expanded address.

(b) List

A mailing list may be said to operate by "redistribution" rather than by 
"forwarding".    To expand a list, the recipient mailer replaces the 
pseudo-mailbox address in the envelope with each of the expanded 
addresses in turn. The return address in the envelope is changed so 
that all error messages generated by the final deliveries will be 
returned to a list administrator, not to the message originator, who 
generally has no control over the contents of the list and will typically 
find error messages annoying.



Simple Mail Transfer Protocol

Mail Gatewaying
Gatewaying mail between different mail environments, i.e., different mail formats and 
protocols, is complex and does not easily yield to standardization.    See for example 
[SMTP:5a], [SMTP:5b].    However, some general requirements may be given for a gateway 
between the Internet and another mail environment.

(A) Header fields may be rewritten when necessary as messages are gatewayed 
across mail environment boundaries.

Discussion
This may involve interpreting the local-part of the destination 
address.

The other mail systems gatewayed to the Internet generally use
a subset of RFC-822 headers, but some of them do not have an 
equivalent to the SMTP envelope.    Therefore, when a message 
leaves the Internet environment, it may be necessary to fold the
SMTP envelope information into the message header.    A 
possible solution would be to create new header fields to carry 
the envelope information (e.g., "X- SMTP-MAIL:" and "X-SMTP-
RCPT:"); however, this would require changes in mail programs 
in the foreign environment.

(B) When forwarding a message into or out of the Internet environment, a 
gateway must prepend a Received: line, but it must not alter in any way a 
Received: line that is already in the header.

Discussion
This requirement is a subset of the general "Received:" line 
requirement in DATA Command; it is restated here for emphasis.

Received: fields of messages originating from other 
environments may not conform exactly to RFC-822most 
important use of Received: lines is for debugging mail faults, 
and this debugging can be severely hampered by well-meaning 
gateways that try to "fix" a Received: line.

The gateway is strongly encouraged to indicate the 
environment and protocol in the "via" clauses of Received 
field(s) that it supplies.

(C) From the Internet side, the gateway should accept all valid address formats in
SMTP commands and in RFC-822 headers, and all valid RFC-822 messages.    
Although a gateway must accept an RFC-822 explicit source route ("@...:" 
format) in either the RFC-822 header or in the envelope, it may or may not act
on the source route; see Mail Relay and Explicit Source Route.

Discussion
It is often tempting to restrict the range of addresses accepted 
at the mail gateway to simplify the translation into addresses 
for the remote environment.    This practice is based on the 



assumption that mail users have control over the addresses 
their mailers send to the mail gateway.    In practice, however, 
users have little control over the addresses that are finally sent;
their mailers are free to change addresses into any legal RFC-
822 format.

(D) The gateway must ensure that all header fields of a message that it forwards 
into the Internet meet the requirements for Internet mail.    In particular, 
alladdresses in "From:", "To:", "Cc:", etc., fields must be transformed (if 
necessary) to satisfy RFC-822 syntax, and they must be effective and useful 
for sending replies.

(E) The translation algorithm used to convert mail from the Internet protocols to 
another environment's protocol should try to ensure that error messages 
from the foreign mail environment are delivered to the return path from the 
SMTP envelope, not to the sender listed in the "From:" field of the RFC-822 
message.

Discussion
Internet mail lists usually place the address of the mail list 
maintainer in the envelope but leave the original message 
header intact (with the "From:" field containing the original 
sender).    This yields the behavior the average recipient 
expects: a reply to the header gets sent to the original sender, 
not to a mail list maintainer; however, errors get sent to the 
maintainer (who can fix the problem) and not the sender (who 
probably cannot).

(F) Similarly, when forwarding a message from another environment into the 
Internet, the gateway should set the envelope return path in accordance with
an error message return address, if any, supplied by the foreign environment.



Simple Mail Transfer Protocol

Maximum Message Size
Mailer software must be able to send and receive messages of at least 64K bytes in length 
(including header), and a much larger maximum size is highly desirable.

Discussion
Although SMTP does not define the maximum size of a message, many 
systems impose implementation limits.

For example, mail is often used instead of FTP for transmitting ASCII files, and 
in particular to transmit entire documents.    As a result, messages can be 1 
megabyte or even larger.



Trivial File Transfer Protocol
TFTP

Introduction

The Trivial File Transfer Protocol TFTP is defined in RFC-783.

TFTP provides its own reliable delivery with UDP as its transport protocol, using a simple 
stop-and-wait acknowledgment system.    Since TFTP has an effective window of only one 
512 octet segment, it can provide good performance only over paths that have a small 
delay*bandwidth product.    The TFTP file interface is very simple, providing no access control
or security.

TFTP's most important application is bootstrapping a host over a local network, since it is 
simple and small enough to be easily implemented in EPROM.    Vendors are urged to support
TFTP for booting.

Specific Issues



Trivial File Transfer Protocol

Specific Issues
Sorcerer's Apprentice Syndrome
Timeout Algorithms
Extensions
Access Control
Broadcast Request



Trivial File Transfer Protocol

Sorcerer's Apprentice Syndrome
There is a serious bug, known as the "Sorcerer's Apprentice Syndrome," in the protocol 
specification.    While it does not cause incorrect operation of the transfer (the file will always
be transferred correctly if the transfer completes), this bug may cause excessive 
retransmission, which may cause the transfer to time out.

Implementations must contain the fix for this problem: the sender (i.e., the side originating 
the DATA packets) must never resend the current DATA packet on receipt of a duplicate ACK.

Discussion
The bug is caused by the protocol rule that either side, on receiving an old 
duplicate datagram, may resend the current datagram.    If a packet is delayed
in the network but later successfully delivered after either side has timed out 
and retransmitted a packet, a duplicate copy of the response may be 
generated.    If the other side responds to this duplicate with a duplicate of its 
own, then every datagram will be sent in duplicate for the remainder of the 
transfer (unless a datagram is lost, breaking the repetition).    Worse yet, since 
the delay is often caused by congestion, this duplicate transmission will 
usually causes more congestion, leading to more delayed packets, etc.    (See 
Example).



Trivial File Transfer Protocol

Sorcerer's Apprentice Syndrome
Example

TFTP A TFTP B

(1) Receive ACK X-1
Send DATA X

(2) Receive DATA X
Send ACK X

(ACK X is delayed in network, and    A times out):

(3) Retransmit DATA X

(4) Receive DATA X again
Send ACK X again

(5) Receive (delayed) ACK X
Send DATA X+1

(6) Receive DATA X+1
Send ACK X+1

(7) Receive ACK X again
Send DATA X+1 again

(8) Receive DATA X+1 again
Send ACK X+1 again

(9) Receive ACK X+1
Send DATA X+2

(10) Receive DATA X+2
Send ACK X+3

(11) Receive ACK X+1 again
Send DATA X+2 again

(12) Receive DATA X+2 again
Send ACK X+3 again

Notice that once the delayed ACK arrives, the protocol settles down to duplicate all further 
packets (sequences 5-8 and 9-12).    The problem is caused not by either side timing out, but
by both sides retransmitting the current packet when they receive a duplicate.

The fix is to break the retransmission loop, as indicated above.    This is analogous to the 
behavior of TCP.    It is then possible to remove the retransmission timer on the receiver, 
since the resent ACK will never cause any action; this is a useful simplification where TFTP is 
used in a bootstrap program.    It is OK toallow the timer to remain, and it may be helpful if 
the retransmitted ACK replaces one that was genuinely lost in the network.    The sender still 
requires a retransmit timer, of course.



Trivial File Transfer Protocol

Timeout Algorithms
A TFTP implementation must use an adaptive timeout.

Implementation
TCP retransmission algorithms provide a useful base to work from.    At least an
exponential backoff of retransmission timeout is necessary.



Trivial File Transfer Protocol

Extensions
A variety of non-standard extensions have been made to TFTP, including additional transfer 
modes and a secure operation mode (with passwords).    None of these have been 
standardized.



Trivial File Transfer Protocol

Access Control
A server TFTP implementation should include some configurable access control over what 
pathnames are allowed in TFTP operations.



Trivial File Transfer Protocol

Broadcast Request
A TFTP request directed to a broadcast address should be silently ignored.

Discussion
Due to the weak access control capability of TFTP, directed broadcasts of TFTP
requests to random networks could create a significant security hole.



Remote Login -- TELNET Protocol

Telnet is the standard Internet application protocol for remote login.    It provides the 
encoding rules to link a user's keyboard/display on a client ("user") system with a command 
interpreter on a remote server system.    A subset of the Telnet protocol is also incorporated 
within other application protocols, e.g., FTP and SMTP.

Telnet uses a single TCP connection, and its normal data stream ("Network Virtual Terminal" 
or "NVT" mode) is 7-bit ASCII with escape sequences to embed control functions.    Telnet 
also allows the negotiation of many optional modes and functions.

The primary Telnet specification is to be found in "RFC-854 Telnet Protocol Specification" 
[RFC-854], while the options are defined in many other RFCs; see References.



Internet Group Management Protocol (IGMP)

This specification originally appeared as an appendix to RFC-1112, Host Extensions for IP 
Multicasting.
IGMP is a protocol used between hosts and gateways on a single network to establish hosts' 
membership in particular multicast groups.    The gateways use this information, in 
conjunction with a multicast routing protocol, to support IP multicasting across the Internet.
At this time, implementation of IGMP is optional; see IP Multicasting for more information.    
Without IGMP, a host can still participate in multicasting local to its connected networks.

IGMP Message Format
Informal Protocol Description
State Transition Diagram



Internet Group Management Protocol

Message Format

The Internet Group Management Protocol (IGMP) is used by IP hosts to report their host 
group memberships to any immediately-neighboring multicast routers.    IGMP is an 
asymmetric protocol and is specified here from the point of view of a host, rather than a 
multicast router.    (IGMP may also be used, symmetrically or asymmetrically, between 
multicast routers.    Such use is not specified here.) 
Like ICMP, IGMP is a integral part of IP.    It is required to be implemented by all hosts 
conforming to level 2 of the IP multicasting specification.    IGMP messages are encapsulated 
in IP datagrams, with an IP protocol number of 2.    All IGMP messages of concern to hosts 
have the following format: 

Version
This memo specifies version 1 of IGMP.    Version 0 is specified in RFC-988 and 
is now obsolete. 

Type
There are two types of IGMP message of concern to hosts:
1 = Host Membership Query
2 = Host Membership Report

Unused
Unused field, zeroed when sent, ignored when received.

Checksum

Group Address
In a Host Membership Query message, the group address field is zeroed when 
sent, ignored when received. 
In a Host Membership Report message, the group address field holds the IP 
host group address of the group being reported. 



Internet Group Management Protocol

Informal Protocol Description

Multicast routers send Host Membership Query messages (hereinafter called Queries) to 
discover which host groups have members on their attached local networks.    Queries are 
addressed to the all-hosts group (address 224.0.0.1), and carry an IP time-to-live of 1. 
Hosts respond to a Query by generating Host Membership Reports (hereinafter called 
Reports), reporting each host group to which they belong on the network interface from 
which the Query was received. In order to avoid an "implosion" of concurrent Reports and to 
reduce the total number of Reports transmitted, two techniques are used: 

1. When a host receives a Query, rather than sending Reports 
immediately, it starts a report delay timer for each of its group 
memberships on the network interface of the incoming Query.    Each 
timer is set to a different, randomly-chosen value between zero and D 
seconds.    When a timer expires, a Report is generated for the 
corresponding host group.    Thus, Reports are spread out over a D 
second interval instead of all occurring at once. 

2. A Report is sent with an IP destination address equal to the host group 
address being reported, and with an IP time-to-live of 1, so that other 
members of the same group on the same network can overhear the 
Report.    If a host hears a Report for a group to which it belongs on that
network, the host stops its own timer for that group and does not 
generate a Report for that group.    Thus, in the normal case, only one 
Report will be generated for each group present on the network, by the
member host whose delay timer expires first. Note that the multicast 
routers receive all IP multicast datagrams, and therefore need not be 
addressed explicitly. Further note that the routers need not know which
hosts belong to a group, only that at least one host belongs to a group 
on a particular network. 

There are two exceptions to the behavior described above.    First, if a report delay timer is 
already running for a group membership when a Query is received, that timer is not reset to 
a new random value, but rather allowed to continue running with its current value.    Second, 
a report delay timer is never set for a host's membership in the all- hosts group (224.0.0.1), 
and that membership is never reported. 
If a host uses a pseudo-random number generator to compute the reporting delays, one of 
the host's own individual IP address should be used as part of the seed for the generator, to 
reduce the chance of multiple hosts generating the same sequence of delays. 
A host should confirm that a received Report has the same IP host group address in its IP 
destination field and its IGMP group address field, to ensure that the host's own Report is not
cancelled by an erroneous received Report.    A host should quietly discard any IGMP 
message of type other than Host Membership Query or Host Membership Report. 
Multicast routers send Queries periodically to refresh their knowledge of memberships 
present on a particular network.    If no Reports are received for a particular group after some
number of Queries, the routers assume that that group has no local members and that they 
need not forward remotely-originated multicasts for that group onto the local network.    
Queries are normally sent infrequently (no more than once a minute) so as to keep the IGMP 
overhead on hosts and networks very low.    However, when a multicast router starts up, it 
may issue several closely-spaced Queries in order to build up its knowledge of local 



memberships quickly. 
When a host joins a new group, it should immediately transmit a Report for that group, 
rather than waiting for a Query, in case it is the first member of that group on the network.    
To cover the possibility of the initial Report being lost or damaged, it is recommended that it 
be repeated once or twice after short delays.    (A simple way to accomplish this is to act as if
a Query had been received for that group only, setting the group's random report delay 
timer.    The state transition diagram below illustrates this approach.) 
Note that, on a network with no multicast routers present, the only IGMP traffic is the one or 
more Reports sent whenever a host joins a new group. 



Internet Group Management Protocol

State Transition Diagram

IGMP behavior is more formally specified by the state transition diagram below.    A host may
be in one of three possible states, with respect to any single IP host group on any single 
network interface: 

o Non-Member state, when the host does not belong to the group on the 
interface.    This is the initial state for all memberships on all network 
interfaces; it requires no storage in the host. 

o Delaying Member state, when the host belongs to the group on the 
interface and has a report delay timer running for that membership. 

o Idle Member state, when the host belongs to the group on the interface
and does not have a report delay timer running for that membership. 

There are five significant events that can cause IGMP state transitions: 
o "join group" occurs when the host decides to join the group on the 

interface.    It may occur only in the Non-Member state. 
o "leave group" occurs when the host decides to leave the group on the 

interface.    It may occur only in the Delaying Member and Idle Member 
states. 

o "query received" occurs when the host receives a valid IGMP Host 
Membership Query message.    To be valid, the Query message must be
at least 8 octets long, have a correct IGMP checksum and have an IP 
destination address of 224.0.0.1. A single Query applies to all 
memberships on the interface from which the Query is received.    It is 
ignored for            memberships in the Non-Member or Delaying Member 
state. 

o "report received" occurs when the host receives a valid IGMP Host 
Membership Report message.    To be valid, the Report message must 
be at least 8 octets long, have a correct IGMP checksum, and contain 
the same IP host group address in its IP destination field and its IGMP 
group address field.    A Report applies only to the membership in the 
group identified by the Report, on the interface from which the Report 
is received. It is ignored for memberships in the Non-Member or Idle 
Member state. 

o "timer expired" occurs when the report delay timer for the group on the
interface expires.    It may occur only in the Delaying Member state. 

All other events, such as receiving invalid IGMP messages, or IGMP messages other than 
Query or Report, are ignored in all states. 
There are three possible actions that may be taken in response to the above events: 

o "send report" for the group on the interface.
o "start timer" for the group on the interface, using a random delay value

between 0 and D seconds. 
o "stop timer" for the group on the interface.

In the following diagram, each state transition arc is labelled with the event that causes the 
transition, and, in parentheses, any actions taken during the transition. 



The all-hosts group (address 224.0.0.1) is handled as a special case. The host starts in Idle 
Member state for that group on every interface, never transitions to another state, and 
never sends a report for that group. 
The maximum report delay, D, is 10 seconds.



Numerical Index of RFC's
RFC-652 Telnet Carraige Return Disposition Option
RFC-653 Telnet Horizontal Tabstops Disposition Option
RFC-654 Telnet Output Horizontal Tab Disposition Option
RFC-655 Telnet Output Formfeed Disposition Option
RFC-656 Telnet Output Vertical Tabstops Option
RFC-657 Telnet Output Vertical Tab Disposition Option
RFC-658 Telnet Output Linefeed Disposition Option
RFC-727 Telnet Logout Option
RFC-736 Telnet SUPDUP Option
RFC-768 User Datagram Protocol (UDP)
RFC-779 Telnet Send Location Option
RFC-783 Trivial File Transfer Protocol (TFTP)
RFC-791 Internet Protocol (IP)
RFC-792 Internet Control Message Protocol (ICMP)
RFC-793 Transmission Control Protocol (TCP)
RFC-795 Service Mappings [Obsolete] (Historical Reference only)
RFC-796 Address Mappings
RFC-813 Windows and Acknowledgement Strategy in TCP
RFC-814 Names, Addresses, Ports, and Routes
RFC-815 Datagram Reassembly Algorithms
RFC-816 Fault Isolation and Recovery
RFC-817 Modularity and Efficiency in Protocol Implementation
RFC-821 Simple Mail Transfer Protocol
RFC-822 Standard for the Format of ARPA Internet Text Messages
RFC-826 An Ethernet Address Resolution Protocol (ARP)
RFC-854 Telnet Protocol
RFC-855 Telnet Option Specifications
RFC-856 Telnet Binary Transmission
RFC-857 Telnet Echo Option
RFC-858 Telnet Suppress Go Ahead Option
RFC-859 Telnet Status Option
RFC-860 Telnet Timing Mark Option
RFC-861 Telnet Extended Options List
RFC-862 Echo Protocol
RFC-863 Discard Protocol
RFC-864 Character Generator Protocol
RFC-865 Quote of the Day Protocol
RFC-866 Users Protocol
RFC-867 Daytime Protocol
RFC-868 Time Protocol
RFC-879 The TCP Maximum Segment Size Option and Related Topics
RFC-893 Trailer Encapsulations
RFC-894 A Standard for the Transmission of IP Datagrams over Ethernet 

Networks
RFC-903 A Reverse Address Resolution Protocol (RARP)
RFC-904 Exterior Gateway Protocol Formal Specification
RFC-906 Bootstrap Loading using TFTP
RFC-917 Internet Subnets (Superceded by RFC-950)
RFC-919 Broadcasting Internet Datagrams
RFC-922 Broadcasting IP Datagrams in the Presence of Subnets
RFC-937 Post Office Protocol Version 2 (POP2)
RFC-950 Internet Standard Subnetting Procedure
RFC-951 Bootstrap Protocol (BOOTP)



RFC-952 DoD Internet Host Table Specification
RFC-953 Hostname Server Protocol
RFC-954 NicName/Whois Protocol
RFC-959 The File Transfer Protocol (FTP)
RFC-974 Mail Routing and the Domain System
RFC-1001 Protocol Standard for a NetBIOS Service: Concepts and Methods
RFC-1002 Protocol Standard for a NetBIOS Service: Detailed Specifications
RFC-1006 ISO Transport Services on top of the TCP: Version 3
RFC-1014 XDR: External Data Representation Standard
RFC-1032 Domain Administrators Guide
RFC-1033 Domain Administrators Operations Guide
RFC-1034 Domain Names - Concepts and Facilities
RFC-1035 Domain Names - Implementation and Specification
RFC-1042 A Standard for the Transmission of IP Datagrams on IEEE 802 

Networks
RFC-1049 Content-Type Header Field for Internet Mail
RFC-1055 A Non-Standard for the Transmission of IP Datagrams over Serial 

Lines
RFC-1057 RPC: Remote Procedure Protocol
RFC-1060 Assigned Numbers from March 1990
RFC-1084 BOOTP Vendor Information Extensions
RFC-1088 A Standard for the Transmission of IP Datagrams over NetBIOS 

Networks
RFC-1091 Telnet Terminal-Type Option
RFC-1094 NFS: Network File System Protocol Specificiation
RFC-1101 DNS Encoding of Network Names and Other Types
RFC-1112 Host Extensions for IP Multicasting (including IGMP)
RFC-1122 Requirements for Internet Hosts - Communications Layer (Incorporated

into appropriate RFCs)
RFC-1123 Requirements for Internet Hosts - Application and Support 

(Incorporated into appropriate RFCs)
RFC-1147 FYI on Network Monitoring and Management Tools
RFC-1155 Structure and Identification of Management Information for TCP/IP-

based Internets
RFC-1156 Management Information Base for the Management of TCP/IP-Based 

Internets
RFC-1157 A Simple Network Management Protocol (SNMP)
RFC-1160 The Internet Activities Board
RFC-1171 Point-to-Point Protocol for the Transmission of Multi-Protocol 

Datagrams over Point-to-Point Links
RFC-1189 Common Management Information Services and Protocols for the 

Internet (CMOT)
RFC-1183 New DNS RR Definitions
RFC-1196 Finger User Information Protocol
RFC-1206 FYI on Questions for New Internet Users
RFC-1207 FYI on Questions for Experienced Internet Users
RFC-1212 Concise MIB Definitions
RFC-1213 Management Information Base for the Management of TCP/IP Based 

Internets - MIB-II
RFC-1225 Post Office Protocol Version 3 (POP3)
RFC-1250 IAB Official Protocols; August 1991



There is no reference for this entry.



This reference is not included in the current version of the 
system.    It may be present in future updates.    If you require 
this reference, please contact InfoMagic.





[RFC-1261] Williamson, S.; Nobile, L.    Transiton of NIC services.    1991 September;    3 p. 
(Format: TXT=4488 bytes) 



[RFC-1260] Not yet issued.



[RFC-1259] Kapor, M.    Building the open road: The NREN as test-bed for the national 
public network.    1991 September; 23 p. (Format: TXT=62944 bytes) 



[RFC-1258] Kantor, B.    BSD Rlogin.    1991 September; 5 p. (Format: TXT=10763 bytes)



[RFC-1257] Partridge, C.    Isochronous applications do not require jitter-controlled 
networks.    1991 September; 5 p. (Format: TXT=11075 bytes) 



[RFC-1256] Deering, S.E.,ed.    ICMP router discovery messages.    1991 September;    19 p. 
(Format: TXT=44628 bytes) 



[RFC-1255] North American Directory Forum.    Naming scheme for c=US.    1991    
September; 25 p. (Format: TXT=53783 bytes)    (Obsoletes RFC 1218) 



[RFC-1254] Mankin, A.; Ramakrishnan, K.K.,eds.    Gateway congestion control survey. 
1991 August; 25 p. (Format: TXT=69793 bytes) 



[RFC-1253] Baker, F.; Coltun, R.    OSPF version 2: Management Information Base.      1991 
August; 42 p. (Format: TXT=77232 bytes)    (Obsoletes RFC 1252) 



[RFC-1252] Baker, F.; Coltun, R.    OSPF version 2: Management Information Base.      1991 
August; 42 p. (Format: TXT=77250 bytes)    (Obsoletes RFC 1248;    Obsoleted 
by RFC 1253) 



[RFC-1251] Malkin, G.S.    Who's who in the internet: Biographies of IAB, IESG and    IRSG 
members.    1991 August; 26 p. (Format: TXT=72721 bytes) (Also FYI 9)               



[RFC-1250] Postel, J.B.,ed.    IAB official protocol standards.    1991 August; 28 p.    (Format: 
TXT=65279 bytes)    (Obsoletes RFC 1200) 



[RFC-1249] Howes, T.; Smith, M.; Beecher, B.    DIXIE protocol specification.    1991    
August; 10 p. (Format: TXT=20693 bytes) 



[RFC-1248] Baker, F.; Coltun, R.    OSPF version 2: Management Information Base.      1991 
July; 42 p. (Format: TXT=77126 bytes) 



[RFC-1247] Moy, J.    OSPF version 2.    1991 July; 189 p. (Format: PS=1063028,    
TXT=443917 bytes)    (Obsoletes RFC 1131) 



[RFC-1246] Moy, J.,ed.    Experience with the OSPF protocol.    1991 July; 31 p.    (Format: 
PS=146913, TXT=72180 bytes) 



[RFC-1245] Moy, J.,ed.    OSPF protocol analysis.    1991 July; 12 p. (Format: PS=64094 , 
TXT=27492 bytes) 



[RFC-1244] Holbrook, J.P.; Reynolds, J.K.,eds.    Site Security Handbook.    1991 July; 101 p. 
(Format: TXT=259129 bytes) (Also FYI 8)    



[RFC-1243] Waldbusser, S.,ed.    Appletalk Management Information Base.    1991 July;    29 
p. (Format: TXT=61985 bytes) 



[RFC-1242] Bradner, S.,ed.    Benchmarking terminology for network interconnection    
devices.    1991 July; 12 p. (Format: TXT=22817 bytes) 



[RFC-1241] Woodburn, R.A.; Mills, D.L.    Scheme for an internet encapsulation    protocol: 
Version 1.    1991 July; 17 p. (Format: TXT=42468, PS=128921    bytes) 



[RFC-1240] Shue, C.; Haggerty, W.; Dobbins, K.    OSI connectionless transport    services 
on top of UDP: Version 1.    1991 June; 8 p. (Format: TXT=18140    bytes) 



[RFC-1239] Reynolds, J.K.    Reassignment of experimental MIBs to standard MIBs.      1991 
June; 2 p. (Format: TXT=3656 bytes)    (Updates RFC 1229, RFC 1230,    RFC 
1231, RFC 1232, RFC 1233) 



[RFC-1238] Satz, G.    CLNS MIB for use with Connectionless Network Protocol (ISO    8473) 
and End System to Intermediate System (ISO 9542).    1991 June;    32 p. 
(Format: TXT=65159 bytes)    (Obsoletes RFC 1162) 



[RFC-1237] Not yet issued.



[RFC-1236] Morales, L.F., Jr.; Hasse, P.R.    IP to X.121 address mapping for DDN.      1991 
June; 7 p. (Format: TXT=12626 bytes) 



[RFC-1235] Ioannidis, J.; Maguire, G.Q., Jr.    Coherent File Distribution Protocol. 1991 June; 
12 p. (Format: TXT=29345 bytes) 



[RFC-1234] Provan, D.    Tunneling IPX traffic through IP networks.    1991 June; 6 p.    
(Format: TXT=12333 bytes) 



[RFC-1233] Cox, T.A.; Tesink, K.,eds.    Definitions of managed objects for the DS3    
Interface type.    1991 May; 23 p. (Format: TXT=49559 bytes)    



[RFC-1232] Baker, F.; Kolb, C.P.,eds.    Definitions of managed objects for the DS1    
Interface type.    1991 May; 28 p. (Format: TXT=60757 bytes) 



[RFC-1231] McCloghrie, K.; Fox, R.; Decker, E.    IEEE 802.5 Token Ring MIB.    1991    May; 
23 p. (Format: TXT=53542 bytes) 



[RFC-1230] McCloghrie, K.; Fox, R.    IEEE 802.4 Token Bus MIB.    1991 May; 23 p.    (Format:
TXT=53100 bytes) 



[RFC-1229] McCloghrie, K.,ed.    Extensions to the generic-interface MIB.    1991 May;    16 
p. (Format: TXT=36022 bytes) 



[RFC-1228] Carpenter, G.; Wijnen, B.    SNMP-DPI: Simple Network Management Protocol    
Distributed Program Interface.    1991 May; 50 p. (Format: TXT=96972    bytes) 



[RFC-1227] Rose, M.T.    SNMP MUX protocol and MIB.    1991 May; 13 p. (Format:    
TXT=25868 bytes) 



[RFC-1226] Kantor, B.    Internet protocol encapsulation of AX.25 frames.    1991 May;    2 p.
(Format: TXT=2573 bytes) 



[RFC-1225] Rose, M.T.    Post Office Protocol: Version 3.    1991 May; 16 p. (Format:    
TXT=37340 bytes)    (Obsoletes RFC 1081) 



[RFC-1224] Steinberg, L.    Techniques for managing asynchronously generated alerts. 
1991 May; 22 p. (Format: TXT=54303 bytes) 



[RFC-1223] Halpern, J.M.    OSI CLNS and LLC1 protocols on Network Systems    
HYPERchannel.    1991 May; 12 p. (Format: TXT=29601 bytes) 



[RFC-1222] Braun, H.W.; Rekhter, Y.    Advancing the NSFNET routing architecture.      1991 
May; 6 p. (Format: TXT=15067 bytes) 



[RFC-1221] Edmond, W.    Host Access Protocol (HAP) specification: Version 2.    1991    
April; 68 p. (Format: TXT=156550 bytes)    (Updates RFC 907) 



[RFC-1220] Baker, F.,ed.    Point-to-Point Protocol extensions for bridging.    1991    April; 18 
p. (Format: TXT=38165 bytes) 



[RFC-1219] Tsuchiya, P.F.    On the assignment of subnet numbers.    1991 April; 13 p.    
(Format: TXT=30609 bytes) 



[RFC-1218] North American Directory Forum.    Naming scheme for c=US.    1991 April;    23
p. (Format: TXT=42698 bytes) 



[RFC-1217] Cerf, V.G.    Memo from the Consortium for Slow Commotion Research (CSCR). 
1991 April 1; 5 p. (Format: TXT=11079 bytes) 



[RFC-1216] Richard, P.; Kynikos, P.    Gigabit network economics and paradigm shifts. 1991 
April 1; 4 p. (Format: TXT=8130 bytes) 



[RFC-1215] Rose, M.T.,ed.    Convention for defining traps for use with the SNMP.      1991 
March; 9 p. (Format: TXT=19336 bytes) 



[RFC-1214] LaBarre, L.,ed.    OSI internet management: Management Information Base.      
1991 April; 83 p. (Format: TXT=172564 bytes) 



[RFC-1213] McCloghrie, K.; Rose, M.T.,eds.    Management Information Base for network 
management of TCP/IP-based internets:MIB-II.    1991 March; 70 p. (Format: 
TXT=146080 bytes)    (Obsoletes RFC 1158) 



[RFC-1212] Rose, M.T.; McCloghrie, K.,eds.    Concise MIB definitions.    1991 March;    19 p. 
(Format: TXT=43579 bytes) 



[RFC-1211] Westine, A.; Postel, J.B.    Problems with the maintenance of large    mailing 
lists.    1991 March; 54 p. (Format: TXT=96167 bytes) 



[RFC-1210] Cerf, V.G.; Kirstein, P.T.; Randell, B.,eds.    Network and infrastructure user 
requirements for transatlantic research collaboration: Brussels,    July 16-18, 
and Washington July 24-25, 1990.    1991 March; 36 p. (Format: TXT=79048 
bytes) 



[RFC-1209] Piscitello, D.M.; Lawrence, J.    Transmission of IP datagrams over the    SMDS 
Service.    1991 March; 11 p. (Format: TXT=25280 bytes) 



[RFC-1208] Jacobsen, O.J.; Lynch, D.C.    Glossary of networking terms.    1991 March;    18 
p. (Format: TXT=41156 bytes) 



[RFC-1207] Malkin, G.; Marine, A.N.; Reynolds, J.K.    FYI on Questions and Answers:    
Answers to commonly asked "experienced Internet user" questions.    1991    
February; 15 p. (Format: TXT=33385 bytes) (Also FYI 7)    



[RFC-1206] Malkin, G.S.; Marine, A.N.    FYI on Questions and Answers: Answers to    
commonly asked "new Internet user" questions.    1991 February; 32 p.    
(Format: TXT=72479 bytes) (Also FYI 4)      (Obsoletes RFC 1177) 



[RFC-1205] Chmielewski, P.    5250 Telnet interface.    1991 February; 12 p. (Format:    
TXT=27179 bytes) 



[RFC-1204] Yeh, S.; Lee, D.    Message Posting Protocol (MPP).    1991 February; 6 p.    
(Format: TXT=11371 bytes) 



[RFC-1203] Rice, J.    Interactive Mail Access Protocol - version 3.    1991 February;    49 p. 
(Format: TXT=123325 bytes)    (Obsoletes RFC 1064) 



[RFC-1202] Rose, M.T.    Directory Assistance service.    1991 February; 11 p. (Format: 
TXT=21645 bytes) 



[RFC-1201] Provan, D.    Transmitting IP traffic over ARCNET networks.    1991    February; 7 
p. (Format: TXT=16959 bytes)    (Obsoletes RFC 1051) 



[RFC-1200] Defense Advanced Research Projects Agency, Internet Activities Board. IAB 
Official protocol standards.    1991 April; 31 p. (Format: TXT=62501    bytes)    
(Obsoletes RFC-1140) 



[RFC-1198] Scheifler, R.W.    FYI on the X window system.    1991 January; 3 p.    (Format: 
TXT=3629 bytes) (Also FYI 6)    



[RFC-1197] Sherman, M.    Using ODA for translating multimedia information.    1990    
December; 2 p. (Format: TXT=3620 bytes) 



[RFC-1196] Zimmerman, D.P.    Finger User Information Protocol.    1990 December; 12 p. 
(Format: TXT=24799 bytes)    (Obsoletes RFC 1194) 



[RFC-1195] Callon, R.W.    Use of OSI IS-IS for routing in TCP/IP and dual    environments.    
1990 December; 65 p. (Format: PS=381799, TXT=192628    bytes) 



[RFC-1194] Zimmerman, D.P.    Finger User Information Protocol.    1990 November; 12 p. 
(Format: TXT=24626 bytes)    (Obsoletes RFC 742; Obsoleted by RFC 1196) 



[RFC-1193] Ferrari, D.    Client requirements for real-time communication services.      1990 
November; 24 p. (Format: TXT=61540 bytes) 



[RFC-1192] Kahin, B.,ed.    Commercialization of the Internet summary report.    1990    
November; 13 p. (Format: TXT=35253 bytes) 



[RFC-1191] Mogul, J.C.; Deering, S.E.    Path MTU discovery.    1990 November; 19 p.    
(Format: TXT=47936 bytes)    (Obsoletes RFC 1063) 



[RFC-1190] Topolcic, C.,ed.    Experimental Internet Stream Protocol, version 2    (ST-II).    
1990 October; 148 p. (Format: TXT=386909 bytes)    (Obsoletes    IEN 119) 



[RFC-1189] Warrier, U.S.; Besaw, L.; LaBarre, L.; Handspicker, B.D.    Common    
Management Information Services and Protocols for the Internet (CMOT)    and 
(CMIP).    1990 October; 15 p. (Format: TXT=32928 bytes)    (Obsoletes    RFC 
1095) 



[RFC-1188] Katz, D.    Proposed standard for the transmission of IP datagrams over    FDDI 
networks.    1990 October; 11 p. (Format: TXT=22424 bytes)      (Obsoletes RFC 
1103) 



[RFC-1187] Rose, M.T.; McCloghrie, K.; Davin, J.R.    Bulk table retrieval with the    SNMP.    
1990 October; 12 p. (Format: TXT=27220 bytes) 



[RFC-1186] Rivest, R.L.    MD4 message digest algorithm.    1990 October; 18 p.    (Format: 
TXT=35391 bytes) 



[RFC-1185] Jacobson, V.; Braden, R.T.; Zhang, L.    TCP extension for high-speed    paths.    
1990 October; 21 p. (Format: TXT=49508 bytes) 



[RFC-1184] Borman, D.A.,ed.    Telnet Linemode option.    1990 October; 23 p. (Format:    
TXT=53085 bytes)    (Obsoletes RFC 1116) 



[RFC-1183] Everhart, C.F.; Mamakos, L.A.; Ullmann, R.; Mockapetris, P.V.    New DNS    RR 
definitions.    1990 October; 11 p. (Format: TXT=23788 bytes)    (Updates RFC 
1034, RFC 1035) 



[RFC-1182] Not yet issued.



[RFC-1181] Blokzijl, R.    RIPE terms of reference.    September 1990; 2 p. (Format:    
TXT=2523 bytes) 



[RFC-1180] Socolofsky, T.J.; Kale, C.J.    TCP/IP tutorial.    1991 January; 28 p.    (Format: 
TXT=65494 bytes) 



[RFC-1179] Line printer daemon protocol.    1990 August; 14 p. (Format: TXT=24324    
bytes) 



[RFC-1178] Libes, D.    Choosing a name for your computer.    1990 August; 8 p.    (Format: 
TXT=18472 bytes) (Also FYI 5)    



[RFC-1177] Malkin, G.S.; Marine, A.N.; Reynolds, J.K.    FYI on Questions and    Answers: 
Answers to commonly asked "new internet user" questions.    1990    August; 
24 p. (Format: TXT=52852 bytes) (Also FYI 4)    



[RFC-1176] Crispin, M.R.    Interactive Mail Access Protocol - version 2.    1990    August; 30 
p. (Format: TXT=67330 bytes)    (Obsoletes RFC 1064) 



[RFC-1175] Bowers, K.L.; LaQuey, T.L.; Reynolds, J.K.; Roubicek, K.; Stahl, M.K.;    Yuan, A.    
FYI on where to start: A bibliography of internetworking    information.    1990 
August; 42 p. (Format: TXT=67330 bytes) (Also FYI 3)    



[RFC-1174] Cerf, V.G.    IAB recommended policy on distributing internet identifier    
assignment and IAB recommended policy change to internet "connected"    
status.    1990 August; 9 p. (Format: TXT=21321 bytes) 



[RFC-1173] VanBokkelen, J.    Responsibilities of host and network managers: A    summary 
of the "oral tradition" of the Internet.    1990 August; 5 p.    (Format: 
TXT=12527 bytes) 



[RFC-1172] Perkins, D.; Hobby, R.    Point-to-Point Protocol (PPP) initial    configuration 
options.    1990 July; 38 p. (Format: TXT=76132 bytes) 



[RFC-1171] Perkins, D.    Point-to-Point Protocol for the transmission of    multi-protocol 
datagrams over Point-to-Point links.    1990 July; 48 p.    (Format: TXT=92321 
bytes)    (Obsoletes RFC 1134) 



[RFC-1170] Fougner, R.B.    Public key standards and licenses.    1991 January; 2 p.    
(Format: TXT=3144 bytes) 



[RFC-1169] Cerf, V.G.; Mills, K.L.    Explaining the role of GOSIP.    1990 August;    15 p. 
(Format: TXT=30255 bytes) 



[RFC-1168] Westine, A.; DeSchon, A.L.; Postel, J.B.; Ward, C.E.    Intermail and    Commercial
Mail Relay services.    1990 July; 23 p. (Format: PS=149816    bytes) 



[RFC-1167] Cerf, V.G.    Thoughts on the National Research and Education Network.      1990
July; 8 p. (Format: TXT=20682 bytes) 



[RFC-1166] Kirkpatrick, S.; Stahl, M.K.; Recker, M.    Internet numbers.    1990 July;    182 p. 
(Format: TXT=566778 bytes)    (Obsoletes RFC 1117, RFC 1062, RFC    1020) 



[RFC-1165] Crowcroft, J.; Onions, J.P.    Network Time Protocol (NTP) over the OSI    Remote 
Operations Service.    1990 June; 10 p. (Format: TXT=18277 bytes) 



[RFC-1164] Honig, J.C.; Katz, D.; Mathis, M.; Rekhter, Y.; Yu, J.Y.    Application of the Border 
Gateway Protocol in the Internet.    1990 June; 23 p. (Format:    TXT=56278 
bytes) 



[RFC-1163] Lougheed, K.; Rekhter, Y.    Border Gateway Protocol (BGP).    1990 June;    29 p. 
(Format: TXT=69404 bytes)    (Obsoletes RFC 1105) 



[RFC-1162] Satz, G.    Connectionless Network Protocol (ISO 8473) and End System to    
Intermediate System (ISO 9542) Management Information Base.    1990 June;    
70 p. (Format: TXT=109893 bytes) 



[RFC-1161] Rose, M.T.    SNMP over OSI.    1990 June; 8 p. (Format: TXT=16036 bytes)



[RFC-1160] Cerf, V.    Internet Activities Board.    1990 May; 11 p. (Format: TXT=28182 
bytes)    (Obsoletes RFC 1120) 



[RFC-1159] Nelson, R.    Message Send Protocol.    1990 June; 2 p. (Format: TXT=3957    
bytes) 



[RFC-1158] Rose, M.T.,ed.    Management Information Base for network management of    
TCP/IP-based internets: MIB-II.    1990 May; 133 p. (Format: TXT=212152    
bytes) 



[RFC-1157] Case, J.D.; Fedor, M.; Schoffstall, M.L.; Davin, C.    Simple Network    
Management Protocol (SNMP).    1990 May; 36 p. (Format: TXT=74894 bytes)    
(Obsoletes RFC 1098) 



[RFC-1156] McCloghrie, K.; Rose, M.T.    Management Information Base for network    
management of TCP/IP-based internets.    1990 May; 91 p. (Format:    
TXT=138781 bytes)    (Obsoletes RFC 1066) 



[RFC-1155] Rose, M.T.; McCloghrie, K.    Structure and identification of management    
information for TCP/IP-based internets.    1990 May; 22 p. (Format:    
TXT=40927 bytes)    (Obsoletes RFC 1065) 



[RFC-1154] Robinson, D.; Ullmann, R.    Encoding header field for internet messages. 1990 
April; 7 p. (Format: TXT=12214 bytes) 



[RFC-1153] Wancho, F.J.    Digest message format.    1990 April; 4 p. (Format: TXT=6632 
bytes) 



[RFC-1152] Partridge, C.    Workshop report: Internet research steering group    workshop 
on very-high-speed networks.    1990 April; 23 p. (Format:    TXT=64003 bytes) 



[RFC-1151] Partridge, C.; Hinden, R.M.    Version 2 of the Reliable Data Protocol    (RDP).    
1990 April; 4 p. (Format: TXT=8293 bytes)    (Updates RFC 908) 



[RFC-1150] Malkin, G.S.; Reynolds, J.K.    F.Y.I. on F.Y.I.: Introduction to the    F.Y.I. notes.    
1990 March; 4 p. (Format: TXT=7867 bytes) (Also FYI 1)    



[RFC-1149] Waitzman, D.    Standard for the transmission of IP datagrams on avian    
carriers.    1990 April 1; 2 p. (Format: TXT=3329 bytes) 



[RFC-1148] Kille, S.E.    Mapping between X.400(1988) / ISO 10021 and RFC 822.    1990    
March; 94 p. (Format: TXT=194292 bytes)    (Updates RFC 822, RFC 987, RFC    
1026, RFC 1138) 



[RFC-1147] Stine, R.H.,ed.    FYI on a network management tool catalog: Tools for    
monitoring and debugging TCP/IP internets and interconnected devices.      
1990 April; 126 p. (Format: TXT=336906, PS=555225 bytes) (Also FYI 2)    



[RFC-1146] Zweig, J.; Partridge, C.    TCP alternate checksum options.    1990 March;    5 p. 
(Format: TXT=10955 bytes)    (Obsoletes RFC 1145) 



[RFC-1145] Zweig, J.; Partridge, C.    TCP alternate checksum options.    1990    February; 5 
p. (Format: TXT=11052 bytes)    (Obsoleted by RFC 1146) 



[RFC-1144] Jacobson, V.    Compressing TCP/IP headers for low-speed serial links.      1990 
February; 43 p. (Format: TXT=120959, PS=534729 bytes) 



[RFC-1143] Bernstein, D.J.    Q method of implementing Telnet option negotiation.      1990 
February; 10 p. (Format: TXT=23331 bytes) 



[RFC-1142] Not yet issued.



[RFC-1141] Mallory, T.; Kullberg, A.    Incremental updating of the Internet    checksum.    
1990 January; 2 p. (Format: TXT=3587 bytes)    (Updates RFC    1071) 



[RFC-1140] Defense Advanced Research Projects Agency, Internet Activities Board.      IAB 
official protocol standards.    1990 May; 27 p. (Format: TXT=60501    bytes)    
(Obsoletes RFC 1130) 



[RFC-1139] Hagens, R.A.    Echo function for ISO 8473.    1990 January; 6 p. (Format:    
TXT=14229 bytes) 



[RFC-1138] Kille, S.E.    Mapping between X.400(1988) / ISO 10021 and RFC 822.    1989    
December; 92 p. (Format: TXT=191029 bytes)    (Updates RFC 822, RFC 987,    
RFC 1026; Updated by RFC 1148) 



[RFC-1137] Kille, S.E.    Mapping between full RFC 822 and RFC 822 with restricted    
encoding.    1989 December; 3 p. (Format: TXT=6436 bytes)    (Updates RFC    
976) 



[RFC-1136] Hares, S.; Katz, D.    Administrative Domains and Routing Domains: A model for
routing in the Internet.    1989 December; 10 p. (Format: TXT=22158    bytes) 



[RFC-1135] Reynolds, J.K.    Helminthiasis of the Internet.    1989 December; 33 p.    
(Format: TXT=77033 bytes) 



[RFC-1134] Perkins, D.    Point-to-Point Protocol: A proposal for multi-protocol    
transmission of datagrams over Point-to-Point links.    1989 November;    38 p. 
(Format: TXT=87352 bytes)    (Obsoleted by RFC 1171) 



[RFC-1133] Yu, J.Y.; Braun, H.W.    Routing between the NSFNET and the DDN.    1989    
November; 10 p. (Format: TXT=23169 bytes) 



[RFC-1132] McLaughlin, L.J.    Standard for the transmission of 802.2 packets over    IPX 
networks.    1989 November; 4 p. (Format: TXT=8128 bytes) 



[RFC-1131] Moy, J.    OSPF specification.    1989 October; 107 p. (Format: PS=857280    
bytes) 



[RFC-1130] Defense Advanced Research Projects Agency, Internet Activities Board.      IAB 
official protocol standards.    1989 October; 17 p. (Format: TXT=33858 bytes)    
(Obsoletes RFC 1100; Obsoleted by RFC 1140) 



[RFC-1129] Mills, D.L.    Internet time synchronization: The Network Time Protocol.      1989 
October; 29 p. (Format: PS=551697 bytes) 



[RFC-1128] Mills, D.L.    Measured performance of the Network Time Protocol in the    
Internet system.    1989 October; 20 p. (Format: PS=633742 bytes) 



[RFC-1127] Braden, R.T.    Perspective on the Host Requirements RFCs.    1989 October;    
20 p. (Format: TXT=41267 bytes) 



[RFC-1126] Little, M.    Goals and functional requirements for inter-autonomous    system 
routing.    1989 October; 25 p. (Format: TXT=62725 bytes) 



[RFC-1125] Estrin, D.    Policy requirements for inter Administrative Domain routing. 1989 
November; 18 p. (Format: TXT=55248, PS=282123 bytes) 



[RFC-1124] Leiner, B.M.    Policy issues in interconnecting networks.    1989    September; 
54 p. (Format: PS=315692 bytes) 



[RFC-1123] Braden, R.T.,ed.    Requirements for Internet hosts - application and    support.    
1989 October; 98 p. (Format: TXT=245503 bytes) 



[RFC-1122] Braden, R.T.,ed.    Requirements for Internet hosts - communication    layers.    
1989 October; 116 p. (Format: TXT=295992 bytes) 



[RFC-1121] Postel, J.B.; Kleinrock, L.; Cerf, V.G.; Boehm, B.    Act one - the poems. 1989 
September; 6 p. (Format: TXT=10644 bytes) 



[RFC-1120] Cerf, V.    Internet Activities Board.    1989 September; 11 p. (Format:    
TXT=26123 bytes)    (Obsoleted by RFC 1160) 



[RFC-1119] Mills, D.L.    Network Time Protocol (version 2) specification and    
implementation.    1989 September; 64 p. (Format: PS=535202 bytes)      
(Obsoletes RFC 1059, RFC 958) 



[RFC-1118] Krol, E.    Hitchhikers guide to the Internet.    1989 September; 24 p.    (Format: 
TXT=62757 bytes) 



[RFC-1117] Romano, S.; Stahl, M.K.; Recker, M.    Internet numbers.    1989 August;    109 p.
(Format: TXT=324666 bytes)    (Obsoletes RFC 1062, RFC 1020, RFC    997; 
Obsoleted by RFC 1166) 



[RFC-1116] Borman, D.A.,ed.    Telnet Linemode option.    1989 August; 21 p. (Format:    
TXT=47473 bytes)    (Obsoleted by RFC 1184) 



[RFC-1115] Linn, J.    Privacy enhancement for Internet electronic mail: Part III -    
algorithms, modes, and identifiers [Draft].    1989 August; 8 p. (Format:    
TXT=18226 bytes) 



[RFC-1114] Kent, S.T.; Linn, J.    Privacy enhancement for Internet electronic mail:    Part II - 
certificate-based key management [Draft].    1989 August; 25 p.    (Format: 
TXT=69661 bytes) 



[RFC-1113] Linn, J.    Privacy enhancement for Internet electronic mail: Part I -    message 
encipherment and authentication procedures [Draft].    1989    August; 34 p. 
(Format: TXT=89293 bytes)    (Obsoletes RFC 989, RFC 1040) 



[RFC-1112] Deering, S.E.    Host extensions for IP multicasting.    1989 August; 17 p.    
(Format: TXT=39904 bytes)    (Obsoletes RFC 988, RFC 1054) 



[RFC-1111] Postel, J.B.    Request for comments on Request for Comments: Instructions to 
RFC authors.    1989 August; 6 p. (Format: TXT=11793 bytes)    (Obsoletes RFC 
825) 



[RFC-1110] McKenzie, A.M.    Problem with the TCP big window option.    1989 August;    3 p.
(Format: TXT=5778 bytes) 



[RFC-1109] Cerf, V.G.    Report of the second Ad Hoc Network Management Review Group. 
1989 August; 8 p. (Format: TXT=20642 bytes) 



[RFC-1108] Not yet issued.



[RFC-1107] Sollins, K.R.    Plan for Internet directory services.    1989 July; 19 p.    (Format: 
TXT=51773 bytes) 



[RFC-1106] Fox, R.    TCP big window and NAK options.    1989 June; 13 p. (Format:    
TXT=37105 bytes) 



[RFC-1105] Lougheed, K.; Rekhter, Y.    Border Gateway Protocol (BGP).    1989 June;    17 p. 
(Format: TXT=37644 bytes)    (Obsoleted by RFC 1163) 



[RFC-1104] Braun, H.W.    Models of policy based routing.    1989 June; 10 p. (Format:    
TXT=25468 bytes) 



[RFC-1103] Katz, D.    Proposed standard for the transmission of IP datagrams over    FDDI 
Networks.    1989 June; 9 p. (Format: TXT=19439 bytes)    (Obsoleted by RFC 
1188) 



[RFC-1102] Clark, D.D.    Policy routing in Internet protocols.    1989 May; 22 p.    (Format: 
TXT=59664 bytes) 



[RFC-1101] Mockapetris, P.V.    DNS encoding of network names and other types.    1989    
April; 14 p. (Format: TXT=28677 bytes)    (Updates RFC 1034, RFC 1035) 



[RFC-1100] Defense Advanced Research Projects Agency, Internet Activities Board.      IAB 
official protocol standards.    1989 April; 14 p. (Format: TXT=30101    bytes)    
(Obsoletes RFC 1083; Obsoleted by RFC 1130) 



[RFC-1099] Not yet issued.



[RFC-1098] Case, J.D.; Fedor, M.; Schoffstall, M.L.; Davin, C.    Simple Network    
Management Protocol (SNMP).    1989 April; 34 p. (Format: TXT=71563 bytes) 
(Obsoletes RFC 1067; Obsoleted by RFC 1157) 



[RFC-1097] Miller, B.    Telnet subliminal-message option.    1989 April 1; 3 p.    (Format: 
TXT=5490 bytes) 



[RFC-1096] Marcy, G.A.    Telnet X display location option.    1989 March; 3 p.    (Format: 
TXT=4634 bytes) 



[RFC-1095] Warrier, U.S.; Besaw, L.    Common Management Information Services and    
Protocol over TCP/IP (CMOT).    1989 April; 67 p. (Format: TXT=157506    bytes) 
(Obsoleted by RFC 1189) 



[RFC-1094] Sun Microsystems, Inc.    NFS: Network File System Protocol specification. 1989
March; 27 p. (Format: TXT=51454 bytes) 



[RFC-1093] Braun, H.W.    NSFNET routing architecture.    1989 February; 9 p. (Format:    
TXT=20629 bytes) 



[RFC-1092] Rekhter, J.    EGP and policy based routing in the new NSFNET backbone.      
1989 February; 5 p. (Format: TXT=11865 bytes) 



[RFC-1091] VanBokkelen, J.    Telnet terminal-type option.    1989 February; 7 p.    (Format: 
TXT=13439 bytes)    (Obsoletes RFC 930) 



[RFC-1090] Ullmann, R.    SMTP on X.25.    1989 February; 4 p. (Format: TXT=6141 bytes) 



[RFC-1089] Schoffstall, M.L.; Davin, C.; Fedor, M.; Case, J.D.    SNMP over Ethernet. 1989 
February; 3 p. (Format: TXT=4458 bytes) 



[RFC-1088] McLaughlin, L.J.    Standard for the transmission of IP datagrams over    NetBIOS
networks.    1989 February; 3 p. (Format: TXT=5749 bytes) 



[RFC-1087] Defense Advanced Research Projects Agency, Internet Activities Board.      
Ethics and the Internet.    1989 January; 2 p. (Format: TXT=4582 bytes) 



[RFC-1086] Onions, J.P.; Rose, M.T.    ISO-TP0 bridge between TCP and X.25.    1988    
December; 9 p. (Format: TXT=19934 bytes) 



[RFC-1085] Rose, M.T.    ISO presentation services on top of TCP/IP based internets. 1988 
December; 32 p. (Format: TXT=64643 bytes) 



[RFC-1084] Reynolds, J.K.    BOOTP vendor information extensions.    1988 December;    8 p.
(Format: TXT=16327 bytes)    (Obsoletes RFC 1048) 



[RFC-1083] Defense Advanced Research Projects Agency, Internet Activities Board.      IAB 
official protocol standards.    1988 December; 12 p. (Format:    TXT=27128 
bytes)    (Obsoleted by RFC 1100) 



[RFC-1082] Rose, M.T.    Post Office Protocol - version 3: Extended service    offerings.    
1988 November; 11 p. (Format: TXT=25423 bytes) 



[RFC-1081] Rose, M.T.    Post Office Protocol - version 3.    1988 November; 16 p.    (Format: 
TXT=37009 bytes) 



[RFC-1080] Hedrick, C.L.    Telnet remote flow control option.    1988 November; 4 p.    
(Format: TXT=6688 bytes) 



[RFC-1079] Hedrick, C.L.    Telnet terminal speed option.    1988 December; 3 p.    (Format: 
TXT=4942 bytes) 



[RFC-1078] Lottor, M.    TCP port service Multiplexer (TCPMUX).    1988 November; 2 p.    
(Format: TXT=3248 bytes) 



[RFC-1077] Leiner, B.M.,ed.    Critical issues in high bandwidth networking.    1988    
November; 46 p. (Format: TXT=116464 bytes) 



[RFC-1076] Trewitt, G.; Partridge, C.    HEMS monitoring and control language.    1988    
November; 42 p. (Format: TXT=98774 bytes)    (Obsoletes RFC 1023) 



[RFC-1075] Waitzman, D.; Partridge, C.; Deering, S.E.    Distance Vector Multicast    Routing 
Protocol.    1988 November; 24 p. (Format: TXT=54731 bytes) 



[RFC-1074] Rekhter, J.    NSFNET backbone SPF based Interior Gateway Protocol.    1988    
October; 5 p. (Format: TXT=10872 bytes) 



[RFC-1073] Waitzman, D.    Telnet window size option.    1988 October; 4 p. (Format:    
TXT=7639 bytes) 



[RFC-1072] Jacobson, V.; Braden, R.T.    TCP extensions for long-delay paths.    1988    
October; 16 p. (Format: TXT=36000 bytes) 



[RFC-1071] Braden, R.T.; Borman, D.A.; Partridge, C.    Computing the Internet    checksum. 
1988 September; 24 p. (Format: TXT=54941 bytes)    (Updated by    RFC 1141) 



[RFC-1070] Hagens, R.A.; Hall, N.E.; Rose, M.T.    Use of the Internet as a    subnetwork for 
experimentation with the OSI network layer.    1989    February; 17 p. (Format: 
TXT=37354 bytes) 



[RFC-1069] Callon, R.W.; Braun, H.W.    Guidelines for the use of Internet-IP    addresses in 
the ISO Connectionless-Mode Network Protocol.    1989    February; 10 p. 
(Format: TXT=24268 bytes)    (Obsoletes RFC 986) 



[RFC-1068] DeSchon, A.L.; Braden, R.T.    Background File Transfer Program (BFTP).      1988 
August; 27 p. (Format: TXT=51004 bytes) 



[RFC-1067] Case, J.D.; Fedor, M.; Schoffstall, M.L.; Davin, J.    Simple Network    
Management Protocol.    1988 August; 33 p. (Format: TXT=69592 bytes)      
(Obsoleted by RFC 1098) 



[RFC-1066] McCloghrie, K.; Rose, M.T.    Management Information Base for network    
management of TCP/IP-based internets.    1988 August; 90 p. (Format:    
TXT=135177 bytes)    (Obsoleted by RFC 1156) 



[RFC-1065] McCloghrie, K.; Rose, M.T.    Structure and identification of management    
information for TCP/IP-based internets.    1988 August; 21 p. (Format:    
TXT=38858 bytes)    (Obsoleted by RFC 1155) 



[RFC-1064] Crispin, M.    Interactive Mail Access Protocol: Version 2.    1988 July;    26 p. 
(Format: TXT=57813 bytes)    (Obsoleted by RFC 1176) 



[RFC-1063] Mogul, J.C.; Kent, C.A.; Partridge, C.; McCloghrie, K.    IP MTU discovery options. 
1988 July; 11 p. (Format: TXT=27121 bytes)    (Obsoleted by RFC    1191) 



[RFC-1062] Romano, S.; Stahl, M.K.; Recker, M.    Internet numbers.    1988 August;    65 p. 
(Format: TXT=198729 bytes)    (Obsoletes RFC 1020; Obsoleted by RFC    1117)



[RFC-1061] Not yet issued.



[RFC-1060] Reynolds, J.K.; Postel, J.B.    Assigned numbers.    1990 March; 86 p.    (Format: 
TXT=177923 bytes)    (Obsoletes RFC 1010) 



[RFC-1059] Mills, D.L.    Network Time Protocol (version 1) specification and    
implementation.    1988 July; 58 p. (Format: TXT=140890 bytes)      (Obsoleted 
by RFC 1119) 



[RFC-1058] Hedrick, C.L.    Routing Information Protocol.    1988 June; 33 p. (Format:    
TXT=93285 bytes) 



[RFC-1057] Sun Microsystems, Inc.    RPC: Remote Procedure Call Protocol    specification 
version 2.    1988 June; 25 p. (Format: TXT=52462 bytes)      (Obsoletes RFC 
1050) 



[RFC-1056] Lambert, M.L.    PCMAIL: A distributed mail system for personal computers. 
1988 June; 38 p. (Format: TXT=85368 bytes)    (Obsoletes RFC 993) 



[RFC-1055] Romkey, J.L.    Nonstandard for transmission of IP datagrams over serial    lines:
SLIP.    1988 June; 6 p. (Format: TXT=12911 bytes) 



[RFC-1054] Deering, S.E.    Host extensions for IP multicasting.    1988 May; 19 p.    (Format:
TXT=45465 bytes)    (Obsoletes RFC 988; Obsoleted by RFC 1112) 



[RFC-1053] Levy, S.; Jacobson, T.    Telnet X.3 PAD option.    1988 April; 21 p.    (Format: 
TXT=48952 bytes) 



[RFC-1052] Cerf, V.G.    IAB recommendations for the development of Internet network    
management standards.    1988 April; 14 p. (Format: TXT=30569 bytes) 



[RFC-1051] Prindeville, P.A.    Standard for the transmission of IP datagrams and ARP 
packets over ARCNET networks.    1988 March; 4 p. (Format: TXT=7779 bytes) 



[RFC-1050] Sun Microsystems, Inc.    RPC: Remote Procedure Call Protocol    specification.    
1988 April; 24 p. (Format: TXT=51540 bytes)      (Obsoleted by RFC 1057) 



[RFC-1049] Sirbu, M.A.    Content-type header field for Internet messages.    1988    March; 
8 p. (Format: TXT=18923 bytes) 



[RFC-1048] Prindeville, P.A.    BOOTP vendor information extensions.    1988 February;    7 p.
(Format: TXT=15423 bytes)    (Obsoleted by RFC 1084) 



[RFC-1047] Partridge, C.    Duplicate messages and SMTP.    1988 February; 3 p.    (Format: 
TXT=5888 bytes) 



[RFC-1046] Prue, W.; Postel, J.B.    Queuing algorithm to provide type-of-service for IP links. 
1988 February; 11 p. (Format: TXT=30106 bytes) 



[RFC-1045] Cheriton, D.R.    VMTP: Versatile Message Transaction Protocol: Protocol    
specification.    1988 February; 123 p. (Format: TXT=272058 bytes) 



[RFC-1044] Hardwick, K.; Lekashman, J.    Internet Protocol on Network System's    
HYPERchannel: Protocol specification.    1988 February; 43 p. (Format:    
TXT=103241 bytes) 



[RFC-1043] Yasuda, A.; Thompson, T.    Telnet Data Entry Terminal option: DODIIS    
implementation.    1988 February; 26 p. (Format: TXT=59478 bytes)      
(Updates RFC 732) 



[RFC-1042] Postel, J.B.; Reynolds, J.K.    Standard for the transmission of IP    datagrams 
over IEEE 802 networks.    1988 February; 15 p. (Format:    TXT=35201 bytes)    
(Obsoletes RFC 948) 



[RFC-1041] Rekhter, Y.    Telnet 3270 regime option.    1988 January; 6 p. (Format:    
TXT=11608 bytes) 



[RFC-1040] Linn, J.    Privacy enhancement for Internet electronic mail: Part I:    Message 
encipherment and authentication procedures.    1988 January; 29 p. (Format: 
TXT=76276 bytes)    (Obsoletes RFC 989; Obsoleted by RFC 1113) 



[RFC-1039] Latham, D.    DoD statement on Open Systems Interconnection protocols.      
1988 January; 3 p. (Format: TXT=6194 bytes)    (Obsoletes RFC 945) 



[RFC-1038] St. Johns, M.    Draft revised IP security option.    1988 January; 7 p.    (Format: 
TXT=15879 bytes) 



[RFC-1037] Greenberg, B.; Keene, S.    NFILE - a file access protocol.    1987    December; 86
p. (Format: TXT=197312 bytes) 



[RFC-1036] Horton, M.R.; Adams, R.    Standard for interchange of USENET messages.      
1987 December; 19 p. (Format: TXT=46891 bytes)    (Obsoletes RFC 850) 



[RFC-1035] Mockapetris, P.V.    Domain names - implementation and specification.      1987 
November; 55 p. (Format: TXT=125626 bytes)    (Obsoletes RFC 973, RFC 882, 
RFC 883; Updated by RFC 1101, RFC 1183) 



[RFC-1034] Mockapetris, P.V.    Domain names - concepts and facilities.    1987    November;
55 p. (Format: TXT=129180 bytes)    (Obsoletes RFC 973, RFC 882, RFC 883; 
Updated by RFC 1101, RFC 1183) 



[RFC-1033] Lottor, M.    Domain administrators operations guide.    1987 November;    22 p. 
(Format: TXT=37263 bytes) 



[RFC-1032] Stahl, M.K.    Domain administrators guide.    1987 November; 14 p. (Format: 
TXT=29454 bytes) 



[RFC-1031] Lazear, W.D.    MILNET name domain transition.    1987 November; 10 p.    
(Format: TXT=20137 bytes) 



[RFC-1030] Lambert, M.L.    On testing the NETBLT Protocol over divers networks.      1987 
November; 16 p. (Format: TXT=40964 bytes) 



[RFC-1029] Parr, G.    More fault tolerant approach to address resolution for a    Multi-LAN 
system of Ethernets.    1988 May; 17 p. (Format: TXT=44019    bytes) 



[RFC-1028] Davin, J.; Case, J.D.; Fedor, M.; Schoffstall, M.L.    Simple Gateway    Monitoring 
Protocol.    1987 November; 38 p. (Format: TXT=82440 bytes) 



[RFC-1027] Carl-Mitchell, S.; Quarterman, J.S.    Using ARP to implement transparent    
subnet gateways.    1987 October; 8 p. (Format: TXT=21297 bytes) 



[RFC-1026] Kille, S.E.    Addendum to RFC 987: (Mapping between X.400 and RFC-822).      
1987 September; 4 p. (Format: TXT=7117 bytes)    (Updates RFC 987;    
Updated by RFC 1138, RFC 1148) 



[RFC-1025] Postel, J.B.    TCP and IP bake off.    1987 September; 6 p. (Format:    TXT=11648
bytes) 



[RFC-1024] Partridge, C.; Trewitt, G.    HEMS variable definitions.    1987 October;    74 p. 
(Format: TXT=126536 bytes) 



[RFC-1023] Trewitt, G.; Partridge, C.    HEMS monitoring and control language.    1987    
October; 17 p. (Format: TXT=40992 bytes)    (Obsoleted by RFC 1076) 



[RFC-1022] Partridge, C.; Trewitt, G.    High-level Entity Management Protocol    (HEMP).    
1987 October; 12 p. (Format: TXT=25348 bytes) 



[RFC-1021] Partridge, C.; Trewitt, G.    High-level Entity Management System (HEMS). 1987 
October; 5 p. (Format: TXT=12993 bytes) 



[RFC-1020] Romano, S.; Stahl, M.K.    Internet numbers.    1987 November; 51 p.    (Format: 
TXT=146864 bytes)    (Obsoletes RFC 997; Obsoleted by RFC 1062,    RFC 
1117) 



[RFC-1019] Arnon, D.    Report of the Workshop on Environments for Computational    
Mathematics.    1987 September; 8 p. (Format: TXT=21151 bytes) 



[RFC-1018] McKenzie, A.M.    Some comments on SQuID.    1987 August; 3 p. (Format:    
TXT=7931 bytes) 



[RFC-1017] Leiner, B.M.    Network requirements for scientific research: Internet    task 
force on scientific computing.    1987 August; 19 p. (Format:    TXT=49512 
bytes) 



[RFC-1016] Prue, W.; Postel, J.B.    Something a host could do with source quench:    The 
Source Quench Introduced Delay (SQuID).    1987 July; 18 p. (Format:    
TXT=47922 bytes) 



[RFC-1015] Leiner, B.M.    Implementation plan for interagency research Internet.      1987 
July; 24 p. (Format: TXT=63159 bytes) 



[RFC-1014] Sun Microsystems, Inc.    XDR: External Data Representation standard.      1987 
June; 20 p. (Format: TXT=39316 bytes) 



[RFC-1013] Scheifler, R.W.    X Window System Protocol, version 11: Alpha update    April 
1987.    1987 June; 101 p. (Format: TXT=244905 bytes) 



[RFC-1012] Reynolds, J.K.; Postel, J.B.    Bibliography of Request For Comments 1    through 
999.    1987 June; 64 p. (Format: TXT=129194 bytes) 



[RFC-1011] Reynolds, J.K.; Postel, J.B.    Official Internet protocols.    1987 May;    52 p. 
(Format: TXT=74593 bytes)    (Obsoletes RFC 991) 



[RFC-1010] Reynolds, J.K.; Postel, J.B.    Assigned numbers.    1987 May; 44 p.    (Format: 
TXT=78179 bytes)    (Obsoletes RFC 990; Obsoleted by RFC 1060) 



[RFC-1009] Braden, R.T.; Postel, J.B.    Requirements for Internet gateways.    1987    June; 
55 p. (Format: TXT=128173 bytes)    (Obsoletes RFC 985) 



[RFC-1008] McCoy, W.    Implementation guide for the ISO Transport Protocol.    1987    June;
73 p. (Format: TXT=204664 bytes) 



[RFC-1007] McCoy, W.    Military supplement to the ISO Transport Protocol.    1987    June; 
23 p. (Format: TXT=51280 bytes) 



[RFC-1006] Rose, M.T.; Cass, D.E.    ISO transport services on top of the TCP:    Version: 3.    
1987 May; 17 p. (Format: TXT=31935 bytes)    (Obsoletes RFC    983) 



[RFC-1005] Khanna, A.; Malis, A.G.    ARPANET AHIP-E Host Access Protocol (enhanced    
AHIP).    1987 May; 31 p. (Format: TXT=69957 bytes) 



[RFC-1004] Mills, D.L.    Distributed-protocol authentication scheme.    1987 April;    8 p. 
(Format: TXT=21402 bytes) 



[RFC-1003] Katz, A.R.    Issues in defining an equations representation standard.      1987 
March; 7 p. (Format: TXT=19816 bytes) 



[RFC-1002] Defense Advanced Research Projects Agency, Internet Activities Board,    End-
to-End Services Task Force, NetBIOS Working Group.    Protocol    standard for a 
NetBIOS service on a TCP/UDP transport: Detailed    specifications.    1987 
March; 85 p. (Format: TXT=170262 bytes) 



[RFC-1001] Defense Advanced Research Projects Agency, Internet Activities Board,    End-
to-End Services Task Force, NetBIOS Working Group.    Protocol    standard for a 
NetBIOS service on a TCP/UDP transport: Concepts and    methods.    1987 
March; 68 p. (Format: TXT=158437 bytes) 



[RFC-1000] Reynolds, J.K.; Postel, J.B.    Request For Comments reference guide.      1987 
August; 149 p. (Format: TXT=323960 bytes)    (Obsoletes RFC 999) 



[RFC-999] Westine, A.; Postel, J.B.    Requests For Comments summary notes: 900-999. 
1987 April; 22 p. (Format: TXT=62877 bytes)    (Obsoleted by RFC 1000) 



[RFC-998] Clark, D.D.; Lambert, M.L.; Zhang, L.    NETBLT: A bulk data transfer    protocol.   
1987 March; 21 p. (Format: TXT=57147 bytes)    (Obsoletes RFC    969) 



[RFC-997] Reynolds, J.K.; Postel, J.B.    Internet numbers.    1987 March; 42 p.    (Format: 
TXT=123919 bytes)    (Obsoleted by RFC 1020, RFC 1117; Updates    RFC 990) 



[RFC-996] Mills, D.L.    Statistics server.    1987 February; 3 p. (Format: TXT=6127    bytes) 



[RFC-995] International Organization for Standardization.    End System to    Intermediate 
System Routing Exchange Protocol for use in conjunction    with ISO 8473.    
1986 April; 41 p. (Format: TXT=94069 bytes) 



[RFC-994] International Organization for Standardization.    Final text of DIS 8473, 
Protocol for Providing the Connectionless-mode Network Service.    1986    
March; 52 p. (Format: TXT=129006 bytes)    (Obsoletes RFC 926) 



[RFC-993] Clark, D.D.; Lambert, M.L.    PCMAIL: A distributed mail system for    personal 
computers.    1986 December; 28 p. (Format: TXT=71725 bytes)      (Obsoletes 
RFC 984; Obsoleted by RFC 1056) 



[RFC-992] Birman, K.P.; Joseph, T.A.    On communication support for fault tolerant    
process groups.    1986 November; 18 p. (Format: TXT=52313 bytes) 



[RFC-991] Reynolds, J.K.; Postel, J.B.    Official ARPA-Internet protocols.    1986    November;
46 p. (Format: TXT=65205 bytes)    (Obsoletes RFC 961;    Obsoleted by RFC 
1011) 



[RFC-990] Reynolds, J.K.; Postel, J.B.    Assigned numbers.    1986 November; 75 p.    
(Format: TXT=174784 bytes)    (Obsoletes RFC 960; Obsoleted by RFC 1010;    
Updated by RFC 997) 



[RFC-989] Linn, J.    Privacy enhancement for Internet electronic mail: Part I:    Message 
encipherment and authentication procedures.    1987 February;    23 p. 
(Format: TXT=63934 bytes)    (Obsoleted by RFC 1040, RFC 1113) 



[RFC-988] Deering, S.E.    Host extensions for IP multicasting.    1986 July; 20 p.    (Format: 
TXT=45220 bytes)    (Obsoletes RFC 966; Obsoleted by RFC 1054,    RFC 1112) 



[RFC-987] Kille, S.E.    Mapping between X.400 and RFC 822.    1986 June; 69 p.    (Format: 
TXT=127540 bytes)    (Updated by RFC 1026, RFC 1138, RFC 1148) 



[RFC-986] Callon, R.W.; Braun, H.W.    Guidelines for the use of Internet-IP    addresses in 
the ISO Connectionless-Mode Network Protocol [Working    draft].    1986 June; 
7 p. (Format: TXT=13950 bytes)    (Obsoleted by RFC    1069) 



[RFC-985] National Science Foundation, Network Technical Advisory Group.      
Requirements for Internet gateways - draft.    1986 May; 23 p. (Format:    
TXT=59221 bytes)    (Obsoleted by RFC 1009) 



[RFC-984] Clark, D.D.; Lambert, M.L.    PCMAIL: A distributed mail system for    personal 
computers.    1986 May; 31 p. (Format: TXT=69333 bytes)      (Obsoleted by 
RFC 993) 



[RFC-983] Cass, D.E.; Rose, M.T.    ISO transport arrives on top of the TCP.    1986    April; 
27 p. (Format: TXT=59819 bytes)    (Obsoleted by RFC 1006) 



[RFC-982] Braun, H.W.    Guidelines for the specification of the structure of the    Domain 
Specific Part (DSP) of the ISO standard NSAP address.    1986    April; 11 p. 
(Format: TXT=22595 bytes) 



[RFC-981] Mills, D.L.    Experimental multiple-path routing algorithm.    1986 March;    22 p.
(Format: TXT=59069 bytes) 



[RFC-980] Jacobsen, O.J.; Postel, J.B.    Protocol document order information.    1986 
March; 12 p. (Format: TXT=24416 bytes) 



[RFC-979] Malis, A.G.    PSN End-to-End functional specification.    1986 March; 15 p. 
(Format: TXT=39472 bytes) 



[RFC-978] Reynolds, J.K.; Gillman, R.; Brackenridge, W.A.; Witkowski, A.; Postel,    J.B.    
Voice File Interchange Protocol (VFIP).    1986 February; 5 p.    (Format: 
TXT=9223 bytes) 



[RFC-977] Kantor, B.; Lapsley, P.    Network News Transfer Protocol.    1986 February; 27 p.
(Format: TXT=55062 bytes) 



[RFC-976] Horton, M.R.    UUCP mail interchange format standard.    1986 February;    12 p.
(Format: TXT=26814 bytes) 



[RFC-975] Mills, D.L.    Autonomous confederations.    1986 February; 10 p. (Format:    
TXT=28010 bytes) 



[RFC-974] Partridge, C.    Mail routing and the domain system.    1986 January; 7 p.    
(Format: TXT=18581 bytes) 



[RFC-973] Mockapetris, P.V.    Domain system changes and observations.    1986    January;
10 p. (Format: TXT=22364 bytes)    (Obsoleted by RFC 1034, RFC    1035; 
Updates RFC 882, RFC 883) 



[RFC-972] Wancho, F.    Password Generator Protocol.    1986 January; 2 p. (Format:    
TXT=3890 bytes) 



[RFC-971] DeSchon, A.L.    Survey of data representation standards.    1986 January;    9 p.
(Format: TXT=22883 bytes) 



[RFC-970] Nagle, J.    On packet switches with infinite storage.    1985 December;    9 p. 
(Format: TXT=24970 bytes) 



[RFC-969] Clark, D.D.; Lambert, M.L.; Zhang, L.    NETBLT: A bulk data transfer    protocol.   
1985 December; 15 p. (Format: TXT=40894 bytes)    (Obsoleted by RFC 998) 



[RFC-968] Cerf, V.G.    Twas the night before start-up.    1985 December; 2 p.    (Format: 
TXT=2573 bytes) 



[RFC-967] Padlipsky, M.A.    All victims together.    1985 December; 2 p. (Format:    
TXT=4820 bytes) 



[RFC-966] Deering, S.E.; Cheriton, D.R.    Host groups: A multicast extension to the 
Internet Protocol.    1985 December; 27 p. (Format: TXT=61006 bytes)      
(Obsoleted by RFC 988) 



[RFC-965] Aguilar, L.    Format for a graphical communication protocol.    1985    
December; 51 p. (Format: TXT=108361 bytes) 



[RFC-964] Sidhu, D.P.    Some problems with the specification of the Military    Standard 
Transmission Control Protocol.    1985 November; 10 p. (Format:    TXT=21542 
bytes) 



[RFC-963] Sidhu, D.P.    Some problems with the specification of the Military    Standard 
Internet Protocol.    1985 November; 19 p. (Format: TXT=45102    bytes) 



[RFC-962] Padlipsky, M.A.    TCP-4 prime.    1985 November; 2 p. (Format: TXT=2885    
bytes) 



[RFC-961] Reynolds, J.K.; Postel, J.B.    Official ARPA-Internet protocols.    1985    December;
38 p. (Format: TXT=54874 bytes)    (Obsoletes RFC 944;    Obsoleted by RFC 
991) 



[RFC-960] Reynolds, J.K.; Postel, J.B.    Assigned numbers.    1985 December; 60 p.    
(Format: TXT=129292 bytes)    (Obsoletes RFC 943; Obsoleted by RFC 990) 



[RFC-959] Postel, J.B.; Reynolds, J.K.    File Transfer Protocol.    1985 October;    69 p. 
(Format: TXT=151249 bytes)    (Obsoletes RFC 765 [IEN 149]) 



[RFC-958] Mills, D.L.    Network Time Protocol (NTP).    1985 September; 14 p.    (Format: 
TXT=31520 bytes)    (Obsoleted by RFC 1119) 



[RFC-957] Mills, D.L.    Experiments in network clock synchronization.    1985    September;
27 p. (Format: TXT=70490 bytes) 



[RFC-956] Mills, D.L.    Algorithms for synchronizing network clocks.    1985    September; 
26 p. (Format: TXT=68868 bytes) 



[RFC-955] Braden, R.T.    Towards a transport service for transaction processing    
applications.    1985 September; 10 p. (Format: TXT=23066 bytes) 



[RFC-954] Harrenstien, K.; Stahl, M.K.; Feinler, E.J.    NICNAME/WHOIS.    1985    October; 4 
p. (Format: TXT=7623 bytes)    (Obsoletes RFC 812) 



[RFC-953] Harrenstien, K.; Stahl, M.K.; Feinler, E.J.    Hostname Server.    1985    October; 5
p. (Format: TXT=8588 bytes)    (Obsoletes RFC 811) 



[RFC-952] Harrenstien, K.; Stahl, M.K.; Feinler, E.J.    DoD Internet host table    
specification.    1985 October; 6 p. (Format: TXT=12728 bytes)    (Obsoletes 
RFC 810) 



[RFC-951] Croft, W.J.; Gilmore, J.    Bootstrap Protocol.    1985 September; 12 p.    (Format: 
TXT=29038 bytes) 



[RFC-950] Mogul, J.C.; Postel, J.B.    Internet standard subnetting procedure.    1985 
August; 18 p. (Format: TXT=39010 bytes)    (Updates RFC 792) 



[RFC-949] Padlipsky, M.A.    FTP unique-named store command.    1985 July; 2 p.    
(Format: TXT=4130 bytes) 



[RFC-948] Winston, I.    Two methods for the transmission of IP datagrams over IEEE    
802.3 networks.    1985 June; 5 p. (Format: TXT=11843 bytes)      (Obsoleted by
RFC 1042) 



[RFC-947] Lebowitz, K.; Mankins, D.    Multi-network broadcasting within the    Internet.    
1985 June; 5 p. (Format: TXT=12854 bytes) 



[RFC-946] Nedved, R.    Telnet terminal location number option.    1985 May; 4 p.    
(Format: TXT=6513 bytes) 



[RFC-945] Postel, J.B.    DoD statement on the NRC report.    1985 May; 2 p. (Format:    
TXT=5131 bytes)    (Obsoleted by RFC 1039) 



[RFC-944] Reynolds, J.K.; Postel, J.B.    Official ARPA-Internet protocols.    1985    April; 40 p.
(Format: TXT=63693 bytes)    (Obsoletes RFC 924; Obsoleted by RFC 961) 



[RFC-943] Reynolds, J.K.; Postel, J.B.    Assigned numbers.    1985 April; 50 p.    (Format: 
TXT=108133 bytes)    (Obsoletes RFC 923; Obsoleted by RFC 960) 



[RFC-942] National Research Council.    Transport protocols for Department of    Defense 
data networks.    1985 February; 68 p. (Format: TXT=222477 bytes) 



[RFC-941] International Organization for Standardization.    Addendum to the network 
service definition covering network layer addressing.    1985 April; 34 p. 
(Format: TXT=70706 bytes) 



[RFC-940] Gateway Algorithms and Data Structures Task Force.    Toward an Internet    
standard scheme for subnetting.    1985 April; 3 p. (Format: TXT=7061    bytes) 



[RFC-939] National Research Council.    Executive summary of the NRC report on    
transport protocols for Department of Defense data networks.    1985    
February; 20 p. (Format: TXT=43485 bytes) 



[RFC-938] Miller, T.    Internet Reliable Transaction Protocol functional and    interface 
specification.    1985 February; 16 p. (Format: TXT=40561 bytes) 



[RFC-937] Butler, M.; Postel, J.B.; Chase, D.; Goldberger, J.; Reynolds, J.K.      Post Office 
Protocol - version 2.    1985 February; 24 p. (Format:    TXT=43762 bytes)    
(Obsoletes RFC 918) 



[RFC-936] Karels, M.J.    Another Internet subnet addressing scheme.    1985 February; 4 
p. (Format: TXT=10407 bytes) 



[RFC-935] Robinson, J.G.    Reliable link layer protocols.    1985 January; 13 p.    (Format: 
TXT=32335 bytes) 



[RFC-934] Rose, M.T.; Stefferud, E.A.    Proposed standard for message    encapsulation.    
1985 January; 10 p. (Format: TXT=22340 bytes) 



[RFC-933] Silverman, S.    Output marking Telnet option.    1985 January; 4 p.    (Format: 
TXT=6943 bytes) 



[RFC-932] Clark, D.D.    Subnetwork addressing scheme.    1985 January; 4 p. (Format:    
TXT=9509 bytes) 



[RFC-931] St. Johns, M.    Authentication server.    1985 January; 4 p. (Format:    TXT=9259 
bytes)    (Obsoletes RFC 912) 



[RFC-930] Solomon, M.; Wimmers, E.    Telnet terminal type option.    1985 January;    4 p. 
(Format: TXT=6805 bytes)    (Obsoletes RFC 884; Obsoleted by RFC    1091) 



[RFC-929] Lilienkamp, J.; Mandell, R.; Padlipsky, M.A.    Proposed Host-Front End    Protocol.
1984 December; 52 p. (Format: TXT=138234 bytes) 



[RFC-928] Padlipsky, M.A.    Introduction to proposed DoD standard H-FP.    1984    
December; 21 p. (Format: TXT=61658 bytes) 



[RFC-927] Anderson, B.A.    TACACS user identification Telnet option.    1984    December; 
4 p. (Format: TXT=5702 bytes) 



[RFC-926] International Organization for Standardization.    Protocol for providing    the 
connectionless mode network services.    1984 December; 101 p.    (Format: 
TXT=172024 bytes)    (Obsoleted by RFC 994) 



[RFC-925] Postel, J.B.    Multi-LAN address resolution.    1984 October; 15 p.    (Format: 
TXT=31992 bytes) 



[RFC-924] Reynolds, J.K.; Postel, J.B.    Official ARPA-Internet protocols for    connecting 
personal computers to the Internet.    1984 October; 35 p.    (Format: 
TXT=50543 bytes)    (Obsoletes RFC 901; Obsoleted by RFC 944) 



[RFC-923] Reynolds, J.K.; Postel, J.B.    Assigned numbers.    1984 October; 47 p.    (Format:
TXT=99193 bytes)    (Obsoletes RFC 900; Obsoleted by RFC 943) 



[RFC-922] Mogul, J.C.    Broadcasting Internet datagrams in the presence of subnets. 
1984 October; 12 p. (Format: TXT=24832 bytes) 



[RFC-921] Postel, J.B.    Domain name system implementation schedule - revised.      1984 
October; 13 p. (Format: TXT=24059 bytes)    (Updates RFC 897) 



[RFC-920] Postel, J.B.; Reynolds, J.K.    Domain requirements.    1984 October; 14 p.    
(Format: TXT=28621 bytes) 



[RFC-919] Mogul, J.C.    Broadcasting Internet datagrams.    1984 October; 8 p.    (Format: 
TXT=16838 bytes) 



[RFC-918] Reynolds, J.K.    Post Office Protocol.    1984 October; 5 p. (Format:    TXT=10166
bytes)    (Obsoleted by RFC 937) 



[RFC-917] Mogul, J.C.    Internet subnets.    1984 October; 22 p. (Format: TXT=48326    
bytes) 



[RFC-916] Finn, G.G.    Reliable Asynchronous Transfer Protocol (RATP).    1984    October; 
54 p. (Format: TXT=113815 bytes) 



[RFC-915] Elvy, M.A.; Nedved, R.    Network mail path service.    1984 December; 11 p. 
(Format: TXT=22262 bytes) 



[RFC-914] Farber, D.J.; Delp, G.; Conte, T.M.    Thinwire protocol for connecting    personal 
computers to the Internet.    1984 September; 22 p. (Format:    TXT=58586 
bytes) 



[RFC-913] Lottor, M.    Simple File Transfer Protocol.    1984 September; 15 p.    (Format: 
TXT=21784 bytes) 



[RFC-912] St. Johns, M.    Authentication service.    1984 September; 3 p. (Format:    
TXT=4715 bytes)    (Obsoleted by RFC 931) 



[RFC-911] Kirton, P.    EGP Gateway under Berkeley UNIX 4.2.    1984 August 22; 22 p.    
(Format: TXT=57043 bytes) 



[RFC-910] Forsdick, H.C.    Multimedia mail meeting notes.    1984 August; 11 p.    (Format:
TXT=25553 bytes) 



[RFC-909] Welles, C.; Milliken, W.    Loader Debugger Protocol.    1984 July; 127 p.    
(Format: TXT=217583 bytes) 



[RFC-908] Velten, D.; Hinden, R.M.; Sax, J.    Reliable Data Protocol.    1984 July;    56 p. 
(Format: TXT=101185 bytes)    (Updated by RFC 1151) 



[RFC-907] Bolt Beranek and Newman, Inc.    Host Access Protocol specification.    1984 
July; 75 p. (Format: TXT=134566 bytes) 



[RFC-906] Finlayson, R.    Bootstrap loading using TFTP.    1984 June; 4 p. (Format:    
TXT=10329 bytes) 



[RFC-905] McKenzie, A.M.    ISO Transport Protocol specification ISO DP 8073.    1984    
April; 154 p. (Format: TXT=258729 bytes)    (Obsoletes RFC 892) 



[RFC-904] Mills, D.L.    Exterior Gateway Protocol formal specification.    1984    April; 30 p. 
(Format: TXT=65226 bytes)    (Updates RFC 827, RFC 888) 



[RFC-903] Finlayson, R.; Mann, T.; Mogul, J.C.; Theimer, M.    Reverse Address    Resolution 
Protocol.    1984 June; 4 p. (Format: TXT=9572 bytes) 



[RFC-902] Reynolds, J.K.; Postel, J.B.    ARPA Internet Protocol policy.    1984 July; 5 p. 
(Format: TXT=11317 bytes) 



[RFC-901] Reynolds, J.K.; Postel, J.B.    Official ARPA-Internet protocols.    1984    June; 28 p.
(Format: TXT=42682 bytes)    (Obsoletes RFC 880; Obsoleted by    RFC 924) 



[RFC-900] Reynolds, J.K.; Postel, J.B.    Assigned Numbers.    1984 June; 43 p.    (Format: 
TXT=84610 bytes)    (Obsoletes RFC 870; Obsoleted by RFC 923) 



[RFC-899] Postel, J.B.; Westine, A.    Request For Comments summary notes: 800-899. 
1984 May; 18 p. (Format: TXT=41028 bytes) 



[RFC-898] Hinden, R.M.; Postel, J.B.; Muuss, M.; Reynolds, J.K.    Gateway special    interest 
group meeting notes.    1984 April; 24 p. (Format: TXT=43504    bytes) 



[RFC-897] Postel, J.B.    Domain name system implementation schedule.    1984    
February; 8 p. (Format: TXT=16139 bytes)    (Updates RFC 881; Updated by    
RFC 921) 



[RFC-896] Nagle, J.    Congestion control in IP/TCP internetworks.    1984 January 6;    9 p. 
(Format: TXT=27294 bytes) 



[RFC-895] Postel, J.B.    Standard for the transmission of IP datagrams over    experimental
Ethernet networks.    1984 April; 3 p. (Format: TXT=5156    bytes) 



[RFC-894] Hornig, C.    Standard for the transmission of IP datagrams over Ethernet    
networks.    1984 April; 3 p. (Format: TXT=5868 bytes) 



[RFC-893] Leffler, S.; Karels, M.J.    Trailer encapsulations.    1984 April; 3 p.    (Format: 
TXT=13695 bytes) 



[RFC-892] International Organization for Standardization.    ISO Transport Protocol    
specification [Draft].    1983 December; 82 p. (Format: TXT=162564 bytes) 
(Obsoleted by RFC 905) 



[RFC-891] Mills, D.L.    DCN local-network protocols.    1983 December; 26 p. (Format: 
TXT=66769 bytes) 



[RFC-890] Postel, J.B.    Exterior Gateway Protocol implementation schedule.    1984    
February; 3 p. (Format: TXT=6070 bytes) 



[RFC-889] Mills, D.L.    Internet delay experiments.    1983 December; 12 p. (Format:    
TXT=27812 bytes) 



[RFC-888] Seamonson, L.; Rosen, E.C.    "STUB" Exterior Gateway Protocol.    1984    
January; 38 p. (Format: TXT=55585 bytes)    (Updated by RFC 904) 



[RFC-887] Accetta, M.    Resource Location Protocol.    1983 December; 16 p. (Format:    
TXT=37683 bytes) 



[RFC-886] Rose, M.T.    Proposed standard for message header munging.    1983 
December 15; 16 p. (Format: TXT=31546 bytes) 



[RFC-885] Postel, J.B.    Telnet end of record option.    1983 December; 2 p. (Format: 
TXT=3346 bytes) 



[RFC-884] Solomon, M.; Wimmers, E.    Telnet terminal type option.    1983 December;    5 
p. (Format: TXT=8166 bytes)    (Obsoleted by RFC 930) 



[RFC-883] Mockapetris, P.V.    Domain names: Implementation specification.    1983    
November; 73 p. (Format: TXT=179416 bytes)    (Obsoleted by RFC 1034, RFC  
1035; Updated by RFC 973) 



[RFC-882] Mockapetris, P.V.    Domain names: Concepts and facilities.    1983    November; 
31 p. (Format: TXT=81574 bytes)    (Obsoleted by RFC 1034, RFC    1035; 
Updated by RFC 973) 



[RFC-881] Postel, J.B.    Domain names plan and schedule.    1983 November; 10 p.    
(Format: TXT=24070 bytes)    (Updated by RFC 897) 



[RFC-880] Reynolds, J.K.; Postel, J.B.    Official protocols.    1983 October; 26 p.    (Format: 
TXT=38840 bytes)    (Obsoletes RFC 840; Obsoleted by RFC 901) 



[RFC-879] Postel, J.B.    TCP maximum segment size and related topics.    1983    
November; 11 p. (Format: TXT=22662 bytes) 



[RFC-878] Malis, A.G.    ARPANET 1822L Host Access Protocol.    1983 December; 48 p.    
(Format: TXT=77784 bytes)    (Obsoletes RFC 851) 



[RFC-877] Korb, J.T.    Standard for the transmission of IP datagrams over public    data 
networks.    1983 September; 2 p. (Format: TXT=3385 bytes) 



[RFC-876] Smallberg, D.    Survey of SMTP implementations.    1983 September; 13 p.    
(Format: TXT=38529 bytes) 



[RFC-875] Padlipsky, M.A.    Gateways, architectures, and heffalumps.    1982    
September; 8 p. (Format: TXT=23380 bytes) 



[RFC-874] Padlipsky, M.A.    Critique of X.25.    1982 September; 13 p. (Format:    
TXT=37259 bytes) 



[RFC-873] Padlipsky, M.A.    Illusion of vendor support.    1982 September; 8 p.    (Format: 
TXT=23673 bytes) 



[RFC-872] Padlipsky, M.A.    TCP-on-a-LAN.    1982 September; 8 p. (Format: TXT=22994    
bytes) 



[RFC-871] Padlipsky, M.A.    Perspective on the ARPANET reference model.    1982    
September; 25 p. (Format: TXT=76037 bytes) 



[RFC-870] Reynolds, J.K.; Postel, J.B.    Assigned numbers.    1983 October; 26 p.    (Format:
TXT=57563 bytes)    (Obsoletes RFC 820; Obsoleted by RFC 900) 



[RFC-869] Hinden, R.M.    Host Monitoring Protocol.    1983 December; 70 p. (Format:    
TXT=98720 bytes) 



[RFC-868] Postel, J.B.; Harrenstien, K.    Time Protocol.    1983 May; 2 p. (Format:    
TXT=3140 bytes) 



[RFC-867] Postel, J.B.    Daytime Protocol.    1983 May; 2 p. (Format: TXT=2405 bytes)



[RFC-866] Postel, J.B.    Active users.    1983 May; 1 p. (Format: TXT=2087 bytes)



[RFC-865] Postel, J.B.    Quote of the Day Protocol.    1983 May; 1 p. (Format:    TXT=1734 
bytes) 



[RFC-864] Postel, J.B.    Character Generator Protocol.    1983 May; 3 p. (Format:    
TXT=7016 bytes) 



[RFC-863] Postel, J.B.    Discard Protocol.    1983 May; 1 p. (Format: TXT=1297 bytes)



[RFC-862] Postel, J.B.    Echo Protocol.    1983 May; 1 p. (Format: TXT=1294 bytes)



[RFC-861] Postel, J.B.; Reynolds, J.K.    Telnet extended options: List option.      1983 May; 1
p. (Format: TXT=3181 bytes)    (Obsoletes NIC 16239) 



[RFC-860] Postel, J.B.; Reynolds, J.K.    Telnet timing mark option.    1983 May; 4 p. 
(Format: TXT=8108 bytes)    (Obsoletes NIC 16238) 



[RFC-859] Postel, J.B.; Reynolds, J.K.    Telnet status option.    1983 May; 3 p.    (Format: 
TXT=4443 bytes)    (Obsoletes RFC 651) 



[RFC-858] Postel, J.B.; Reynolds, J.K.    Telnet Suppress Go Ahead option.    1983    May; 3 p.
(Format: TXT=3825 bytes)    (Obsoletes NIC 15392) 



[RFC-857] Postel, J.B.; Reynolds, J.K.    Telnet echo option.    1983 May; 5 p.    (Format: 
TXT=11143 bytes)    (Obsoletes NIC 15390) 



[RFC-856] Postel, J.B.; Reynolds, J.K.    Telnet binary transmission.    1983 May;    4 p. 
(Format: TXT=9192 bytes)    (Obsoletes NIC 15389) 



[RFC-855] Postel, J.B.; Reynolds, J.K.    Telnet option specifications.    1983 May;    4 p. 
(Format: TXT=6218 bytes)    (Obsoletes NIC 18640) 



[RFC-854] Postel, J.B.; Reynolds, J.K.    Telnet Protocol specification.    1983 May;    15 p. 
(Format: TXT=39371 bytes)    (Obsoletes RFC 764, NIC 18639) 



[RFC-853] Not issued.



[RFC-852] Malis, A.G.    ARPANET short blocking feature.    1983 April; 13 p. (Format: 
TXT=17151 bytes) 



[RFC-851] Malis, A.G.    ARPANET 1822L Host Access Protocol.    1983 April 18; 44 p.    
(Format: TXT=72042 bytes)    (Obsoletes RFC 802; Obsoleted by RFC 878) 



[RFC-850] Horton, M.R.    Standard for interchange of USENET messages.    1983 June;    18
p. (Format: TXT=43871 bytes)    (Obsoleted by RFC 1036) 



[RFC-849] Crispin, M.    Suggestions for improved host table distribution.    1983    May; 2 
p. (Format: TXT=5290 bytes) 



[RFC-848] Smallberg, D.    Who provides the "little" TCP services?.    1983 March 14;    5 p. 
(Format: TXT=11280 bytes) 



[RFC-847] Smallberg, D.; Westine, A.; Postel, J.B.    Summary of Smallberg surveys. 1983 
February; 2 p. (Format: TXT=3906 bytes)    (Obsoletes RFC 846) 



[RFC-846] Smallberg, D.    Who talks TCP? - survey of 22 February 1983.    1983    February
23; 14 p. (Format: TXT=46421 bytes)    (Obsoletes RFC 845;    Obsoleted by 
RFC 847) 



[RFC-845] Smallberg, D.    Who talks TCP? - survey of 15 February 1983.    1983    February
17; 14 p. (Format: TXT=46806 bytes)    (Obsoletes RFC 843;    Obsoleted by 
RFC 846) 



[RFC-844] Clements, R.    Who talks ICMP, too? - Survey of 18 February 1983.    1983    
February 18; 5 p. (Format: TXT=9323 bytes)    (Updates RFC 843) 



[RFC-843] Smallberg, D.    Who talks TCP? - survey of 8 February 83.    1983 February    9; 
14 p. (Format: TXT=47023 bytes)    (Obsoletes RFC 842; Obsoleted by RFC 
845; Updated by RFC 844) 



[RFC-842] Smallberg, D.    Who talks TCP? - survey of 1 February 83.    1983 February    3; 
14 p. (Format: TXT=46784 bytes)    (Obsoletes RFC 839; Obsoleted by RFC 
843) 



[RFC-841] National Bureau of Standards.    Specification for message format for    
Computer Based Message Systems.    1983 January 27; 110 p. (Format:    
TXT=238774 bytes)    (Obsoletes RFC 806) 



[RFC-840] Postel, J.B.    Official protocols.    1983 April 13; 23 p. (Format:    TXT=34868 
bytes)    (Obsoleted by RFC 880) 



[RFC-839] Smallberg, D.    Who talks TCP?.    1983 January 26; 14 p. (Format:    TXT=45987
bytes)    (Obsoletes RFC 838; Obsoleted by RFC 842) 



[RFC-838] Smallberg, D.    Who talks TCP?.    1983 January 20; 14 p. (Format:    TXT=45844
bytes)    (Obsoletes RFC 837; Obsoleted by RFC 839) 



[RFC-837] Smallberg, D.    Who talks TCP?.    1983 January 12; 14 p. (Format:    TXT=45627
bytes)    (Obsoletes RFC 836; Obsoleted by RFC 838) 



[RFC-836] Smallberg, D.    Who talks TCP?.    1983 January 5; 13 p. (Format: TXT=44397 
bytes)    (Obsoletes RFC 835; Obsoleted by RFC 837) 



[RFC-835] Smallberg, D.    Who talks TCP?.    1982 December 29; 13 p. (Format:    
TXT=43713 bytes)    (Obsoletes RFC 834; Obsoleted by RFC 836) 



[RFC-834] Smallberg, D.    Who talks TCP?.    1982 December 22; 13 p. (Format:    
TXT=43512 bytes)    (Obsoletes RFC 833; Obsoleted by RFC 835) 



[RFC-833] Smallberg, D.    Who talks TCP?.    1982 December 14; 13 p. (Format:    
TXT=43728 bytes)    (Obsoletes RFC 832; Obsoleted by RFC 834) 



[RFC-832] Smallberg, D.    Who talks TCP?.    1982 December 7; 13 p. (Format:    
TXT=43518 bytes)    (Obsoleted by RFC 833) 



[RFC-831] Braden, R.T.    Backup access to the European side of SATNET.    1982    
December; 5 p. (Format: TXT=12090 bytes) 



[RFC-830] Su, Z.    Distributed system for Internet name service.    1982 October;    16 p. 
(Format: TXT=32585 bytes) 



[RFC-829] Cerf, V.G.    Packet satellite technology reference sources.    1982    November; 5
p. (Format: TXT=10919 bytes) 



[RFC-828] Owen, K.    Data communications: IFIP's international "network" of    experts.    
1982 August; 11 p. (Format: TXT=29922 bytes) 



[RFC-827] Rosen, E.C.    Exterior Gateway Protocol (EGP).    1982 October; 44 p.    (Format: 
TXT=68436 bytes)    (Updated by RFC 904) 



[RFC-826] Plummer, D.C.    Ethernet Address Resolution Protocol: Or converting    network 
protocol addresses to 48.bit Ethernet address for transmission    on Ethernet 
hardware.    1982 November; 10 p. (Format: TXT=22026 bytes) 



[RFC-825] Postel, J.B.    Request for comments on Requests For Comments.    1982    
November; 2 p. (Format: TXT=4255 bytes)    (Obsoleted by RFC 1111) 



[RFC-824] MacGregor, W.I.; Tappan D.C.    CRONUS Virtual Local Network.    1982 August 
25; 41 p. (Format: TXT=58732 bytes) 



[RFC-823] Hinden, R.M.; Sheltzer, A.    DARPA Internet gateway.    1982 September;    33 p. 
(Format: TXT=62620 bytes)    (Updates IEN 109, IEN 30) 



[RFC-822] Crocker, D.    Standard for the format of ARPA Internet text messages.      1982 
August 13; 47 p. (Format: TXT=109200 bytes)    (Obsoletes RFC 733;    Updated
by RFC 1138, RFC 1148) 



[RFC-821] Postel, J.B.    Simple Mail Transfer Protocol.    1982 August; 58 p.    (Format: 
TXT=124482 bytes)    (Obsoletes RFC 788) 



[RFC-820] Postel, J.B.    Assigned numbers.    1982 August 14; 1 p. (Format: TXT=54213 
bytes)    (Obsoletes RFC 790; Obsoleted by RFC 870) 



[RFC-819] Su, Z.; Postel, J.B.    Domain naming convention for Internet user    applications. 
1982 August; 18 p. (Format: TXT=36358 bytes) 



[RFC-818] Postel, J.B.    Remote User Telnet service.    1982 November; 2 p. (Format:    
TXT=3809 bytes) 



[RFC-817] Clark, D.D.    Modularity and efficiency in protocol implementation.    1982 July; 
26 p. (Format: TXT=47319 bytes) 



[RFC-816] Clark, D.D.    Fault isolation and recovery.    1982 July; 12 p. (Format:    
TXT=20754 bytes) 



[RFC-815] Clark, D.D.    IP datagram reassembly algorithms.    1982 July; 9 p.    (Format: 
TXT=15028 bytes) 



[RFC-814] Clark, D.D.    Name, addresses, ports, and routes.    1982 July; 14 p.    (Format: 
TXT=25426 bytes) 



[RFC-813] Clark, D.D.    Window and acknowlegement strategy in TCP.    1982 July;    22 p. 
(Format: TXT=39277 bytes) 



[RFC-812] Harrenstien, K.; White, V.    NICNAME/WHOIS.    1982 March 1; 3 p. (Format:    
TXT=5562 bytes)    (Obsoleted by RFC 954) 



[RFC-811] Harrenstien, K.; White, V.; Feinler, E.J.    Hostnames Server.    1982 March 1; 5 p.
(Format: TXT=8007 bytes)    (Obsoleted by RFC 953) 



[RFC-810] Feinler, E.J.; Harrenstien, K.; Su, Z.; White, V.    DoD Internet host    table 
specification.    1982 March 1; 9 p. (Format: TXT=14659 bytes)      (Obsoletes 
RFC 608; Obsoleted by RFC 952) 



[RFC-809] Chang, T.    UCL facsimile system.    1982 February; 96 p. (Format:    
TXT=171153 bytes) 



[RFC-808] Postel, J.B.    Summary of computer mail services meeting held at BBN on    10 
January 1979.    1982 March 1; 8 p. (Format: TXT=15930 bytes) 



[RFC-807] Postel, J.B.    Multimedia mail meeting notes.    1982 February 9; 6 p.    (Format: 
TXT=11633 bytes) 



[RFC-806] National Bureau of Standards.    Proposed Federal Information Processing    
Standard: Specification for message format for computer based message    
systems.    1981 September; 99 p. (Format: TXT=216377 bytes)      (Obsoleted 
by RFC 841) 



[RFC-805] Postel, J.B.    Computer mail meeting notes.    1982 February 8; 6 p.    (Format: 
TXT=12522 bytes) 



[RFC-804] International Telecommunication Union, International Telegraph and    
Telephone Consultative Committee.    CCITT draft recommendation T.4    
[Standardization of Group 3 facsimile apparatus for document    transmission]   
1981; 12 p. (Format: TXT=17025 bytes) 



[RFC-803] Agarwal, A.; O'Connor, M.J.; Mills, D.L.    Dacom 450/500 facsimile data    
transcoding.    1981 November 2; 14 p. (Format: TXT=33826 bytes) 



[RFC-802] Malis, A.G.    ARPANET 1822L Host Access Protocol.    1981 November; 43 p.    
(Format: TXT=62470 bytes)    (Obsoleted by RFC 851) 



[RFC-801] Postel, J.B.    NCP/TCP transition plan.    1981 November; 21 p. (Format:    
TXT=42041 bytes) 



[RFC-800] Postel, J.B.; Vernon, J.    Request For Comments summary notes: 700-799.      
1982 November; 10 p. (Format: TXT=18354 bytes) 



[RFC-799] Mills, D.L.    Internet name domains.    1981 September; 6 p. (Format:    
TXT=14189 bytes) 



[RFC-798] Katz, A.R.    Decoding facsimile data from the Rapicom 450.    1981    
September; 17 p. (Format: TXT=39853 bytes) 



[RFC-797] Katz, A.R.    Format for Bitmap files.    1981 September; 2 p. (Format:    
TXT=3183 bytes) 



[RFC-796] Postel, J.B.    Address mappings.    1981 September; 7 p. (Format: TXT=11645 
bytes)    (Obsoletes IEN 115) 



[RFC-795] Postel, J.B.    Service mappings.    1981 September; 7 p. (Format: TXT=5460    
bytes) 



[RFC-794] Cerf, V.G.    Pre-emption.    1981 September; 4 p. (Format: TXT=6022 bytes) 
(Updates IEN 125) 



[RFC-793] Postel, J.B.    Transmission Control Protocol.    1981 September; 85 p.    (Format: 
TXT=177957 bytes) 



[RFC-792] Postel, J.B.    Internet Control Message Protocol.    1981 September; 21 p.    
(Format: TXT=30404 bytes)    (Obsoletes RFC 777; Updated by RFC 950) 



[RFC-791] Postel, J.B.    Internet Protocol.    1981 September; 45 p. (Format:    TXT=97779 
bytes)    (Obsoletes RFC 760) 



[RFC-790] Postel, J.B.    Assigned numbers.    1981 September; 15 p. (Format:    
TXT=36186 bytes)    (Obsoletes RFC 776; Obsoleted by RFC 820) 



[RFC-789] Rosen, E.C.    Vulnerabilities of network control protocols: An example.      1981 
July; 15 p. (Format: TXT=26440 bytes) 



[RFC-788] Postel, J.B.    Simple Mail Transfer Protocol.    1981 November; 62 p.    (Format: 
TXT=112698 bytes)    (Obsoletes RFC 780; Obsoleted by RFC 821) 



[RFC-787] Chapin, A.L.    Connectionless data transmission survey/tutorial.    1981    July; 
41 p. (Format: TXT=86362 bytes) 



[RFC-786] Sluizer, S.; Postel, J.B.    Mail Transfer Protocol: ISI TOPS20 MTP-NIMAIL 
interface.    1981 July; 2 p. (Format: TXT=3245 bytes) 



[RFC-785] Sluizer, S.; Postel, J.B.    Mail Transfer Protocol: ISI TOPS20 file    definitions.    
1981 July; 3 p. (Format: TXT=7206 bytes) 



[RFC-784] Sluizer, S.; Postel, J.B.    Mail Transfer Protocol: ISI TOPS20    implementation.    
1981 July; 3 p. (Format: TXT=6030 bytes) 



[RFC-783] Sollins, K.R.    TFTP Protocol (revision 2).    1981 June; 18 p. (Format:    
TXT=23522 bytes)    (Obsoletes IEN 133) 



[RFC-782] Nabielsky, J.; Skelton, A.P.    Virtual Terminal management model.    1981;    20 
p. (Format: TXT=44887 bytes) 



[RFC-781] Su, Z.    Specification of the Internet Protocol (IP) timestamp option.      1981 
May; 2 p. (Format: TXT=4100 bytes) 



[RFC-780] Sluizer, S.; Postel, J.B.    Mail Transfer Protocol.    1981 May; 43 p.    (Format: 
TXT=82951 bytes)    (Obsoletes RFC 772; Obsoleted by RFC 788) 



[RFC-779] Killian, E.    Telnet send-location option.    1981 April; 2 p. (Format:    TXT=2680 
bytes) 



[RFC-778] Mills, D.L.    DCNET Internet Clock Service.    1981 April 18; 5 p. (Format: 
TXT=9689 bytes) 



[RFC-777] Postel, J.B.    Internet Control Message Protocol.    1981 April; 14 p.    (Format: 
TXT=80232 bytes)    (Obsoletes RFC 760; Obsoleted by RFC 792) 



[RFC-776] Postel, J.B.    Assigned numbers.    1981 January; 13 p. (Format: TXT=31065    
bytes)    (Obsoletes RFC 770; Obsoleted by RFC 790) 



[RFC-775] Mankins, D.; Franklin, D.; Owen, A.D.    Directory oriented FTP commands. 1980
December; 6 p. (Format: TXT=9822 bytes) 



[RFC-774] Postel, J.B.    Internet Protocol Handbook: Table of contents.    1980    October; 3 
p. (Format: TXT=3625 bytes)    (Obsoletes RFC 766) 



[RFC-773] Cerf, V.G.    Comments on NCP/TCP mail service transition strategy.    1980    
October; 11 p. (Format: TXT=22818 bytes) 



[RFC-772] Sluizer, S.; Postel, J.B.    Mail Transfer Protocol.    1980 September;    31 p. 
(Format: TXT=62858 bytes)    (Obsoleted by RFC 780) 



[RFC-771] Cerf, V.G.; Postel, J.B.    Mail transition plan.    1980 September; 9 p.    (Format: 
TXT=19154 bytes) 



[RFC-770] Postel, J.B.    Assigned numbers.    1980 September; 15 p. (Format:    
TXT=27117 bytes)    (Obsoletes RFC 762; Obsoleted by RFC 776) 



[RFC-769] Postel, J.B.    Rapicom 450 facsimile file format.    1980 September 26;    2 p. 
(Format: TXT=4194 bytes) 



[RFC-768] Postel, J.B.    User Datagram Protocol.    1980 August 28; 3 p. (Format:    
TXT=6069 bytes) 



[RFC-767] Postel, J.B.    Structured format for transmission of multi-media    documents.    
1980 August; 33 p. (Format: TXT=62316 bytes) 



[RFC-766] Postel, J.B.    Internet Protocol Handbook: Table of contents.    1980 July; 1 p. 
(Format: TXT=3585 bytes)    (Obsoleted by RFC 774) 



[RFC-765] Postel, J.B.    File Transfer Protocol specification.    1980 June; 70 p.    (Format: 
TXT=150771 bytes)    (Obsoletes RFC 542; Obsoleted by RFC 959) 



[RFC-764] Postel, J.B.    Telnet Protocol specification.    1980 June; 15 p. (Format:    
TXT=40874 bytes)    (Obsoleted by RFC 854) 



[RFC-763] Abrams, M.D.    Role mailboxes.    1980 May 7; 1 p. (Format: TXT=965 bytes)



[RFC-762] Postel, J.B.    Assigned numbers.    1980 January; 13 p. (Format: TXT=25421    
bytes)    (Obsoletes RFC 758; Obsoleted by RFC 770) 



[RFC-761] Postel, J.B.    DoD standard Transmission Control Protocol.    1980 January; 84 p. 
(Format: TXT=172234 bytes) 



[RFC-760] Postel, J.B.    DoD standard Internet Protocol.    1980 January; 41 p.    (Format: 
TXT=84214 bytes)    (Obsoletes IEN 123; Obsoleted by RFC 791, RFC 777) 



[RFC-759] Postel, J.B.    Internet Message Protocol.    1980 August; 71 p. (Format:    
TXT=127948 bytes) 



[RFC-758] Postel, J.B.    Assigned numbers.    1979 August; 12 p. (Format: TXT=23606    
bytes)    (Obsoletes RFC 755; Obsoleted by RFC 762) 



[RFC-757] Deutsch, D.P.    Suggested solution to the naming, addressing, and    delivery 
problem for ARPANET message systems.    1979 September 10; 17 p.    
(Format: TXT=36773 bytes) 



[RFC-756] Pickens, J.R.; Feinler, E.J.; Mathis, J.E.    NIC name server - a    datagram-based 
information utility.    1979 July; 11 p. (Format: TXT=24172 bytes) 



[RFC-755] Postel, J.B.    Assigned numbers.    1979 May 3; 12 p. (Format: TXT=22734    
bytes)    (Obsoletes RFC 750; Obsoleted by RFC 758) 



[RFC-754] Postel, J.B.    Out-of-net host addresses for mail.    1979 April 6; 10 p.    (Format: 
TXT=19791 bytes) 



[RFC-753] Postel, J.B.    Internet Message Protocol.    1979 March; 62 p. (Format:    
TXT=97006 bytes) 



[RFC-752] Crispin, M.    Universal host table.    1979 January 2; 13 p. (Format:    
TXT=34560 bytes) 



[RFC-751] Lebling, P.D.    Survey of FTP mail and MLFL.    1978 December 10; 5 p.    
(Format: TXT=10363 bytes) 



[RFC-750] Postel, J.B.    Assigned numbers.    1978 September 26; 10 p. (Format:    
TXT=20686 bytes)    (Obsoletes RFC 739; Obsoleted by RFC 755) 



[RFC-749] Greenberg, B.    Telnet SUPDUP-Output option.    1978 September 18; 4 p.    
(Format: TXT=9160 bytes) 



[RFC-748] Crispin, M.    Telnet randomly-lose option.    1978 April 1; 2 p. (Format:    
TXT=2858 bytes) 



[RFC-747] Crispin, M.    Recent extensions to the SUPDUP Protocol.    1978 March 21;    3 p.
(Format: TXT=2928 bytes) 



[RFC-746] Stallman, R.    SUPDUP graphics extension.    1978 March 17; 15 p. (Format:    
TXT=31081 bytes) 



[RFC-745] Beeler, M.    JANUS interface specifications.    1978 March 30; 10 p.    (Format: 
TXT=(22042 bytes) 



[RFC-744] Sattley, J.    MARS - a Message Archiving and Retrieval Service.    1978    January
8; 6 p. (Format: TXT=11337 bytes) 



[RFC-743] Harrenstien, K.    FTP extension: XRSQ/XRCP.    1977 December 30; 8 p.    
(Format: TXT=16720 bytes) 



[RFC-742] Harrenstien, K.    NAME/FINGER Protocol.    1977 December 30; 7 p. (Format:    
TXT=12733 bytes)    (Obsoleted by RFC 1194) 



[RFC-741] Cohen, D.    Specifications for the Network Voice Protocol (NVP).    1977    
November 22; 30 p. (Format: TXT=59582 bytes) 



[RFC-740] Braden, R.T.    NETRJS Protocol.    1977 November 22; 19 p. (Format:    
TXT=39953 bytes)    (Obsoletes RFC 599) 



[RFC-739] Postel, J.B.    Assigned numbers.    1977 November 11; 11 p. (Format:    
TXT=16983 bytes)    (Obsoletes RFC 604, RFC 503; Obsoleted by RFC 750) 



[RFC-738] Harrenstien, K.    Time server.    1977 October 31; 1 p. (Format: TXT=1909    
bytes) 



[RFC-737] Harrenstien, K.    FTP extension: XSEN.    1977 October 31; 1 p. (Format:    
TXT=2185 bytes) 



[RFC-736] Crispin, M.    Telnet SUPDUP option.    1977 October 31; 2 p. (Format:    
TXT=3200 bytes) 



[RFC-735] Crocker, D.; Gumpertz, R.H.    Revised Telnet byte macro option.    1977    
November 3; 5 p. (Format: TXT=10879 bytes)    (Obsoletes RFC 729) 



[RFC-734] Crispin, M.    SUPDUP Protocol.    1977 October 7; 14 p. (Format: TXT=33920    
bytes) 



[RFC-733] Crocker, D.; Vittal, J.; Pogran, K.T.; Henderson, D.A.    Standard for the format of
ARPA network text messages.    1977 November 21; 38 p. (Format:    
TXT=75001 bytes)    (Obsoletes RFC 724; Obsoleted by RFC 822) 



[RFC-732] Day, J.D.    Telnet Data Entry Terminal option    1977 September 12; 30 p.    
(Format: TXT=58929 bytes)    (Obsoletes RFC 731; Updated by RFC 1043) 



[RFC-731] Day, J.D.    Telnet Data Entry Terminal option.    1977 June 27; 28 p.    (Format: 
TXT=63300 bytes)    (Obsoleted by RFC 732) 



[RFC-730] Postel, J.B.    Extensible field addressing.    1977 May 20; 5 p. (Format:    
TXT=9812 bytes) 



[RFC-729] Crocker, D.    Telnet byte macro option.    1977 May 13; 4 p. (Format:    
TXT=6695 bytes)    (Obsoleted by RFC 735) 



[RFC-728] Day, J.D.    Minor pitfall in the Telnet Protocol.    1977 April 27; 1 p.    (Format: 
TXT=2265 bytes) 



[RFC-727] Crispin, M.    Telnet logout option.    1977 April 27; 3 p. (Format:    TXT=5850 
bytes) 



[RFC-726] Postel, J.B.; Crocker, D.    Remote Controlled Transmission and Echoing    Telnet 
option.    1977 March 8; 16 p. (Format: TXT=39594 bytes) 



[RFC-725] Day, J.D.; Grossman, G.R.    RJE protocol for a resource sharing network. 1977 
March 1; 26 p. (Format: TXT=45604 bytes) 



[RFC-724] Crocker, D.; Pogran, K.T.; Vittal, J.; Henderson, D.A.    Proposed    official 
standard for the format of ARPA Network messages.    1977 May 12; 33 p. 
(Format: TXT=77423 bytes)    (Obsoleted by RFC 733) 



[RFC-723] Not issued.



[RFC-722] Haverty, J.    Thoughts on interactions in distributed services.    1976    
September 16; 20 p. (Format: TXT=30278 bytes) 



[RFC-721] Garlick, L.L.    Out-of-band control signals in a Host-to-Host Protocol.      1976 
September 1; 7 p. (Format: TXT=13978 bytes) 



[RFC-720] Crocker, D.    Address specification syntax for network mail.    1976 August 5; 4 
p. (Format: TXT=6835 bytes) 



[RFC-719] Postel, J.B.    Discussion on RCTE.    1976 July 22; 2 p. (Format: TXT=4823    
bytes) 



[RFC-718] Postel, J.B.    Comments on RCTE from the Tenex implementation experience. 
1976 June 30; 2 p. (Format: TXT=3944 bytes) 



[RFC-717] Postel, J.B.    Assigned network numbers.    1976 July 1; 2 p. (Format:    
TXT=2430 bytes) 



[RFC-716] Walden, D.C.; Levin, J.    Interim revision to Appendix F of BBN 1822.      1976 
May 24; 2 p. (Format: TXT=3451 bytes) 



[RFC-715] Not issued.



[RFC-714] McKenzie, A.M.    Host-Host Protocol for an ARPANET-type network (Not    
online)    1976 April 21; 43 p. 



[RFC-713] Haverty, J.    MSDTP-Message Services Data Transmission Protocol.    1976    
April 6; 29 p. (Format: TXT=42452 bytes) 



[RFC-712] Donnelley, J.E.    Distributed Capability Computing System (DCCS) (Not    
online)    1976 February 5; 38 p. 



[RFC-711] Not issued.



[RFC-710] Not issued.



[RFC-709] Not issued.



[RFC-708] White, J.E.    Elements of a distributed programming system.    1976 January 28;
29 p. (Format: TXT=59595 bytes) 



[RFC-707] White, J.E.    High-level framework for network-based resource sharing.      1975 
December 23; 27 p. (Format: TXT=58900 bytes) 



[RFC-706] Postel, J.B.    On the junk mail problem.    1975 November 8; 1 p. (Format:    
TXT=2131 bytes) 



[RFC-705] Bryan, R.F.    Front-end Protocol B6700 version.    1975 November 5; 40 p.    
(Format: TXT=73143 bytes) 



[RFC-704] Santos, P.J.    IMP/Host and Host/IMP Protocol change.    1975 September 15; 3 
p. (Format: TXT=7676 bytes)    (Obsoletes RFC 687) 



[RFC-703] Dodds, D.W.    July, 1975, survey of New-Protocol Telnet Servers (Not    online)    
1975 July 11; 2 p. 



[RFC-702] Dodds, D.W.    September, 1974, survey of New-Protocol Telnet servers (Not 
online)    1974 September 25; 2 p. 



[RFC-701] Dodds, D.W.    August, 1974, survey of New-Protocol Telnet servers.    1974    
August; 2 p. (Format: TXT=3662 bytes) 



[RFC-700] Mader, E.; Plummer, W.W.; Tomlinson, R.S.    Protocol experiment.    1974    
August; 6 p. (Format: TXT=14931 bytes) 



[RFC-699] Postel, J.B.; Vernon, J.    Request For Comments summary notes: 600-699.      
1982 November; 9 p. (Format: TXT=15219 bytes) 



[RFC-698] Mock, T.    Telnet extended ASCII option.    1975 July 23; 4 p. (Format:    
TXT=5307 bytes) 



[RFC-697] Lieb, J.    CWD command of FTP (Not online)    1975 July 14; 2 p.



[RFC-696] Cerf, V.G.    Comments on the IMP/Host and Host/IMP Protocol changes (Not    
online)    1975 July 13; 2 p. 



[RFC-695] Krilanovich, M.    Official change in Host-Host Protocol.    1975 July 5;    2 p. 
(Format: TXT=3527 bytes) 



[RFC-694] Postel, J.B.    Protocol information (Not online)    1975 June 18; 36 p.



[RFC-693] Not issued.



[RFC-692] Wolfe, S.M.    Comments on IMP/Host Protocol changes (RFCs 687 and 690)    
(Not online)    1975 June 20; 2 p.    (Updates RFC 690) 



[RFC-691] Harvey, B.    One more try on the FTP.    1975 May 28; 13 p. (Format:    
TXT=33535 bytes) 



[RFC-690] Postel, J.B.    Comments on the proposed Host/IMP Protocol changes (Not    
online)    1975 June 6; 4 p.    (Updates RFC 687; Updated by RFC 692) 



[RFC-689] Clements, R.    Tenex NCP finite state machine for connections.    1975 May    
23; 6 p. (Format: TXT=13378 bytes) 



[RFC-688] Walden, D.C.    Tentative schedule for the new Telnet implementation for    the 
TIP (Not online)    1975 June 4; 1 p. 



[RFC-687] Walden, D.C.    IMP/Host and Host/IMP Protocol changes.    1975 June 2; 3 p. 
(Format: TXT=6183 bytes)    (Obsoleted by RFC 704; Updated by RFC 690) 



[RFC-686] Harvey, B.    Leaving well enough alone (Not online)    1975 May 10; 9 p.



[RFC-685] Beeler, M.    Response time in cross network debugging.    1975 April 16;    4 p. 
(Format: TXT=7084 bytes) 



[RFC-684] Schantz, R.    Commentary on procedure calling as a network protocol.      1975 
April 15; 7 p. (Format: TXT=21575 bytes) 



[RFC-683] Clements, R.    FTPSRV - Tenex extension for paged files.    1975 April 3;    9 p. 
(Format: TXT=8981 bytes) 



[RFC-682] Not issued.



[RFC-681] Holmgren, S.    Network UNIX.    1975 March 18; 6 p. (Format: TXT=19305    
bytes) 



[RFC-680] Myer, T.H.; Henderson, D.A.    Message Transmission Protocol (Not online) 1975
April 30; 6 p.    (Updates RFC 561) 



[RFC-679] Dodds, D.W.    February, 1975, survey of New-Protocol Telnet servers (Not    
online)    1975 February 21; 2 p. 



[RFC-678] Postel, J.B.    Standard file formats.    1974 December 19; 8 p. (Format:    
TXT=12865 bytes) 



[RFC-677] Johnson, P.R.; Thomas, R.    Maintenance of duplicate databases (Not    online)    
1975 January 27; 9 p. 



[RFC-676] Not issued.



[RFC-675] Cerf, V.G.; Dalal, Y.K.; Sunshine, C.A.    Specification of Internet    Transmission 
Control Program (Not online)    1974 December; 70 p. 



[RFC-674] Postel, J.B.; White, J.E.    Procedure call documents - version 2.    1974    
December 12; 4 p. (Format: TXT=12475 bytes) 



[RFC-673] Not issued.



[RFC-672] Schantz, R.    Multi-site data collection facility.    1974 December 6;    10 p. 
(Format: TXT=26279 bytes) 



[RFC-671] Schantz, R.    Note on Reconnection Protocol (Not online)    1974 December    6; 
8 p. 



[RFC-670] Not issued.



[RFC-669] Dodds, D.W.    November, 1974, survey of New-Protocol Telnet servers (Not    
online)    1974 December 4; 4 p. 



[RFC-668] Not issued.



[RFC-667] Chipman, S.G.    BBN host ports (Not online)    1974 December 17; 1 p.



[RFC-666] Padlipsky, M.A.    Specification of the Unified User-Level Protocol (Not    online)   
1974 November 26; 17 p. 



[RFC-665] Not issued.



[RFC-664] Not issued.



[RFC-663] Kanodia, R.    Lost message detection and recovery protocol.    1974    
November 29; 17 p. (Format: TXT=45956 bytes) 



[RFC-662] Kanodia, R.    Performance improvement in ARPANET file transfers from    
Multics.    1974 November 26; 3 p. (Format: TXT=9048 bytes) 



[RFC-661] Postel, J.B.    Protocol information (Not online)    1974 November 23; 23 p.



[RFC-660] Walden, D.C.    Some changes to the IMP and the IMP/Host interface.    1974    
October 23; 2 p. (Format: TXT=5106 bytes) 



[RFC-659] Postel, J.B.    Announcing additional Telnet options (Not online)    1974    October
18; 1 p. 



[RFC-658] Crocker, D.    Telnet output linefeed disposition.    1974 October 25; 4 p.    
(Format: TXT=6603 bytes) 



[RFC-657] Crocker, D.    Telnet output vertical tab disposition option.    1974    October 25; 
4 p. (Format: TXT=5871 bytes) 



[RFC-656] Crocker, D.    Telnet output vertical tabstops option.    1974 October 25;    3 p. 
(Format: TXT=4952 bytes) 



[RFC-655] Crocker, D.    Telnet output formfeed disposition option.    1974 October    25; 4 
p. (Format: TXT=6105 bytes) 



[RFC-654] Crocker, D.    Telnet output horizontal tab disposition option.    1974    October 
25; 4 p. (Format: TXT=6270 bytes) 



[RFC-653] Crocker, D.    Telnet output horizontal tabstops option.    1974 October 25; 3 p. 
(Format: TXT=4782 bytes) 



[RFC-652] Crocker, D.    Telnet output carriage-return disposition option.    1974    October 
25; 3 p. (Format: TXT=7165 bytes) 



[RFC-651] Crocker, D.    Revised Telnet status option.    1974 October 25; 3 p.    (Format: 
TXT=4446 bytes)    (Obsoleted by RFC 859)    



RFC-1001 Protocol Standard for a NetBIOS Service
on a TCP/UDP Transport:
Concepts and Methods

March 1987
Abstract
This RFC defines an elective standard protocol to support NetBIOS services in a TCP/IP 
environment.    Both local network and internet operation are supported.    Various node types
are defined to accommodate local and internet topologies and to allow operation with or 
without the use of IP broadcast. 
This RFC describes the NetBIOS-over-TCP protocols in a general manner, emphasizing the 
underlying ideas and techniques.    Detailed specifications are found in a companion RFC, 
"Protocol Standard For a NetBIOS Service on a TCP/UDP Transport: Detailed Specifications" 
[RFC-1002]. 

Status of This Memo
Acknowledgements
Introduction
Design Principles
Overview of NetBIOS
NetBIOS Facilities Supported By This Standard
Required Supporting Service Interfaces And Definitions
Related Protocols And Services
NetBIOS Scope
NetBIOS End-Nodes
NetBIOS Support Servers
Topologies
General Methods
Representation of NetBIOS Names
NetBIOS Name Service
NetBIOS Session Service
NetBIOS Datagram Service
Node Configuration Parameters
Minimal Conformance
Appendix A - Integration With Internet Group Multicasting
Appendix B - Implementation Considerations



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Design Principles

Overview
Preserve NetBIOS Services
Use Existing Standards
Minimize Options
Tolerate Errors and Disruptions
Do Not Require Central Management
Allow Internet Operation
Minimize Broadcast Activity
Permit Implementation on Existing Systems
Require Only the Minimum Necessary to Operate
Maximize Efficiency
Minimize New Inventions



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Overview of NetBIOS

General Information
Interface to Application Programs
Name Service
Session Service
Datagram Service
Miscellaneous Functions
Non-Standard Extensions



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Support Servers

Overview
NetBIOS Name Server (NBNS) Nodes

Relationship of the NBNS to the Domain Name System
NetBIOS Datagram Distribution Server (NBDD) Nodes
Relationship of NBNS and NBDD Nodes
Relationship of NetBIOS Support Servers and B Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Topologies

Overview
Local

B Nodes Only
P Nodes Only
Mixed B and P Nodes

Internet
P Nodes Only
Mixed M and P Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

General Methods

Overview
Request/Response Interaction Style

Retransmission of Requests
Requests Without Responses: Demands

Transactions
Transaction ID

TCP and UDP Foundations



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Name Service

Introduction
Overview of NetBIOS Name Service

Name Registration (Claim)
Name Query (Discovery)
Name Release

Explicit Release
Name Lifetime and Refresh
Name Challenge
Group Name Fade-Out
Name Conflict

Adapter Status
End-Node NBNS Interaction

UDP, TCP, and Truncation
NBNS Wack
NBNS Redirection

Secured Versus Non-Secured NBNS
Consistency of the NBNS Data Base
Name Caching

Name Registration Transactions
Name Registration by B Nodes
Name Registration by P Nodes

New Name, or New Group Member
Existing Name and Owner Is Still Active
Existing Name and Owner Is Inactive

Name Registration by M Nodes
Name Query Transactions

Query by B Nodes
Query by P Nodes
Query by M Nodes
Acquire Group Membership List

Name Release Transactions
Release by B Nodes
Release by P Nodes
Release by M Nodes

Name Maintenance Transactions
Name Refresh
Name Challenge
Clear Name Conflict

Adapter Status Transactions



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Session Service

Introdution
Overview of NetBIOS Session Service

Session Establishment Phase Overview
Retrying After Being Retargetted
Session Establishment to a Group Name

Steady State Phase Overview
Session Termination Phase Overview

Session Establishment Phase
Session Data Transfer Phase

Data Encapsulation
Session Keep-Alives



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Datagram Service

Introduction
Overview of NetBIOS Datagram Service

Unicast, Multicast, and Broadcast
Fragmentation of NetBIOS Datagrams

NetBIOS Datagrams by B Nodes
NetBIOS Datagrams by P and M Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Status Of This Memo

This RFC specifies an Elective Standard Protocol for the Internet Community.
 Please send written comments to:

Karl Auerbach
Epilogue Technology Corporation
P.O. Box 5432
Redwood City, CA      94063

Please send online comments to:
Avnish Aggarwal
Internet: mtxinu!excelan!avnish@ucbvax.berkeley.edu
Usenet:      ucbvax!mtxinu!excelan!avnish

Distribution of this document is unlimited.



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Acknowledgements

This RFC has been developed under the auspices of the Internet Activities Board, especially 
the End-to-End Services Task Force. 
The following individuals have contributed to the development of this RFC: 

Avnish Aggarwal Arvind Agrawal Lorenzo Aguilar
Geoffrey Arnold Karl Auerbach K. Ramesh Babu
Keith Ball Amatzia Ben-Artzi Vint Cerf
Richard Cherry David Crocker Steve Deering
Greg Ennis Steve Holmgren Jay Israel
David Kaufman Lee LaBarre James Lau
Dan Lynch Gaylord Miyata David Stevens
Steve Thomas Ishan Wu

The system proposed by this RFC does not reflect any existing Netbios-over-TCP 
implementation.    However, the design incorporates considerable knowledge obtained from 
prior implementations.    Special thanks goes to the following organizations which have 
provided this invaluable information: 

CMC/Syros Excelan Sytek Ungermann-Bass



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Introduction

This RFC describes the ideas and general methods used to provide NetBIOS on a TCP and 
UDP foundation.    A companion RFC, "Protocol Standard For a NetBIOS Service on a TCP/UDP 
Transport: Detailed Specifications"[RFC-1002] contains detailed descriptions of packet 
formats, protocols, and defined constants and variables. 
The NetBIOS service has become the dominant mechanism for personal computer 
networking.    NetBIOS provides a vendor independent interface for the IBM Personal 
Computer (PC) and compatible systems. 
NetBIOS defines a software interface not a protocol.    There is no "official" NetBIOS service 
standard.    In practice, however, the IBM PC-Network version is used as a reference.    That 
version is described in the IBM document 6322916, "Technical Reference PC Network"[2]. 
Protocols supporting NetBIOS services have been constructed on diverse protocol and 
hardware foundations.    Even when the same foundation is used, different implementations 
may not be able to interoperate unless they use a common protocol.    To allow NetBIOS 
interoperation in the Internet, this RFC defines a standard protocol to support NetBIOS 
services using TCP and UDP. 
NetBIOS has generally been confined to personal computers to date.    However, since larger 
computers are often well suited to run certain NetBIOS applications, such as file servers, this
specification has been designed to allow an implementation to be built on virtually any type 
of system where the TCP/IP protocol suite is available. 
This standard defines a set of protocols to support NetBIOS services. 
These protocols are more than a simple communications service involving two entities.    
Rather, this note describes a distributed system in which many entities play a part even if 
they are not involved as an end-point of a particular NetBIOS connection. 
This standard neither constrains nor determines how those services are presented to 
application programs. 
Nevertheless, it is expected that on computers operating under the PC-DOS and MS-DOS 
operating systems that the existing NetBIOS interface will be preserved by implementors. 
NOTE: Various symbolic values are used in this document.    For their definitions, refer to the 
Detailed Specifications[RFC-1002]. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Design Principles

In order to develop the specification the following design principles were adopted to guide 
the effort.    Most are typical to any protocol standardization effort; however, some have 
been assigned priorities that may be considered unusual. 

Preserve NetBIOS Services
Use Existing Standards
Minimize Options
Tolerate Errors and Disruptions
Do Not Require Central Management
Allow Internet Operation
Minimize Broadcast Activity
Permit Implementation on Existing Systems
Require Only the Minimum Necessary to Operate
Maximize Efficiency
Minimize New Inventions



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Preserve NetBIOS Services

In the absence of an "official" standard for NetBIOS services, the version found in the IBM PC
Network Technical Reference[2] is used. 
NetBIOS is the foundation of a large body of existing applications. It is desirable to operate 
these applications on TCP networks and to extend them beyond personal computers into 
larger hosts.    To support these applications, NetBIOS on TCP must closely conform to the 
services offered by existing NetBIOS systems. 
IBM PC-Network NetBIOS contains some implementation specific characteristics.    This 
standard does not attempt to completely preserve these.    It is certain that some existing 
software requires these characteristics and will fail to operate correctly on a NetBIOS service
based on this RFC. 



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Use Existing Standards

Protocol development, especially with standardization, is a demanding process.    The 
development of new protocols must be minimized. 
It is considered essential that an existing standard which provides the necessary 
functionality with reasonable performance always be chosen in preference to developing a 
new protocol. 
When a standard protocol is used, it must be unmodified.



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Minimize Options

The standard for NetBIOS on TCP should contain few, if any, options.
Where options are included, the options should be designed so that devices with different 
option selections should interoperate. 



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Tolerate Errors and Disruptions

NetBIOS networks typically operate in an uncontrolled environment. Computers come on-line
at arbitrary times.    Computers usually go off-line without any notice to their peers.    The 
software is often operated by users who are unfamiliar with networks and who may 
randomly perturb configuration settings. 
Despite this chaos, NetBIOS networks work.    NetBIOS on TCP must also be able to operate 
well in this environment. 
Robust operation does not necessarily mean that the network is proof against all disruptions.
A typical NetBIOS network may be disrupted by certain types of behavior, whether 
inadvertent or malicious. 



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Do Not Require Central Management

NetBIOS on TCP should be able to operate, if desired, without centralized management 
beyond that typically required by a TCP based network. 



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Allow Internet Operation

The proposed standard recognizes the need for NetBIOS operation across a set of networks 
interconnected by network (IP) level relays (gateways.) 
However, the standard assumes that this form of operation will be less frequent than on the 
local MAC bridged-LAN. 



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Minimize Broadcast Activity

The standard pre-supposes that the only broadcast services are those supported by UDP.    
Multicast capabilities are not assumed to be available in any form. 
Despite the availability of broadcast capabilities, the standard recognizes that some 
administrations may wish to avoid heavy broadcast activity.    For example, an administration
may wish to avoid isolated non-participating hosts from the burden of receiving and 
discarding NetBIOS broadcasts. 



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Permit Implementation On Existing Systems

The NetBIOS on TCP protocol should be implementable on common operating systems, such 
as Unix(tm) and VAX/VMS(tm), without massive effort. 
The NetBIOS protocols should not require services typically unavailable on presently existing
TCP/UDP/IP implementations. 



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Require Only the Minimum Necessary to Operate

The protocol definition should specify only the minimal set of protocols required for 
interoperation.    However, additional protocol elements may be defined to enhance 
efficiency.    These latter elements may be generated at the option of the sender, although 
they must be accepted by all receivers. 



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Maximize Efficiency

To be useful, a protocol must conduct its business quickly.



RFC-1001 Protocol Standard for a NetBIOS Service - Design Principles

Minimize New Inventions

When an existing protocol is not quite able to support a necessary function, but with a small 
amount of change, it could, that protocol should be used.    This is felt to be easier to achieve
than development of new protocols; further, it is likely to have more general utility for the 
Internet. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Overview of NetBIOS

This section describes the NetBIOS services.    It is for background information only.    The 
reader may chose to skip to the next section. 
NetBIOS was designed for use by groups of PCs, sharing a broadcast medium.    Both 
connection (Session) and connectionless (Datagram) services are provided, and broadcast 
and multicast are supported. Participants are identified by name.    Assignment of names is 
distributed and highly dynamic. 
NetBIOS applications employ NetBIOS mechanisms to locate resources, establish 
connections, send and receive data with an application peer, and terminate connections.    
For purposes of discussion, these mechanisms will collectively be called the NetBIOS 
Service. 
This service can be implemented in many different ways.    One of the first implementations 
was for personal computers running the PC-DOS and MS-DOS operating systems.    It is 
possible to implement NetBIOS within other operating systems, or as processes which are, 
themselves, simply application programs as far as the host operating system is concerned. 
The NetBIOS specification, published by IBM as "Technical Reference PC Network"[2] defines 
the interface and services available to the NetBIOS user.    The protocols outlined by that 
document pertain only to the IBM PC Network and are not generally applicable to other 
networks. 

Interface to Application Programs
Name Service
Session Service
Datagram Service
Miscellaneous Functions
Non-Standard Extensions



RFC-1001 Protocol Standard for a NetBIOS Service - Overview of NetBIOS

Interface To Application Programs

NetBIOS on personal computers includes both a set of services and an exact program 
interface to those services.    NetBIOS on other computer systems may present the NetBIOS 
services to programs using other interfaces.    Except on personal computers, no clear 
standard for a NetBIOS software interface has emerged. 



RFC-1001 Protocol Standard for a NetBIOS Service - Overview of NetBIOS

Name Service

NetBIOS resources are referenced by name.    Lower-level address information is not 
available to NetBIOS applications.    An application, representing a resource, registers one or 
more names that it wishes to use. 
The name space is flat and uses sixteen alphanumeric characters. Names may not start with
an asterisk (*). 
Registration is a bid for use of a name.    The bid may be for exclusive (unique) or shared 
(group) ownership.    Each application contends with the other applications in real time.    
Implicit permission is granted to a station when it receives no objections. That is, a bid is 
made and the application waits for a period of time.    If no objections are received, the 
station assumes that it has permission. 
A unique name should be held by only one station at a time.    However, duplicates ("name 
conflicts") may arise due to errors. 
All instances of a group name are equivalent. 
An application referencing a name generally does not know (or care) whether the name is 
registered as a unique or a group name. 
An explicit name deletion function is specified, so that applications may remove a name.    
Implicit name deletion occurs when a station ceases operation.    In the case of personal 
computers, implicit name deletion is a frequent occurrence. 
The Name Service primitives are:

1) Add Name
The requesting application wants exclusive use of the name.

2) Add Group Name
The requesting application is willing to share use of the name with 
other applications. 

3) Delete Name
The application no longer requires use of the name.    It is important to 
note that typical use of NetBIOS is among independently-operated 
personal computers.    A common way to stop using a PC is to turn it 
off; in this case, the graceful give-back mechanism, provided by the 
Delete Name function, is not used.    Because this occurs frequently, 
the network service must support this behavior. 



RFC-1001 Protocol Standard for a NetBIOS Service - Overview of NetBIOS

Session Service

A session is a reliable message exchange, conducted between a pair of NetBIOS 
applications.    Sessions are full-duplex, sequenced, and reliable.    Data is organized into 
messages.    Each message may range in size from 0 to 131,071 bytes.    No expedited or 
urgent data capabilities are present. 
Multiple sessions may exist between any pair of calling and called names. 
The parties to a connection have access to the calling and called names. 
The NetBIOS specification does not define how a connection request to a shared (group) 
name resolves into a session.    The usual assumption is that a session may be established 
with any one owner of the called group name. 
An important service provided to NetBIOS applications is the detection of sessions failure.    
The loss of a session is reported to an application via all of the outstanding service requests 
for that session.    For example, if the application has only a NetBIOS receive primitive 
pending and the session terminates, the pending receive will abort with a termination 
indication. 
Session Service primitives are:

1) Call
Initiate a session with a process that is listening under the specified 
name.    The calling entity must indicate both a calling name (properly 
registered to the caller) and a called name. 

2) Listen
Accept a session from a caller.    The listen primitive may be 
constrained to accept an incoming call from a named caller. 
Alternatively, a call may be accepted from any caller. 

3) Hang Up
Gracefully terminate a session.    All pending data is transferred before 
the session is terminated. 

4) Send
Transmit one message.    A time-out can occur.    A time-out of any 
session send forces the non-graceful termination of the session. A 
"chain send" primitive is required by the PC NetBIOS software interface 
to allow a single message to be gathered from pieces in various 
buffers.    Chain Send is an interface detail and does not effect the 
protocol. 

5) Receive
Receive data.    A time-out can occur.    A time-out on a session receive 
only terminates the receive, not the session, although the data is lost. 
The receive primitive may be implemented with variants, such as 
"Receive Any", which is required by the PC NetBIOS software interface.  
Receive Any is an interface detail and does not effect the protocol. 

6) Session Status
Obtain information about all of the requestor's sessions, under the 
specified name.    No network activity is involved. 



RFC-1001 Protocol Standard for a NetBIOS Service - Overview of NetBIOS

Datagram Service

The Datagram service is an unreliable, non-sequenced, connectionless service.    Datagrams 
are sent under cover of a name properly registered to the sender. 
Datagrams may be sent to a specific name or may be explicitly broadcast. 
Datagrams sent to an exclusive name are received, if at all, by the holder of that name.    
Datagrams sent to a group name are multicast to all holders of that name.    The sending 
application program cannot distinguish between group and unique names and thus must act
as if all non-broadcast datagrams are multicast. 
As with the Session Service, the receiver of the datagram is told the sending and receiving 
names. 
Datagram Service primitives are:

1) Send Datagram
Send an unreliable datagram to an application that is associated with 
the specified name.    The name may be unique or group; the sender is 
not aware of the difference.    If the name belongs to a group, then each
member is to receive the datagram. 

2) Send Broadcast Datagram
Send an unreliable datagram to any application with a Receive 
Broadcast Datagram posted. 

3) Receive Datagram
Receive a datagram sent by a specified originating name to the 
specified name.    If the originating name is an asterisk, then the 
datagram may have been originated under any name. 
Note: An arriving datagram will be delivered to all pending Receiving 
Datagrams that have source and destination specifications matching 
those of the datagram.    In other words, if a program (or group of 
programs) issue a series of identical Receive Datagrams, one datagram
will cause the entire series to complete. 

4) Receive Broadcast Datagram
Receive a datagram sent as a broadcast.
If there are multiple pending Receive Broadcast Datagram operations 
pending, all will be satisfied by the same received datagram. 



RFC-1001 Protocol Standard for a NetBIOS Service - Overview of NetBIOS

Miscellaneous Functions

The following functions are present to control the operation of the hardware interface to the 
network.    These functions are generally implementation dependent. 

1) Reset
Initialize the local network adapter.

2) Cancel
Abort a pending NetBIOS request.    The successful cancel of a Send (or 
Chain Send) operation will terminate the associated session. 

3) Adapter Status
Obtain information about the local network adapter or of a remote 
adapter. 

4) Unlink
For use with Remote Program Load (RPL).    Unlink redirects the PC boot
disk device back to the local disk.    See the NetBIOS specification for 
further details concerning RPL and the Unlink operation (see page 2-35 
in [2]). 

5) Remote Program Load
Remote Program Load (RPL) is not a NetBIOS function.    It is a NetBIOS 
application defined by IBM in their NetBIOS specification (see pages 2-
80 through 2-82 in [2]). 



RFC-1001 Protocol Standard for a NetBIOS Service - Overview of NetBIOS

Non-Standard Extensions

The IBM Token Ring implementation of NetBIOS has added at least one new user capability: 
1) Find Name

This function determines whether a given name has been registered on
the network. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Facilities Supported by this Standard

The protocol specified by this standard permits an implementer to provide all of the NetBIOS
services as described in the IBM "Technical Reference PC Network"[2]. 
The following NetBIOS facilities are outside the scope of this specification.    These are local 
implementation matters and do not impact interoperability: 

- RESET
- SESSION STATUS
- UNLINK
- RPL (Remote Program Load)



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Required Supporting Service Interfaces and Definitions

The protocols described in this RFC require service interfaces to the following: 
- TCP [RFC-793]
- UDP [RFC-768]

Byte ordering, addressing conventions (including addresses to be used for broadcasts and 
multicasts) are defined by the most recent version of: 

- Assigned Numbers [RFC-1060]
Additional definitions and constraints are in:

- IP [RFC-791]
- Internet Subnets: "Internet Subnets" [RFC-950] 

"Broadcasting IP Datagrams in the Presence of Subnets" [RFC-922]



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Related Protocols And Services

The design of the protocols described in this RFC allow for the future incorporation of the 
following protocols and services. However, before this may occur, certain extensions may be
required to the protocols defined in this RFC or to those listed below. 

- Domain Name Service [11,12,13,14]
- Internet Group Multicast [15,16]



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Scope

A "NetBIOS Scope" is the population of computers across which a registered NetBIOS name 
is known.    NetBIOS broadcast and multicast datagram operations must reach the entire 
extent of the NetBIOS scope. 
An internet may support multiple, non-intersecting NetBIOS Scopes.
Each NetBIOS scope has a "scope identifier".    This identifier is a character string meeting 
the requirements of the domain name system for domain names. 
NOTE:Each implementation of NetBIOS-over-TCP must provide mechanisms to manage the 

scope identifier(s) to be used. 
Control of scope identifiers implies a requirement for additional NetBIOS interface 
capabilities.    These may be provided through extensions of the user service interface or 
other means (such as node configuration parameters.)    The nature of these extensions is 
not part of this specification. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS End-Nodes

End-nodes support NetBIOS service interfaces and contain applications. 
Three types of end-nodes are part of this standard:

- Broadcast ("B") nodes
- Point-to-point ("P") nodes
- Mixed mode ("M") nodes

An IP address may be associated with only one instance of one of the above types. 
Without having preloaded name-to-address tables, NetBIOS participants are faced with the 
task of dynamically resolving references to one another.    This can be accomplished with 
broadcast or mediated point- to-point communications. 
B nodes use local network broadcasting to effect a rendezvous with one or more recipients.   
P and M nodes use the NetBIOS Name Server (NBNS) and the NetBIOS Datagram Distribution
Server (NBDD) for this same purpose. 
End-nodes may be combined in various topologies.    No matter how combined, the operation
of the B, P, and M nodes is not altered. 
NOTE: It is recommended that the administration of a NetBIOS scope avoid using both M 

and B nodes within the same scope.    A NetBIOS scope should contain only B nodes 
or only P and M    nodes. 



RFC-1001 Protocol Standard for a NetBIOS Service - End-Nodes

Broadcast (B) Nodes

Broadcast (or "B") nodes communicate using a mix of UDP datagrams (both broadcast and 
directed) and TCP connections.    B nodes may freely interoperate with one another within a 
broadcast area.    A broadcast area is a single MAC-bridged "B-LAN".    (See Appendix A for a 
discussion of using Internet Group Multicasting as a means to extend a broadcast area 
beyond a single B-LAN.) 



RFC-1001 Protocol Standard for a NetBIOS Service - End-Nodes

Point-To-Point (P) Nodes

Point-to-point (or "P") nodes communicate using only directed UDP datagrams and TCP 
sessions.    P nodes neither generate nor listen for broadcast UDP packets.    P nodes do, 
however, offer NetBIOS level broadcast and multicast services using capabilities provided by
the NBNS and NBDD. 
P nodes rely on NetBIOS name and datagram distribution servers. These servers may be 
local or remote; P nodes operate the same in either case. 



RFC-1001 Protocol Standard for a NetBIOS Service - End-Nodes

Mixed Mode (M) Nodes

Mixed mode nodes (or "M") nodes are P nodes which have been given certain B node 
characteristics.    M nodes use both broadcast and unicast.    Broadcast is used to improve 
response time using the assumption that most resources reside on the local broadcast 
medium rather than somewhere in an internet. 
M nodes rely upon NBNS and NBDD servers.    However, M nodes may continue limited 
operation should these servers be temporarily unavailable. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Support Servers

Two types of support servers are part of this standard:
- NetBIOS name server ("NBNS") nodes
- NetBIOS datagram distribution ("NBDD") nodes

NBNS and NBDD nodes are invisible to NetBIOS applications and are part of the underlying 
NetBIOS mechanism. 
NetBIOS name and datagram distribution servers are the focus of name and datagram 
activity for P and M nodes. 
Both the name (NBNS) and datagram distribution (NBDD) servers are permitted to shift part 
of their operation to the P or M end-node which is requesting a service. 
Since the assignment of responsibility is dynamic, and since P and M nodes must be 
prepared to operate should the NetBIOS server delegate control to the maximum extent, the
system naturally accommodates improvements in NetBIOS server function.    For example, as
Internet Group Multicasting becomes more widespread, new NBDD implementations may 
elect to assume full responsibility for NetBIOS datagram distribution. 
Interoperability between different implementations is assured by imposing requirements on 
end-node implementations that they be able to accept the full range of legal responses from
the NBNS or NBDD. 

Relationship of the NBNS to the Domain Name System
Relationship of NBNS and NBDD Nodes
Relationship of NetBIOS Support Servers and B Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Support Servers

NetBIOS Name Server (NBNS) Nodes

The NBNS is designed to allow considerable flexibility with its degree of responsibility for the
accuracy and management of NetBIOS names.    On one hand, the NBNS may elect not to 
accept full responsibility, leaving the NBNS essentially a "bulletin board" on which 
name/address information is freely posted (and removed) by P and M nodes without 
validation by the NBNS.    Alternatively, the NBNS may elect to completely manage and 
validate names.    The degree of responsibility that the NBNS assumes is asserted by the 
NBNS each time a name is claimed through a simple mechanism.    Should the NBNS not 
assert full control, the NBNS returns enough information to the requesting node so that the 
node may challenge any putative holder of the name. 
This ability to shift responsibility for NetBIOS name management between the NBNS and the 
P and M nodes allows a network administrator (or vendor) to make a tradeoff between NBNS 
simplicity, security, and delay characteristics. 
A single NBNS may be implemented as a distributed entity, such as the Domain Name 
Service.    However, this RFC does not attempt to define the internal communications which 
would be used. 



RFC-1001 Protocol Standard for a NetBIOS Service - Support Servers

Relationship of the NBNS to the Domain Name System

The NBNS design attempts to align itself with the Domain Name System in a number of 
ways. 
First, the NetBIOS names are encoded in a form acceptable to the domain name system. 
Second, a scope identifier is appended to each NetBIOS name.    This identifier meets the 
restricted character set of the domain system and has a leading period.    This makes the 
NetBIOS name, in conjunction with its scope identifier, a valid domain system name. 
Third, the negotiated responsibility mechanisms permit the NBNS to be used as a simple 
bulletin board on which are posted (name,address) pairs.    This parallels the existing domain
sytem query service. 
This RFC, however, requires the NBNS to provide services beyond those provided by the 
current domain name system.    An attempt has been made to coalesce all the additional 
services which are required into a set of transactions which follow domain name system 
styles of interaction and packet formats. 
Among the areas in which the domain name service must be extended before it may be 
used as an NBNS are: 

- Dynamic addition of entries
- Dynamic update of entry data
- Support for multiple instance (group) entries
- Support for entry time-to-live values and ability to accept refresh 

messages to restart the time-to-live period 
- New entry attributes



RFC-1001 Protocol Standard for a NetBIOS Service - Support Servers

NetBIOS Datagram Distribution Server (NBDD) Nodes

The internet does not yet support broadcasting or multicasting, though it is likely to in the 
near future.    Several specifications are already in place to support both of these facilities; 
See "Broadcasting IP Datagrams in the Presence of Subnets" [RFC-922] and "Host Extensions
for IP Multicasting" [RFC-1112] and "Internet Group Multicast Protocol".    The NBDD extends 
NetBIOS datagram distribution service to this environment. 
The NBDD may elect to complete, partially complete, or totally refuse to service a node's 
request to distribute a NetBIOS datagram.    An end-node may query an NBDD to determine 
whether the NBDD will deliver a datagram to a specific NetBIOS name. 
The design of NetBIOS-over-TCP lends itself to the use of Internet Group Multicast.    For 
details see Appendix A. 



RFC-1001 Protocol Standard for a NetBIOS Service - Support Servers

Relationship of NBNS and NBDD Nodes

This RFC defines the NBNS and NBDD as distinct, separate entities.
In the absence of NetBIOS name information, a NetBIOS datagram distribution server must 
send a copy to each end-node within a NetBIOS scope. 
An implementer may elect to construct NBNS and NBDD nodes which have a private protocol
for the exchange of NetBIOS name information. Alternatively, an NBNS and NBDD may be 
implemented within the same device. 
NOTE: Implementations containing private NBNS-NBDD protocols or combined NBNS-NBDD 

functions must be clearly identified. 



RFC-1001 Protocol Standard for a NetBIOS Service - Support Servers

Relationship of NetBIOS Support Servers and B Nodes

As defined in this RFC, neither NBNS nor NBDD nodes interact with B nodes.    NetBIOS 
servers do not listen to broadcast traffic on any broadcast area to which they may be 
attached.    Nor are the NetBIOS support servers even aware of B node activities or names 
claimed or used by B nodes. 
It may be possible to extend both the NBNS and NBDD so that they participate in B node 
activities and act as a bridge to P and M nodes.    However, such extensions are beyond the 
scope of this specification. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Topologies

B, P, M, NBNS, and NBDD nodes may be combined in various ways to form useful NetBIOS 
environments.    This section describes some of these combinations. 
There are three classes of operation:

- Class 0:    B nodes only.
- Class 1:    P nodes only.
- Class 2:    P and M nodes together.

In the drawings which follow, any P node may be replaced by an M node.    The effects of 
such replacement will be mentioned in conjunction with each example below. 

Local
B Nodes Only
P Nodes Only
Mixed B and P Nodes

Internet
P Nodes Only
Mixed M and P Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Topologies

Local

A NetBIOS scope is operating locally when all entities are within the same broadcast area. 
B Nodes Only
P Nodes Only
Mixed B and P Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Local Topologies

B Nodes Only

Local operation with only B nodes is the most basic mode of operation.    Name registration 
and discovery procedures use broadcast mechanisms.    The NetBIOS scope is limited by the 
extent of the broadcast area.    This configuration does not require NetBIOS support servers. 

   ====+=========+=====BROADCAST AREA=====+==========+=========+====
       |         |                        |          |         |
       |         |                        |          |         |
    +--+--+   +--+--+                  +--+--+    +--+--+   +--+--+
    |  B  |   |  B  |                  |  B  |    |  B  |   |  B  |
    +-----+   +-----+                  +-----+    +-----+   +-----+



RFC-1001 Protocol Standard for a NetBIOS Service - Local Topologies

P Nodes Only

This configuration would typically be used when the network administrator desires to 
eliminate NetBIOS as a source of broadcast activity. 

   ====+=========+==========+=B'CAST AREA=+==========+=========+====
       |         |          |             |          |         |
       |         |          |             |          |         |
    +--+--+   +--+--+    +--+--+       +--+--+    +--+--+   +--+--+
    |  P  |   |  P  |    |NBNS |       |  P  |    |NBDD |   |  P  |
    +-----+   +-----+    +-----+       +-----+    +-----+   +-----+

This configuration operates the same as if it were in an internet and is cited here only due to
its convenience as a means to reduce the use of broadcast. 
Replacement of one or more of the P nodes with M nodes will not affect the operation of the 
other P and M nodes.    P and M nodes will be able to interact with one another.    Because M 
nodes use broadcast, overall broadcast activity will increase. 



RFC-1001 Protocol Standard for a NetBIOS Service - Local Topologies

Mixed B and P Nodes

B and P nodes do not interact with one another.    Replacement of P nodes with M nodes will 
allow B's and M's to interact. 
NOTE:B nodes and M nodes may be intermixed only on a local broadcast area.    B and M 

nodes should not be intermixed in an internet environment. 



RFC-1001 Protocol Standard for a NetBIOS Service - Topologies

Internet

P Nodes Only
Mixed M and P Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Internet Topologies

P Nodes Only

P nodes may be scattered at various locations in an internetwork. They require both an 
NBNS and an NBDD for NetBIOS name and datagram support, respectively. 
The NetBIOS scope is determined by the NetBIOS scope identifier (domain name) used by 
the various P (and M) nodes.    An internet may contain numerous NetBIOS scopes. 
                   +-----+
                   |  P  |
                   +--+--+              |    +-----+
                      |                 |----+  P  |
                      |                 |    +-----+
                /-----+-----\           |
   +-----+      |           |  +------+ |    +-----+
   |  P  +------+  INTERNET +--+G'WAY |-+----+  P  |
   +-----+      |           |  +------+ |    +-----+
                /-----+-----/           |
              /       |                 |    +-----+
            /         |                 |----+  P  |
     +-----+       +--+--+              |    +-----+
     |NBNS +       |NBDD |
     +-----+       +--+--+

Any P node may be replaced by an M node with no loss of function to any node.    However, 
broadcast activity will be increased in the broadcast area to which the M node is attached. 



RFC-1001 Protocol Standard for a NetBIOS Service - Internet Topologies

Mixed M and P Nodes

M and P nodes may be mixed.    When locating NetBIOS names, M nodes will tend to find 
names held by other M nodes on the same common broadcast area in preference to names 
held by P nodes or M nodes elsewhere in the network. 
                         +-----+
                         |  P  |
                         +--+--+
                            |
                            |
                      /-----+-----\
         +-----+      |           |      +-----+
         |  P  +------+  INTERNET +------+NBDD |
         +-----+      |           |      +-----+
                      /-----+-----/
                    /       |
                  /         |
           +-----+       +--+--+
           |NBNS +       |G'WAY|
           +-----+       +--+--+
                            |
                            |
   ====+=========+==========+=B'CAST AREA=+==========+=========+====
       |         |          |             |          |         |
       |         |          |             |          |         |
    +--+--+   +--+--+    +--+--+       +--+--+    +--+--+   +--+--+
    |  M  |   |  P  |    |  M  |       |  P  |    |  M  |   |  P  |
    +-----+   +-----+    +--+--+       +-----+    +-----+   +-----+

NOTE:B and M nodes should not be intermixed in an internet environment.    Doing so would
allow undetected NetBIOS name conflicts to arise and cause unpredictable behavior. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

General Methods 
Overlying the specific protocols, described later, are a few general methods of interaction 
between entities. 

Request/Response Interaction Style
Retransmission of Requests
Requests Without Responses: Demands

Transactions
Transaction ID

TCP and UDP Foundations



RFC-1001 Protocol Standard for a NetBIOS Service - General Methods

Request/Response Interaction Style

Most interactions between entities consist of a request flowing in one direction and a 
subsequent response flowing in the opposite direction. 
In those situations where interactions occur on unreliable transports (i.e. UDP) or when a 
request is broadcast, there may not be a strict interlocking or one-to-one relationship 
between requests and responses. In no case, however, is more than one response generated
for a received request.    While a response is pending the responding entity may send one or 
more wait acknowledgements. 



RFC-1001 Protocol Standard for a NetBIOS Service - General Methods

Retransmission of Requests

UDP is an unreliable delivery mechanism where packets can be lost, received out of transmit
sequence, duplicated and delivery can be significantly delayed.    Since the NetBIOS 
protocols make heavy use of UDP, they have compensated for its unreliability with extra 
mechanisms. 
Each NetBIOS packet contains all the necessary information to process it.    None of the 
protocols use multiple UDP packets to convey a single request or response.    If more 
information is required than will fit in a single UDP packet, for example, when a P-type node 
wants all the owners of a group name from a NetBIOS server, a TCP connection is used.    
Consequently, the NetBIOS protocols will not fail because of out of sequence delivery of UDP 
packets. 
To overcome the loss of a request or response packet, each request operation will retransmit
the request if a response is not received within a specified time limit. 
Protocol operations sensitive to successive response packets, such as name conflict 
detection, are protected from duplicated packets because they ignore successive packets 
with the same NetBIOS information.    Since no state on the responder's node is associated 
with a request, the responder just sends the appropriate response whenever a request 
packet arrives.    Consequently, duplicate or delayed request packets have no impact. 
For all requests, if a response packet is delayed too long another request packet will be 
transmitted.    A second response packet being sent in response to the second request 
packet is equivalent to a duplicate packet.    Therefore, the protocols will ignore the second 
packet received.    If the delivery of a response is delayed until after the request operation 
has been completed, successfully or not, the response packet is ignored. 



RFC-1001 Protocol Standard for a NetBIOS Service - General Methods

Requests Without Responses: Demands

Some request types do not have matching responses.    These requests are known as 
"demands".    In general a "demand" is an imperative request; the receiving node is expected
to obey.    However, because demands are unconfirmed, they are used only in situations 
where, at most, limited damage would occur if the demand packet should be lost. 
Demand packets are not retransmitted.



RFC-1001 Protocol Standard for a NetBIOS Service - General Methods

Transactions

Interactions between a pair of entities are grouped into "transactions".    These transactions 
comprise one or more request/response pairs. 



RFC-1001 Protocol Standard for a NetBIOS Service - General Methods

Transaction ID

Since multiple simultaneous transactions may be in progress between a pair of entities a 
"transaction id" is used. 
The originator of a transaction selects an ID unique to the originator.    The transaction id is 
reflected back and forth in each interaction within the transaction.    The transaction partners
must match responses and requests by comparison of the transaction ID and the IP address 
of the transaction partner.    If no matching request can be found the response must be 
discarded. 
A new transaction ID should be used for each transaction.    A simple 16 bit transaction 
counter ought to be an adequate id generator.    It is probably not necessary to search the 
space of outstanding transaction ID to filter duplicates: it is extremely unlikely that any 
transaction will have a lifetime that is more than a small fraction of the typical counter cycle 
period.    Use of the IP addresses in conjunction with the transaction ID further reduces the 
possibility of damage should transaction IDs be prematurely re-used. 



RFC-1001 Protocol Standard for a NetBIOS Service - General Methods

TCP and UDP Foundations

This version of the NetBIOS-over-TCP protocols uses UDP for many interactions.    In the 
future this RFC may be extended to permit such interactions to occur over TCP connections 
(perhaps to increase efficiency when multiple interactions occur within a short time or when 
NetBIOS datagram traffic reveals that an application is using NetBIOS datagrams to support 
connection- oriented service.) 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Representation of NetBIOS Names

NetBIOS names as seen across the client interface to NetBIOS are exactly 16 bytes long.    
Within the NetBIOS-over-TCP protocols, a longer representation is used. 
There are two levels of encoding.    The first level maps a NetBIOS name into a domain 
system name.    The second level maps the domain system name into the "compressed" 
representation required for interaction with the domain name system. 
Except in one packet, the second level representation is the only NetBIOS name 
representation used in NetBIOS-over-TCP packet formats. The exception is the RDATA field of 
a NODE STATUS RESPONSE packet. 



RFC-1001 Protocol Standard for a NetBIOS Service - Representation of Names

First Level Encoding

The first level representation consists of two parts:
- NetBIOS name
- NetBIOS scope identifier

The 16 byte NetBIOS name is mapped into a 32 byte wide field using a reversible, half-ASCII,
biased encoding.    Each half-octet of the NetBIOS name is encoded into one byte of the 32 
byte field.    The first half octet is encoded into the first byte, the second half- octet into the 
second byte, etc. 
Each 4-bit, half-octet of the NetBIOS name is treated as an 8-bit, right-adjusted, zero-filled 
binary number.    This number is added to value of the ASCII character 'A' (hexidecimal 41).    
The resulting 8- bit number is stored in the appropriate byte.    The following diagram 
demonstrates this procedure: 
                         0 1 2 3 4 5 6 7
                        +-+-+-+-+-+-+-+-+
                        |a b c d|w x y z|          ORIGINAL BYTE
                        +-+-+-+-+-+-+-+-+
                            |       |
                   +--------+       +--------+
                   |                         |     SPLIT THE NIBBLES
                   v                         v
            0 1 2 3 4 5 6 7           0 1 2 3 4 5 6 7
           +-+-+-+-+-+-+-+-+         +-+-+-+-+-+-+-+-+
           |0 0 0 0 a b c d|         |0 0 0 0 w x y z|
           +-+-+-+-+-+-+-+-+         +-+-+-+-+-+-+-+-+
                   |                         |
                   +                         +     ADD 'A'
                   |                         |
            0 1 2 3 4 5 6 7           0 1 2 3 4 5 6 7
           +-+-+-+-+-+-+-+-+         +-+-+-+-+-+-+-+-+
           |0 1 0 0 0 0 0 1|         |0 1 0 0 0 0 0 1|
           +-+-+-+-+-+-+-+-+         +-+-+-+-+-+-+-+-+
This encoding results in a NetBIOS name being represented as a sequence of 32 ASCII, 
upper-case characters from the set {A,B,C...N,O,P}. 
The NetBIOS scope identifier is a valid domain name (without a leading dot). 
An ASCII dot (2E hexidecimal) and the scope identifier are appended to the encoded form of 
the NetBIOS name, the result forming a valid domain name. 
For example, the NetBIOS name "The NetBIOS name" in the NetBIOS scope "SCOPE.ID.COM" 
would be represented at level one by the ASCII character string: 

FEGHGFCAEOGFHEECEJEPFDCAHEGBGNGF.SCOPE.ID.COM



RFC-1001 Protocol Standard for a NetBIOS Service - Representation of Names

Second Level Encoding

The first level encoding must be reduced to second level encoding. This is performed 
according to the rules defined in on page 31 of RFC 883[12] in the section on "Domain name
representation and compression".    Also see the section titled "Name Formats" in the 
Detailed Specifications[RFC-1002]. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Name Service

Before a name may be used, the name must be registered by a node. Once acquired, the 
name must be defended against inconsistent registration by other nodes.    Before building a 
NetBIOS session or sending a NetBIOS datagram, the one or more holders of the name must 
be located. 
The NetBIOS name service is the collection of procedures through which nodes acquire, 
defend, and locate the holders of NetBIOS names. 
The name service procedures are different depending whether the end- node is of type B, P, 
or M. 

Overview of NetBIOS Name Service
Name Registration Transactions
Name Query Transactions
Name Release Transactions
Name Maintenance Transactions
Adapter Status Transactions



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Overview of NetBIOS Name Service

Name Registration (Claim)
Name Query (Discovery)
Name Release
Adapter Status
End-Node NBNS Interaction
Secured Versus Non-Secured NBNS
Consistency of the NBNS Data Base
Name Caching



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Registration (CLAIM)

Each NetBIOS node can own more than one name.    Names are acquired dynamically 
through the registration (name claim) procedures. 
Every node has a permanent unique name.    This name, like any other name, must be 
explicitly registered by all end-node types. 
A name can be unique (exclusive) or group (non-exclusive).    A unique name may be owned 
by a single node; a group name may be owned by any number of nodes.    A name ceases to 
exist when it is not owned by at least one node.    There is no intrinsic quality of a name 
which determines its characteristics: these are established at the time of registration. 
Each node maintains state information for each name it has registered.    This information 
includes: 

- Whether the name is a group or unique name
- Whether the name is "in conflict"
- Whether the name is in the process of being deleted

See Packet Format.
B nodes perform name registration by broadcasting claim requests, soliciting a defense from
any node already holding the name. 
P nodes perform name registration through the agency of the NBNS.
M nodes register names through an initial broadcast, like B nodes, then, in the absence of an
objection, by following the same procedures as a P node.    In other words, the broadcast 
action may terminate the attempt, but is not sufficient to confirm the registration. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Query (Discovery)

Name query (also known as "resolution" or "discovery") is the procedure by which the IP 
address(es) associated with a NetBIOS name are discovered.    Name query is required 
during the following operations: 
During session establishment, calling and called names must be specified.    The calling 
name must exist on the node that posts the CALL.    The called name must exist on a node 
that has previously posted a LISTEN.    Either name may be a unique or group name. 
When a directed datagram is sent, a source and destination name must be specified.    If the 
destination name is a group name, a datagram is sent to all the members of that group. 
Different end-node types perform name resolution using different techniques, but using the 
same packet formats: 

- B nodes solicit name information by broadcasting a request.
- P nodes ask the NBNS.
- M nodes broadcast a request.    If that does not provide the desired 

information, an inquiry is sent to the NBNS. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Release

NetBIOS names may be released explicitly or silently by an end- node. Silent release 
typically occurs when an end-node fails or is turned- off.    Most of the mechanisms described
below are present to detect silent name release.    A common packet format is used.

Explicit Release
Name Lifetime and Refresh
Name Challenge
Group Name Fade-Out
Name Conflict



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Explicit Release

B nodes explicitly release a name by broadcasting a notice.
P nodes send a notification to their NBNS.
M nodes both broadcast a notice and inform their supporting NBNS.



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Lifetime and Refresh 

Names held by an NBNS are given a lifetime during name registration. The NBNS will 
consider a name to have been silently released if the end-node fails to send a name refresh 
message to the NBNS before the lifetime expires.    A refresh restarts the lifetime clock. 
NOTE:The implementor should be aware of the tradeoff between accuracy of the database 

and the internet overhead that the refresh mechanism introduces.    The lifetime 
period should be tuned accordingly. 

For group names, each end-node must send refresh messages.    A node that fails to do so 
will be considered to have silently released the name and dropped from the group. 
The lifetime period is established through a simple negotiation mechanism during name 
registration:    In the name registration request, the end-node proposes a lifetime value or 
requests an infinite lifetime.    The NBNS places an actual lifetime value into the name 
registration response.    The NBNS is always allowed to respond with an infinite actual period. 
If the end node proposed an infinite lifetime, the NBNS may respond with any definite 
period.    If the end node proposed a definite period, the NBNS may respond with any definite
period greater than or equal to that proposed. 
This negotiation of refresh times gives the NBNS means to disable or enable refresh activity.  
The end-nodes may set a minimum refresh cycle period. 
NBNS implementations which are completely reliable may disable refresh. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Challenge Overview

To detect whether a node has silently released its claim to a name, it is necessary on 
occasion to challenge that node's current ownership.    If the node defends the name then 
the node is allowed to continue possession.    Otherwise it is assumed that the node has 
released the name.    See packet format.
A name challenge may be issued by an NBNS or by a P or M node.    A challenge may be 
directed towards any end-node type: B, P, or M. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Group Name Fade-Out

NetBIOS groups may contain an arbitrarily large number of members. The time to challenge 
all members could be quite large. 
To avoid long delays when names are claimed through an NBNS, an optimistic heuristic has 
been adopted.    It is assumed that there will always be some node which will defend a group 
name.    Consequently, it is recommended that the NBNS will immediately reject a claim 
request for a unique name when there already exists a group with the same name.    The 
NBNS will never return an IP address (in response to a NAME REGISTRATION REQUEST) when 
a group name exists. 
An NBNS will consider a group to have faded out of existence when the last remaining 
member fails to send a timely refresh message or explicitly releases the name. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Conflict

Name conflict exists when a unique name has been claimed by more than one node on a 
NetBIOS network.    B, M, and NBNS nodes may detect a name conflict.    The detection 
mechanism used by B and M nodes is active only during name discovery.    The NBNS may 
detect conflict at any time it verifies the consistency of its name database. 
B and M nodes detect conflict by examining the responses received in answer to a broadcast
name query request.    The first response is taken as authoritative.    Any subsequent, 
inconsistent responses represent conflicts.    See packet format.
Subsequent responses are inconsistent with the authoritative response when: 

The subsequent response has the same transaction ID as the NAME QUERY REQUEST.
and

The subsequent response is not a duplicate of the authoritative response.
and either:

The group/unique characteristic of the authoritative response is "unique".
or

The group/unique characteristic of the subsequent response is "unique".
The period in which B and M nodes examine responses is limited by a conflict timer, 
CONFLICT_TIMER.    The accuracy or duration of this timer is not crucial: the NetBIOS system 
will continue to operate even with persistent name conflicts. 
Conflict conditions are signaled by sending a NAME CONFLICT DEMAND to the node owning 
the offending name.    Nothing is sent to the node which originated the authoritative 
response. 
Any end-node that receives NAME CONFLICT DEMAND is required to update its "local name 
table" to reflect that the name is in conflict.    (The "local name table" on each node contains 
names that have been successfully registered by that node.) 
Notice that only those nodes that receive the name conflict message place a conflict mark 
next to a name. 
Logically, a marked name does not exist on that node.    This means that the node should not
defend the name (for name claim purposes), should not respond to a name discovery 
requests for that name, nor should the node send name refresh messages for that name. 
Furthermore, it can no longer be used by that node for any session establishment or sending
or receiving datagrams.    Existing sessions are not affected at the time a name is marked as 
being in conflict. 
The only valid user function against a marked name is DELETE NAME. Any other user 
NetBIOS function returns immediately with an error code of "NAME CONFLICT". 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Adapter Status

An end-node or the NBNS may ask any other end-node for a collection of information about 
the NetBIOS status of that node.    This status consists of, among other things, a list of the 
names which the node believes it owns.    The returned status is filtered to contain only those
names which have the same NetBIOS scope identifier as the requestor's name. 
When requesting node status, the requestor identifies the target node by NetBIOS name    A 
name query transaction may be necessary to acquire the IP address for the name.    Locally 
cached name information may be used in lieu of a query transaction.    The requesting node 
sends a NODE STATUS REQUEST.    In response, the receiving node sends a NODE STATUS 
RESPONSE containing its local name table and various statistics. 
The amount of status which may be returned is limited by the size of a UDP packet.    
However, this is sufficient for the typical NODE STATUS RESPONSE packet. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

End-Node NBNS Interaction

There are certain characteristics of end-node to NBNS interactions which are in common and
are independent of any particular transaction type. 

UDP, TCP, and Truncation
NBNS Wack
NBNS Redirection



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

UDP, TCP, and Truncation

For all transactions between an end-node and an NBNS, either UDP or TCP may be used as a 
transport.    If the NBNS receives a UDP based request, it will respond using UDP.    If the 
amount of information exceeds what fits into a UDP packet, the response will contain a        
"truncation flag".    In this situation, the end- node may open a TCP connection to the NBNS, 
repeat the request, and receive a complete, untruncated response. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

NBNS WACK

While a name service request is in progress, the NBNS may issue a WAIT FOR 
ACKNOWLEDGEMENT RESPONSE (WACK) to assure the client end- node that the NBNS is still 
operational and is working on the request. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

NBNS Redirection

The NBNS, because it follows Domain Name system styles of interaction, is permitted to 
redirect a client to another NBNS. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Secured Versus Non-Secured NBNS

An NBNS may be implemented in either of two general ways:    The NBNS may monitor, and 
participate in, name activity to ensure consistency. This would be a "secured" style NBNS.    
Alternatively, an NBNS may be implemented to be essentially a "bulletin board" on which 
name information is posted and responsibility for consistency is delegated to the end-nodes. 
This would be a "non-secured" style NBNS. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Consistency of the NBNS Data Base

Even in a properly running NetBIOS scope the NBNS and its community of end-nodes may 
occasionally lose synchronization with respect to the true state of name registrations. 
This may occur should the NBNS fail and lose all or part of its database. 
More commonly, a P or M node may be turned-off (thus forgetting the names it has 
registered) and then be subsequently turned back on. 
Finally, errors may occur or an implementation may be incorrect.
Various approaches have been incorporated into the NetBIOS-over- TCP protocols to 
minimize the impact of these problems. 

1. The NBNS (or any other node) may "challenge" (using a NAME QUERY 
REQUEST) an end-node to verify that it actually owns a name. 
Such a challenge may occur at any time.    Every end-node must be 
prepared to make a timely response. 
Failure to respond causes the NBNS to consider that the end-node has 
released the name in question. 
(If UDP is being used as the underlying transport, the challenge, like all 
other requests, must be retransmitted some number of times in the 
absence of a response.) 

2. The NBNS (or any other node) may request (using the NODE STATUS 
REQUEST) that an end-node deliver its entire name table. 
This may occur at any time.    Every end-node must be prepared to 
make a timely response. 
Failure to respond permits (but does not require) the NBNS to consider 
that the end-node has failed and released all names to which it had 
claims.    (Like the challenge, on a UDP transport, the request must be 
retransmitted in the absence of a response.) 

3. The NBNS may revoke a P or M node's use of a name by sending either a 
NAME CONFLICT DEMAND or a NAME RELEASE REQUEST to the node. 
The receiving end-node may continue existing sessions which use that 
name, but must otherwise cease using that name.    If the NBNS placed 
the name in conflict, the name may be re- acquired only by deletion 
and subsequent reclamation.    If the NBNS requested that the name be 
released, the node may attempt to re-acquire the name without first 
performing a name release transaction. 

4. The NBNS may impose a "time-to-live" on each name it registers.    The 
registering node is made aware of this time value during the name 
registration procedure. 
Simple or reliable NBNS's may impose an infinite time-to- live. 

5. If an end-node holds any names that have finite time-to- live values, then 
that node must periodically send a status report to the NBNS.    Each name 
is reported using the NAME REFRESH REQUEST packet. 
These status reports restart the timers of both the NBNS and the 
reporting node.    However, the only timers which are restarted are 



those associated with the name found in the status report.    Timers on 
other names are not affected. 
The NBNS may consider that a node has released any name which has 
not been refreshed within some multiple of name's time-to-live. 
A well-behaved NBNS, would, however, issue a challenge to-, or 
request a list of names from-, the non-reporting end- node before 
deleting its name(s).    The absence of a response, or of the name in a 
response, will confirm the NBNS decision to delete a name. 

6. The absence of reports may cause the NBNS to infer that the end-node has
failed.    Similarly, receipt of information widely divergent from what the 
NBNS believes about the node, may cause the NBNS to consider that the 
end-node has been restarted. 
The NBNS may analyze the situation through challenges or requests for
a list of names. 

7. A very cautious NBNS is free to poll nodes (by sending NAME QUERY 
REQUEST or NODE STATUS REQUEST packets) to verify that their name 
status is the same as that registered in the NBNS. 
NOTE:Such polling activity, if used at all by an implementation, should

be kept at a very low level or enabled only during periods when 
the NBNS has some reason to suspect that its information base 
is inaccurate. 

8. P and M nodes can detect incorrect name information at session 
establishment. 
If incorrect information is found, NBNS is informed via a NAME RELEASE
REQUEST originated by the end-node which detects the error. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Caching

An end-node may keep a local cache of NetBIOS name-to-IP address translation entries. 
All cache entries should be flushed on a periodic basis.
In addition, a node ought to flush any cache information associated with an IP address if the 
node receives any information indicating that there may be any possibility of trouble with 
the node at that IP address.    For example, if a NAME CONFLICT DEMAND is sent to a node, 
all cached information about that node should be cleared within the sending node. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Registration Transactions

Name Registration by B Nodes
Name Registration by P Nodes

New Name, or New Group Member
Existing Name and Owner Is Still Active
Existing Name and Owner Is Inactive

Name Registration by M Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Registration by B Nodes

A name claim transaction initiated by a B node is broadcast throughout the broadcast area.   
The NAME REGISTRATION REQUEST will be heard by all B and M nodes in the area.    Each 
node examines the claim to see whether it it is consistent with the names it owns.    If an 
inconsistency exists, a NEGATIVE NAME REGISTRATION RESPONSE is unicast to the 
requestor.    The requesting node obtains ownership of the name (or membership in the 
group) if, and only if, no NEGATIVE NAME REGISTRATION RESPONSEs are received within the 
name claim timeout, CONFLICT_TIMER.    (See "Defined Constants and Variables" in the 
Detailed Specification for the value of this timer.) 
A B node proclaims its new ownership by broadcasting a NAME OVERWRITE DEMAND. 

B-Node Registration Process

   <-----NAME NOT ON NETWORK------>   <----NAME ALREADY EXISTS---->

REQ. NODE                      NODE                     REQ.NODE
                                 HOLDING
                                  NAME

   (BROADCAST) REGISTER                        (BROADCAST) REGISTER
   ------------------->                        <-------------------

        REGISTER                                     REGISTER
   ------------------->                        <-------------------

        REGISTER                         NEGATIVE RESPONSE
   ------------------->             ------------------------------>

          OVERWRITE
   ------------------->               (NODE DOES NOT HAVE THE NAME)

   (NODE HAS THE NAME)

The NAME REGISTRATION REQUEST, like any request, must be repeated if no response is 
received within BCAST_REQ_RETRY_TIMEOUT.    Transmission of the request is attempted 
BCAST_REQ_RETRY_COUNT times. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Registration By P Nodes

A name registration may proceed in various    ways depending whether the name being 
registered is new to the NBNS.    If the name is known to the NBNS, then challenges may be 
sent to the prior holder(s). 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

New Name, or New Group Member

The diagram, below, shows the sequence of events when an end-node registers a name 
which is new to the NBNS.    (The diagram omits WACKs, NBNS redirections, and 
retransmission of requests.) 
This same interaction will occur if the name being registered is a group name and the group 
already exists.    The NBNS will add the registrant to the set of group members. 

P-Node Registration Process
            (server has no previous information about the name)

              P-NODE                            NBNS
                          REGISTER
                --------------------------------->

                        POSITIVE RESPONSE
                <---------------------------------

The interaction is rather simple: the end-node sends a NAME REGISTRATION REQUEST, the 
NBNS responds with a POSITIVE NAME REGISTRATION RESPONSE. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Existing Name and Owner is Still Active

The following diagram shows interactions when an attempt is made to register a unique 
name, the NBNS is aware of an existing owner, and that existing owner is still active. 
There are two sides to the diagram.    The left side shows how a non- secured NBNS would 
handle the matter.    Secured NBNS activity is shown on the right. 

P-Node Registration Process
               (server HAS a previous owner that IS active)

   <------NON-SECURED STYLE------->  <---------SECURED STYLE------->

REQ. NODE           NBNS       NODE         NBNS         REQ.NODE
                                 HOLDING
                                  NAME

         REGISTER                                      REGISTER
   ------------------->                         <-------------------
                                       QUERY
    END-NODE CHALLENGE              <------------
   <-------------------                QUERY
                                    <------------
             QUERY
   ----------------------------->
                                     POSITIVE RESP
             QUERY                   ------------>
   ----------------------------->                 NEGATIVE RESPONSE
                                                  ----------------->

         POSITIVE RESPONSE
   <----------------------------
A non-secured NBNS will answer the NAME REGISTRATION REQUEST with a END-NODE 
CHALLENGE REGISTRATION RESPONSE.    This response asks the end-node to issue a 
challenge transaction against the node indicated in the response.    In this case, the prior 
node will defend against the challenge and the registering end-node will simply drop the 
registration attempt without further interaction with the NBNS. 
A secured NBNS will refrain from answering the NAME REGISTRATION REQUEST until the 
NBNS has itself challenged the prior holder(s) of the name.    In this case, the NBNS finds that
that the name is still being defended and consequently returns a NEGATIVE NAME 
REGISTRATION RESPONSE to the registrant. 
Due to the potential time for the secured NBNS to make the challenge(s), it is likely that a 
WACK will be sent by the NBNS to the registrant. 
Although not shown in the diagram, a non-secured NBNS will send a NEGATIVE NAME 
REGISTRATION RESPONSE to a request to register a unique name when there already exists 
a group of the same name.    A secured NBNS may elect to poll (or challenge) the group 
members to determine whether any active members remain.    This may impose a heavy 
load on the network.    It is recommended that group names be allowed to fade- out through 
the name refresh mechanism. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Existing Name and Owner is Inactive

The following diagram shows interactions when an attempt is made to register a unique 
name, the NBNS is aware of an existing owner, and that existing owner is no longer active. 
A non-secured NBNS will answer the NAME REGISTRATION REQUEST with a END-NODE 
CHALLENGE REGISTRATION RESPONSE.    This response asks the end-node to issue a 
challenge transaction against the node indicated in the response.    In this case, the prior 
node will not defend against the challenge.    The registrant will inform the NBNS through a 
NAME OVERWRITE REQUEST.    The NBNS will replace the prior name information in its 
database with the information in the overwrite request. 
A secured NBNS will refrain from answering the NAME REGISTRATION REQUEST until the 
NBNS has itself challenged the prior holder(s) of the name.    In this case, the NBNS finds that
that the name is not being defended and consequently returns a POSITIVE NAME 
REGISTRATION RESPONSE to the registrant. 

P-Node Registration Process
             (server HAS a previous owner that is NOT active)

   <------NON-SECURED STYLE----->  <----------SECURED STYLE-------->

REQ. NODE           NBNS     NODE           NBNS         REQ.NODE
                               HOLDING
                                NAME

         REGISTER                                    REGISTER
   ------------------->                         <-------------------
                                       QUERY
    END-NODE CHALLENGE             <------------
   <-------------------                QUERY
                                   <------------
         NAME QUERY REQUEST                        POSITIVE RESPONSE
   ---------------------------->                 ------------------>
              QUERY
   ---------------------------->

       OVERWRITE
   ------------------->

    POSITIVE RESPONSE
   <------------------

Due to the potential time for the secured NBNS to make the challenge(s), it is likely that a 
WACK will be sent by the NBNS to the registrant. 
A secured NBNS will immediately send a NEGATIVE NAME REGISTRATION RESPONSE in 
answer to any NAME OVERWRITE REQUESTS it may receive. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Registration by M Nodes

An M node begin a name claim operation as if the node were a B node: it broadcasts a NAME
REGISTRATION REQUEST and listens for NEGATIVE NAME REGISTRATION RESPONSEs.    Any 
NEGATIVE NAME REGISTRATION RESPONSE prevents the M node from obtaining the name 
and terminates the claim operation. 
If, however, the M node does not receive any NEGATIVE NAME REGISTRATION RESPONSE, the
M node must continue the claim procedure as if the M node were a P node. 
Only if both name claims were successful does the M node acquire the name. 
The following diagram illustrates M node name registration:

M-Node Registration Process
   <---NAME NOT IN BROADCAST AREA--> <--NAME IS IN BROADCAST AREA-->

REQ. NODE                       NODE                     REQ.NODE
                                  HOLDING
                                   NAME

   (BROADCAST) REGISTER                         (BROADCAST) REGISTER
   ------------------->                         <-------------------

        REGISTER                                     REGISTER
   ------------------->                         <-------------------

        REGISTER                        NEGATIVE RESPONSE
   ------------------->             ------------------------------->

                 !                     (NODE DOES NOT HAVE THE NAME)
    INITIATE     !
    A P-NODE     !
    REGISTRATION !
                 V



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Query Transactions

Name query transactions are initiated by end-nodes to obtain the IP address(es) and other 
attributes associated with a NetBIOS name. 

Query by B Nodes
Query by P Nodes
Query by M Nodes
Acquire Group Membership List



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Query by B Nodes

The following diagram shows how B nodes go about discovering who owns a name. 
The left half of the diagram illustrates what happens if there are no holders of the name.    In 
that case no responses are received in answer to the broadcast NAME QUERY REQUEST(s). 
The right half shows a POSITIVE NAME QUERY RESPONSE unicast by a name holder in answer
to the broadcast request.    A name holder will make this response to every NAME QUERY 
REQUEST that it hears.    And each holder acts this way.    Thus, the node sending the request
may receive many responses, some duplicates, and from many nodes. 

B-Node Discovery Process
   <------NAME NOT ON NETWORK------>  <---NAME PRESENT ON NETWORK-->

      REQ. NODE                    NODE                     REQ.NODE
                                  HOLDING
                                   NAME

       (BROADCAST) QUERY                           (BROADCAST) QUERY
   ---------------------->                    <---------------------

      NAME QUERY REQUEST                          NAME QUERY REQUEST
   ---------------------->                    <---------------------

           QUERY                        POSITIVE RESPONSE
   ---------------------->           ------------------------------>

Name query is generally, but not necessarily, a prelude to NetBIOS session establishment or 
NetBIOS datagram transmission.    However, name query may be used for other purposes. 
A B node may elect to build a group membership list for subsequent use (e.g. for session 
establishment) by collecting and saving the responses. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Query by P Nodes

An NBNS answers queries from a P node with a list of IP address and other information for 
each owner of the name.    If there are multiple owners (i.e. if the name is a group name), the
NBNS loads as many answers into the response as will fit into a UDP packet.    A truncation 
flag indicates whether any additional owner information remains.    All the information may 
be obtained by repeating the query over a TCP connection. 
The NBNS is not required to impose any order on its answer list.
The following diagram shows what happens if the NBNS has no information about the name: 

P-Node Discovery Process
            (server has no information about the name)

              P-NODE                            NBNS
                        NAME QUERY REQUEST
                --------------------------------->

                        NEGATIVE RESPONSE
                <---------------------------------

The next diagram illustrates interaction between the end-node and the NBNS when the 
NBNS does have information about the name.    This diagram shows, in addition, the 
retransmission of the request by the end-node in the absence of a timely response.    Also 
shown are WACKs        (or temporary, intermediate responses) sent by the NBNS to the end- 
node: 

P-Node Query Process
           (server HAS information about the name)

        P-NODE                                 NBNS
                       NAME QUERY REQUEST
        /---------------------------------------->
       /
       !          (OPTIONAL)   WACK
       !  <- - - - - - - - - - - - - - - - - - - -
       !         !
       !timer    !
       !         ! (optional timer restart)
       !         !
        \        V           QUERY
         \--------------------------------------->
                              .
                              .
                              .
                            QUERY
        /---------------------------------------->
       /
       !          (OPTIONAL)   WACK
       !  <- - - - - - - - - - - - - - - - - - - -
       !         !
       !timer    !



       !         ! (optional timer restart)
       !         !
        \        V           QUERY
         \--------------------------------------->
                              .
                              .

                    POSITIVE RESPONSE
         <-----------------------------------------

The following diagram illustrates NBNS redirection.    Upon receipt of a NAME QUERY 
REQUEST, the NBNS redirects the client to another NBNS. The client repeats the request to 
the new NBNS and obtains a response.    The diagram shows that response as a POSITIVE 
NAME QUERY RESPONSE.    However any legal NBNS response may occur in actual operation.

NBNS Redirection
              P-NODE                            NBNS
                         NAME QUERY REQUEST
                --------------------------------->

                    REDIRECT NAME QUERY RESPONSE
                <---------------------------------

       (START FROM THE
        VERY BEGINNING
        USING THE ADDRESS
        OF THE NEWLY
        SUPPLIED NBNS.)
                                                NEW
              P-NODE                            NBNS
                         NAME QUERY REQUEST
                --------------------------------->

                   POSITIVE NAME QUERY RESPONSE
                <---------------------------------

The next diagram shows how a P or M node tells the NBNS that the NBNS has provided 
incorrect information.    This procedure may begin after a DATAGRAM ERROR packet has been
received or a session set-up attempt has discovered that the NetBIOS name does not exist 
at the destination, the IP address of which was obtained from the NBNS during a prior name 
query transaction.    The NBNS, in this case a secure NBNS, issues queries to verify whether 
the information is, in fact, incorrect.    The NBNS closes the transaction by sending either a 
POSITIVE or NEGATIVE NAME RELEASE RESPONSE, depending on the results of the 
verification. 

Correcting NBNS Information Base
              P-NODE                            NBNS
                       NAME RELEASE REQUEST
                --------------------------------->
                                                        QUERY
                                                  ---------------->

                                                        QUERY
                                                  ---------------->



                                      (NAME TAKEN OFF THE DATABASE
                                       IF NBNS FINDS IT TO BE
                                       INCORRECT)

                    POSITIVE/NEGATIVE RESPONSE
                <---------------------------------



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Query by M Nodes

M node name query follows the B node pattern.    In the absence of adequate results, the M 
node then continues by performing a P node type query.    This is shown in the following 
diagram: 

M-Node Discovery Process
   <---NAME NOT ON BROADCAST AREA-->  <--NAME IS ON BROADCAST AREA->

REQ. NODE                       NODE                     REQ.NODE
                                  HOLDING
                                   NAME

       (BROADCAST) QUERY                           (BROADCAST) QUERY
   --------------------->                    <----------------------

     NAME QUERY REQUEST                           NAME QUERY REQUEST
   --------------------->                    <----------------------

           QUERY                           POSITIVE RESPONSE
   --------------------->           ------------------------------->

                   !
       INITIATE    !
       A P-NODE    !
       DISCOVERY   !
       PROCESS     !
                   V



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Acquire Group Membership List

The entire membership of a group may be acquired by sending a NAME QUERY REQUEST to 
the NBNS.    The NBNS will respond with a POSITIVE NAME QUERY RESPONSE or a NEGATIVE 
NAME QUERY RESPONSE.    A negative response completes the procedure and indicates that 
there are no members in the group. 
If the positive response has the truncation bit clear, then the response contains the entire 
list of group members.    If the truncation bit is set, then this entire procedure must be 
repeated, but using TCP as a foundation rather than UDP. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Release Transactions

Release by B Nodes
Release by P Nodes
Release by M Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Release by B Nodes

A NAME RELEASE DEMAND contains the following information:
- NetBIOS name
- The scope of the NetBIOS name

- Name type: unique or group
- IP address of the releasing node
- Transaction ID

REQUESTING                                     OTHER
B-NODE                                         B-NODES
                     NAME RELEASE DEMAND
              ---------------------------------->



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Release by P Nodes

A NAME RELEASE REQUEST contains the following information:
- NetBIOS name
- The scope of the NetBIOS name

- Name type: unique or group
- IP address of the releasing node
- Transaction ID

A NAME RELEASE RESPONSE contains the following information:
- NetBIOS name
- The scope of the NetBIOS name
- Name type: unique or group
- IP address of the releasing node
- Transaction ID
- Result:

- Yes: name was released
- No: name was not released, a reason code is provided

REQUESTING
P-NODE                                         NBNS
                     NAME RELEASE REQUEST
              ---------------------------------->

                     NAME RELEASE RESPONSE
              <---------------------------------



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Release by M Nodes

The name release procedure of the M node is a combination of the P and B node name 
release procedures.    The M node first performs the P release procedure.    If the P procedure 
fails then the release procedure does not continue, it fails.    If and only if the P procedure 
succeeds then the M node broadcasts the NAME RELEASE DEMAND to the broadcast area, 
the B procedure. 
NOTE:An M node typically performs a B-style operation and then a P-style operation.    In 

this case, however, the P-style operation comes first. 
The following diagram illustrates the M node name release procedure:
   <-----P procedure fails-------> <-------P procedure succeeds--->

REQUESTING               NBNS    REQUESTING             NBNS
M-NODE                           M-NODE

       NAME RELEASE REQUEST               NAME RELEASE REQUEST
     -------------------------->       ------------------------>

       NEGATIVE RELEASE RESPONSE        POSITIVE RELEASE RESPONSE
     <--------------------------       <-------------------------

                                                           OTHER
                                                           M-NODES

                                           NAME RELEASE DEMAND
                                        ------------------------>



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Maintenance Transactions

Name Refresh
Name Challenge
Clear Name Conflict



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Refresh

Name refresh transactions are used to handle the following situations: 
a) An NBNS node needs to detect if a P or M node has "silently" gone down, 

so that names held by that node can be purged from the data base. 
b) If the NBNS goes down, it needs to be able to reconstruct the data base 

when it comes back up. 
c) If the network should be partitioned, the NBNS needs to be able to able to 

update its data base when the network reconnects. 
Each P or M node is responsible for sending periodic NAME REFRESH REQUESTs for each 
name that it has registered.    Each refresh packet contains a single name that has been 
successfully registered by that node.    The interval between such packets is negotiated 
between the end node and the NBNS server at the time that the name is initially claimed.    
At name claim time, an end node will suggest a refresh timeout value.    The NBNS node can 
modify this value in the reply packet.    A NBNS node can also choose to tell the end node to 
not send any refresh packet by using the "infinite" timeout value in the response packet.    
The timeout value returned by the NBNS is the actual refresh timeout that the end node 
must use. 
When a node sends a NAME REFRESH REQUEST, it must be prepared to receive a negative 
response.    This would happen, for example, if the the NBNS discovers that the the name 
had already been assigned to some other node.    If such a response is received, the end 
node should mark the name as being in conflict.    Such an entry should be treated in the 
same way as if name conflict had been detected against the name.    The following diagram 
illustrates name refresh: 
   <-----Successful Refresh-----> <-----Unsuccessful Refresh---->

REFRESHING               NBNS   REFRESHING               NBNS
NODE                            NODE

       NAME REFRESH REQUEST             NAME REFRESH REQUEST
     ------------------------>        ----------------------->

         POSITIVE RESPONSE                NEGATIVE RESPONSE
     <------------------------        <-----------------------
                                    !
                                    !
                                    V
                              MARK NAME IN
                                CONFLICT



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Name Challenge

Name challenge is done by sending a NAME QUERY REQUEST to an end node of any type.    If
a POSITIVE NAME QUERY RESPONSE is returned, then that node still owns the name.    If a 
NEGATIVE NAME QUERY RESPONSE is received or if no response is received, it can be 
assumed that the end node no longer owns the name. 
Name challenge can be performed either by the NBNS node, or by an end node.    When an 
end-node sends a name claim packet, the NBNS node may do the challenge operation.    The 
NBNS node can choose, however, to require the end node do the challenge.    In that case, 
the NBNS will send an END-NODE CHALLENGE RESPONSE packet to the end node, which 
should then proceed to challenge the putative owner. 
Note that the name challenge procedure sends a normal NAME QUERY REQUEST packet to 
the end node.    It does not require a special packet.    The only new packet introduced is the 
END-NODE CHALLENGE RESPONSE which is sent by an NBNS node when the NBNS wants the
end- node to perform the challenge operation. 



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Clear Name Conflict

It is possible during a refresh request from a M or P node for a NBNS to detects a name in 
conflict.    The response to the NAME REFRESH REQUEST must be a NEGATIVE NAME 
REGISTRATION RESPONSE.    Optionally, in addition, the NBNS may send a NAME CONFLICT 
DEMAND or a NAME RELEASE REQUEST to the refreshing node.    The NAME CONFLICT 
DEMAND forces the node to place the name in the conflict state.    The node will eventually 
inform it's user of the conflict.    The NAME RELEASE REQUEST will force the node to flush the
name from its local name table completely.    This forces the node to flush the name in 
conflict.    This does not cause termination of existing sessions using this name. 
The following diagram shows an NBNS detecting and correcting a conflict: 
REFRESHING NODE                                 NBNS

                     NAME REFRESH REQUEST
           ----------------------------------------->

               NEGATIVE NAME REGISTRATION RESPONSE
           <-----------------------------------------

                     NAME CONFLICT DEMAND
           <-----------------------------------------

                             OR

                     NAME RELEASE REQUEST
           <-----------------------------------------

               POSITIVE/NEGATIVE RELEASE REQUEST
           ----------------------------------------->



RFC-1001 Protocol Standard for a NetBIOS Service - Name Service

Adapter Status Transactions

Adapter status is obtained from a node as follows:
1. Perform a name discovery operation to obtain the IP addresses of a set of 

end-nodes. 
2. Repeat until all end-nodes from the set have been used:

a. Select one end-node from the set.
b. Send a NODE STATUS REQUEST to that end-node using UDP.
c. Await a NODE STATUS RESPONSE.    (If a timely response is not 

forthcoming, repeat step "b" UCAST_REQ_RETRY_COUNT times.   
After the last retry, go to step "a".) 

d. If the truncation bit is not set in the response, the response 
contains the entire node status.    Return the status to the user 
and terminate this procedure. 

e. If the truncation bit is set in the response, then not all status 
was returned because it would not fit into the response packet.   
The responder will set the truncation bit if the IP datagram 
length would exceed MAX_DATAGRAM_LENGTH.    Return the 
status to the user and terminate this procedure. 

3. Return error to user, no status obtained.
The repetition of step 2, above, through all nodes of the set, is optional. 
Following is an example transaction of a successful Adapter Status operation: 
REQUESTING NODE                                 NAME OWNER

                       NAME QUERY REQUEST
           ----------------------------------------->

                   POSITIVE NAME QUERY RESPONSE
           <-----------------------------------------

                       NODE STATUS REQUEST
           ----------------------------------------->

                      NODE STATUS RESPONSE
           <-----------------------------------------



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Session Service

The NetBIOS session service begins after one or more IP addresses have been found for the 
target name.    These addresses may have been acquired using the NetBIOS name query 
transactions or by other means, such as a local name table or cache. 
NetBIOS session service transactions, packets, and protocols are identical for all end-node 
types.    They involve only directed (point-to-point) communications. 

Overview of NetBIOS Session Service
Session Establishment Phase
Session Data Transfer Phase



RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Overview of NetBIOS Session Service

Session service has three phases:
Session establishment - it is during this phase that the IP address and TCP port
of the called name is determined, and a TCP connection is established with the
remote party. 
Steady state - it is during this phase that NetBIOS data messages are 
exchanged over the session.    Keep-alive packets may also be exchanged if 
the participating nodes are so configured. 
Session close - a session is closed whenever either a party (in the session) 
closes the session or it is determined that one of the parties has gone down. 



RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Session Establishment Phase Overview

An end-node begins establishment of a session to another node by somehow acquiring 
(perhaps using the name query transactions or a local cache) the IP address of the node or 
nodes purported to own the destination name. 
Every end-node awaits incoming NetBIOS session requests by listening for TCP calls to a 
well-known service port, SSN_SRVC_TCP_PORT.    Each incoming TCP connection represents 
the start of a separate NetBIOS session initiation attempt.    The NetBIOS session server, not 
the ultimate application, accepts the incoming TCP connection(s). 
Once the TCP connection is open, the calling node sends session service request packet.    
This packet contains the following information: 

- Calling IP address (see note)
- Calling NetBIOS name
- Called IP address (see note)
- Called NetBIOS name

NOTE:The IP addresses are obtained from the TCP service interface. 
When the session service request packet arrives at the NetBIOS server, one of the the 
following situations will exist: 

- There exists a NetBIOS LISTEN compatible with the incoming call and there
are adequate resources to permit session establishment to proceed. 

- There exists a NetBIOS LISTEN compatible with the incoming call, but there
are inadequate resources to permit establishment of a session. 

- The called name does, in fact, exist on the called node, but there is no 
pending NetBIOS LISTEN compatible with the incoming call. 

- The called name does not exist on the called node.
In all but the first case, a rejection response is sent back over the TCP connection to the 
caller.    The TCP connection is then closed and the session phase terminates.    Any retry is 
the responsibility of the caller.    For retries in the case of a group name, the caller may use 
the next member of the group rather than immediately retrying the instant address.    In the 
case of a unique name, the caller may attempt an immediate retry using the same target IP 
address unless the called name did not exist on the called node.    In that one case, the 
NetBIOS name should be re-resolved. 
If a compatible LISTEN exists, and there are adequate resources, then the session server 
may transform the existing TCP connection into the NetBIOS data session.    Alternatively, the
session server may redirect, or "retarget" the caller to another TCP port (and IP address). 
If the caller is redirected, the caller begins the session establishment anew, but using the 
new IP address and TCP port given in the retarget response.    Again a TCP connection is 
created, and again the calling and called node exchange credentials.    The called party may 
accept the call, reject the call, or make a further redirection. 
This mechanism is based on the presumption that, on hosts where it is not possible to 
transfer open TCP connections between processes, the host will have a central session 
server.    Applications willing to receive NetBIOS calls will obtain an ephemeral TCP port 
number, post a TCP unspecified passive open on that port, and then pass that port number 
and NetBIOS name information to the NetBIOS session server using a NetBIOS LISTEN 
operation.    When the call is placed, the session server will "retarget" the caller to the 
application's TCP socket.    The caller will then place a new call, directly to the application.    



The application has the responsibility to mimic the session server at least to the extent of 
receiving the calling credentials and then accepting or rejecting the call. 



RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Retrying After Being Retargetted

A calling node may find that it can not establish a session with a node to which it was 
directed by the retargetting procedure.    Since retargetting may be nested, there is an issue 
whether the caller should begin a retry at the initial starting point or back-up to an 
intermediate retargetting point.    The caller may use any method.    A discussion of two such 
methods is in Appendix B, "Retarget Algorithms". 



RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Session Establishment to a Group Name

Session establishment with a group name requires special consideration.    When a NetBIOS 
CALL attempt is made to a group name, name discovery will result in a list (possibly 
incomplete) of the members of that group.    The calling node selects one member from the 
list and attempts to build a session.    If that fails, the calling node may select another 
member and make another attempt. 
When the session service attempts to make a connection with one of the members of the 
group, there is no guarantee that that member has a LISTEN pending against that group 
name, that the called node even owns, or even that the called node is operating. 



RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Steady State Phase Overview

NetBIOS data messages are exchanged in the steady state.    NetBIOS messages are sent by 
prepending the user data with a message header and sending the header and the user data 
over the TCP connection. The receiver removes the header and passes the data to the 
NetBIOS user. 
In order to detect failure of one of the nodes or of the intervening network, "session keep 
alive" packets may be periodically sent in the steady state. 
Any failure of the underlying TCP connection, whether a reset, a timeout, or other failure, 
implies failure of the NetBIOS session. 



RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Session Termination Phase Overview

A NetBIOS session is terminated normally when the user requests the session to be closed or
when the session service detects the remote partner of the session has gracefully 
terminated the TCP connection. A NetBIOS session is abnormally terminated when the 
session service detects a loss of the connection.    Connection loss can be detected with the 
keep-alive function of the session service or TCP, or on the failure of a SESSION MESSAGE 
send operation. 
When a user requests to close a session, the service first attempts a graceful in-band close 
of the TCP connection.    If the connection does not close within the SSN_CLOSE_TIMEOUT the
TCP connection is aborted. No matter how the TCP connection is terminated, the NetBIOS 
session service always closes the NetBIOS session. 
When the session service receives an indication from TCP that a connection close request 
has been received, the TCP connection and the NetBIOS session are immediately closed and 
the user is informed of the loss of the session.    All data received up to the close indication 
should be delivered, if possible, to the session's user. 



RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Session Establishment Phase

All the following diagrams assume a name query operation was successfully completed by 
the caller node for the listener's name. 
This first diagram shows the sequence of network events used to successfully establish a 
session without retargetting by the listener.    The TCP connection is first established with the
well- known NetBIOS session service TCP port, SSN_SRVC_TCP_PORT.    The caller then sends 
a SESSION REQUEST packet over the TCP connection requesting a session with the listener.    
The SESSION REQUEST contains the caller's name and the listener's name.    The listener 
responds with a POSITIVE SESSION RESPONSE informing the caller this TCP connection is 
accepted as the connection for the data transfer phase of the session. 
           CALLER                          LISTENER

                       TCP CONNECT
           ====================================>
                        TCP ACCEPT
           <===================================
                     SESSION REQUEST
           ------------------------------------>
                    POSITIVE RESPONSE
           <-----------------------------------

The second diagram shows the sequence of network events used to successfully establish a 
session when the listener does retargetting. The session establishment procedure is the 
same as with the first diagram up to the listener's response to the SESSION REQUEST.    The 
listener, divided into two sections, the listen processor and the actual listener, sends a 
SESSION RETARGET RESPONSE to the caller. This response states the call is acceptable, but 
the data transfer TCP connection must be at the new IP address and TCP port.    The caller 
then re-iterates the session establishment process anew with the new IP address and TCP 
port after the initial TCP connection is closed.    The new listener then accepts this connection
for the data transfer phase with a POSITIVE SESSION RESPONSE. 
           CALLER                  LISTEN PROCESSOR        LISTENER

                   TCP CONNECT
           =============================>
                   TCP ACCEPT
           <=============================
                   SESSION REQUEST
           ----------------------------->
              SESSION RETARGET RESPONSE
           <-----------------------------
                   TCP CLOSE
           <=============================
                   TCP CLOSE
           =============================>

                       TCP CONNECT
           ====================================================>
                        TCP ACCEPT
           <====================================================
                     SESSION REQUEST



           ---------------------------------------------------->
                    POSITIVE RESPONSE
           <----------------------------------------------------

The third diagram is the sequence of network events for a rejected session request with the 
listener.    This type of rejection could occur with either a non-retargetting listener or a 
retargetting listener.    After the TCP connection is established at SSN_SRVC_TCP_PORT, the 
caller sends the SESSION REQUEST over the TCP connection.    The listener does not have 
either a listen pending for the listener's name or the pending NetBIOS listen is specific to 
another caller's name.    Consequently, the listener sends a NEGATIVE SESSION RESPONSE 
and closes the TCP connection. 
           CALLER                          LISTENER

                        TCP CONNECT
           ====================================>
                        TCP ACCEPT
           <===================================
                     SESSION REQUEST
           ------------------------------------>
                    NEGATIVE RESPONSE
           <-----------------------------------
                        TCP CLOSE
           <===================================
                        TCP CLOSE
           ====================================>

The fourth diagram is the sequence of network events when session establishment fails with
a retargetting listener.    After being redirected, and after the initial TCP connection is closed 
the caller tries to establish a TCP connection with the new IP address and TCP port.    The 
connection fails because either the port is unavailable or the target node is not active.    The 
port unavailable race condition occurs if another caller has already acquired the TCP 
connection with the listener.    For additional implementation suggestions, see Appendix B, 
"Retarget Algorithms". 
           CALLER                  LISTEN PROCESSOR        LISTENER

                   TCP CONNECT
           =============================>
                   TCP ACCEPT
           <=============================
                   SESSION REQUEST
           ----------------------------->
                   REDIRECT RESPONSE
           <-----------------------------
                   TCP CLOSE
           <=============================
                   TCP CLOSE
           =============================>

                       TCP CONNECT
           ====================================================>

                     CONNECTION REFUSED OR TIMED OUT
           <===================================================





RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Session Data Transfer Phase

Data Encapsulation
Session Keep-Alives



RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Data Encapsulation

NetBIOS messages are exchanged in the steady state.    Messages are sent by prepending 
user data with message header and sending the header and the user data over the TCP 
connection.    The receiver removes the header and delivers the NetBIOS data to the user. 



RFC-1001 Protocol Standard for a NetBIOS Service - Session Service

Session Keep-Alives

In order to detect node failure or network partitioning, "session keep alive" packets are 
periodically sent in the steady state.    A session keep alive packet is discarded by a peer 
node. 
A session keep alive timer is maintained for each session.    This timer is reset whenever any 
data is sent to, or received from, the session peer.    When the timer expires, a NetBIOS 
session keep-alive packet is sent on the TCP connection.    Sending the keep-alive packet 
forces data to flow on the TCP connection, thus indirectly causing TCP to detect whether the 
connection is still active. 
Since many TCP implementations provide a parallel TCP "keep- alive" mechanism, the 
NetBIOS session keep-alive is made a configurable option.    It is recommended that the 
NetBIOS keep- alive mechanism be used only in the absence of TCP keep-alive. 
Note that unlike TCP keep alives, NetBIOS session keep alives do not require a response from
the NetBIOS peer -- the fact that it was possible to send the NetBIOS session keep alive is 
sufficient indication that the peer, and the connection to it, are still active. 
The only requirement for interoperability is that when a session keep alive packet is 
received, it should be discarded. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

NetBIOS Datagram Service

Overview of NetBIOS Datagram Service
Unicast, Multicast, and Broadcast
Fragmentation of NetBIOS Datagrams

NetBIOS Datagrams by B Nodes
NetBIOS Datagrams by P and M Nodes



RFC-1001 Protocol Standard for a NetBIOS Service - Datagram Service

Overview of NetBIOS Datagram Service

Every NetBIOS datagram has a named destination and source.    To transmit a NetBIOS 
datagram, the datagram service must perform a name query operation to learn the IP 
address and the attributes of the destination NetBIOS name.    (This information may be 
cached to avoid the overhead of name query on subsequent NetBIOS datagrams.) 
NetBIOS datagrams are carried within UDP packets.    If a NetBIOS datagram is larger than a 
single UDP packet, it may be fragmented into several UDP packets. 
End-nodes may receive NetBIOS datagrams addressed to names not held by the receiving 
node.    Such datagrams should be discarded.    If the name is unique then a DATAGRAM 
ERROR packet is sent to the source of that NetBIOS datagram. 



RFC-1001 Protocol Standard for a NetBIOS Service - Datagram Service

Unicast, Multicast, and Broadcast

NetBIOS datagrams may be unicast, multicast, or broadcast.    A NetBIOS datagram 
addressed to a unique NetBIOS name is unicast.    A NetBIOS datatgram addressed to a 
group NetBIOS name, whether there are zero, one, or more actual members, is multicast.    A
NetBIOS datagram sent using the NetBIOS "Send Broadcast Datagram" primitive is 
broadcast. 



RFC-1001 Protocol Standard for a NetBIOS Service - Datagram Service

Fragmentation of NetBIOS Datagrams

When the header and data of a NetBIOS datagram exceeds the maximum amount of data 
allowed in a UDP packet, the NetBIOS datagram must be fragmented before transmission 
and reassembled upon receipt. 
A NetBIOS Datagram is composed of the following protocol elements:

- IP header of 20 bytes (minimum)
- UDP header of 8 bytes
- NetBIOS Datagram Header of 14 bytes
- The NetBIOS Datagram data.

The NetBIOS Datagram data section is composed of 3 parts:
- Source NetBIOS name (255 bytes maximum)
- Destination NetBIOS name (255 bytes maximum)
- The NetBIOS user's data (maximum of 512 bytes)

The two name fields are in second level encoded format (see section 14.) 
A maximum size NetBIOS datagram is 1064 bytes.    The minimal maximum IP datagram size
is 576 bytes.    Consequently, a NetBIOS Datagram may not fit into a single IP datagram.    
This makes it necessary to permit the fragmentation of NetBIOS Datagrams. 
On networks meeting or exceeding the minimum IP datagram length requirement of 576 
octets, at most two NetBIOS datagram fragments will be generated.    The protocols and 
packet formats accommodate fragmentation into three or more parts. 
When a NetBIOS datagram is fragmented, the IP, UDP and NetBIOS Datagram headers are 
present in each fragment.    The NetBIOS Datagram data section is split among resulting UDP
datagrams.    The data sections of NetBIOS datagram fragments do not overlap. The only 
fields of the NetBIOS Datagram header that would vary are the FLAGS and OFFSET fields. 
The FIRST bit in the FLAGS field indicate whether the fragment is the first in a sequence of 
fragments.    The MORE bit in the FLAGS field indicates whether other fragments follow. 
The OFFSET field is the byte offset from the beginning of the NetBIOS datagram data section
to the first byte of the data section in a fragment.    It is 0 for the first fragment.    For each 
subsequent fragment, OFFSET is the sum of the bytes in the NetBIOS data sections of all 
preceding fragments. 
If the NetBIOS datagram was not fragmented:

- FIRST = TRUE
- MORE = FALSE
- OFFSET = 0

If the NetBIOS datagram was fragmented:
- First fragment:
- FIRST = TRUE
- MORE = TRUE
- OFFSET = 0
- Immediate fragments:
- FIRST = FALSE
- MORE = TRUE
- OFFSET = sum(NetBIOS data in prior fragments)



- Last fragment:
- FIRST = FALSE
- MORE = FALSE
- OFFSET = sum(NetBIOS data in prior fragments)

The relative position of intermediate fragments may be ascertained from OFFSET. 
An NBDD must remember the destination name of the first fragment in order to relay the 
subsequent fragments of a single NetBIOS datagram. The name information can be 
associated with the subsequent fragments through the transaction ID, DGM_ID, and the 
SOURCE_IP, fields of the packet.    This information can be purged by the NBDD after the last 
fragment has been processed or FRAGMENT_TO time has expired since the first fragment 
was received. 



RFC-1001 Protocol Standard for a NetBIOS Service - Datagram Service

NetBIOS Datagrams by B Nodes

For NetBIOS datagrams with a named destination (i.e. non- broadcast), a B node performs a 
name discovery for the destination name before sending the datagram.    (Name discovery 
may be bypassed if information from a previous discovery is held in a cache.)    If the name 
type returned by name discovery is UNIQUE, the datagram is unicast to the sole owner of 
the name.    If the name type is GROUP, the datagram is broadcast to the entire broadcast 
area using the destination IP address BROADCAST_ADDRESS. 
A receiving node always filters datagrams based on the destination name.    If the destination
name is not owned by the node or if no RECEIVE DATAGRAM user operations are pending for 
the name, then the datagram is discarded.    For datagrams with a UNIQUE name destination,
if the name is not owned by the node then the receiving node sends a DATAGRAM ERROR 
packet.    The error packet originates from the DGM_SRVC_UDP_PORT and is addressed to the
SOURCE_IP and SOURCE_PORT from the bad datagram.    The receiving node quietly discards 
datagrams with a GROUP name destination if the name is not owned by the node. 
Since broadcast NetBIOS datagrams do not have a named destination, the B node sends the 
DATAGRAM SERVICE packet(s) to the entire broadcast area using the destination IP address 
BROADCAST_ADDRESS. In order for the receiving nodes to distinguish this datagram as a 
broadcast NetBIOS datagram, the NetBIOS name used as the destination name is '*' 
(hexadecimal 2A) followed by 15 bytes of hexidecimal 00. The NetBIOS scope identifier is 
appended to the name before it is converted into second-level encoding.    For example, if 
the scope identifier is "NETBIOS.SCOPE" then the first-level encoded name would be: 
                CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.NETBIOS.SCOPE
According to [2], a user may not provide a NetBIOS name beginning with "*". 
For each node in the broadcast area that receives the NetBIOS broadcast datagram, if any 
RECEIVE BROADCAST DATAGRAM user operations are pending then the data from the 
NetBIOS datagram is replicated and delivered to each.    If no such operations are pending 
then the node silently discards the datagram. 



RFC-1001 Protocol Standard for a NetBIOS Service - Datagram Service

NetBIOS Datagrams by P and M Nodes

P and M nodes do not use IP broadcast to distribute NetBIOS datagrams. 
Like B nodes, P and M nodes must perform a name discovery or use cached information to 
learn whether a destination name is a group or a unique name. 
Datagrams to unique names are unicast directly to the destination by P and M nodes, 
exactly as they are by B nodes. 
Datagrams to group names and NetBIOS broadcast datagrams are unicast to the NBDD.    
The NBDD then relays the datagrams to each of the nodes specified by the destination 
name. 
An NBDD may not be capable of sending a NetBIOS datagram to a particular NetBIOS name, 
including the broadcast NetBIOS name ("*") defined above.    A query mechanism is available
to the end- node to determine if a NBDD will be able to relay a datagram to a given name. 
Before a datagram, or its fragments, are sent to the NBDD the P or M node may send a 
DATAGRAM QUERY REQUEST packet to the NBDD with the DESTINATION_NAME from the 
DATAGRAM SERVICE packet(s).    The NBDD will respond with a DATAGRAM POSITIVE QUERY 
RESPONSE if it will relay datagrams to the specified destination name.    After a positive 
response the end-node unicasts the datagram to the NBDD.    If the NBDD will not be able to 
relay a datagram to the destination name specified in the query, a DATAGRAM NEGATIVE 
QUERY RESPONSE packet is returned.    If the NBDD can not distribute a datagram, the end-
node then has the option of getting the name's owner list from the NBNS and sending the 
datagram directly to each of the owners. 
An NBDD must be able to respond to DATAGRAM QUERY REQUEST packets. The response 
may always be positive.    However, the usage or implementation of the query mechanism by
a P or M node is optional. An implementation may always unicast the NetBIOS datagram to 
the NBDD without asking if it will be relayed.    Except for the datagram query facility 
described above, an NBDD provides no feedback to indicate whether it forwarded a 
datagram. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Node Configuration Parameters

- B NODES:
- Node's permanent unique name
- Whether IGMP is in use
- Broadcast IP address to use
- Whether NetBIOS session keep-alives are needed
- Usable UDP data field length (to control fragmentation)
- P NODES:
- Node's permanent unique name
- IP address of NBNS
- IP address of NBDD
- Whether NetBIOS session keep-alives are needed
- Usable UDP data field length (to control fragmentation)
- M NODES:
- Node's permanent unique name
- Whether IGMP is in use
- Broadcast IP address to use
- IP address of NBNS
- IP address of NBDD
- Whether NetBIOS session keep-alives are needed
- Usable UDP data field length (to control fragmentation)



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Minimal Conformance

To ensure multi-vendor interoperability, a minimally conforming implementation based on 
this specification must observe the following rules: 

a) A node designed to work only in a broadcast area must conform to the B 
node specification. 

b) A node designed to work only in an internet must conform to the P node 
specification. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Appendix A
Integration With Internet Group Multicasting

This appendix contains supporting technical discussions.    It is not an integral part of the 
NetBIOS-over-TCP specification. 
The Netbios-over-TCP system described in this RFC may be easily integrated with the 
Internet Group Multicast system now being developed for the internet. 
In the main body of the RFC, the notion of a broadcast area was considered to be a single 
MAC-bridged "B-LAN".    However, the protocols defined will operate over an extended 
broadcast area resulting from the creation of a permanent Internet Multicast Group. 
Each separate broadcast area would be based on a separate permanent Internet Multicast 
Group.    This multicast group address would be used by B and M nodes as their 
BROADCAST_ADDRESS. 
In order to base the broadcast area on a multicast group certain additional procedures are 
required and certain constraints must be met. 

Additional Protocol Required in B and M Nodes
Constraints



RFC-1001 Protocol Standard for a NetBIOS Service - Integration with IP 
Multicasting

Additional Protocol Required in B and M Nodes

All B or M nodes operating on an IGMP based broadcast area must have IGMP support in 
their IP layer software.    These nodes must perform an IGMP join operation to enter the IGMP
group before engaging in NetBIOS activity. 



RFC-1001 Protocol Standard for a NetBIOS Service - Integration with IP 
Multicasting

Constraints

Broadcast Areas may overlap.    For this reason, end-nodes must be careful to examine the 
NetBIOS scope identifiers in all received broadcast packets. 
The NetBIOS broadcast protocols were designed for a network that exhibits a low average 
transit time and low rate of packet loss.    An IGMP based broadcast area must exhibit these 
characteristics.    In practice this will tend to constrain IGMP broadcast areas to a campus of 
networks interconnected by high-speed routers and inter-router links.    It is unlikely that 
transcontinental broadcast areas would exhibit the required characteristics. 



RFC-1001 Protocol Standard for a NetBIOS Service - Concepts and Methods

Appendix B
Implementation Considerations

This appendix contains supporting technical discussions.    It is not an integral part of the 
NetBIOS-over-TCP specification. 

Implementation Models
Model Independent Considerations
Service Operation for Each Model

Casual and Restricted NetBIOS Applications
TCP Versus Session Keep-Alives
Retarget Algorithms
NBDD Service
Use of NetBIOS Datagrams



RFC-1001 Protocol Standard for a NetBIOS Service - Implementation 
Considerations

Implementation Models

On any participating system, there must be some sort of NetBIOS Service to coordinate 
access by NetBIOS applications on that system. 
To analyze the impact of the NetBIOS-over-TCP architecture, we use the following three 
models of how a NetBIOS service might be implemented: 

1. Combined Service and Application Model
The NetBIOS service and application are both contained within a single 
process.    No interprocess communication is assumed within the 
system; all communication is over the network.    If multiple 
applications require concurrent access to the NetBIOS service, they 
must be folded into this monolithic process. 

2. Common Kernel Element Model
The NetBIOS Service is part of the operating system (perhaps as a 
device driver or a front-end processor).    The NetBIOS applications are 
normal operating system application processes.    The common element
NetBIOS service contains all the information, such as the name and 
listen tables, required to co-ordinate the activities of the applications. 

3. Non-Kernel Common Element Model
The NetBIOS Service is implemented as an operating system 
application process.    The NetBIOS applications are other operating 
system application processes.    The service and the applications 
exchange data via operating system interprocess communication.    In a
multi-processor (e.g.    network) operating system, each module may 
reside on a different cpu. The NetBIOS service process contains all the 
shared information required to coordinate the activities of the NetBIOS 
applications.    The applications may still require a subroutine library to 
facilitate access to the NetBIOS service. 

For any of the implementation models, the TCP/IP service can be located in the operating 
system or split among the NetBIOS applications and the NetBIOS service processes. 



RFC-1001 Protocol Standard for a NetBIOS Service - Implementation 
Considerations

Model Independent Considerations

The NetBIOS name service associates a NetBIOS name with a host.    The NetBIOS session 
service further binds the name to a specific TCP port for the duration of the session. 
The name service does not need to be informed of every Listen initiation and completion.    
Since the names are not bound to any TCP port in the name service, the session service may
use a different tcp port for each session established with the same local name. 
The TCP port used for the data transfer phase of a NetBIOS session can be globally well-
known, locally well-known, or ephemeral.    The choice is a local implementation issue.    The 
RETARGET mechanism allows the binding of the NetBIOS session to a TCP connection to any 
TCP port, even to another IP node. 
An implementation may use the session service's globally well- known TCP port for the data 
transfer phase of the session by not using the RETARGET mechanism and, rather, accepting 
the session on the initial TCP connection.    This is permissible because the caller always uses
an ephemeral TCP port. 
The complexity of the called end RETARGET mechanism is only required if a particular 
implementation needs it.    For many real system environments, such as an in-kernel NetBIOS
service implementation, it will not be necessary to retarget incoming calls.    Rather, all 
NetBIOS sessions may be multiplexed through the single, well-known, NetBIOS session 
service port.    These implementations will not be burdened by the complexity of the 
RETARGET mechanism, nor will their callers be required to jump through the retargetting 
hoops. 
Nevertheless, all callers must be ready to process all possible SESSION RETARGET 
RESPONSEs. 



RFC-1001 Protocol Standard for a NetBIOS Service - Implementation 
Considerations

Service Operation for Each Model

It is possible to construct a NetBIOS service based on this specification for each of the above
defined implementation models. 
For the common kernel element model, all the NetBIOS services, name, datagram, and 
session, are simple.    All the information is contained within a single entity and can therefore
be accessed or modified easily.    A single port or multiple ports for the NetBIOS sessions can 
be used without adding any significant complexity to the session establishment procedure.    
The only penalty is the amount of overhead incurred to get the NetBIOS messages and 
operation requests/responses through the user and operating system boundary. 
The combined service and application model is very similar to the common kernel element 
model in terms of its requirements on the NetBIOS service.    The major difficulty is the 
internal coordination of the multiple NetBIOS service and application processes existing in a 
system of this type. 
The NetBIOS name, datagram and session protocols assume that the entities at the end-
points have full control of the various well- known TCP and UDP ports.    If an implementation 
has multiple NetBIOS service entities, as would be the case with, for example, multiple 
applications each linked into a NetBIOS library, then that implementation must impose some
internal coordination. Alternatively, use of the NetBIOS ports could be periodically assigned 
to one application or another. 
For the typical non-kernel common element mode implementation, three permanent system-
wide NetBIOS service processes would exist: 

- The name server
- the datagram server
- and session server

Each server would listen for requests from the network on a UDP or TCP well-known port.    
Each application would have a small piece of the NetBIOS service built-in, possibly a library.   
Each application's NetBIOS support library would need to send a message to the particular 
server to request an operation, such as add name or send a datagram or set-up a listen. 
The non-kernel common element model does not require a TCP connection be passed 
between the two processes, session server and application. The RETARGET operation for an 
active NetBIOS Listen could be used by the session server to redirect the session to another 
TCP connection on a port allocated and owned by the application's NetBIOS support library.    
The application with either a built-in or a kernel-based TCP/IP service could then accept the 
RETARGETed connection request and process it independently of the session server. 
On Unix(tm) or POSIX(tm), the NetBIOS session server could create sub-processes for 
incoming connections.    The open sessions would be passed through "fork" and "exec" to the
child as an open file descriptor.    This approach is very limited, however.    A pre- existing 
process could not receive an incoming call.    And all call-ed processes would have to be sub-
processes of the session server. 



RFC-1001 Protocol Standard for a NetBIOS Service - Implementation 
Considerations

Casual and Restricted NetBIOS Applications

Because NetBIOS was designed to operate in the open system environment of the typical 
personal computer, it does not have the concept of privileged or unprivileged applications.    
In many multi- user or multi-tasking operating systems applications are assigned privilege 
capabilities.    These capabilities limit the applications ability to acquire and use system 
resources.    For these systems it is important to allow casual applications, those with limited 
system privileges, and privileged applications, those with 'super-user' capabilities but access
to them and their required resources is restricted, to access NetBIOS services.    It is also 
important to allow a systems administrator to restrict certain NetBIOS resources to a 
particular NetBIOS application.    For example, a file server based on the NetBIOS services 
should be able to have names and TCP ports for sessions only it can use. 
A NetBIOS application needs at least two local resources to communicate with another 
NetBIOS application, a NetBIOS name for itself and, typically, a session.    A NetBIOS service 
cannot require that NetBIOS applications directly use privileged system resources. For 
example, many systems require privilege to use TCP and UDP ports with numbers less than 
1024.    This RFC requires reserved ports for the name and session servers of a NetBIOS 
service implementation.    It does not require the application to have direct access these 
reserved ports. 
For the name service, the manager of the local name table must have access to the NetBIOS
name service's reserved UDP port.    It needs to listen for name service UDP packets to 
defend and define its local names to the network.    However, this manager need not be a 
part of a user application in a system environment which has privilege restrictions on 
reserved ports. 
The internal name server can require certain privileges to add, delete, or use a certain 
name, if an implementer wants the restriction.    This restriction is independent of the 
operation of the NetBIOS service protocols and would not necessarily prevent the 
interoperation of that implementation with another implementation. 
The session server is required to own a reserved TCP port for session establishment.    
However, the ultimate TCP connection used to transmit and receive data does not have to 
be through that reserved port.    The RETARGET procedure the NetBIOS session to be shifted 
to another TCP connection, possibly through a different port at the called end. This port can 
be an unprivileged resource, with a value greater than 1023.    This facilitates casual 
applications. 
Alternately, the RETARGET mechanism allows the TCP port used for data transmission and 
reception to be a reserved port.    Consequently, an application wishing to have access to its 
ports maintained by the system administrator can use these restricted TCP ports.    This 
facilitates privileged applications. 
A particular implementation may wish to require further special privileges for session 
establishment, these could be associated with internal information.    It does not have to be 
based solely on TCP port allocation.    For example, a given NetBIOS name may only be used 
for sessions by applications with a certain system privilege level. 
The decision to use reserved or unreserved ports or add any additional name registration 
and usage authorization is a purely local implementation decision.    It is not required by the 
NetBIOS protocols specified in the RFC. 



RFC-1001 Protocol Standard for a NetBIOS Service - Implementation 
Considerations

TCP Versus Session Keep-Alives

The KEEP-ALIVE is a protocol element used to validate the existence of a connection.    A 
packet is sent to the remote connection partner to solicit a response which shows the 
connection is still functioning.    TCP KEEP-ALIVES are used at the TCP level on TCP 
connections while session KEEP-ALIVES are used on NetBIOS sessions. These protocol 
operations are always transparent to the connection user.    The user will only find out about 
a KEEP-ALIVE operation if it fails, therefore, if the connection is lost. 
The NetBIOS specification[2] requires the NetBIOS service to inform the session user if a 
session is lost when it is in a passive or active state.    Therefore,if the session user is only 
waiting for a receive operation and the session is dropped the NetBIOS service must inform 
the session user.    It cannot wait for a session send operation before it informs the user of 
the loss of the connection. 
This requirement stems from the management of scarce or volatile resources by a NetBIOS 
application.    If a particular user terminates a session with a server application by destroying
the client application or the NetBIOS service without a NetBIOS Hang Up, the server 
application will want to clean-up or free allocated resources. This server application if it only 
receives and then sends a response requires the notification of the session abort in the 
passive state. 
The standard definition of a TCP service cannot detect loss of a connection when it is in a 
passive state, waiting for a packet to arrive.    Some TCP implementations have added a 
KEEP-ALIVE operation which is interoperable with implementations without this feature. 
These implementations send a packet with an invalid sequence number to the connection 
partner.    The partner, by specification, must respond with a packet showing the correct 
sequence number of the connection.    If no response is received from the remote partner 
within a certain time interval then the TCP service assumes the connection is lost. 
Since many TCP implementations do not have this KEEP-ALIVE function an optional NetBIOS 
KEEP-ALIVE operation has been added to the NetBIOS session protocols.    The NetBIOS KEEP-
ALIVE uses the properties of TCP to solicit a response from the remote connection partner.    
A NetBIOS session message called KEEP-ALIVE is sent to the remote partner.    Since this 
results in TCP sending an IP packet to the remote partner, the TCP connection is active.    TCP
will discover if the TCP connection is lost if the remote TCP partner does not acknowledge 
the IP packet.    Therefore, the NetBIOS session service does not send a response to a session
KEEP ALIVE message.    It just throws it away.    The NetBIOS session service that transmits 
the KEEP ALIVE is informed only of the failure of the TCP connection.    It does not wait for a 
specific response message. 
A particular NetBIOS implementation should use KEEP-ALIVES if it is concerned with 
maintaining compatibility with the NetBIOS interface specification[2].    Compatibility is 
especially important if the implementation wishes to support existing NetBIOS applications, 
which typically require the session loss detection on their servers, or future applications 
which were developed for implementations with session loss detection. 



RFC-1001 Protocol Standard for a NetBIOS Service - Implementation 
Considerations

Retarget Algorithms

This section contains 2 suggestions for RETARGET algorithms.    They are called the "straight"
and "stack" methods.    The algorithm in the body of the RFC uses the straight method.    
Implementation of either algorithm must take into account the Session establishment 
maximum retry count.    The retry count is the maximum number of TCP connect operations 
allowed before a failure is reported. 
The straight method forces the session establishment procedure to begin a retry after a 
retargetting failure with the initial node returned from the name discovery procedure.    A 
retargetting failure is when a TCP connection attempt fails because of a time- out or a 
NEGATIVE SESSION RESPONSE is received with an error code specifying NOT LISTENING ON 
CALLED NAME.    If any other failure occurs the session establishment procedure should retry 
from the call to the name discovery procedure. 
A minimum of 2 retries, either from a retargetting or a name discovery failure.    This will give
the session service a chance to re-establish a NetBIOS Listen or, more importantly, allow the
NetBIOS scope, local name service or the NBNS, to re-learn the correct IP address of a 
NetBIOS name. 
The stack method operates similarly to the straight method.    However, instead of retrying 
at the initial node returned by the name discovery procedure, it restarts with the IP address 
of the last node which sent a SESSION RETARGET RESPONSE prior to the retargetting failure. 
To limit the stack method, any one host can only be tried a maximum of 2 times. 



RFC-1001 Protocol Standard for a NetBIOS Service - Implementation 
Considerations

NBDD Service

If the NBDD does not forward datagrams then don't provide Group and Broadcast NetBIOS 
datagram services to the NetBIOS user.    Therefore, ignore the implementation of the query 
request and, when get a negative response, acquiring the membership list of IP addresses 
and sending the datagram as a unicast to each member. 



RFC-1001 Protocol Standard for a NetBIOS Service - Implementation 
Considerations

Use of NetBIOS Datagrams

Certain existing NetBIOS applications use NetBIOS datagrams as a foundation for their own 
connection-oriented protocols.    This can cause excessive NetBIOS name query activity and 
place a substantial burden on the network, server nodes, and other end- nodes.    It is 
recommended that this practice be avoided in new applications. 



References
[1]    "Protocol Standard For a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", RFC 1002, March 1987.
[2]    IBM Corp., "IBM PC Network Technical Reference Manual", No.
6322916, First Edition, September 1984.
[3]    J. Postel (Ed.), "Transmission Control Protocol", RFC 793,
September 1981.
[4]    MIL-STD-1778
[5]    J. Postel, "User Datagram Protocol", RFC 768, 28 August
1980.
[6]    J. Reynolds, J. Postel, "Assigned Numbers", RFC 990,
November 1986.
[7]    J.    Postel, "Internet Protocol", RFC 791, September 1981.
[8]    J. Mogul, "Internet Subnets", RFC 950, October 1984
[9]    J.    Mogul, "Broadcasting Internet Datagrams in the Presence
of Subnets", RFC 922, October 1984.
[10] J.    Mogul, "Broadcasting Internet Datagrams", RFC 919,
October 1984.
[11] P. Mockapetris, "Domain Names - Concepts and Facilities",
RFC 882, November 1983.
[12] P. Mockapetris, "Domain Names - Implementation and
Specification", RFC 883, November 1983.
[13] P. Mockapetris, "Domain System Changes and Observations",
RFC 973, January 1986.
[14] C. Partridge, "Mail Routing and the Domain System", RFC 974,
January 1986.
[15] S. Deering, D. Cheriton, "Host Groups: A Multicast Extension
to the Internet Protocol", RFC 966, December 1985.
[16] S. Deering, "Host Extensions for IP Multicasting", RFC 988,
July 1986.



RFC-1002 Protocol Standard for a NetBIOS Service
on a TCP/UDP Transport
Detailed Specifications

March 1987

Abstract
This RFC defines an elective standard protocol to support NetBIOS services in a TCP/IP 
environment.    Both local network and internet operation are supported.    Various node types
are defined to accommodate local and internet topologies and to allow operation with or 
without the use of IP broadcast. 
This RFC gives the detailed specifications of the NetBIOS-over-TCP packets, protocols, and 
defined constants and variables.    A more general overview is found in a companion RFC, 
"Protocol Standard For a NetBIOS Service on a TCP/UDP Transport: Concepts and Methods" 
[RFC-1001]. 

Status of this Memo
Acknowledgements
Introduction
Packet Descriptions

Name Format
Name Service Packets
Session Service Packets
Datagram Service Packets

Protocol Descriptions
Name Service Protocols
Session Service Protocolsh1002_SessionProtocolsIdx
NetBIOS Datagram Service Protocols

Defined Constants And Variables



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Name Service Packets

General Format of Name Service Packets
Header
Question Section
Resource Record

Name Registration Request
Name Overwrite Request & Demand
Name Refresh Request
Positive Name Registration Response
Negative Name Registration Response
End-Node Challenge Registration Response
Name Conflict Demand
Name Release Request & Demand
Positive Name Release Response
Negative Name Release Response
Name Query Request
Positive Name Query Response
Negative Name Query Response
Redirect Name Query Response
Wait For Acknowledgement (Wack) Response
Node Status Request
Node Status Response



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Session Service Packets

General Format of Session Packets
Session Request Packet
Positive Session Response Packet
Negative Session Response Packet
Session Retarget Response Packet
Session Message Packet
Session Keep Alive Packet



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Datagram Service Packets

NetBIOS Datagram Header
Direct_Unique, Direct_Group, & Broadcast Datagram
Datagram Error Packet
Datagram Query Request
Datagram Positive and Negative Query Response



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Name Service Protocols

B-Node Activity
B-Node Add Name
B-Node Add_Group Name
B-Node Find_Name
B Node Name Release
B-Node Incoming Packet Processing

P-Node Activity
P-Node Add_Name
P-Node Add Group Name
P-Node Find Name
P-Node Delete_Name
P-Node Incoming Packet Processing
P-Node Timer Initiated Processing

M-Node Activity
M-Node Add Name
M-Node Add Group Name
M-Node Find Name
M-Node Delete Name
M-Node Incoming Packet Processing
M-Node Timer Initiated Processing

NBNS Activity
NBNS Incoming Packet Processing
NBNS Timer Initiated Processing



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Session Service Protocols

Session Establishment Protocols
User Request Processing
Received Packet Processing

Session Data Transfer Protocols
User Request Processing
Received Packet Processing
Processing Initiated by Timer

Session Termination Protocols
User Request Processing
Reception Indication Processing



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

NetBIOS Datagram Service Protocols

B Node Transmission of NetBIOS Datagrams
P and M Node Transmission of NetBIOS Datagrams
Reception of NetBIOS Datagrams by All Nodes
Protocols for the NBDD



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Status of This Memo

This RFC specifies an elective standard for the DARPA Internet community.    Since this topic 
is new to the Internet community, discussions and suggestions are specifically requested. 
Please send written comments to:

Karl Auerbach
Epilogue Technology Corporation
P.O. Box 5432
Redwood City, CA      94063

Please send online comments to:
Avnish Aggarwal
Internet: mtxinu!excelan!avnish@ucbvax.berkeley.edu
Usenet:      ucbvax!mtxinu!excelan!avnish

Distribution of this memorandum is unlimited.



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Acknowledgements

This RFC has been developed under the auspices of the Internet Activities Board. 
The following individuals have contributed to the development of this RFC: 

Avnish Aggarwal Arvind Agrawal Lorenzo Aguilar
Geoffrey Arnold Karl Auerbach K. Ramesh Babu
Keith Ball Amatzia Ben-Artzi Vint Cerf
Richard Cherry David Crocker Steve Deering
Greg Ennis Steve Holmgren Jay Israel
David Kaufman Lee LaBarre James Lau
Dan Lynch Gaylord Miyata David Stevens
Steve Thomas Ishan Wu

The system proposed by this RFC does not reflect any existing Netbios-over-TCP 
implementation.    However, the design incorporates considerable knowledge obtained from 
prior implementations.    Special thanks goes to the following organizations which have 
provided this invaluable information: 

CMC/Syros Excelan Sytek Ungermann-Bass



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Introduction

This RFC contains the detailed packet formats and protocol specifications for NetBIOS-over-
TCP.    This RFC is a companion to RFC 1001, "Protocol Standard For a NetBIOS Service on a 
TCP/UDP Transport: Concepts and Methods" [RFC-1001]. 



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Packet Descriptions

Bit and byte ordering are defined by the most recent version of "Assigned Numbers" [RFC-
1060]. 

Name Format
Name Service Packets
Session Service Packets
Datagram Service Packets



RFC-1002 Protocol Standard for a NetBIOS Service - Packet Descriptions

Name Format

The NetBIOS name representation in all NetBIOS packets (for NAME, SESSION, and 
DATAGRAM services) is defined in the Domain Name Service RFC 883[RFC-833] as 
"compressed" name messages.    This format is called "second-level encoding" in the section 
entitled "Representation of NetBIOS Names" in the Concepts and Methods document. 
For ease of description, the first two paragraphs from page 31, the section titled "Domain 
name representation and compression", of RFC 883 are replicated here: 

Domain names messages are expressed in terms of a sequence of labels.    
Each label is represented as a one octet length field followed by that number 
of octets.    Since every domain name ends with the null label of the root, a 
compressed domain name is terminated by a length byte of zero.    The high 
order two bits of the length field must be zero, and the remaining six bits of 
the length field limit the label to 63 octets or less. 
To simplify implementations, the total length of label octets and label length 
octets that make up a domain name is restricted to 255 octets or less. 

The following is the uncompressed representation of the NetBIOS name "FRED ", which is the
4 ASCII characters, F, R, E, D, followed by 12 space characters (0x20).    This name has the 
SCOPE_ID: "NETBIOS.COM" 

EGFCEFEECACACACACACACACACACACACA.NETBIOS.COM
This uncompressed representation of names is called "first-level encoding" in the section 
entitled "Representation of NetBIOS Names" in the Concepts and Methods document. 
The following is a pictographic representation of the compressed representation of the 
previous uncompressed Domain Name representation. 
                        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      0x20     |    E (0x45)   |    G (0x47)   |    F (0x46)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    C (0x43)   |    E (0x45)   |    F (0x46)   |    E (0x45)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    E (0x45)   |    C (0x43)   |    A (0x41)   |    C (0x43)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    A (0x41)   |    C (0x43)   |    A (0x41)   |    C (0x43)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    A (0x41)   |    C (0x43)   |    A (0x41)   |    C (0x43)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    A (0x41)   |    C (0x43)   |    A (0x41)   |    C (0x43)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    A (0x41)   |    C (0x43)   |    A (0x41)   |    C (0x43)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    A (0x41)   |    C (0x43)   |    A (0x41)   |    C (0x43)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    A (0X41)   |      0x07     |    N (0x4E)   |    E (0x45)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    T (0x54)   |    B (0x42)   |    I (0x49)   |    O (0x4F)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    S (0x53)   |      0x03     |    C (0x43)   |    O (0x4F)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   |    M (0x4D)   |      0x00     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Each section of a domain name is called a label [7 (page 31)].    A label can be a maximum of
63 bytes.    The first byte of a label in compressed representation is the number of bytes in 
the label.    For the above example, the first 0x20 is the number of bytes in the left-most 
label, EGFCEFEECACACACACACACACACACACACA, of the domain name.    The bytes following 
the label length count are the characters of the label.    The following labels are in sequence 
after the first label, which is the encoded NetBIOS name, until a zero (0x00) length count.    
The zero length count represents the root label, which is always null. 
A label length count is actually a 6-bit field in the label length field.    The most significant 2 
bits of the field, bits 7 and 6, are flags allowing an escape from the above compressed 
representation. If bits 7 and 6 are both set (11), the following 14 bits are an offset pointer 
into the full message to the actual label string from another domain name that belongs in 
this name.    This label pointer allows for a further compression of a domain name in a 
packet. 
NetBIOS implementations can only use label string pointers in Name Service packets.    They 
cannot be used in Session or Datagram Service packets. 
The other two possible values for bits 7 and 6 (01 and 10) of a label length field are reserved
for future use by RFC 883[2 (page 32)]. 
Note that the first octet of a compressed name must contain one of the following bit 
patterns.    (An "x" indicates a bit whose value may be either 0 or 1.): 

00100000 -    Netbios name, length must be 32 (decimal)
11xxxxxx -    Label string pointer
10xxxxxx -    Reserved
01xxxxxx -    Reserved



RFC-1002 Protocol Standard for a NetBIOS Service - Packet Descriptions

Name Service Packets

General Format of Name Service Packets
Header
Question Section
Resource Record

Name Registration Request
Name Overwrite Request & Demand
Name Refresh Request
Positive Name Registration Response
Negative Name Registration Response
End-Node Challenge Registration Response
Name Conflict Demand
Name Release Request & Demand
Positive Name Release Response
Negative Name Release Response
Name Query Request
Positive Name Query Response
Negative Name Query Response
Redirect Name Query Response
Wait For Acknowledgement (Wack) Response
Node Status Request
Node Status Response



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

General Format Of Name Service Packets

The NetBIOS Name Service packets follow the packet structure defined in the Domain Name 
Service (DNS) RFC 883 [7 (pg 26-31)].    The structures are compatible with the existing DNS 
packet formats, however, additional types and codes have been added to work with 
NetBIOS. 
If Name Service packets are sent over a TCP connection they are preceded by a 16 bit 
unsigned integer representing the length of the Name Service packet. 

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+ ------                                                ------- +
|                            HEADER                             |
+ ------                                                ------- +
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                       QUESTION ENTRIES                        /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                    ANSWER RESOURCE RECORDS                    /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                  AUTHORITY RESOURCE RECORDS                   /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                  ADDITIONAL RESOURCE RECORDS                  /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Header

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           | OPCODE  |   NM_FLAGS  | RCODE |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          QDCOUNT              |           ANCOUNT             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          NSCOUNT              |           ARCOUNT             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Field                          Description  
NAME_TRN_ID Transaction ID for Name Service Transaction.

Requestor places a unique value for each active transaction.    
Responder puts NAME_TRN_ID value from request packet in 
response packet. 

OPCODE Packet type code, see table below.
NM_FLAGS Flags for operation, see table below.
RCODE Result codes of request.    Table of RCODE values for each 

response packet below.
QDCOUNT Unsigned 16 bit integer specifying the number of entries in the 

question section of a Name 
Service packet.    Always zero (0) for responses. Must be non-zero for all 
NetBIOS Name requests. 

ANCOUNT Unsigned 16 bit integer specifying the number of resource 
records in the answer section of a Name Service packet. 

NSCOUNT Unsigned 16 bit integer specifying the number of resource 
records in the authority section of a Name Service packet. 

ARCOUNT Unsigned 16 bit integer specifying the number of resource 
records in the additional records section of a Name Service 
packet. 

The OPCODE field is defined as:
     0   1   2   3   4
   +---+---+---+---+---+
   | R |    OPCODE     |
   +---+---+---+---+---+

Symbol      Bit(s)       Description  
OPCODE 1-4 Operation specifier:

0 = query
5 = registration
6 = release
7 = WACK
8 = refresh



R 0 RESPONSE flag:
if bit == 0 then request packet
if bit == 1 then response packet.

The NM_FLAGS field is defined as:
     0   1   2   3   4   5   6
   +---+---+---+---+---+---+---+
   |AA |TC |RD |RA | 0 | 0 | B |
   +---+---+---+---+---+---+---+

      Symbol      Bit(s)       Description  

B 6 Broadcast Flag.
= 1: packet was broadcast or multicast
= 0: unicast

RA 3 Recursion Available Flag.
Only valid in responses from a NetBIOS Name Server 
-- must be zero in all other responses. 
If one (1) then the NBNS supports recursive query, 
registration, and release. 
If zero (0) then the end-node must iterate for query 
and challenge for registration. 

RD 2 Recursion Desired Flag.
May only be set on a request to a NetBIOS Name 
Server. 
The NBNS will copy its state into the response packet. 
If one (1) the NBNS will iterate on the query, 
registration, or release. 

TC 1 Truncation Flag.
Set if this message was truncated because the 
datagram carrying it would be greater than 576 bytes 
in length.    Use TCP to get the information from the 
NetBIOS Name Server. 

AA 0 Authoritative Answer flag.
Must be zero (0) if R flag of OPCODE is zero (0). 
If R flag is one (1) then if AA is one (1) then the node 
responding is an authority for the domain name. 
End nodes responding to queries always set this bit in 
responses. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Question Section

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                         QUESTION_NAME                         /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         QUESTION_TYPE         |        QUESTION_CLASS         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Field                          Description  
QUESTION_NAME The compressed name representation of the NetBIOS 

name for the request. 
QUESTION_TYPE The type of request.    The values for this field are 

specified for each request. 
QUESTION_CLASS      The class of the request.    The values for this field are 

specified for each request. 
QUESTION_TYPE is defined as:
      Symbol      Value       Description:  

NB 0x0020 NetBIOS general Name Service Resource Record
NBSTAT 0x0021 NetBIOS NODE STATUS Resource Record (See NODE STATUS REQUEST) 

QUESTION_CLASS is defined as:
      Symbol      Value       Description:  

IN 0x0001 Internet class



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Resource Record

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           RR_TYPE             |          RR_CLASS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           RDLENGTH            |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
/                                                               /
/                             RDATA                             /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Field                Description  
RR_NAME The compressed name representation of the NetBIOS name 

corresponding to this resource record. 
RR_TYPE Resource record type code
RR_CLASS Resource record class code
TTL The Time To Live of a the resource record's name. 
RDLENGTH Unsigned 16 bit integer that specifies the number of bytes in the 

RDATA field. 
RDATA RR_CLASS and RR_TYPE dependent field.    Contains the resource 

information for the NetBIOS name. 

RESOURCE RECORD RR_TYPE field definitions:
      Symbol       Value     Description:  

A 0x0001 IP address Resource Record (See REDIRECT NAME QUERY 
RESPONSE) 

NS 0x0002 Name Server Resource Record (See REDIRECT NAME QUERY 
RESPONSE) 

NULL 0x000A NULL Resource Record (See WAIT FOR ACKNOWLEDGEMENT 
RESPONSE) 

NB 0x0020 NetBIOS general Name Service Resource Record (See NB_FLAGS
and NB_ADDRESS, below) 

NBSTAT 0x0021 NetBIOS NODE STATUS Resource Record (See NODE STATUS 
RESPONSE) 



RESOURCE RECORD RR_CLASS field definitions:
      Symbol       Value     Description:  

IN 0x0001 Internet class

NB_FLAGS field of the RESOURCE RECORD RDATA field for RR_TYPE of "NB": 
                                          1   1   1   1   1   1
  0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| G |  ONT  |                RESERVED                           |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Symbol       Bit(s)      Description:  
RESERVED 3-15 Reserved for future use.    Must be zero (0).

ONT 1,2 Owner Node Type:
00 = B node
01 = P node
10 = M node
11 = Reserved for future use

For registration requests this is the claimant's type. 
For responses this is the actual owner's type. 

G 0 Group Name Flag.
If one (1) then the RR_NAME is a GROUP NetBIOS name. 
If zero (0) then the RR_NAME is a UNIQUE NetBIOS name. 

The NB_ADDRESS field of the RESOURCE RECORD RDATA field for RR_TYPE of "NB" is the IP 
address of the name's owner. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Name Registration Request

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |0|  0x5  |0|0|1|0|0 0|B|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0001               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                         QUESTION_NAME                         /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |        IN (0x0001)            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |          NB_FLAGS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          NB_ADDRESS                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Since the RR_NAME is the same name as the QUESTION_NAME, the RR_NAME representation
must use pointers to the QUESTION_NAME name's labels to guarantee the length of the 
datagram is less than the maximum 576 bytes.    See section above on name formats and 
also page 31 and 32 of RFC 883, Domain Names - Implementation and Specification, for a 
complete description of compressed name label pointers. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Name Overwrite Request & Demand

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |0|  0x5  |0|0|0|0|0 0|B|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0001               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                         QUESTION_NAME                         /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |        IN (0x0001)            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |          NB_FLAGS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          NB_ADDRESS                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Name Refresh Request

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |0|  0x9  |0|0|0|0|0 0|B|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0001               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                         QUESTION_NAME                         /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |        IN (0x0001)            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |          NB_FLAGS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          NB_ADDRESS                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Positive Name Registration Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x5  |1|0|1|1|0 0|0|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |          NB_FLAGS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          NB_ADDRESS                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Negative Name Registration Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x5  |1|0|1|1|0 0|0| RCODE |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |          NB_FLAGS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          NB_ADDRESS                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RCODE field values:
      Symbol      Value       Description:  

FMT_ERR 0x1 Format Error.    Request was invalidly formatted. 
SRV_ERR 0x2 Server failure.    Problem with NBNS, cannot process name. 
IMP_ERR 0x4 Unsupported request error.    Allowable only for challenging 

NBNS when gets an Update type registration request. 
RFS_ERR 0x5 Refused error.    For policy reasons server will not register this 

name from this host. 
ACT_ERR 0x6 Active error.    Name is owned by another node.
CFT_ERR 0x7 Name in conflict error.    A UNIQUE name is owned by more than 

one node. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

End-Node Challenge Registration Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x5  |1|0|1|0|0 0|0|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |          NB_FLAGS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          NB_ADDRESS                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Name Conflict Demand

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x5  |1|0|1|1|0 0|0|  0x7  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          0x00000000                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |0|ONT|0|     0x000             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          0x00000000                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

This packet is identical to a NEGATIVE NAME REGISTRATION RESPONSE with RCODE = 
CFT_ERR. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Name Release Request & Demand

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |0|  0x6  |0|0|0|0|0 0|B|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0001               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                         QUESTION_NAME                         /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |        IN (0x0001)            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          0x00000000                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |          NB_FLAGS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          NB_ADDRESS                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Since the RR_NAME is the same name as the QUESTION_NAME, the RR_NAME representation
must use label string pointers to the QUESTION_NAME labels to guarantee the length of the 
datagram is less than the maximum 576 bytes.    This is the same condition as with the 
NAME REGISTRATION REQUEST. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Positive Name Release Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x6  |1|0|0|0|0 0|0|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |          NB_FLAGS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          NB_ADDRESS                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Negative Name Release Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x6  |1|0|0|0|0 0|0| RCODE |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0006              |          NB_FLAGS             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          NB_ADDRESS                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RCODE field values:
      Symbol      Value       Description:  

FMT_ERR 0x1 Format Error.    Request was invalidly formatted. 
SRV_ERR 0x2 Server failure.    Problem with NBNS, cannot process name. 
RFS_ERR 0x5 Refused error.    For policy reasons server will not release this 

name from this host. 
ACT_ERR 0x6 Active error.    Name is owned by another node. Only that node 

may release it.    A NetBIOS Name Server can optionally allow a 
node to release a name it does not own.    This would facilitate 
detection of inactive names for nodes that went down silently. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Name Query Request

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |0|  0x0  |0|0|1|0|0 0|B|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0001               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                         QUESTION_NAME                         /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |        IN (0x0001)            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Positive Name Query Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x0  |1|T|1|?|0 0|0|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NB (0x0020)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           RDLENGTH            |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
|                                                               |
/                       ADDR_ENTRY ARRAY                        /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The ADDR_ENTRY ARRAY a sequence of zero or more ADDR_ENTRY records.    Each 
ADDR_ENTRY record represents an owner of a name. For group names there may be multiple
entries.    However, the list may be incomplete due to packet size limitations.    Bit 22, "T", 
will be set to indicate truncated data. 
Each ADDR_ENTRY has the following format:

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          NB_FLAGS             |          NB_ADDRESS           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   NB_ADDRESS (continued)      |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------------------+



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Negative Name Query Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x0  |1|0|1|?|0 0|0| RCODE |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NULL (0x000A)       |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          0x00000000                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0000              |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------------------+

RCODE field values:
      Symbol      Value       Description  

FMT_ERR 0x1 Format Error.    Request was invalidly formatted. 
SRV_ERR 0x2 Server failure.    Problem with NBNS, cannot process name. 
NAM_ERR 0x3 Name Error.    The name requested does not exist. 
IMP_ERR 0x4 Unsupported request error.    Allowable only for challenging 

NBNS when gets an Update type registration request. 
RFS_ERR 0x5 Refused error.    For policy reasons server will not register this 

name from this host. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Redirect Name Query Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x0  |0|0|1|0|0 0|0|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0001               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           NS (0x0002)         |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           RDLENGTH            |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
|                                                               |
/                            NSD_NAME                           /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           A (0x0001)          |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             0x0004            |           NSD_IP_ADDR         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     NSD_IP_ADDR, continued    |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------------------+

An end node responding to a NAME QUERY REQUEST always responds with the AA and RA 
bits set for both the NEGATIVE and POSITIVE NAME QUERY RESPONSE packets.    An end node
never sends a REDIRECT NAME QUERY RESPONSE packet. 
When the requestor receives the REDIRECT NAME QUERY RESPONSE it must reiterate the 
NAME QUERY REQUEST to the NBNS specified by the NSD_IP_ADDR field of the A type 
RESOURCE RECORD in the ADDITIONAL section of the response packet.    This is an optional 
packet for the NBNS. 
The NSD_NAME and the RR_NAME in the ADDITIONAL section of the response packet are the 
same name.    Space can be optimized if label string pointers are used in the RR_NAME which
point to the labels in the NSD_NAME. 



The RR_NAME in the AUTHORITY section is the name of the domain the NBNS called by 
NSD_NAME has authority over. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Wait for Acknowledgement (Wack) Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x7  |1|0|0|0|0 0|0|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          NULL (0x0020)        |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              TTL                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           0x0002              | OPCODE  |   NM_FLAGS  |  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The NAME_TRN_ID of the WACK RESPONSE packet is the same NAME_TRN_ID of the request 
that the NBNS is telling the requestor to wait longer to complete.    The RR_NAME is the 
name from the request, if any.    If no name is available from the request then it is a null 
name, single byte of zero. 
The TTL field of the ResourceRecord is the new time to wait, in seconds, for the request to 
complete.    The RDATA field contains the OPCODE and NM_FLAGS of the request. 
A TTL value of 0 means that the NBNS can not estimate the time it may take to complete a 
response. 



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Node Status Request

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |0|  0x0  |0|0|0|0|0 0|B|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0001               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                         QUESTION_NAME                         /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NBSTAT (0x0021)       |        IN (0x0001)            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Packets

Node Status Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_TRN_ID           |1|  0x0  |1|0|0|0|0 0|0|  0x0  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0001              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          0x0000               |           0x0000              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                            RR_NAME                            /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        NBSTAT (0x0021)        |         IN (0x0001)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          0x00000000                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          RDLENGTH             |   NUM_NAMES   |               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               +
|                                                               |
+                                                               +
/                         NODE_NAME ARRAY                       /
+                                                               +
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+                                                               +
/                           STATISTICS                          /
+                                                               +
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The NODE_NAME ARRAY is an array of zero or more NUM_NAMES entries of NODE_NAME 
records.    Each NODE_NAME entry represents an active name in the same NetBIOS scope as 
the requesting name in the local name table of the responder.    RR_NAME is the requesting 
name. 

NODE_NAME Entry:

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+---                                                         ---+
|                                                               |
+---                    NETBIOS FORMAT NAME                  ---+
|                                                               |
+---                                                         ---+
|                                                               |



+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         NAME_FLAGS            |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------------------+

The NAME_FLAGS field:
                                          1   1   1   1   1   1
  0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| G |  ONT  |DRG|CNF|ACT|PRM|          RESERVED                 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

The NAME_FLAGS field is defined as:
      Symbol      Bit(s)       Description:  

RESERVED 7-15 Reserved for future use.    Must be zero (0).
PRM 6 Permanent Name Flag.    If one (1) then entry is for the 

permanent node name.    Flag is zero (0) for all other names. 
ACT 5 Active Name Flag.    All entries have this flag set to one (1). 
CNF 4 Conflict Flag.    If one (1) then name on this node is in conflict. 
DRG 3 Deregister Flag.    If one (1) then this name is in the process of 

being deleted. 
ONT 1,2 Owner Node Type:

00 = B node
01 = P node
10 = M node
11 = Reserved for future use

G 0 Group Name Flag.
If one (1) then the name is a GROUP NetBIOS name. 
If zero (0) then it is a UNIQUE NetBIOS name.

STATISTICS Field of the NODE STATUS RESPONSE:

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               UNIT_ID (Unique unit ID)                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       UNIT_ID,continued       |    JUMPERS    |  TEST_RESULT  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       VERSION_NUMBER          |      PERIOD_OF_STATISTICS     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       NUMBER_OF_CRCs          |     NUMBER_ALIGNMENT_ERRORS   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       NUMBER_OF_COLLISIONS    |        NUMBER_SEND_ABORTS     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       NUMBER_GOOD_SENDS                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      NUMBER_GOOD_RECEIVES                     |



+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       NUMBER_RETRANSMITS      | NUMBER_NO_RESOURCE_CONDITIONS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  NUMBER_FREE_COMMAND_BLOCKS   |  TOTAL_NUMBER_COMMAND_BLOCKS  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|MAX_TOTAL_NUMBER_COMMAND_BLOCKS|    NUMBER_PENDING_SESSIONS    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  MAX_NUMBER_PENDING_SESSIONS  |  MAX_TOTAL_SESSIONS_POSSIBLE  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   SESSION_DATA_PACKET_SIZE    |                               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------------------+



RFC-1002 Protocol Standard for a NetBIOS Service - Packet Descriptions

Session Service Packets

General Format of Session Packets
Session Request Packet
Positive Session Response Packet
Negative Session Response Packet
Session Retarget Response Packet
Session Message Packet
Session Keep Alive Packet



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

General Format of Session Packets

All session service messages are sent over a TCP connection.
All session packets are of the following general structure:

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      TYPE     |     FLAGS     |            LENGTH             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/               TRAILER (Packet Type Dependent)                 /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The TYPE, FLAGS, and LENGTH fields are present in every session packet. 
The LENGTH field is the number of bytes following the LENGTH field.    In other words, 
LENGTH is the combined size of the TRAILER field(s).    For example, the POSITIVE SESSION 
RESPONSE packet always has a LENGTH field value of zero (0000) while the RETARGET 
SESSION RESPONSE always has a LENGTH field value of six (0006). 
One of the bits of the FLAGS field acts as an additional, high- order bit for the LENGTH field.   
Thus the cumulative size of the trailer field(s) may range from 0 to 128K bytes. 
Session Packet Types (in hexidecimal):

00 -    SESSION MESSAGE
81 -    SESSION REQUEST
82 -    POSITIVE SESSION RESPONSE
83 -    NEGATIVE SESSION RESPONSE
84 -    RETARGET SESSION RESPONSE
85 -    SESSION KEEP ALIVE

Bit definitions of the FLAGS field:
     0   1   2   3   4   5   6   7
   +---+---+---+---+---+---+---+---+
   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | E |
   +---+---+---+---+---+---+---+---+

      Symbol      Bit(s)       Description  
E 7 Length extension, used as an additional, high-order bit on the 

LENGTH field. 
RESERVED 0-6 Reserved, must be zero (0)



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

Session Request Packet

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      TYPE     |     FLAGS     |            LENGTH             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                          CALLED NAME                          /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                          CALLING NAME                         /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

Positive Session Response Packet

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      TYPE     |     FLAGS     |            LENGTH             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

Negative Session Response Packet

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      TYPE     |     FLAGS     |            LENGTH             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   ERROR_CODE  |                                               |
+-+-+-+-+-+-+-+-+-----------------------------------------------+

NEGATIVE SESSION RESPONSE packet error code values (in hexidecimal): 
80 -    Not listening on called name
81 -    Not listening for calling name
82 -    Called name not present
83 -    Called name present, but insufficient resources
8F -    Unspecified error



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

Session Retarget Response Packet

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      TYPE     |     FLAGS     |            LENGTH             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      RETARGET_IP_ADDRESS                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           PORT                |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------------------+



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

Session Message Packet

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      TYPE     |     FLAGS     |            LENGTH             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                                                               /
/                           USER_DATA                           /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

Session Keep Alive Packet

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      TYPE     |     FLAGS     |            LENGTH             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Packet Descriptions

Datagram Service Packets

NetBIOS Datagram Header
Direct_Unique, Direct_Group, & Broadcast Datagram
Datagram Error Packet
Datagram Query Request
Datagram Positive and Negative Query Response



RFC-1002 Protocol Standard for a NetBIOS Service - Datagram Service Packets

NetBIOS Datagram Header

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   MSG_TYPE    |     FLAGS     |           DGM_ID              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           SOURCE_IP                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          SOURCE_PORT          |          DGM_LENGTH           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         PACKET_OFFSET         |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------------------------+

MSG_TYPE values (in hexidecimal):
10 -    DIRECT_UNIQUE DATAGRAM
11 -    DIRECT_GROUP DATAGRAM
12 -    BROADCAST DATAGRAM
13 -    DATAGRAM ERROR
14 -    DATAGRAM QUERY REQUEST
15 -    DATAGRAM POSITIVE QUERY RESPONSE
16 -    DATAGRAM NEGATIVE QUERY RESPONSE

Bit definitions of the FLAGS field:
     0   1   2   3   4   5   6   7
   +---+---+---+---+---+---+---+---+
   | 0 | 0 | 0 | 0 |  SNT  | F | M |
   +---+---+---+---+---+---+---+---+

      Symbol      Bit(s)       Description  
M 7 MORE flag, If set then more NetBIOS datagram fragments follow.
F 6 FIRST packet flag,    If set then this is first (and possibly only) 

fragment of NetBIOS datagram 
SNT 4,5 Source End-Node type:

00 = B node
01 = P node
10 = M node
11 = NBDD

RESERVED 0-3 Reserved, must be zero (0)



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

Direct_Unique, Direct_Group, & Broadcast Datagram

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   MSG_TYPE    |     FLAGS     |           DGM_ID              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           SOURCE_IP                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          SOURCE_PORT          |          DGM_LENGTH           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         PACKET_OFFSET         |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
|                                                               |
/                          SOURCE_NAME                          /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                       DESTINATION_NAME                        /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
/                           USER_DATA                           /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

Datagram Error Packet

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   MSG_TYPE    |     FLAGS     |           DGM_ID              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           SOURCE_IP                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          SOURCE_PORT          |  ERROR_CODE   |               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---------------+

ERROR_CODE values (in hexidecimal):
82 -    DESTINATION NAME NOT PRESENT
83 -    INVALID SOURCE NAME FORMAT
84 -    INVALID DESTINATION NAME FORMAT



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

4.4.4.    Datagram Query Request

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   MSG_TYPE    |     FLAGS     |           DGM_ID              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           SOURCE_IP                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          SOURCE_PORT          |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
|                                                               |
/                       DESTINATION_NAME                        /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Session Service Packets

Datagram Positive and Negative Query Response

                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   MSG_TYPE    |     FLAGS     |           DGM_ID              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           SOURCE_IP                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          SOURCE_PORT          |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
|                                                               |
/                       DESTINATION_NAME                        /
/                                                               /
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Protocol Descriptions

Name Service Protocols
Session Service Protocolsh1002_SessionProtocols
NetBIOS Datagram Service Protocols



RFC-1002 Protocol Standard for a NetBIOS Service - Protocol Descriptions

Name Service Protocols

A REQUEST packet is always sent to the well known UDP port - NAME_SERVICE_UDP_PORT.    
The destination address is normally either the IP broadcast address or the address of the 
NBNS - the address of the NBNS server it set up at initialization time.    In rare cases, a 
request packet will be sent to an end node, e.g.    a NAME QUERY REQUEST sent to 
"challenge" a node. 
A RESPONSE packet is always sent to the source UDP port and source IP address of the 
request packet. 
A DEMAND packet must always be sent to the well known UDP port - 
NAME_SERVICE_UDP_PORT.    There is no restriction on the target IP address. 
Terms used in this section:
tid Transaction ID.    This is a value composed from the requestor's IP address and 

a unique 16 bit value generated by the originator of the transaction. 
B-Node Activity
P-Node Activity
M-Node Activity
NBNS Activity



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Protocols

B-Node Activity

B-Node Add Name
B-Node Add_Group Name
B-Node Find_Name
B Node Name Release
B-Node Incoming Packet Processing



RFC-1002 Protocol Standard for a NetBIOS Service - B-Node Activity

B-Node Add Name

PROCEDURE add_name(newname)
      /*
        * Host initiated processing for a B node
        */
BEGIN

REPEAT
/* build name service packet */

ONT = B_NODE; /* broadcast node */
G = UNIQUE;      /* unique name */
TTL = 0;

broadcast NAME REGISTRATION REQUEST packet;

/*
 * remote node(s) will send response packet
 * if applicable
 */

pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or retransmit count has been exceeded 
IF no response packet was received THEN
BEGIN /* no response */

/*
 * build packet
 */

ONT = B_NODE; /* broadcast node */
G = UNIQUE;      /* unique name */
TTL = 0;
/*
 * Let other nodes known you have the name
 */

broadcast NAME UPDATE REQUEST packet;
/* name can be added to local name table */
return success;

END /* no response */
ELSE
BEGIN /* got response */

/*
 * Match return transaction id
 * against tid sent in request
 */

        IF NOT response tid = request tid THEN
        BEGIN

ignore response packet;



        END
        ELSE
        CASE packet type OF

        NEGATIVE NAME REGISTRATION RESPONSE:

        return failure; /* name cannot be added */

        POSITIVE NAME REGISTRATION RESPONSE:
        END-NODE CHALLENGE NAME REGISTRATION RESPONSE:

        /*
* B nodes should normally not get this
* response.
*/

ignore packet;
        END /* case */;
END /* got response */

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - B-Node Activity

B-Node Add_Group Name

PROCEDURE add_group_name(newname)

      /*
        * Host initiated processing for a B node
        */

BEGIN
/*
 * same as for a unique name with the
 * exception that the group bit (G) must
 * be set in the request packets.
 */
...
G = GROUP;
...
...

/*
 * broadcast request ...
 */

END



RFC-1002 Protocol Standard for a NetBIOS Service - B-Node Activity

B-Node Find_Name

PROCEDURE find_name(name)

      /*
        * Host initiated processing for a B node
        */

BEGIN

REPEAT
/*
 * build packet
 */
ONT = B;
TTL = 0;
G = DONT CARE;

broadcast NAME QUERY REQUEST packet;

/*
 * a node might send response packet
 */

pause(BCAST_REQ_RETRY_TIMEOUT);
UNTIL response packet received OR

max transmit threshold exceeded

IF no response packet received THEN
return failure;

ELSE
IF NOT response tid = request tid THEN

ignore packet;
ELSE
CASE packet type OF
POSITIVE NAME QUERY RESPONSE:

/*
 * Start a timer to detect conflict.
 *
 * Be prepared to detect conflict if
 * any more response packets are received.
 *
 */

save response as authoritative response;
start_timer(CONFLICT_TIMER);
return success;

NEGATIVE NAME QUERY RESPONSE:
REDIRECT NAME QUERY RESPONSE:

/*



 * B Node should normally not get either
 * response.
 */

 ignore response packet;

END /* case */
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - B-Node Activity

B Node Name Release

PROCEDURE delete_name (name)
BEGIN

REPEAT

/*
 * build packet
 */
...

/*
 * send request
 */

broadcast NAME RELEASE REQUEST packet;

/*
 * no response packet expected
 */

pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL retransmit count has been exceeded
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - B-Node Activity

B-Node Incoming Packet Processing

Following processing is done when broadcast or unicast packets are received at the 
NAME_SERVICE_UDP_PORT. 
PROCEDURE process_incoming_packet(packet)
      /*
        * Processing initiated by incoming packets for a B node
        */

BEGIN
/*
 * Note: response packets are always sent
 * to:
 * source IP address of request packet
 * source UDP port of request packet
 */

CASE packet type OF

NAME REGISTRATION REQUEST (UNIQUE):
IF name exists in local name table THEN

send NEGATIVE NAME REGISTRATION RESPONSE ;
NAME REGISTRATION REQUEST (GROUP):

IF name exists in local name table THEN
BEGIN

IF local entry is a unique name THEN
        send NEGATIVE NAME REGISTRATION RESPONSE ;

END
NAME QUERY REQUEST:

IF name exists in local name table THEN
BEGIN

build response packet;
send POSITIVE NAME QUERY RESPONSE;

POSITIVE NAME QUERY RESPONSE:
IF name conflict timer is not active THEN
BEGIN

/*
 * timer has expired already...    ignore this
 * packet
 */

return;
END
ELSE /* timer is active */
IF a response for this name has previously been

received THEN
BEGIN /* existing entry */

/*
 * we sent out a request packet, and
 * have already received (at least)



 * one response
 *
 * Check if conflict exists.
 * If so, send out a conflict packet.
 *
 * Note: detecting conflict does NOT
 * affect any existing sessions.
 *
 */

/*
 * Check for name conflict.
 * See "Name Conflict" in Concepts and Methods
 */
check saved authoritative response against
          information in this response packet;
IF conflict detected THEN
BEGIN
          unicast NAME CONFLICT DEMAND packet;
          IF entry exists in cache THEN
          BEGIN
                    remove entry from cache;
          END
END

END /* existing entry */
ELSE
BEGIN

/*
 * Note: If this was the first response
 * to a name query, it would have been
 * handled in the
 * find_name() procedure.
 */

ignore packet;
END

NAME CONFLICT DEMAND:
IF name exists in local name table THEN
BEGIN

mark name as conflict detected;

/*
 * a name in the state "conflict detected"
 * does not "logically" exist on that node.
 * No further session will be accepted on
 * that name.
 * No datagrams can be sent against that name.
 * Such an entry will not be used for
 * purposes of processing incoming request
 * packets.
 * The only valid user NetBIOS operation
 * against such a name is DELETE NAME.
 */

END
NAME RELEASE REQUEST:



IF caching is being done THEN
BEGIN

remove entry from cache;
END

NAME UPDATE REQUEST:
IF caching is being done THEN
BEGIN

IF entry exists in cache already,
          update cache;
ELSE IF name is "interesting" THEN
BEGIN
          add entry to cache;
END

END

NODE STATUS REQUEST:
IF name exists in local name table THEN
BEGIN

/*
 * send only those names that are
 * in the same scope as the scope
 * field in the request packet
 */

send NODE STATUS RESPONSE;
END

END



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Protocols

P-Node Activity

All packets sent or received by P nodes are unicast UDP packets. A P node sends name 
service requests to the NBNS node that is specified in the P-node configuration. 

P-Node Add_Name
P-Node Add Group Name
P-Node Find Name
P-Node Delete_Name
P-Node Incoming Packet Processing
P-Node Timer Initiated Processing



RFC-1002 Protocol Standard for a NetBIOS Service - P-Node Activity

P-Node Add_Name

PROCEDURE add_name(newname)

      /*
        * Host initiated processing for a P node
        */

BEGIN

REPEAT
/*
 * build packet
 */

ONT = P;
G = UNIQUE;
...

/*
 * send request
 */

unicast NAME REGISTRATION REQUEST packet;

/*
 * NBNS will send response packet
 */

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received OR
retransmit count has been exceeded

IF no response packet was received THEN
BEGIN /* no response */

/*
 * NBNS is down.    Cannot claim name.
 */

return failure; /* name cannot be claimed */
END /* no response */
ELSE
BEGIN /* response */
        IF NOT response tid = request tid THEN
        BEGIN

/*    Packet may belong to another transaction    */
ignore response packet;

        END
        ELSE



        CASE packet type OF

        POSITIVE NAME REGISTRATION RESPONSE:

        /*
* name can be added
*/

        adjust refresh timeout value, TTL, for this name;
        return success;            /* name can be added */

        NEGATIVE NAME REGISTRATION RESPONSE:
        return failure; /* name cannot be added */

        END-NODE CHALLENGE REGISTRATION REQUEST:
        BEGIN /* end node challenge */

        /*
* The response packet has in it the
* address of the presumed owner of the
* name.    Challenge that owner.
* If owner either does not
* respond or indicates that he no longer
* owns the name, claim the name.
* Otherwise, the name cannot be claimed.
*
*/

        REPEAT
/*
 * build packet
 */
...

unicast NAME QUERY REQUEST packet to the
          address contained in the END NODE
          CHALLENGE RESPONSE packet;

/*
 * remote node may send response packet
 */

pause(UCAST_REQ_RETRY_TIMEOUT);

        UNTIL response packet is received or
      retransmit count has been exceeded

        IF no response packet is received OR
          NEGATIVE NAME QUERY RESPONSE packet
          received THEN

        BEGIN /* update */

/*
 * name can be claimed
 */



REPEAT

        /*
          * build packet
          */
          ...

        unicast NAME UPDATE REQUEST to NBNS;

        /*
          * NBNS node will send response packet
          */

        IF receive a WACK RESPONSE THEN
                    pause(time from TTL field of response);
        ELSE
                    pause(UCAST_REQ_RETRY_TIMEOUT);
UNTIL response packet is received or
        retransmit count has been exceeded
IF no response packet received THEN
BEGIN /* no response */

          /*
            * name could not be claimed
            */

          return failure;
END /* no response */
ELSE
CASE packet type OF
          POSITIVE NAME REGISTRATION RESPONSE:
                    /*
                      * add name
                      */
                    return success;
          NEGATIVE NAME REGISTRATION RESPONSE:

                    /*
                      * you lose    ...
                      */
                    return failure;
          END /* case */

        END /* update */
        ELSE

        /*
* received a positive response to the "challenge"
* Remote node still has name
*/

return failure;
        END /* end node challenge */
END /* response */

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - P-Node Activity

P-Node Add Group Name

PROCEDURE add_group_name(newname)

      /*
        * Host initiated processing for a P node
        */

BEGIN
/*
 * same as for a unique name, except that the
 * request packet must indicate that a
 * group name claim is being made.
 */

...
G = GROUP;
...

/*
 * send packet
 */
 ...

END



RFC-1002 Protocol Standard for a NetBIOS Service - P-Node Activity

P-Node Find Name

PROCEDURE find_name(name)

      /*
        * Host initiated processing for a P node
        */

BEGIN
REPEAT

/*
 * build packet
 */

ONT = P;
G = DONT CARE;

unicast NAME QUERY REQUEST packet;

/*
 * a NBNS node might send response packet
 */

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet received OR
max transmit threshold exceeded

IF no response packet received THEN
return failure;

ELSE
IF NOT response tid = request tid THEN

ignore packet;
ELSE
CASE packet type OF
POSITIVE NAME QUERY RESPONSE:

return success;

REDIRECT NAME QUERY RESPONSE:

/*
 * NBNS node wants this end node
 * to use some other NBNS node
 * to resolve the query.
 */

 repeat query with NBNS address
in the response packet;

NEGATIVE NAME QUERY RESPONSE:
return failure;



END /* case */
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - P-Node Activity

P-Node Delete_Name

PROCEDURE delete_name (name)

      /*
        * Host initiated processing for a P node
        */

BEGIN

REPEAT

/*
 * build packet
 */
...

/*
 * send request
 */

unicast NAME RELEASE REQUEST packet;
IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);
UNTIL retransmit count has been exceeded

or response been received

IF response has been received THEN
CASE packet type OF
POSITIVE NAME RELEASE RESPONSE:

return success;
NEGATIVE NAME RELEASE RESPONSE:

/*
 * NBNS does want node to delete this
 * name !!!
 */

return failure;
END /* case */

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - P-Node Activity

P-Node Incoming Packet Processing

Processing initiated by reception of packets at a P node
PROCEDURE process_incoming_packet(packet)

      /*
        * Processing initiated by incoming packets at a P node
        */

BEGIN
/*
 * always ignore UDP broadcast packets
 */

IF packet was sent as a broadcast THEN
BEGIN

ignore packet;
return;

END
CASE packet type of

NAME CONFLICT DEMAND:
IF name exists in local name table THEN

mark name as in conflict;
return;

NAME QUERY REQUEST:
IF name exists in local name table THEN
BEGIN /* name exists */

/*
 * build packet
 */
...

/*
 * send response to the IP address and port
 * number from which the request was received.
 */

send POSITIVE NAME QUERY RESPONSE ;
return;

END /* exists */
ELSE
BEGIN /* does not exist */

/*
 * send response to the requestor
 */

send NEGATIVE NAME QUERY RESPONSE ;



return;
END /* does not exist */

NODE STATUS REQUEST:
/*
 * Name of "*" may be used for force node to
 * divulge status for administrative purposes
 */
IF name in local name table OR name = "*" THEN
BEGIN

/*
 * Build response packet and
 * send to requestor node
 * Send only those names that are
 * in the same scope as the scope
 * in the request packet.
 */

send NODE STATUS RESPONSE;
END

NAME RELEASE REQUEST:
/*
 * This will be received if the NBNS wants to flush the
 * name from the local name table, or from the local
 * cache.
 */

IF name exists in the local name table THEN
BEGIN

delete name from local name table;
inform user that name has been deleted;

END
ELSE

IF name has been cached locally THEN
BEGIN
          remove entry from cache:
END

END /* case */
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - P-Node Activity

P-Node Timer Initiated Processing

Processing initiated by timer expiration.
PROCEDURE timer_expired()
      /*
        * Processing initiated by the expiration of a timer on a P node
        */
BEGIN

/*
 * Send a NAME REFRESH REQUEST for each name which the
 * TTL which has expired.
 */
REPEAT

build NAME REFRESH REQUEST packet;
REPEAT

send packet to NBNS;

IF receive a WACK RESPONSE THEN
          pause(time from TTL field of response);
ELSE
          pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

CASE packet type OF
    POSITIVE NAME REGISTRATION RESPONSE:

/* successfully refreshed */
reset TTL timer for this name;

    NEGATIVE NAME REGISTRATION RESPONSE:
/*
 * refused, can't keep name
 * assume in conflict
 */
mark name as in conflict;

END /* case */

UNTIL request sent for all names for which TTL
has expired

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Protocols

M-Node Activity

M nodes behavior is similar to that of P nodes with the addition of some B node-like 
broadcast actions.    M node name service proceeds in two steps: 

1. Use broadcast UDP based name service.    Depending on the operation, 
goto step 2. 

2. Use directed UDP name service.
The following code for M nodes is exactly the same as for a P node, with the exception that 
broadcast operations are done before P type operation is attempted. 

M-Node Add Name
M-Node Add Group Name
M-Node Find Name
M-Node Delete Name
M-Node Incoming Packet Processing
M-Node Timer Initiated Processing



RFC-1002 Protocol Standard for a NetBIOS Service - M-Node Activity

M-Node Add Name

PROCEDURE add_name(newname)

      /*
        * Host initiated processing for a M node
        */

BEGIN

/*
 * check if name exists on the
 * broadcast area
 */
REPEAT
        /* build packet */

        ....
        broadcast NAME REGISTRATION REQUEST packet;
        pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been    exceeded

IF valid response received THEN
BEGIN

/* cannot claim name */

return failure;
END

/*
 * No objections received within the
 * broadcast area.
 * Send request to name server.
 */

REPEAT
/*
 * build packet
 */

ONT = M;
...

unicast NAME REGISTRATION REQUEST packet;

/*
 * remote NBNS will send response packet
 */

IF receive a WACK RESPONSE THEN



pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet was received THEN
BEGIN /* no response */

/*
 * NBNS is down.    Cannot claim name.
 */

return failure; /* name cannot be claimed */
END /* no response */
ELSE
BEGIN /* response */
        IF NOT response tid = request tid THEN
        BEGIN

ignore response packet;
        END
        ELSE
        CASE packet type OF
        POSITIVE NAME REGISTRATION RESPONSE:

        /*
* name can be added
*/

        adjust refresh timeout value, TTL;
        return success;            /* name can be added */

        NEGATIVE NAME REGISTRATION RESPONSE:
        return failure; /* name cannot be added */

        END-NODE CHALLENGE REGISTRATION REQUEST:
        BEGIN /* end node challenge */

        /*
* The response packet has in it the
* address of the presumed owner of the
* name.    Challenge that owner.
* If owner either does not
* respond or indicates that he no longer
* owns the name, claim the name.
* Otherwise, the name cannot be claimed.
*
*/

        REPEAT
/*
 * build packet
 */
...



/*
 * send packet to address contained in the
 * response packet
 */

unicast NAME QUERY REQUEST packet;

/*
 * remote node may send response packet
 */

pause(UCAST_REQ_RETRY_TIMEOUT);

        UNTIL response packet is received or
      retransmit count has been exceeded

        IF no response packet is received THEN
        BEGIN /* no response */

/*
 * name can be claimed
 */
REPEAT

        /*
          * build packet
          */
          ...

        unicast NAME UPDATE REQUEST to NBNS;

        /*
          * NBNS node will send response packet
          */

        IF receive a WACK RESPONSE THEN
                    pause(time from TTL field of response);
ELSE
          pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
        retransmit count has been exceeded
IF no response packet received THEN
BEGIN /* no response */

          /*
            * name could not be claimed
            */

          return failure;
END /* no response */
ELSE
CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:
          /*
            * add name



            */

          return success;
NEGATIVE NAME REGISTRATION RESPONSE:

          /*
            * you lose    ...
            */

          return failure;
END /* case */

        END /* no response */
        ELSE
        IF NOT response tid = request tid THEN
        BEGIN

ignore response packet;
        END

        /*
* received a response to the "challenge"
* packet
*/

        CASE packet type OF
        POSITIVE NAME QUERY:

/*
 * remote node still has name.
 */

return failure;
        NEGATIVE NAME QUERY:

/*
 * remote node no longer has name
 */

return success;
        END /* case */

        END /* end node challenge */
        END /* case */
END /* response */

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - M-Node Activity

M-Node Add Group Name

PROCEDURE add_group_name(newname)

      /*
        * Host initiated processing for a P node
        */

BEGIN
/*
 * same as for a unique name, except that the
 * request packet must indicate that a
 * group name claim is being made.
 */

...
G = GROUP;
...

/*
 * send packet
 */
 ...

END



RFC-1002 Protocol Standard for a NetBIOS Service - M-Node Activity

M-Node Find Name

PROCEDURE find_name(name)

      /*
        * Host initiated processing for a M node
        */

BEGIN
/*
 * check if any node on the broadcast
 * area has the name
 */

REPEAT
/* build packet */
...

broadcast NAME QUERY REQUEST packet;
pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet received OR
max transmit threshold exceeded

IF valid response received THEN
BEGIN

save response as authoritative response;
start_timer(CONFLICT_TIMER);
return success;

END

/*
 * no valid response on the b'cast segment.
 * Try the name server.
 */

REPEAT
/*
 * build packet
 */

ONT = M;
G = DONT CARE;

unicast NAME QUERY REQUEST packet to NBNS;

/*
 * a NBNS node might send response packet
 */

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE



pause(UCAST_REQ_RETRY_TIMEOUT);
UNTIL response packet received OR

max transmit threshold exceeded

IF no response packet received THEN
return failure;

ELSE
IF NOT response tid = request tid THEN

ignore packet;
ELSE
CASE packet type OF
POSITIVE NAME QUERY RESPONSE:

return success;

REDIRECT NAME QUERY RESPONSE:

/*
 * NBNS node wants this end node
 * to use some other NBNS node
 * to resolve the query.
 */

 repeat query with NBNS address
in the response packet;

NEGATIVE NAME QUERY RESPONSE:
return failure;

END /* case */
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - M-Node Activity

M-Node Delete Name

PROCEDURE delete_name (name)

      /*
        * Host initiated processing for a P node
        */

BEGIN
/*
 * First, delete name on NBNS
 */

REPEAT

/*
 * build packet
 */
...

/*
 * send request
 */

unicast NAME RELEASE REQUEST packet to NBNS;

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL retransmit count has been exceeded
or response been received

IF response has been received THEN
CASE packet type OF
POSITIVE NAME RELEASE RESPONSE:

/*
 * Deletion of name on b'cast segment is deferred
 * until after NBNS has deleted the name
 */

REPEAT
/* build packet */

...
broadcast NAME RELEASE REQUEST;
pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL rexmt threshold exceeded

return success;
NEGATIVE NAME RELEASE RESPONSE:



/*
 * NBNS does want node to delete this
 * name
 */
return failure;

END /* case */
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - M-Node Activity

M-Node Incoming Packet Processing

Processing initiated by reception of packets at a M node

PROCEDURE process_incoming_packet(packet)

      /*
        * Processing initiated by incoming packets at a M node
        */

BEGIN
CASE packet type of

NAME CONFLICT DEMAND:
IF name exists in local name table THEN

mark name as in conflict;
return;

NAME QUERY REQUEST:
IF name exists in local name table THEN
BEGIN /* name exists */

/*
 * build packet
 */
...

/*
 * send response to the IP address and port
 * number from which the request was received.
 */

send POSITIVE NAME QUERY RESPONSE ;
return;

END /* exists */
ELSE
BEGIN /* does not exist */

/*
 * send response to the requestor
 */

IF request NOT broadcast THEN
          /*
            * Don't send negative responses to
            * queries sent by B nodes
            */
          send NEGATIVE NAME QUERY RESPONSE ;
return;

END /* does not exist */
NODE STATUS REQUEST:



BEGIN
/*
 * Name of "*" may be used for force node to
 * divulge status for administrative purposes
 */
IF name in local name table OR name = "*" THEN

/*
 * Build response packet and
 * send to requestor node
 * Send only those names that are
 * in the same scope as the scope
 * in the request packet.
 */

send NODE STATUS RESPONSE;
END

NAME RELEASE REQUEST:
/*
 * This will be received if the NBNS wants to flush the
 * name from the local name table, or from the local
 * cache.
 */

IF name exists in the local name table THEN
BEGIN

delete name from local name table;
inform user that name has been deleted;

END
ELSE

IF name has been cached locally THEN
BEGIN
          remove entry from cache:
END

NAME REGISTRATION REQUEST (UNIQUE):
IF name exists in local name table THEN

send NEGATIVE NAME REGISTRATION RESPONSE ;
NAME REGISTRATION REQUEST (GROUP):

IF name exists in local name table THEN
BEGIN

IF local entry is a unique name THEN
        send NEGATIVE NAME REGISTRATION RESPONSE ;

END
END /* case */

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - M-Node Activity

M-Node Timer Initiated Processing

Processing initiated by timer expiration:

PROCEDURE timer_expired()
      /*
        * Processing initiated by the expiration of a timer on a M node
        */
BEGIN

/*
 * Send a NAME REFRESH REQUEST for each name which the
 * TTL which has expired.
 */
REPEAT

build NAME REFRESH REQUEST packet;
REPEAT

send packet to NBNS;

IF receive a WACK RESPONSE THEN
          pause(time from TTL field of response);
ELSE
          pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

CASE packet type OF
    POSITIVE NAME REGISTRATION RESPONSE:

/* successfully refreshed */
reset TTL timer for this name;

    NEGATIVE NAME REGISTRATION RESPONSE:
/*
 * refused, can't keep name
 * assume in conflict
 */
mark name as in conflict;

END /* case */

UNTIL request sent for all names for which TTL
has expired

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Name Service Protocols

NBNS Activity

A NBNS node will receive directed packets from P and M nodes. Reply packets are always 
sent as directed packets to the source IP address and UDP port number.    Received 
broadcast packets must be ignored. 

NBNS Incoming Packet Processing
NBNS Timer Initiated Processing



RFC-1002 Protocol Standard for a NetBIOS Service - NBNS Activity

NBNS Incoming Packet Processing

PROCEDURE process_incoming_packet(packet)

      /*
        * Incoming packet processing on a NS node
        */

BEGIN
IF packet was sent as a broadcast THEN
BEGIN

discard packet;
return;

END
CASE packet type of

NAME REGISTRATION REQUEST (UNIQUE):
IF unique name exists in data base THEN
BEGIN /* unique name exists */

/*
 * NBNS node may be a "passive"
 * server in that it expects the
 * end node to do the challenge
 * server.    Such a NBNS node is
 * called a "non-secure" server.
 * A "secure" server will do the
 * challenging before it sends
 * back a response packet.
 */

IF non-secure THEN
BEGIN
          /*
            * build response packet
            */
          ...

          /*
            * let end node do the challenge
            */

          send END-NODE CHALLENGE NAME REGISTRATION
                    RESPONSE;
          return;
END
ELSE
/*
 * secure server - do the name
 * challenge operation
 */
REPEAT



        send NAME QUERY REQUEST;
        pause(UCAST_REQ_RETRY_TIMEOUT);
UNTIL response has been received or
          retransmit count has been exceeded
IF no response was received THEN
BEGIN

          /* node down */

          update data base - remove entry;
          update data base - add new entry;
          send POSITIVE NAME REGISTRATION RESPONSE;
          return;
END
ELSE
BEGIN /* challenged node replied */
        /*
          * challenged node replied with
          * a response packet
          */

        CASE packet type

        POSITIVE NAME QUERY RESPONSE:

          /*
            * name still owned by the
            * challenged node
            *
            * build packet and send response
            */
            ...

          /*
            * Note: The NBNS will need to
            * keep track (based on transaction id) of
            * the IP address and port number
            * of the original requestor.
            */

          send NEGATIVE NAME REGISTRATION RESPONSE;
          return;
        NEGATIVE NAME QUERY RESPONSE:

          update data base - remove entry;
          update data base - add new    entry;

          /*
            * build response packet and send
            * response
            */
          send POSITIVE NAME REGISTRATION RESPONSE;
          return;
        END /* case */



END /* challenged node replied */
END /* unique name exists in data base */
ELSE
IF group name exists in data base THEN
BEGIN /* group names exists */

/*
 * Members of a group name are NOT
 * challenged.
 * Make the assumption that
 * at least some of the group members
 * are still alive.
 * Refresh mechanism will
 * allow the NBNS to detect when all
 * members of a group no longer use that
 * name
 */

 send NEGATIVE NAME REGISTRATION RESPONSE;
END /* group name exists */
ELSE
BEGIN /* name does not exist */

/*
 * Name does not exist in data base
 *
 * This code applies to both non-secure
 * and secure server.
 */

update data base - add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
return;

END

NAME QUERY REQUEST:
IF name exists in data base THEN
BEGIN

/*
 * build response packet and send to
 * requestor
 */
 ...

send POSITIVE NAME QUERY RESPONSE;
return;

ELSE
BEGIN

/*
 * build response packet and send to
 * requestor
 */
 ...

send NEGATIVE NAME QUERY RESPONSE;



return;
END

NAME REGISTRATION REQUEST (GROUP):
IF name exists in data base THEN
BEGIN

IF local entry is a unique name THEN
BEGIN /* local is unique */

        IF non-secure THEN
        BEGIN
          send    END-NODE CHALLENGE NAME
                    REGISTRATION RESPONSE;
          return;
        END

        REPEAT
          send NAME QUERY REQUEST;
          pause(UCAST_REQ_RETRY_TIMEOUT);
        UNTIL response received or
                  retransmit count exceeded
        IF no response received or
                  NEGATIVE NAME QUERY RESPONSE
                    received THEN
        BEGIN
          update data base - remove entry;
          update data base - add new entry;
          send POSITIVE NAME REGISTRATION RESPONSE;
          return;
        END
        ELSE
        BEGIN
          /*
            * name still being held
            * by challenged node
            */

            send NEGATIVE NAME REGISTRATION RESPONSE;
        END
END /* local is unique */
ELSE
BEGIN /* local is group    */
          /*
            * existing entry is a group name
            */

          update data base - remove entry;
          update data base - add new entry;
          send POSITIVE NAME REGISTRATION RESPONSE;
          return;
END /* local is group */

END /* names exists */
ELSE
BEGIN /* does not exist */



/* name does not exist in data base */

update data base - add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
return;

END /* does not exist */

NAME RELEASE REQUEST:

/*
 * secure server may choose to disallow
 * a node from deleting a name
 */

update data base - remove entry;
send POSITIVE NAME RELEASE RESPONSE;
return;

NAME UPDATE REQUEST:

/*
 * End-node completed a successful challenge,
 * no update database
 */

IF secure server THEN
send NEGATIVE NAME REGISTRATION RESPONSE;

ELSE
BEGIN /* new entry */

IF entry already exists THEN
          update data base - remove entry;
update data base - add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
start_timer(TTL);

END

NAME REFRESH REQUEST:
check for consistency;
IF node not allowed to have name THEN
BEGIN

/*
 * tell end node that it can't have name
 */
send NEGATIVE NAME REGISTRATION RESPONSE;

END
ELSE
BEGIN

/*
 * send confirmation response to the
 * end node.
 */
send POSITIVE NAME REGISTRATION;
start_timer(TTL);



END
return;

END /* case */
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - NBNS Activity

Nbns Timer Initiated Processing

A NS node uses timers to flush out entries from the data base. Each entry in the data base is
removed when its timer expires. This time value is a multiple of the refresh TTL established 
when the name was registered. 

PROCEDURE timer_expired()

      /*
        * processing initiated by expiration of TTL for a given name
        */

BEGIN
/*
 * NBNS can (optionally) ensure
 * that the node is actually down
 * by sending a NODE STATUS REQUEST.
 * If such a request is sent, and
 * no response is received, it can
 * be assumed that the node is down.
 */
remove entry from data base;

END



RFC-1002 Protocol Standard for a NetBIOS Service - Protocol Descriptions

Session Service Protocols

The following are variables and should be configurable by the NetBIOS user.    The default 
values of these variables is found in "Defined Constants and Variables" in the Detailed 
Specification.): 

- SSN_RETRY_COUNT - The maximum number TCP connection attempts 
allowable per a single NetBIOS call request. 

- SSN_CLOSE_TIMEOUT is the time period to wait when closing the NetBIOS 
session before killing the TCP connection if session sends are outstanding. 

The following are Defined Constants for the NetBIOS Session Service.    (See "Defined 
Constants and Variables" in the Detailed Specification for the value of these constants): 

- SSN_SRVC_TCP_PORT - is the globally well-known TCP port allocated for the
NetBIOS Session Service.    The service accepts TCP connections on this 
port to establish NetBIOS Sessions. The TCP connection established to this 
port by the caller is initially used for the exchange of NetBIOS control 
information. The actual NetBIOS data connection may also pass through 
this port or, through the retargetting facility, through another port. 

Session Establishment Protocols
User Request Processing
Received Packet Processing

Session Data Transfer Protocols
User Request Processing
Received Packet Processing
Processing Initiated by Timer

Session Termination Protocols
User Request Processing
Reception Indication Processing



RFC-1002 Protocol Standard for a NetBIOS Service - Session Establishment 
Protocols

User Request Processing

PROCEDURE listen(listening name, caller name)
      /*
        * User initiated processing for B, P and M nodes
        *
        * This procedure assumes that an incoming session will be
        * retargetted here by a session server.
        */
BEGIN

Do TCP listen; /* Returns TCP port used */
Register listen with Session Service, give names and

TCP port;

Wait for TCP connection to open;      /* Incoming call */

Read SESSION REQUEST packet from connection

Process session request (see section on
processing initiated by the reception of session
service packets);

Inform Session Service that NetBIOS listen is complete;

IF session established THEN
return success and session information to user;

ELSE
return failure;

END /* procedure */

PROCEDURE call(calling name, called name)
      /*
        * user initiated processing for B, P and M nodes
        */

      /*
        * This algorithm assumes that the called name is a unique name.
        * If the called name is a group name, the call() procedure
        * needs to cycle through the members of the group
        * until either (retry_count == SSN_RETRY_COUNT) or
        * the list has been exhausted.
        */
BEGIN

retry_count = 0;
retarget = FALSE;      /* TRUE: caller is being retargetted */
name_query = TRUE;    /* TRUE: caller must begin again with */

                    /*              name query. */

REPEAT
IF name_query THEN
BEGIN



do name discovery, returns IP address;
TCP port = SSN_SRVC_TCP_PORT;

IF name discovery fails THEN
          return failure;
ELSE
          name_query = FALSE;

END

/*
 * now have IP address and TCP port of
 * remote party.
 */

establish TCP connection with remote party, use an
ephemeral port as source TCP port;

IF connection refused THEN
BEGIN

IF retarget THEN
BEGIN
          /* retry */
          retarget = FALSE;
          use original IP address and TCP port;
          goto LOOP;
END

/* retry for just missed TCP listen */

pause(SESSION_RETRY_TIMER);
establish TCP connection, again use ephemeral
          port as source TCP port;

IF connection refused OR
      connection timed out THEN
          return failure;

END
ELSE
IF connection timed out THEN
BEGIN

IF retarget THEN
BEGIN
          /* retry */
          retarget = FALSE;
          use original IP address and TCP port;
          goto LOOP;
END
ELSE
BEGIN
          /*
            * incorrect name discovery was done,
            * try again
            */

          inform name discovery process of
                    possible error;



          name_query = TRUE;
          goto LOOP;
END

END

/*
 * TCP connection has been established
 */

wait for session response packet;
CASE packet type OF

      POSITIVE SESSION RESPONSE:
return success and session established
          information;

      NEGATIVE SESSION RESPONSE:
      BEGIN

CASE error OF
      NOT LISTENING ON CALLED NAME:
      NOT LISTENING FOR CALLING NAME:
      BEGIN
          kill TCP connection;
          return failure;
      END

      CALLED NAME NOT PRESENT:
      BEGIN
          /*
            * called name does not exist on
            * remote node
            */

          inform name discovery procedure
                    of possible error;

          IF this is a P or M node THEN
          BEGIN
                    /*
                      * Inform NetBIOS Name Server
                      * it has returned incorrect
                      * information.
                      */
                    send NAME RELEASE REQUEST for called
                        name and IP address to
                        NetBIOS Name Server;
          END
          /* retry from beginning */
          retarget = FALSE;
          name_query = TRUE;
          goto LOOP;
      END /* called name not present */
END /* case */

      END /* negative response */



      RETARGET SESSION RESPONSE:
      BEGIN

close TCP connection;
extract IP address and TCP port from
          response;
retarget = TRUE;

      END /* retarget response */
END /* case */

LOOP:                    retry_count = retry_count + 1;

UNTIL (retry_count > SSN_RETRY_COUNT);
return failure;

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Session Establishment 
Protocols

Received Packet Processing

These are packets received on a TCP connection before a session has been established.    The
listen routines attached to a NetBIOS user process need not implement the RETARGET 
response section. The user process version, separate from a shared Session Service, need 
only accept (POSITIVE SESSION RESPONSE) or reject (NEGATIVE SESSION RESPONSE) a 
session request. 

PROCEDURE session_packet(packet)
      /*
        * processing initiated by receipt of a session service
        * packet for a session in the session establishment phase.
        * Assumes the TCP connection has been accepted.
        */
BEGIN

CASE packet type

      SESSION REQUEST:
      BEGIN

IF called name does not exist on node THEN
BEGIN

send NEGATIVE SESSION RESPONSE with CALLED
          NAME NOT PRESENT error code;
close TCP connection;

END

Search for a listen with CALLING NAME for CALLED
NAME;

IF matching listen is found THEN
BEGIN

IF port of listener process is port TCP
      connection is on THEN
BEGIN
          send POSITIVE SESSION RESPONSE;

          Hand off connection to client process
                    and/or inform user session is
                    established;
END
ELSE
BEGIN
          send RETARGET SESSION RESPONSE with
                    listener's IP address and
                    TCP port;
          close TCP connection;
END

END
ELSE
BEGIN

/* no matching listen pending */



send NEGATIVE SESSION RESPONSE with either
          NOT LISTENING ON CALLED NAME or NOT
          LISTENING FOR CALLING NAME error
          code;
close TCP connection;

END
      END /* session request */
END /* case */

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Session Data Transfer 
Protocols

User Request Processing

PROCEDURE send_message(user_message)
BEGIN

build SESSION MESSAGE header;
send SESSION MESSAGE header;
send user_message;
reset and restart keep-alive timer;
IF send fails THEN
BEGIN

/*
 * TCP connection has failed */
 */
close NetBIOS session;
inform user that session is lost;
return failure;

END
ELSE

return success;
END



RFC-1002 Protocol Standard for a NetBIOS Service - Session Data Transfer 
Protocols

Received Packet Processing

These are packets received after a session has been established.

PROCEDURE session_packet(packet)
      /*
        * processing initiated by receipt of a session service
        * packet for a session in the data transfer phase.
        */
BEGIN

CASE packet type OF

      SESSION    MESSAGE:
      BEGIN

process message header;
read in user data;
reset and restart keep-alive timer;
deliver data to user;

      END /* session message */

      SESSION KEEP ALIVE:
discard packet;

END /* case */
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Session Data Transfer 
Protocols

Processing Initiated By Timer

PROCEDURE session_ka_timer()
      /*
        * processing initiated when session keep alive timer expires
        */
BEGIN

        send SESSION KEEP ALIVE, if configured;
        IF send fails THEN
        BEGIN

/* remote node, or path to it, is down */

abort TCP connection;
close NetBIOS session;
inform user that session is lost;
return;

        END
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Session Termination Protocols

User Request Processing

PROCEDURE close_session()

      /* initiated by a user request to close a session */

BEGIN
close gracefully the TCP connection;

WAIT for the connection to close or SSN_CLOSE_TIMEOUT
to expire;

IF time out expired THEN
abort TCP connection;

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Session Termination Protocols

Reception Indication Processing

PROCEDURE close_indication()
      /*
        * initiated by a TCP indication of a close request from
        * the remote connection partner.
        */
BEGIN

close gracefully TCP connection;

close NetBIOS session;

inform user session closed by remote partner;
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Protocol Descriptions

NetBIOS Datagram Service Protocols

The following are GLOBAL variables and should be NetBIOS user configurable: 
- SCOPE_ID: the non-leaf section of the domain name preceded by a '.'    

which represents the domain of the NetBIOS scope for the NetBIOS name.   
The following protocol description only supports single scope operation. 

- MAX_DATAGRAM_LENGTH: the maximum length of an IP datagram.    The 
minimal maximum length defined in for IP is 576 bytes.    This value is used
when determining whether to fragment a NetBIOS datagram.    
Implementations are expected to be capable of receiving unfragmented 
NetBIOS datagrams up to their maximum size. 

- BROADCAST_ADDRESS: the IP address B-nodes use to send datagrams 
with group name destinations and broadcast datagrams.    The default is 
the IP broadcast address for a single IP network. 

The following are Defined Constants for the NetBIOS Datagram Service: 
- DGM_SRVC_UDP_PORT: the globally well-known UDP port allocated where 

the NetBIOS Datagram Service receives UDP packets.    See section 6, 
"Defined Constants", for its value. 

B Node Transmission of NetBIOS Datagrams
P and M Node Transmission of NetBIOS Datagrams
Reception of NetBIOS Datagrams by All Nodes
Protocols for the NBDD



RFC-1002 Protocol Standard for a NetBIOS Service - Datagram Service Protocols

B Node Transmission of NetBIOS Datagrams

PROCEDURE send_datagram(data, source, destination, broadcast)

      /*
        * user initiated processing on B node
        */

BEGIN
group = FALSE;

do name discovery on destination name, returns name type and
IP address;

IF name type is group name THEN
BEGIN

group = TRUE;
END

/*
 * build datagram service UDP packet;
 */
convert source and destination NetBIOS names into

half-ASCII, biased encoded name;
SOURCE_NAME = cat(source, SCOPE_ID);
SOURCE_IP = this nodes IP address;
SOURCE_PORT =    DGM_SRVC_UDP_PORT;

IF NetBIOS broadcast THEN
BEGIN

DESTINATION_NAME = cat("*", SCOPE_ID)
END
ELSE
BEGIN

DESTINATION_NAME = cat(destination, SCOPE_ID)
END

MSG_TYPE = select_one_from_set
{BROADCAST, DIRECT_UNIQUE, DIRECT_GROUP}

DGM_ID = next transaction id for Datagrams;
DGM_LENGTH = length of data + length of second level encoded

source and destination names;

IF (length of the NetBIOS Datagram, including UDP and
        IP headers, > MAX_DATAGRAM_LENGTH) THEN
BEGIN

/*
 * fragment NetBIOS datagram into 2 UDP packets
 */
Put names into 1st UDP packet and any data that fits

after names;
Set MORE and FIRST bits in 1st UDP packet's FLAGS;
OFFSET in 1st UDP = 0;



Replicate NetBIOS Datagram header from 1st UDP packet
into 2nd UDP packet;

Put rest of data in 2nd UDP packet;
Clear MORE and FIRST bits in 2nd UDP packet's FLAGS;
OFFSET in 2nd UDP = DGM_LENGTH - number of name and

data bytes in 1st UDP;
END
BEGIN

/*
 * Only need one UDP packet
 */
USER_DATA = data;
Clear MORE bit and set FIRST bit in FLAGS;
OFFSET = 0;

END

IF (group == TRUE) OR (NetBIOS broadcast) THEN
BEGIN

send UDP packet(s) to BROADCAST_ADDRESS;
END
ELSE
BEGIN

send UDP packet(s) to IP address returned by name
      discovery;

END
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Datagram Service Protocols

P and M Node Transmission of NetBIOS Datagrams

PROCEDURE send_datagram(data, source, destination, broadcast)

      /*
        * User initiated processing on P and M node.
        *
        * This processing is the same as for B nodes except for
        * sending broadcast and multicast NetBIOS datagrams.
        */

BEGIN
group = FALSE;

do name discovery on destination name, returns name type
and IP address;

IF name type is group name THEN
BEGIN

group = TRUE;
END

/*
 * build datagram service UDP packet;
 */
convert source and destination NetBIOS names into

half-ASCII, biased encoded name;
SOURCE_NAME = cat(source, SCOPE_ID);
SOURCE_IP = this nodes IP address;
SOURCE_PORT =    DGM_SRVC_UDP_PORT;

IF NetBIOS broadcast THEN
BEGIN

DESTINATION_NAME = cat("*", SCOPE_ID)
END
ELSE
BEGIN

DESTINATION_NAME = cat(destination, SCOPE_ID)
END

MSG_TYPE = select_one_from_set
{BROADCAST, DIRECT_UNIQUE, DIRECT_GROUP}

DGM_ID = next transaction id for Datagrams;
DGM_LENGTH = length of data + length of second level encoded

source and destination names;

IF (length of the NetBIOS Datagram, including UDP and
        IP headers, > MAX_DATAGRAM_LENGTH) THEN
BEGIN

/*
 * fragment NetBIOS datagram into 2 UDP packets
 */
Put names into 1st UDP packet and any data that fits



after names;
Set MORE and FIRST bits in 1st UDP packet's FLAGS;

OFFSET in 1st UDP = 0;

Replicate NetBIOS Datagram header from 1st UDP packet
into 2nd UDP packet;

Put rest of data in 2nd UDP packet;
Clear MORE and FIRST bits in 2nd UDP packet's FLAGS;
OFFSET in 2nd UDP = DGM_LENGTH - number of name and

data bytes in 1st UDP;
END
BEGIN

/*
 * Only need one UDP packet
 */
USER_DATA = data;
Clear MORE bit and set FIRST bit in FLAGS;
OFFSET = 0;

END

IF (group == TRUE) OR (NetBIOS broadcast) THEN
BEGIN

/*
 * Sending of following query is optional.
 * Node may send datagram to NBDD immediately
 * but NBDD may discard the datagram.
 */
send DATAGRAM QUERY REQUEST to NBDD;
IF response is POSITIVE QUERY RESPONSE THEN

send UDP packet(s) to NBDD Server IP address;
ELSE
BEGIN

get list of destination nodes from NBNS;
FOR EACH node in list
BEGIN
          send UDP packet(s) to this node's
                    IP address;
END

END
END
ELSE
BEGIN

send UDP packet(s) to IP address returned by name
      discovery;

END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Datagram Service Protocols

Reception of NetBIOS Datagrams by All Nodes

The following algorithm discards out of order NetBIOS Datagram fragments.    An 
implementation which reassembles out of order NetBIOS Datagram fragments conforms to 
this specification.    The fragment discard timer is initialized to the value FRAGMENT_TO. This 
value should be user configurable.    The default value is given in Section 6, "Defined 
Constants and Variables". 

PROCEDURE datagram_packet(packet)

      /*
        * processing initiated by datagram packet reception
        * on B, P and M nodes
        */
BEGIN

/*
 * if this node is a P node, ignore
 * broadcast packets.
 */

IF this is a P node AND incoming packet is
a broadcast packet THEN

BEGIN
discard packet;

END

CASE packet type OF

      DATAGRAM SERVICE:
      BEGIN

IF FIRST bit in FLAGS is set THEN
BEGIN

IF MORE bit in FLAGS is set THEN
BEGIN

Save 1st UDP packet of the Datagram;
Set this Datagram's fragment discard
timer to FRAGMENT_TO;
return;

END
ELSE

Datagram is composed of a single
    UDP packet;

END
ELSE
BEGIN

/* Have the second fragment of a Datagram */

Search for 1st fragment by source IP address
      and DGM_ID;
IF found 1st fragment THEN

Process both UDP packets;



ELSE
BEGIN

discard 2nd fragment UDP packet;
return;

END
END

IF DESTINATION_NAME is '*' THEN
BEGIN

/* NetBIOS broadcast */

deliver USER_DATA from UDP packet(s) to all
outstanding receive broadcast
datagram requests;

return;
END
ELSE
BEGIN /* non-broadcast */

/* Datagram for Unique or Group Name */

IF DESTINATION_NAME is not present in the
      local name table THEN
BEGIN

/* destination not present */
build DATAGRAM ERROR packet, clear
FIRST and MORE bit, put in
this nodes IP and PORT, set
ERROR_CODE;
send DATAGRAM ERROR packet to source IP address
and port of UDP;
discard UDP packet(s);
return;

END
ELSE
BEGIN /* good */

/*
 * Replicate received NetBIOS datagram for
 * each recipient
 */
FOR EACH pending NetBIOS user's receive datagram operation
BEGIN

IF source name of operation matches destination name of packet 
THEN
BEGIN

deliver USER_DATA from UDP packet(s);
                END

END /* for each */
return;

END /* good */
END /* non-broadcast */

        END /* datagram service */

      DATAGRAM ERROR:
      BEGIN

      /*



        * name service returned incorrect information
        */

inform local name service that incorrect
information was provided;

IF this is a P or M node THEN
BEGIN

      /*
        * tell NetBIOS Name Server that it may
        * have given incorrect information
        */

      send NAME RELEASE REQUEST with name
      and incorrect IP address to NetBIOS
      Name Server;

      END
      END /* datagram error */

END /* case */
END



RFC-1002 Protocol Standard for a NetBIOS Service - Datagram Service Protocols

Protocols for the NBDD

The key to NetBIOS Datagram forwarding service is the packet delivered to the destination 
end node must have the same NetBIOS header as if the source end node sent the packet 
directly to the destination end node.    Consequently, the NBDD does not reassemble 
NetBIOS Datagrams.    It forwards the UDP packet as is. 
PROCEDURE    datagram_packet(packet) 
      /*
        * processing initiated by a incoming datagram service
        * packet on a NBDD node.
        */

BEGIN
CASE packet type OF

      DATAGRAM SERVICE:
      BEGIN

      IF packet was sent as a directed
 NetBIOS datagram THEN

      BEGIN
/*
 * provide group forwarding service
 *
 * Forward datagram to each member of the
 * group.    Can forward via:
 *      1) get list of group members and send
 *      the DATAGRAM SERVICE packet unicast
 *      to each
 *      2) use Group Multicast, if available
 *      3) combination of 1) and 2)
 */

...

      END

      ELSE
      BEGIN

/*
 * provide broadcast forwarding service
 *
 * Forward datagram to every node in the
 * NetBIOS scope.    Can forward via:
 *      1) get list of group members and send
 *      the DATAGRAM SERVICE packet unicast
 *      to each
 *      2) use Group Multicast, if available
 *      3) combination of 1) and 2)
 */

...



      END
      END /* datagram service */

      DATAGRAM ERROR:
      BEGIN

/*
 * Should never receive these because Datagrams
 * forwarded have source end node IP address and
 * port in NetBIOS header.
 */

send DELETE NAME REQUEST with incorrect name and
IP address to NetBIOS Name Server;

      END /* datagram error */

      DATAGRAM QUERY REQUEST:
      BEGIN

IF can send packet to DESTINATION_NAME THEN
BEGIN

/*
 * NBDD is able to relay Datagrams for
 * this name
 */

send POSITIVE DATAGRAM QUERY RESPONSE to
    REQUEST source IP address and UDP port
    with request's DGM_ID;

END
ELSE
BEGIN

/*
 * NBDD is NOT able to relay Datagrams for
 * this name
 */

send NEGATIVE DATAGRAM QUERY RESPONSE to
    REQUEST source IP address and UDP port

    with request's DGM_ID;
END

      END /* datagram query request */

END /* case */
END /* procedure */



RFC-1002 Protocol Standard for a NetBIOS Service - Detailed Specifications

Defined Constants and Variables

General
Name Service
Session Service
Datagram Service



RFC-1002 Protocol Standard for a NetBIOS Service - Defined Constants

General Constants

SCOPE_ID The name of the NetBIOS scope.
This is expressed as a character string meeting the requirements of the 
domain name system and without a leading or trailing "dot". 
An implementation may elect to make this a single global value for the node 
or allow it to be specified with each separate NetBIOS name (thus permitting 
cross-scope references.) 

BROADCAST_ADDRESS
An IP address composed of the nodes's network and subnetwork numbers with
all remaining bits set to one. 
I.e. "Specific subnet" broadcast addressing according to section 2.3 of RFC 
950. 

BCAST_REQ_RETRY_TIMEOUT 250 milliseconds.
                                                      An adaptive timer may be used.
BCAST_REQ_RETRY_COUNT 3
UCAST_REQ_RETRY_TIMEOUT 5 seconds

An adaptive timer may be used.
UCAST_REQ_RETRY_COUNT 3
MAX_DATAGRAM_LENGTH 576 bytes (default)



RFC-1002 Protocol Standard for a NetBIOS Service - Defined Constants

Name Service Constants

REFRESH_TIMER Negotiated with NBNS for each name.
CONFLICT_TIMER 1 second

Implementations may chose a longer value. 
NAME_SERVICE_TCP_PORT 137 (decimal)
NAME_SERVICE_UDP_PORT 137 (decimal)
INFINITE_TTL 0



RFC-1002 Protocol Standard for a NetBIOS Service - Defined Constants

Session Service Constants

SSN_SRVC_TCP_PORT 139 (decimal)
SSN_RETRY_COUNT 4 (default)

Re-configurable by user.
SSN_CLOSE_TIMEOUT 30 seconds (default)

Re-configurable by user.
SSN_KEEP_ALIVE_TIMEOUT 60 seconds, recommended.

May be set to a higher value. (Session keep-alives are used only if configured.)



RFC-1002 Protocol Standard for a NetBIOS Service - Defined Constants

Datagram Service Constants

DGM_SRVC_UDP_PORT 138 (decimal)
FRAGMENT_TO 2 seconds (default)



REFERENCES
      [1]    "Protocol Standard For a NetBIOS Service on a TCP/UDP
                Transport: Concepts and Methods", RFC 1001, March 1987.
      [2]    J. Reynolds, J. Postel, "Assigned Numbers", RFC 990, November
                1986.
      [3]    P. Mockapetris, "Domain Names - Implementation and
                Specification", RFC 883, November 1983.



NAME_TRN_ID Transaction ID for Name Service Transaction.
Requestor places a unique value for each active transaction.    
Responder puts NAME_TRN_ID value from request packet in 
response packet. 



RCODE Result codes of request.    Table of RCODE values for each response 
packet below.



QDCOUNT Unsigned 16 bit integer specifying the number of entries in the 
question section of a Name 

Service packet.    Always zero (0) for responses. Must be non-zero for all 
NetBIOS Name requests. 



ANCOUNT Unsigned 16 bit integer specifying the number of resource records in 
the answer section of a Name Service packet. 



NSCOUNT Unsigned 16 bit integer specifying the number of resource records in 
the authority section of a Name Service packet. 



ARCOUNT Unsigned 16 bit integer specifying the number of resource records in 
the additional records section of a Name Service packet. 



    0   1   2   3   4
   +---+---+---+---+---+
   | R |    OPCODE     |
   +---+---+---+---+---+

Symbol      Bit(s)       Description  
OPCODE 1-4 Operation specifier:

0 = query
5 = registration
6 = release
7 = WACK
8 = refresh

R 0 RESPONSE flag:
if bit == 0 then request packet
if bit == 1 then response packet.



    0   1   2   3   4   5   6
   +---+---+---+---+---+---+---+
   |AA |TC |RD |RA | 0 | 0 | B |
   +---+---+---+---+---+---+---+

      Symbol      Bit(s)       Description  
B 6 Broadcast Flag.

RA 3 Recursion Available Flag.
RD 2 Recursion Desired Flag.
TC 1 Truncation Flag.
AA 0 Authoritative Answer flag.



RR_NAME The compressed name representation of the NetBIOS name 
corresponding to this resource record. 



QUESTION_NAME The compressed name representation of the NetBIOS 
name for the request. 



NB 0x0020 NetBIOS general Name Service Resource Record



NBSTAT 0x0021 NetBIOS NODE STATUS Resource Record (See NODE STATUS REQUEST) 



B Broadcast Flag.
= 1: packet was broadcast or multicast
= 0: unicast



IN 0x0001 Internet class



Symbol       Bit(s)      Description:  
RESERVED 3-15 Reserved for future use.    Must be zero (0).

ONT 1,2 Owner Node Type:
00 = B node
01 = P node
10 = M node
11 = Reserved for future use

For registration requests this is the claimant's type. 
For responses this is the actual owner's type. 

G 0 Group Name Flag.
If one (1) then the RR_NAME is a GROUP NetBIOS name. 
If zero (0) then the RR_NAME is a UNIQUE NetBIOS name. 

The NB_ADDRESS field of the RESOURCE RECORD RDATA field for RR_TYPE of "NB" is the IP 
address of the name's owner. 



TTL The Time To Live of a the resource record's name. 



The NB_ADDRESS field of the RESOURCE RECORD RDATA field for RR_TYPE of "NB" is the IP 
address of the name's owner. 



ONT Owner Node Type:
00 = B node
01 = P node
10 = M node
11 = Reserved for future use

For registration requests this is the claimant's type. 
For responses this is the actual owner's type. 



Session Packet Types (in hexidecimal):
00 -    SESSION MESSAGE
81 -    SESSION REQUEST
82 -    POSITIVE SESSION RESPONSE
83 -    NEGATIVE SESSION RESPONSE
84 -    RETARGET SESSION RESPONSE
85 -    SESSION KEEP ALIVE



Bit definitions of the Session Packet FLAGS field:
     0   1   2   3   4   5   6   7
   +---+---+---+---+---+---+---+---+
   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | E |
   +---+---+---+---+---+---+---+---+

      Symbol      Bit(s)       Description  
E 7 Length extension, used as an additional, high-order bit on the 

LENGTH field. 
RESERVED 0-6 Reserved, must be zero (0)



MSG_TYPE values (in hexidecimal):
10 -    DIRECT_UNIQUE DATAGRAM
11 -    DIRECT_GROUP DATAGRAM
12 -    BROADCAST DATAGRAM
13 -    DATAGRAM ERROR
14 -    DATAGRAM QUERY REQUEST
15 -    DATAGRAM POSITIVE QUERY RESPONSE
16 -    DATAGRAM NEGATIVE QUERY RESPONSE



Bit definitions of the FLAGS field:
     0   1   2   3   4   5   6   7
   +---+---+---+---+---+---+---+---+
   | 0 | 0 | 0 | 0 |  SNT  | F | M |
   +---+---+---+---+---+---+---+---+

      Symbol      Bit(s)       Description  
M 7 MORE flag, If set then more NetBIOS datagram fragments follow.
F 6 FIRST packet flag,    If set then this is first (and possibly only) 

fragment of NetBIOS datagram 
SNT 4,5 Source End-Node type:

00 = B node
01 = P node
10 = M node
11 = NBDD

RESERVED 0-3 Reserved, must be zero (0)



RFC-1006 ISO Transport Service on top of the TCP
Version 3

Marshall T. Rose & Dwight E. Cass
May 1987

Status of this Memo
This memo specifies a standard for the Internet community. Hosts on the Internet that 
choose to implement ISO transport services on top of the TCP are expected to adopt and 
implement this standard.    TCP port 102 is reserved for hosts which implement this standard.
Distribution of this memo is unlimited. 
This memo specifies version 3 of the protocol and supersedes [RFC983].    Changes between 
the protocol as described in Request for Comments 983 and this memo are minor, but are 
unfortunately incompatible. 

Introduction and Philosophy
Motivation
The Model
The Primitives
The Protocol
Packet Format
Comments



RFC-1006 ISO Transport on top of the TCP

Introduction and Philosophy

The Internet community has a well-developed, mature set of transport and internetwork 
protocols (TCP/IP), which are quite successful in offering network and transport services to 
end-users. The CCITT and the ISO have defined various session, presentation, and 
application recommendations which have been adopted by the international community and
numerous vendors. To the largest extent possible, it is desirable to offer these higher level 
directly in the ARPA Internet, without disrupting existing facilities.    This permits users to 
develop expertise with ISO and CITT applications which previously were not available in the 
ARPA Internet.    It also permits a more graceful convergence and transition strategy from 
TCP/IP-based networks to ISO-based networks in the medium-and long-term. 
There are two basic approaches which can be taken when "porting" an ISO or CCITT 
application to a TCP/IP environment.    One approach is to port each individual application 
separately, developing local protocols on top of the TCP.    Although this is useful in the short-
term (since special-purpose interfaces to the TCP can be developed quickly), it lacks 
generality. 
A second approach is based on the observation that both the ARPA Internet protocol suite 
and the ISO protocol suite are both layered systems (though the former uses layering from a
more pragmatic perspective).    A key aspect of the layering principle is that of layer-
independence.    Although this section is redundant for most readers, a slight bit of 
background material is necessary to introduce this concept. 
Externally, a layer is defined by two definitions:

a service-offered definition, which describes the services provided by the layer 
and the interfaces it provides to access those services; and, 
a service-required definitions, which describes the services used by the layer and 
the interfaces it uses to access those services. 

Collectively, all of the entities in the network which co-operate to provide the service are 
known as the service-provider. Individually, each of these entities is known as a service-peer.
Interally, a layer is defined by one definition:

a protocol definition, which describes the rules which each service-peer uses 
when communicating with other service-peers. 

Putting all this together, the service-provider uses the protocol and services from the layer 
below to offer the its service to the layer above.    Protocol verification, for instance, deals 
with proving that this in fact happens (and is also a fertile field for many Ph.D. dissertations 
in computer science). 
The concept of layer-independence quite simply is:

IF one preserves the services offered by the service-provider
THEN the service-user is completely naive with respect to the protocol which the 
service-peers use 

For the purposes of this memo, we will use the layer-independence to define a Transport 
Service Access Point (TSAP) which appears to be identical to the services and interfaces 
offered by the ISO/CCITT TSAP (as defined in [ISO8072]), but we will in fact implement 
theISO TP0 protocol on top of TCP/IP (as defined in [RFC793, RFC791]), not on top of the the 
ISO/CCITT network protocol.    Since the transport class 0 protocol is used over the TCP/IP 



connection, it achieves identical functionality as transport class 4.    Hence, ISO/CCITT higher 
level layers (all session, presentation, and application entities) can operate fully without 
knowledge of the fact that they are running on a TCP/IP internetwork. 



RFC-1006 ISO Transport on top of the TCP

Motivation

In migrating from the use of TCP/IP to the ISO protocols, there are several strategies that one
might undertake.    This memo was written with one particular strategy in mind. 
The particular migration strategy which this memo uses is based on the notion of 
gatewaying between the TCP/IP and ISO ptotocol suites at the transport layer.    There are 
two strong arguments for this approach: 

1. Experience teaches us that it takes just as long to get good 
implementations of the lower level protocols as it takes to get 
implementations of the higher level ones.    In particular, it has been 
observed that there is still a lot of work being done at the ISO network and 
transport layers.    As a result, implementations of protocols above these 
layers are not being aggressively pursued. Thus, something must be done 
"now" to provide a medium in which the higher level protocols can be 
developed.    Since TCP/IP is mature, and essentially provides identical 
functionality, it is an ideal medium to support this development. 

2. Implementation of gateways at the IP and ISO IP layers are probably not of 
general use in the long term.    In effect, this would require each Internet 
host to support both TP4 and TCP. As such, a better strategy is to 
implement a graceful migration path from TCP/IP to ISO protocols for the 
ARPA Internet when the ISO protocols have matured sufficiently. 

Both of these arguments indicate that gatewaying should occur at or above the transport 
layer service access point.    Further, the first argument suggests that the best approach is to
perform the gatewaying exactly AT the transport service access point to maximize the 
number of ISO layers which can be developed. 

Note:
This memo does not intend to act as a migration or intercept document.    It is 
intended only to meet the needs discussed above.    However, it would not be 
unexpected that the protocol described in this memo might form part of an 
overall transition plan.    The description of such a plan however is completely
beyond the scope of this memo. 

Finally, in general, building gateways between other layers in the TCP/IP and ISO protocol 
suites is problematic, at best. 
To summarize: the primary motivation for the standard described in this memo is to facilitate
the process of gaining experience with higher-level ISO protocols (session, presentation, and 
application). The stability and maturity of TCP/IP are ideal for providing solid transport 
services independent of actual implementation. 



RFC-1006 ISO Transport on top of the TCP

The Model

The [ISO8072] standard describes the ISO transport service definition, henceforth called TP. 
Aside:
This memo references the ISO specifications rather than the CCITT 
recommendations.    The differences between these parallel standards are 
quite small, and can be ignored, with respect to this memo, without loss of 
generality.    To provide the reader with the relationships: 

Transport service [ISO8072] [X.214]
Transport protocol [ISO8073] [X.224]
Session protocol [ISO8327] [X.225]

The ISO transport service definition describes the services offered by the TS-provider 
(transport service) and the interfaces used to access those services.    This memo focuses on
how the ARPA Transmission Control Protocol (TCP) [RFC793] can be used to offer the services
and provide the interfaces. 
      +-----------+                                       +-----------+
      |  TS-user  |                                       |  TS-user  |
      +-----------+                                       +-----------+
           |                                                     |
           | TSAP interface                       TSAP interface |
           |  [ISO8072]                                          |
           |                                                     |
      +----------+   ISO Transport Services on the TCP     +----------+
      |  client  |-----------------------------------------|  server  |
      +----------+              (this memo)                +----------+
           |                                                     |
           | TCP interface                         TCP interface |
           |  [RFC793]                                           |
           |                                                     |

For expository purposes, the following abbreviations are used:
TS-peer a process which implements the protocol described by this memo 
TS-user a process talking using the services of a TS-peer
TS-provider the black-box entity implementing the protocol described by this memo 

For the purposes of this memo, which describes version 2 of the TSAP protocol, all aspects of
[ISO8072] are supported with one exception: 

Quality of Service parameters
In the spirit of CCITT, this is left "for further study".    A future version of the protocol will 
most likely support the QOS parameters for TP by mapping these onto various TCP 
parameters. 
The ISO standards do not specify the format of a session port (termed a TSAP ID).    This 
memo mandates the use of the GOSIP specification [GOSIP86] for the interpretation of this 
field. (Please refer to Section 5.2, entitled "UPPER LAYERS ADDRESSING".) 
Finally, the ISO TSAP is fundamentally symmetric in behavior. There is no underlying 
client/server model.    Instead of a server listening on a well-known port, when a connection 
is established, the TS-provider generates an INDICATION event which, presumably the TS-



user catches and acts upon.    Although this might be implemented by having a server 
"listen" by hanging on the INDICATION event, from the perspective of the ISO TSAP, all TS- 
users just sit around in the IDLE state until they either generate a REQUEST or accept an 
INDICATION. 



RFC-1006 ISO Transport on top of the TCP

The Primitives

The protocol assumes that the TCP[RFC793] offers the following service primitives: 
Events

connected - open succeeded (either ACTIVE or PASSIVE)
connect fails - ACTIVE open failed
data ready - data can be read from the connection
errored - the connection has errored and is now closed
closed - an orderly disconnection has started

Actions
listen on port - PASSIVE open on the given port
open port - ACTIVE open to the given port
read data - data is read from the connection
send data - data is sent on the connection
close - the connection is closed (pending data is sent)

This memo describes how to use these services to emulate the following service primitives, 
which are required by [ISO8073]: 

Events
N-CONNECT.INDICATION

- An NS-user (responder) is notified that connection establishment is in 
progress 

N-CONNECT.CONFIRMATION
- An NS-user (responder) is notified that the connection has been 
established 

N-DATA.INDICATION
- An NS-user is notified that data can be read from the connection 

N-DISCONNECT.INDICATION
- An NS-user is notified that the connection is closed 

Actions
N-CONNECT.REQUEST

- An NS-user (initiator) indicates that it wants to establish a connection 
N-CONNECT.RESPONSE

- An NS-user (responder) indicates that it will honor the request
N-DATA.REQUEST

- An NS-user sends data
N-DISCONNECT.REQUEST

- An NS-user indicates that the connection is to be closed 
The protocol offers the following service primitives, as defined in [ISO8072], to the TS-user: 

Events
T-CONNECT.INDICATION

- a TS-user (responder) is notified that connection establishment is in 
progress 



T-CONNECT.CONFIRMATION
- a TS-user (initiator) is notified that the connection has been 
established 

T-DATA.INDICATION
- a TS-user is notified that data can be read from the connection 

T-EXPEDITED DATA.INDICATION
- a TS-user is notified that "expedited" data can be read from the 
connection 

T-DISCONNECT.INDICATION
- a TS-user is notified that the connection is closed 

Actions
T-CONNECT.REQUEST

- a TS-user (initiator) indicates that it wants to establish a connection 
T-CONNECT.RESPONSE

- a TS-user (responder) indicates that it will honor the request 
T-DATA.REQUEST

- a TS-user sends data
T-EXPEDITED DATA.REQUEST

 - a TS-user sends "expedited" data
T-DISCONNECT.REQUEST

- a TS-user indicates that the connection is to be closed 



RFC-1006 ISO Transport on top of the TCP

The Protocol

The protocol specified by this memo is identical to the protocol for ISO transport class 0, with
the following exceptions: 

- for testing purposes, initial data may be exchanged during connection 
establishment 

- for testing purposes, an expedited data service is supported 
- for performance reasons, a much larger TSDU size is supported 
- the network service used by the protocol is provided by the TCP    

The ISO transport protocol exchanges information between peers in discrete units of 
information called transport protocol data units (TPDUs).    The protocol defined in this memo
encapsulates these TPDUs in discrete units called TPKTs.    The structure of these TPKTs and 
their relationship to TPDUs are discussed in the next section. 
Primitives
The mapping between the TCP service primitives and the service primitives expected by 
transport class 0 are quite straight- forward: 

network service                             TCP  
CONNECTION ESTABLISHMENT

N-CONNECT.REQUEST open completes
N-CONNECT.INDICATION listen (PASSIVE open) finishes
N-CONNECT.RESPONSE listen completes
N-CONNECT.CONFIRMATION open (ACTIVE open) finishes

DATA TRANSFER
N-DATA.REQUEST send data
N-DATA.INDICATION data ready followed by read data

CONNECTION RELEASE
N-DISCONNECT.REQUEST close
N-DISCONNECT.INDICATION connection closes or errors

Mapping parameters is also straight-forward:
network service                             TCP  
CONNECTION ESTABLISHMENT

Called address server's IP address (4 octets)
Calling address client's IP address (4 octets)
all others ignored

DATA TRANSFER
NS-user data (NSDU) data

CONNECTION RELEASE
all parameters ignored



RFC-1006 ISO Transport on top of the TCP - The Protocol

CONNECTION ESTABLISHMENT

The elements of procedure used during connection establishment are identical to those 
presented in [ISO8073], with three exceptions. 
In order to facilitate testing, the connection request and connection confirmation TPDUs may
exchange initial user data, using the user data fields of these TPDUs. 
In order to experiment with expedited data services, the connection request and connection 
confirmation TPDUs may negotiate the use of expedited data transfer using the negotiation 
mechanism specified in [ISO8073] is used (e.g., setting the "use of transport expedited data 
transfer service" bit in the "Additional Option Selection" variable part). The default is not to 
use the transport expedited data transfer service. 
In order to achieve good performance, the default TPDU size is 65531 octets, instead of 128 
octets.    In order to negotiate a smaller (standard) TPDU size, the negotiation mechanism 
specified in [ISO8073] is used (e.g., setting the desired bit in the "TPDU Size" variable part). 
To perform an N-CONNECT.REQUEST action, the TS-peer performs an active open to the 
desired IP address using TCP port 102. When the TCP signals either success or failure, this 
results in an N-CONNECT.INDICATION action. 
To await an N-CONNECT.INDICATION event, a server listens on TCP port 102.    When a client 
successfully connects to this port, the event occurs, and an implicit N-CONNECT.RESPONSE 
action is performed. 

Note:
In most implementations, a single server will perpetually LISTEN on port 102, 
handing off connections as they are made 



RFC-1006 ISO Transport on top of the TCP

DATA TRANSFER

The elements of procedure used during data transfer are identical to those presented in 
[ISO8073], with one exception: expedited data may be supported (if so negotiated during 
connection establishment) by sending a modified ED TPDU (described below). The TPDU is 
sent on the same TCP connection as all of the other TPDUs. This method, while not faithful to
the spirit of [ISO8072], is true to the letter of the specification. 
To perform an N-DATA.REQUEST action, the TS-peer constructs the desired TPKT and uses 
the TCP send data primitive. 
To trigger an N-DATA.INDICATION action, the TCP indicates that data is ready and a TPKT is 
read using the TCP read data primitive. 



RFC-1006 ISO Transport on top of the TCP

CONNECTION RELEASE

To perform an N-DISCONNECT.REQUEST action, the TS-peer simply closes the TCP 
connection. 
If the TCP informs the TS-peer that the connection has been closed or has errored, this 
indicates an N-DISCONNECT.INDICATION event. 



RFC-1006 ISO Transport on top of the TCP

Packet Format

A fundamental difference between the TCP and the network service expected by TP0 is that 
the TCP manages a continuous stream of octets, with no explicit boundaries.    The TP0 
expects information to be sent and delivered in discrete objects termed network service data
units (NSDUs).    Although other classes of transport may combine more than one TPDU 
inside a single NSDU, transport class 0 does not use this facility.    Hence, an NSDU is 
identical to a TPDU for the purposes of our discussion. 
The protocol described by this memo uses a simple packetization scheme in order to delimit 
TPDUs.    Each packet, termed a TPKT, is viewed as an object composed of an integral 
number of octets, of variable length. 

Note:
For the purposes of presentation, these objects are shown as being 4 octets 
(32 bits wide).    This representation is an artifact of the style of this memo and
should nto be interpreted as requiring that a TPKT be a multiple of 4 octets in 
length. 

A TPKT consists of two parts:    a packet-header and a TPDU.    The format of the header is 
constant regardless of the type of packet. The format of the packet-header is as follows: 
        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |      vrsn     |    reserved   |          packet length        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

where:
vrsn 8 bits

This field is always 3 for the version of the protocol described in this memo. 
packet length 16 bits (min=7, max=65535)

This field contains the length of entire packet in octets, including packet-
header.    This permits a maximum TPDU size of 65531 octets.    Based on the 
size of the data transfer (DT) TPDU, this permits a maximum TSDU size of 
65524 octets. 

The format of the TPDU is defined in [ISO8073].    Note that only TPDUs formatted for 
transport class 0 are exchanged (different transport classes may use slightly different 
formats). 
To support expedited data, a non-standard TPDU, for expedited data is permitted.    The 
format used for the ED TPDU is nearly identical to the format for the normal data, DT, TPDU.  
The only difference is that the value used for the TPDU's code is ED, not DT: 
       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | header length | code  |credit |TPDU-NR and EOT|   user data   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      ...      |      ...      |      ...      |      ...      |
      |      ...      |      ...      |      ...      |      ...      |
      |      ...      |      ...      |      ...      |      ...      |



      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

After the credit field (which is always ZERO on output and ignored on input), there is one 
additional field prior to the user data. 

TPDU-NR and EOT                  8 bits
Bit 7 (the high-order bit, bit mask 1000 0000) indicates the end of a XSDU 
(expedited TSDU).    All other bits should be ZERO on output and ignored on 
input. 

Note that the TP specification limits the size of an expedited transport service data unit 
(XSDU) to 16 octets. 



RFC-1006 ISO Transport on top of the TCP

Comments

Since the release of RFC983 in April of 1986, we have gained much experience in using ISO 
transport services on top of the TCP.    In September of 1986, we introduced the use of 
version 2 of the protocol, based mostly on comments from the community. 
In January of 1987, we observed that the differences between version 2 of the protocol and 
the actual transport class 0 definition were actually quite small.    In retrospect, this 
realization took much longerr than it should have:    TP0 is is meant to run over a reliable 
network service, e.g., X.25. The TCP can be used to prrvide a service of this type, and, if no 
one complains to loudly, one could state that this memo really just describes a method for 
encapsulating TPO inside of TCP! 
The changes in going from version 1 of the protocol to version 2 and then to version 3 are all
relatively small. Initially, in describing version 1, we decided to use the TPDU formats from 
the ISO transport protocol.    This naturally led to the evolution described above. 



[GOSIP86]
The U.S. Government OSI User's Committee. "Government Open Systems 
Interconnection Procurement (GOSIP) Specification for Fiscal years 1987 and 
1988." (December, 1986) [draft status] 



[ISO8072] ISO
"International Standard 8072.    Information Processing Systems -- Open 
Systems Interconnection: Transport Service Definition." (June, 1984) 



[ISO8073] ISO
"International Standard 8073.    Information Processing Systems -- Open 
Systems Interconnection: Transport Protocol Specification." (June, 1984) 



[ISO8327] ISO
"International Standard 8327.    Information Processing Systems -- Open 
Systems Interconnection: Session Protocol Specification." (June, 1984) 



[X.214]            CCITT.
"Recommendation X.214.    Transport Service Definitions for Open Systems 
Interconnection (OSI) for CCITT Applications." (October, 1984) 



[X.224]            CCITT.
"Recommendation X.224.    Transport Protocol Specification for Open Systems 
Interconnection (OSI) for CCITT Applications." (October, 1984) 



[X.225]            CCITT.
"Recommendation X.225.    Session Protocol Specification for Open Systems 
Interconnection (OSI) for CCITT Applications." (October, 1984) 



RFC-1014 XDR: External Data Representation Standard
Network Working Group
Sun Microsystems, Inc.

June 1987

This RFC describes a standard that Sun Microsystems, Inc., and others are using, one we 
wish to propose for the Internet's consideration.    Distribution of this memo is unlimited.

Introduction
Basic Block Size
XDR Data Types
Discussion
The XDR Language Specification
An Example of an XDR Data Description
Trademarks and Owners



RFC-1014    XDR: External Data Representation Standard

Introduction
XDR is a standard for the description and encoding of data.    It is useful for transferring data 
between different computer architectures, and has been used to communicate data between
such diverse machines as the SUN WORKSTATION*, VAX*, IBM-PC*, and Cray*.    XDR fits into 
the ISO presentation layer, and is roughly analogous in purpose to X.409, ISO Abstract 
Syntax Notation.    The major difference between these two is that XDR uses implicit typing, 
while X.409 uses explicit typing.

XDR uses a language to describe data formats.    The language can be used only to describe 
data; it is not a programming language.    This language allows one to describe intricate data
formats in a concise manner. The alternative of using graphical representations (itself an 
informal language) quickly becomes incomprehensible when faced with complexity.    The 
XDR language itself is similar to the C language, just as Courier is similar to Mesa. Protocols 
such as Sun RPC (Remote Procedure Call) and the NFS* (Network File System) use XDR to 
describe the format of their data.

The XDR standard makes the following assumption: that bytes (or octets) are portable, 
where a byte is defined to be 8 bits of data.    A given hardware device should encode the 
bytes onto the various media in such a way that other hardware devices may decode the 
bytes without loss of meaning.    For example, the Ethernet* standard suggests that bytes be 
encoded in "little-endian" style, or least significant bit first.



RFC-1014    XDR: External Data Representation Standard

Basic Block Size
The representation of all items requires a multiple of four bytes (or 32 bits) of data.    The 
bytes are numbered 0 through n-1.    The bytes are read or written to some byte stream such
that byte m always precedes byte m+1.    If the n bytes needed to contain the data are not a
multiple of four, then the n bytes are followed by enough (0 to 3) residual zero bytes, r, to 
make the total byte count a multiple of 4.

We include the familiar graphic box notation for illustration and comparison.    In most 
illustrations, each box (delimited by a plus sign at the 4 corners and vertical bars and 
dashes) depicts a byte.    Ellipses (...) between boxes show zero or more additional bytes 
where required.

        +--------+--------+...+--------+--------+...+--------+
        | byte 0 | byte 1 |...|byte n-1|    0   |...|    0   |   
        +--------+--------+...+--------+--------+...+--------+
        |<-----------n bytes---------->|<------r bytes------>|
        |<-----------n+r (where (n+r) mod 4 = 0)>----------->|

BLOCK



RFC-1014    XDR: External Data Representation Standard

XDR Data Types
Each of the sections that follow describes a data type defined in the XDR standard, shows 
how it is declared in the language, and includes a graphic illustration of its encoding.

For each data type in the language we show a general paradigm declaration.    Note that 
angle brackets (< and >) denote variablelength sequences of data and square brackets 
([ and ]) denote fixed-length sequences of data.    "n", "m" and "r" denote integers.    For the 
full language specification and more formal definitions of terms such as "identifier" and 
"declaration", refer to the section:    "The XDR Language Specification".

For some data types, more specific examples are included.    A more extensive example of a 
data description is in the section:    "An Example of an XDR Data Description".

Integer
Unsigned Integer
Enumeration
Boolean
Hyper Integer and Unsigned Hyper Integer
Floating-point
Double-precision Floating-point
Fixed-length Opaque Data
Variable-length Opaque Data
String
Fixed-length Array
Variable-length Array
Structure
Discriminated Union
Void
Constant
Typedef
Optional-data
Areas for Future Enhancement



RFC-1014    XDR Data Types

Integer
An XDR signed integer is a 32-bit datum that encodes an integer in the range [-
2147483648,2147483647].    The integer is represented in two's complement notation.    The 
most and least significant bytes are 0 and 3, respectively.    Integers are declared as follows:

                  int identifier;

           (MSB)                   (LSB)
         +-------+-------+-------+-------+
         |byte 0 |byte 1 |byte 2 |byte 3 |
         +-------+-------+-------+-------+
         <------------32 bits------------>

INTEGER



RFC-1014    XDR Data Types

Unsigned Integer
An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in the range 
[0,4294967295].    It is represented by an unsigned binary number whose most and least 
significant bytes are 0 and 3, respectively.    An unsigned integer is declared as follows:

                  unsigned int identifier;

           (MSB)                   (LSB)
         +-------+-------+-------+-------+
         |byte 0 |byte 1 |byte 2 |byte 3 |
         +-------+-------+-------+-------+
         <------------32 bits------------>

UNSIGNED INTEGER



RFC-1014    XDR Data Types

Enumeration
Enumerations have the same representation as signed integers.    Enumerations are handy 
for describing subsets of the integers.    Enumerated data is declared as follows:

                  enum { name-identifier = constant, ... } identifier;

For example, the three colors red, yellow, and blue could be described by an enumerated 
type:

                  enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to encode as an enum any other integer than those that have been given 
assignments in the enum declaration.



RFC-1014    XDR Data Types

Boolean
Booleans are important enough and occur frequently enough to warrant their own explicit 
type in the standard.    Booleans are declared as follows:

            bool identifier;

This is equivalent to:

                  enum { FALSE = 0, TRUE = 1 } identifier;



RFC-1014    XDR Data Types

Hyper Integer and Unsigned Hyper Integer
The standard also defines 64-bit (8-byte) numbers called hyper integer and unsigned hyper 
integer.    Their representations are the obvious extensions of integer and unsigned integer 
defined above.    They are represented in two's complement notation.    The most and least 
significant bytes are 0 and 7, respectively.    Their declarations:

      hyper identifier; unsigned hyper identifier;

        (MSB)                                                   (LSB)
      +-------+-------+-------+-------+-------+-------+-------+-------+
      |byte 0 |byte 1 |byte 2 |byte 3 |byte 4 |byte 5 |byte 6 |byte 7 |
      +-------+-------+-------+-------+-------+-------+-------+-------+
      <----------------------------64 bits---------------------------->

HYPER INTEGER
UNSIGNED HYPER INTEGER



RFC-1014    XDR Data Types

Floating-point
The standard defines the floating-point data type "float" (32 bits or 4 bytes).    The encoding 
used is the IEEE standard for normalized single-precision floating-point numbers.    The 
following three fields describe the single-precision floating-point number:

            S: The sign of the number.    Values 0 and 1 represent positive and
                  negative, respectively.    One bit.

            E: The exponent of the number, base 2.    8 bits are devoted to this
                  field.    The exponent is biased by 127.

            F: The fractional part of the number's mantissa, base 2.    23 bits
                  are devoted to this field.

Therefore, the floating-point number is described by:

                  (-1)**S * 2**(E-Bias) * 1.F

It is declared as follows:
                  float identifier;

         +-------+-------+-------+-------+
         |byte 0 |byte 1 |byte 2 |byte 3 |              
         S|   E   |           F          |         
         +-------+-------+-------+-------+
         1|<- 8 ->|<-------23 bits------>|
         <------------32 bits------------>
SINGLE-PRECISION FLOATING-POINT NUMBER
Just as the most and least significant bytes of a number are 0 and 3, the most and least 
significant bits of a single-precision floating- point number are 0 and 31.    The beginning bit 
(and most significant bit) offsets of S, E, and F are 0, 1, and 9, respectively.    Note that these 
numbers refer to the mathematical positions of the bits, and NOT to their actual physical 
locations (which vary from medium to medium).

The EEE specifications should be consulted concerning the encoding for signed zero, signed 
infinity (overflow), and denormalized numbers (underflow).    According to IEEE 
specifications, the "NaN" (not a number) is system dependent and should not be used 
externally.



RFC-1014    XDR Data Types

Double-precision Floating-point
The standard defines the encoding for the double-precision floating- point data type 
"double" (64 bits or 8 bytes).    The encoding used is the IEEE standard for normalized 
double-precision floating-point numbers.    The standard encodes the following three fields, 
which describe the double-precision floating-point number:

            S: The sign of the number.    Values 0 and 1 represent positive and
                  negative, respectively.    One bit.

            E: The exponent of the number, base 2.    11 bits are devoted to
                  this field.    The exponent is biased by 1023.

            F: The fractional part of the number's mantissa, base 2.    52 bits
                  are devoted to this field.

Therefore, the floating-point number is described by:

                  (-1)**S * 2**(E-Bias) * 1.F

It is declared as follows:

                  double identifier;

         +------+------+------+------+------+------+------+------+
         |byte 0|byte 1|byte 2|byte 3|byte 4|byte 5|byte 6|byte 7|
         S|    E   |                    F                        |
         +------+------+------+------+------+------+------+------+
         1|<--11-->|<-----------------52 bits------------------->|
         <-----------------------64 bits------------------------->

DOUBLE-PRECISION FLOATING-POINT

Just as the most and least significant bytes of a number are 0 and 3, the most and least 
significant bits of a double-precision floating- point number are 0 and 63.    The beginning bit 
(and most significant bit) offsets of S, E , and F are 0, 1, and 12, respectively.    Note that 
these numbers refer to the mathematical positions of the bits, and NOT to their actual 
physical locations (which vary from medium to medium).

The IEEE specifications should be consulted concerning the encoding for signed zero, signed 
infinity (overflow), and denormalized numbers (underflow).    According to IEEE 
specifications, the "NaN" (not a number) is system dependent and should not be used 
externally.



RFC-1014    XDR Data Types

Fixed-length Opaque Data
At times, fixed-length uninterpreted data needs to be passed among machines.    This data is
called "opaque" and is declared as follows:

                  opaque identifier[n];

where the constant n is the (static) number of bytes necessary to contain the opaque data.    
If n is not a multiple of four, then the n bytes are followed by enough (0 to 3) residual zero 
bytes, r, to make the total byte count of the opaque object a multiple of four.

          0        1     ...
      +--------+--------+...+--------+--------+...+--------+
      | byte 0 | byte 1 |...|byte n-1|    0   |...|    0   |
      +--------+--------+...+--------+--------+...+--------+
      |<-----------n bytes---------->|<------r bytes------>|
      |<-----------n+r (where (n+r) mod 4 = 0)------------>|

FIXED-LENGTH OPAQUE



RFC-1014    XDR Data Types

Variable-length Opaque Data
The standard also provides for variable-length (counted) opaque data, defined as a 
sequence of n (numbered 0 through n-1) arbitrary bytes to be the number n encoded as an 
unsigned integer (as described below), and followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m+1 of the sequence, and byte 0 of the 
sequence always follows the sequence's length (count).    If n is not a multiple of four, then 
the n bytes are followed by enough (0 to 3) residual zero bytes, r, to make the total byte 
count a multiple of four.    Variable-length opaque data is declared in the following way:

                  opaque identifier<m>;
or
                  opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the sequence may 
contain.    If m is not specified, as in the second declaration, it is assumed to be (2**32) - 1, 
the maximum length.    The constant m would normally be found in a protocol specification.   
For example, a filing protocol may state that the maximum data transfer size is 8192 bytes, 
as follows:

                  opaque filedata<8192>;

            0     1     2     3     4     5   ...
         +-----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
         |        length n       |byte0|byte1|...| n-1 |  0  |...|  0  |
         +-----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
         |<-------4 bytes------->|<------n bytes------>|<---r bytes--->|
                                 |<----n+r (where (n+r) mod 4 = 0)---->|

VARIABLE-LENGTH OPAQUE

It is an error to encode a length greater than the maximum described in the specification.



RFC-1014    XDR Data Types

String
The standard defines a string of n (numbered 0 through n-1) ASCII bytes to be the number n 
encoded as an unsigned integer (as described above), and followed by the n bytes of the 
string.    Byte m of the string always precedes byte m+1 of the string, and byte 0 of the 
string always follows the string's length.    If n is not a multiple of four, then the n bytes are 
followed by enough (0 to 3) residual zero bytes, r, to make the total byte count a multiple of 
four.    Counted byte strings are declared as follows:

                  string object<m>;
            or
                  string object<>;

The constant m denotes an upper bound of the number of bytes that a string may contain.    
If m is not specified, as in the second declaration, it is assumed to be (2**32) - 1, the 
maximum length.    The constant m would normally be found in a protocol specification.    For 
example, a filing protocol may state that a file name can be no longer than 255 bytes, as 
follows:

                  string filename<255>;

            0     1     2     3     4     5   ...
         +-----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
         |        length n       |byte0|byte1|...| n-1 |  0  |...|  0  |
         +-----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
         |<-------4 bytes------->|<------n bytes------>|<---r bytes--->|
                                 |<----n+r (where (n+r) mod 4 = 0)---->|

STRING

It is an error to encode a length greater than the maximum described in the specification.



RFC-1014    XDR Data Types

Fixed-length Array
Declarations for fixed-length arrays of homogeneous elements are in the following form:

                  type-name identifier[n];

Fixed-length arrays of elements numbered 0 through n-1 are encoded by individually 
encoding the elements of the array in their natural order, 0 through n-1.    Each element's 
size is a multiple of four bytes. Though all elements are of the same type, the elements may 
have different sizes.    For example, in a fixed-length array of strings, all elements are of type
"string", yet each element will vary in its length.

         +---+---+---+---+---+---+---+---+...+---+---+---+---+
         |   element 0   |   element 1   |...|  element n-1  |
         +---+---+---+---+---+---+---+---+...+---+---+---+---+
         |<--------------------n elements------------------->|

FIXED-LENGTH ARRAY



RFC-1014    XDR Data Types

Variable-length Array
Counted arrays provide the ability to encode variable-length arrays of homogeneous 
elements.    The array is encoded as the element count n (an unsigned integer) followed by 
the encoding of each of the array's elements, starting with element 0 and progressing 
through element n- 1.    The declaration for variable-length arrays follows this form:

                  type-name identifier<m>;
            or
                  type-name identifier<>;

The constant m specifies the maximum acceptable element count of an array; if m is not 
specified, as in the second declaration, it is assumed to be (2**32) - 1.

           0  1  2  3
         +--+--+--+--+--+--+--+--+--+--+--+--+...+--+--+--+--+
         |     n     | element 0 | element 1 |...|element n-1|
         +--+--+--+--+--+--+--+--+--+--+--+--+...+--+--+--+--+
         |<-4 bytes->|<--------------n elements------------->|

COUNTED ARRAY

It is an error to encode a value of n that is greater than the maximum described in the 
specification.



RFC-1014    XDR Data Types

Structure
Structures are declared as follows:

                  struct {
                        component-declaration-A;
                        component-declaration-B;
                        ...
                  } identifier;

The components of the structure are encoded in the order of their declaration in the 
structure.    Each component's size is a multiple of four bytes, though the components may 
be different sizes.

         +-------------+-------------+...
         | component A | component B |
         +-------------+-------------+...

Structure



RFC-1014    XDR Data Types

Discriminated Union
A discriminated union is a type composed of a discriminant followed by a type selected from 
a set of prearranged types according to the value of the discriminant.    The type of 
discriminant is either "int", "unsigned int", or an enumerated type, such as "bool".    The 
component types are called "arms" of the union, and are preceded by the value of the 
discriminant which implies their encoding.    Discriminated unions are declared as follows:

                union switch (discriminant-declaration) {
         case discriminant-value-A:
            arm-declaration-A;
         case discriminant-value-B:
            arm-declaration-B;
         ...
         default: default-declaration;
         } identifier;

Each "case" keyword is followed by a legal value of the discriminant.    The default arm is 
optional.    If it is not specified, then a valid encoding of the union cannot take on unspecified
discriminant values.    The size of the implied arm is always a multiple of four bytes.

The discriminated union is encoded as its discriminant followed by the encoding of the 
implied arm.

           0   1   2   3
         +---+---+---+---+---+---+---+---+
         |  discriminant |  implied arm  |
         +---+---+---+---+---+---+---+---+
         |<---4 bytes--->|

DISCRIMINATED UNION



RFC-1014    XDR Data Types

Void
An XDR void is a 0-byte quantity.    Voids are useful for describing operations that take no 
data as input or no data as output. They are also useful in unions, where some arms may 
contain data and others do not.    The declaration is simply as follows:
                  void;

Voids are illustrated as follows:

           ++
           ||     
           ++
         --><-- 0 bytes

VOID



RFC-1014    XDR Data Types

Constant
The data declaration for a constant follows this form:    "const" is used to define a symbolic 
name for a constant; it does not declare any data.    The symbolic constant may be used 
anywhere a regular constant may be used.    For example, the following defines a symbolic 
constant DOZEN, equal to 12.

         const DOZEN = 12;



RFC-1014    XDR Data Types

Typedef
"typedef" does not declare any data either, but serves to define new identifiers for declaring 
data. The syntax is:

         typedef declaration;

The new type name is actually the variable name in the declaration part of the typedef.    For 
example, the following defines a new type called "eggbox" using an existing type called 
"egg":

         typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type name 
would have in the typedef, if it was considered a variable.    For example, the following two 
declarations are equivalent in declaring the variable "fresheggs":

         eggbox  fresheggs;
         egg     fresheggs[DOZEN];

When a typedef involves a struct, enum, or union definition, there is another (preferred) 
syntax that may be used to define the same type.    In general, a typedef of the following 
form:

         typedef <<struct, union, or enum definition>> identifier;

may be converted to the alternative form by removing the "typedef" part and placing the 
identifier after the "struct", "union", or "enum" keyword, instead of at the end.    For example,
here are the two ways to define the type "bool":

         typedef enum {    /* using typedef */
            FALSE = 0,
            TRUE = 1
         } bool;

         enum bool {       /* preferred alternative */
            FALSE = 0,
            TRUE = 1
         };

The reason this syntax is preferred is one does not have to wait until the end of a declaration
to figure out the name of the new type.



RFC-1014    XDR Data Types

Optional-data
Optional-data is one kind of union that occurs so frequently that we give it a special syntax 
of its own for declaring it.    It is declared as follows:

         type-name *identifier;

This is equivalent to the following union:

         union switch (bool opted) {
         case TRUE:
            type-name element;
         case FALSE:
            void;
         } identifier;

It is also equivalent to the following variable-length array declaration, since the boolean 
"opted" can be interpreted as the length of the array:

         type-name identifier<1>;

Optional-data is not so interesting in itself, but it is very useful for describing recursive data-
structures such as linked-lists and trees.    For example, the following defines a type 
"stringlist" that encodes lists of arbitrary length strings:

         struct *stringlist {
            string item<>;
            stringlist next;
         };

It could have been equivalently declared as the following union:

         union stringlist switch (bool opted) {
         case TRUE:
            struct {
               string item<>;
               stringlist next;
            } element;
         case FALSE:
            void;
         };

            or as a variable-length array:

         struct stringlist<1> {
            string item<>;
            stringlist next;
         };

Both of these declarations obscure the intention of the stringlist type, so the optional-data 
declaration is preferred over both of them.    The optional-data type also has a close 
correlation to how recursive data structures are represented in high-level languages such as 
Pascal or C by use of pointers. In fact, the syntax is the same as that of the C language for 



pointers.



RFC-1014    XDR Data Types

Areas for Future Enhancement
The XDR standard lacks representations for bit fields and bitmaps, since the standard is 
based on bytes.    Also missing are packed (or binary-coded) decimals.

The intent of the XDR standard was not to describe every kind of data that people have ever
sent or will ever want to send from machine to machine. Rather, it only describes the most 
commonly used data-types of high-level languages such as Pascal or C so that applications 
written in these languages will be able to communicate easily over some medium.

One could imagine extensions to XDR that would let it describe almost any existing protocol,
such as TCP.    The minimum necessary for this are support for different block sizes and byte-
orders.    The XDR discussed here could then be considered the 4-byte big-endian member of
a larger XDR family.



RFC-1014    XDR: External Data Representation Standard

Discussion
1)    Why use a language for describing data?    What's wrong with diagrams?

There are many advantages in using a data-description language such as    XDR    versus 
using    diagrams.      Languages are    more    formal than diagrams      and      lead    to less    
ambiguous      descriptions    of    data.    Languages are also easier    to understand and allow    
one to think of other      issues instead of    the      low-level details of bit-encoding.    Also,    
there is    a close analogy    between the    types    of XDR and    a high-level language      such    
as C      or        Pascal.      This makes      the implementation of XDR encoding and decoding 
modules an easier task.    Finally, the language specification itself    is an ASCII string that can
be passed from    machine to machine    to perform    on-the-fly data interpretation.

2)    Why is there only one byte-order for an XDR unit?

Supporting two byte-orderings requires a higher level protocol for determining in which byte-
order the data is encoded.    Since XDR is not a protocol, this can't be done.    The advantage 
of this, though, is that data in XDR format can be written to a magnetic tape, for example, 
and any machine will be able to interpret it, since no higher level protocol is necessary for 
determining the byte-order.

3)    Why is the XDR byte-order big-endian instead of little-endian?    Isn't this unfair to little-
endian machines such as the VAX(r), which has to convert from one form to the other?

Yes, it is unfair, but having only one byte-order means you have to be unfair to somebody.    
Many architectures, such as the Motorola 68000* and IBM 370*, support the big-endian byte-
order.

4)    Why is the XDR unit four bytes wide?

There is a tradeoff in choosing the XDR unit size.    Choosing a small size such as two makes 
the encoded data small, but causes alignment problems for machines that aren't aligned on 
these boundaries.    A large size such as eight means the data will be aligned on virtually 
every machine, but causes the encoded data to grow too big.    We chose four as a 
compromise.    Four is big enough to support most architectures efficiently, except for rare 
machines such as the eight-byte aligned Cray*.    Four is also small enough to keep the 
encoded data restricted to a reasonable size.

5)    Why must variable-length data be padded with zeros?

It is desirable that the same data encode into the same thing on all machines, so that 
encoded data can be meaningfully compared or checksummed.    Forcing the padded bytes 
to be zero ensures this.

6)    Why is there no explicit data-typing?

Data-typing has a relatively high cost for what small advantages it may have.    One cost is 
the expansion of data due to the inserted type fields.    Another is the added cost of 
interpreting these type fields and acting accordingly.    And most protocols already know 
what type they expect, so data-typing supplies only redundant information.    However, one 
can still get the benefits of data-typing using XDR. One way is to encode two things: first a 
string which is the XDR data description of the encoded data, and then the encoded data 



itself.    Another way is to assign a value to all the types in XDR, and then define a universal 
type which takes this value as its discriminant and for each value, describes the 
corresponding data type.



RFC-1014    XDR: External Data Representation Standard

The XDR Language Specification

Notational Conventions
Lexical Notes
Syntax Information
Syntax Notes



RFC-1014    XDR Language Specification

Notational Conventions
This specification uses an extended Back-Naur Form notation for describing the XDR 
language.    Here is a brief description of the notation:

1)    The characters '|', '(', ')', '[', ']', '"', and '*' are special.

2)    Terminal symbols are strings of any characters surrounded by double quotes.

3)    Non-terminal symbols are strings of non-special characters.

4)    Alternative items are separated by a vertical bar ("|").

5)    Optional items are enclosed in brackets.

6)    Items are grouped together by enclosing them in parentheses.

7)    A '*' following an item means 0 or more occurrences of that item.

For example,    consider    the    following pattern:

         "a " "very" (", " "very")* [" cold " "and "]  " rainy "
         ("day" | "night")

An infinite number of strings match this pattern. A few of them are:

         "a very rainy day"
         "a very, very rainy day"
         "a very cold and  rainy day"
         "a very, very, very cold and  rainy night"



RFC-1014    XDR Language Specification

Lexical Notes
1)    Comments begin with '/*' and terminate with '*/'.

2)    White space serves to separate items and is otherwise ignored.

3)    An identifier is a letter followed by an optional sequence of letters, digits or underbar 
('_'). The case of identifiers is not ignored.

4)    A constant is a sequence of one or more decimal digits, optionally preceded by a minus-
sign ('-').



RFC-1014    XDR Language Specification

Syntax Information
declaration:
           type-specifier identifier
         | type-specifier identifier "[" value "]"
         | type-specifier identifier "<" [ value ] ">"
         | "opaque" identifier "[" value "]"
         | "opaque" identifier "<" [ value ] ">"
         | "string" identifier "<" [ value ] ">"
         | type-specifier "*" identifier
         | "void"

value:
           constant
         | identifier

type-specifier:
           [ "unsigned" ] "int"
         | [ "unsigned" ] "hyper"
         | "float"
         | "double"
         | "bool"
         | enum-type-spec
         | struct-type-spec
         | union-type-spec
         | identifier

enum-type-spec:
         "enum" enum-body

enum-body:
         "{"
            ( identifier "=" value )
            ( "," identifier "=" value )*
         "}"

struct-type-spec:
         "struct" struct-body

struct-body:
         "{"
            ( declaration ";" )
            ( declaration ";" )*
         "}"

union-type-spec:
         "union" union-body

union-body:
         "switch" "(" declaration ")" "{"
            ( "case" value ":" declaration ";" )
            ( "case" value ":" declaration ";" )*
            [ "default" ":" declaration ";" ]



         "}"

constant-def:
         "const" identifier "=" constant ";"

type-def:
           "typedef" declaration ";"
         | "enum" identifier enum-body ";"
         | "struct" identifier struct-body ";"
         | "union" identifier union-body ";"

definition:
           type-def
         | constant-def

specification:
           definition *



RFC-1014    XDR Language Specification

Syntax Notes
1)    The following are keywords and cannot be used as identifiers:    "bool", "case", "const", 

"default", "double", "enum", "float", "hyper", "opaque", "string", "struct", "switch", 
"typedef", "union", "unsigned" and "void".

2)    Only unsigned constants may be used as size specifications for arrays.    If an identifier is
used, it must have been declared previously as an unsigned constant in a "const" 
definition.

3)    Constant and type identifiers within the scope of a specification are in the same name 
space and must be declared uniquely within this scope.

4)    Similarly, variable names must    be unique within    the scope    of struct and union 
declarations. Nested struct and union declarations create new scopes.

5) The discriminant of a union must be of a type that evaluates to an integer. That is, "int", 
"unsigned int", "bool", an enumerated type or any typedefed type that evaluates to one 
of these is legal.    Also, the case values must be one of the legal values of the 
discriminant.    Finally, a case value may not be specified more than once within the scope
of a union declaration.



RFC-1014    XDR: External Data Representation Standard

An Example of an XDR Data Description
Here is a short XDR data description of a thing called a "file", which might be used to 
transfer files from one machine to another.

                  const MAXUSERNAME = 32;          /* max length of a user name */
                  const MAXFILELEN = 65535;      /* max length of a file            */
                  const MAXNAMELEN = 255;          /* max length of a file name */

                  /*
                    * Types of files:
                    */
                  enum filekind {
                        TEXT = 0,              /* ascii data */
                        DATA = 1,              /* raw data      */
                        EXEC = 2                /* executable */
                  };

                  /*
                    * File information, per kind of file:
                    */
                  union filetype switch (filekind kind) {
                  case TEXT:
                        void;                                                      /* no extra information */
                  case DATA:
                        string creator<MAXNAMELEN>;          /* data creator                  */
                  case EXEC:
                        string interpretor<MAXNAMELEN>; /* program interpretor    */
                  };

                  /*
                    * A complete file:
                    */
                  struct file {
                        string filename<MAXNAMELEN>; /* name of file        */
                        filetype type;                              /* info about file */
                        string owner<MAXUSERNAME>;      /* owner of file      */
                        opaque data<MAXFILELEN>;          /* file data              */
                  };

Suppose now that there is a user named "john" who wants to store his lisp program 
"sillyprog" that contains just the data "(quit)".    His file would be encoded as follows:

       OFFSET  HEX BYTES       ASCII    COMMENTS
       ------  ---------       -----    --------
        0      00 00 00 09     ....     -- length of filename = 9
        4      73 69 6c 6c     sill     -- filename characters
        8      79 70 72 6f     ypro     -- ... and more characters ...
       12      67 00 00 00     g...     -- ... and 3 zero-bytes of fill
       16      00 00 00 02     ....     -- filekind is EXEC = 2
       20      00 00 00 04     ....     -- length of interpretor = 4
       24      6c 69 73 70     lisp     -- interpretor characters
       28      00 00 00 04     ....     -- length of owner = 4



       32      6a 6f 68 6e     john     -- owner characters
       36      00 00 00 06     ....     -- length of file data = 6
       40      28 71 75 69     (qui     -- file data bytes ...
       44      74 29 00 00     t)..     -- ... and 2 zero-bytes of fill



Brian W. Kernighan & Dennis M. Ritchie, "The C Programming Language", Bell Laboratories, 
Murray Hill, New Jersey, 1978.



Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE Computer, October 1981.



"IEEE Standard for Binary Floating-Point Arithmetic", ANSI/IEEE Standard 754-1985, Institute 
of Electrical and Electronics    Engineers, August 1985.



"Courier: The Remote Procedure Call Protocol", XEROX Corporation, XSIS 038112, December 
1981.



RFC-1014    XDR: External Data Representation Standard

Trademarks and Owners
SUN WORKSTATION Sun Microsystems, Inc.

VAX Digital EquipmentCorporation
IBM PC International Business Machines Corporation

Cray Cray Research
NFS Sun Microsystems, Inc.

Ethernet Xerox Corporation.
Motorola 68000 Motorola, Inc.

IBM 370 International Business Machines Corporation



RFC-1032 Domain Administrators Guide
M. Stahl

SRI International
November 1987

This memo describes procedures for registering a domain with the Network Information 
Center (NIC) of Defense Data Network (DDN), and offers guidelines on the establishment and
administration of a domain in accordance with the requirements specified in RFC-920.    It is 
intended for use by domain administrators.    This memo should be used in conjunction with 
RFC-920, which is an official policy statement of the Internet Activities Board (IAB) and the 
Defense Advanced Research Projects Agency (DARPA).

Background
The Domain Administrator
The Domain Technical And Zone Contact
Policies
How To Register
Which Domain Name
Verification Of Data
How To Get More Information
Appendix
Registration Form  
Example of Completed Registration Form  



RFC-1032 Domain Administrators Guide

Background
Domains are administrative entities that provide decentralized management of host naming 
and addressing.    The domain-naming system is distributed and hierarchical.

The NIC is designated by the Defense Communications Agency (DCA) to provide registry 
services for the domain-naming system on the DDN and DARPA portions of the Internet.

As registrar of top-level and second-level domains, as well as administrator of the root 
domain name servers on behalf of DARPA and DDN, the NIC is responsible for maintaining 
the root server zone files and their binary equivalents.    In addition, the NIC is responsible for
administering the top-level domains of "ARPA," "COM," "EDU," "ORG," "GOV," and "MIL" on 
behalf of DCA and DARPA until it becomes feasible for other appropriate organizations to 
assume those responsibilities.

It is recommended that the guidelines described in this document be used by domain 
administrators in the establishment and control of second-level domains.



RFC-1032 Domain Administrators Guide

The Domain Administrator
The role of the domain administrator (DA) is that of coordinator, manager, and technician.    
If his domain is established at the second level or lower in the tree, the DA must register by 
interacting with the management of the domain directly above his, making certain that his 
domain satisfies all the requirements of the administration under which his domain would be
situated.    To find out who has authority over the name space he wishes to join, the DA can 
ask the NIC Hostmaster.    Information on contacts for the top-level and second- level 
domains can also be found on line in the file NETINFO:DOMAIN- CONTACTS.TXT, which is 
available from the NIC via anonymous FTP.

The DA should be technically competent; he should understand the concepts and procedures
for operating a domain server, as described in RFC-1034, and make sure that the service 
provided is reliable and uninterrupted.    It is his responsibility or that of his delegate to 
ensure that the data will be current at all times.    As a manager, the DA must be able to 
handle complaints about service provided by his domain name server.    He must be aware of
the behavior of the hosts in his domain, and take prompt action on reports of problems, such
as protocol violations or other serious misbehavior.    The administrator of a domain must be 
a responsible person who has the authority to either enforce these actions himself or 
delegate them to someone else.

Name assignments within a domain are controlled by the DA, who should verify that names 
are unique within his domain and that they conform to standard naming conventions.    He 
furnishes access to names and name-related information to users both inside and outside his
domain.    He should work closely with the personnel he has designated as the "technical and
zone" contacts for his domain, for many administrative decisions will be made on the basis 
of input from these people.



RFC-1032 Domain Administrators Guide

The Domain Technical and Zone Contact
A zone consists of those contiguous parts of the domain tree for which a domain server has 
complete information and over which it has authority.    A domain server may be 
authoritative for more than one zone.    The domain technical/zone contact is the person who
tends to the technical aspects of maintaining the domain's name server and resolver 
software, and database files.    He keeps the name server running, and interacts with 
technical people in other domains and zones to solve problems that affect his zone.



RFC-1032 Domain Administrators Guide

Policies
Domain or host name choices and the allocation of domain name space are considered to be
local matters.    In the event of conflicts, it is the policy of the NIC not to get involved in local 
disputes or in the local decision-making process.    The NIC will not act as referee in disputes 
over such matters as who has the "right" to register a particular top-level or second-level 
domain for an organization.    The NIC considers this a private local matter that must be 
settled among the parties involved prior to their commencing the registration process with 
the NIC.    Therefore, it is assumed that the responsible person for a domain will have 
resolved any local conflicts among the members of his domain before registering that 
domain with the NIC.    The NIC will give guidance, if requested, by answering specific 
technical questions, but will not provide arbitration in disputes at the local level.    This policy
is also in keeping with the distributed hierarchical nature of the domain-naming system in 
that it helps to distribute the tasks of solving problems and handling questions.

Naming conventions for hosts should follow the rules specified in RFC-952.    From a technical
standpoint, domain names can be very long.    Each segment of a domain name may contain 
up to 64 characters, but the NIC strongly advises DAs to choose names that are 12 
characters or fewer, because behind every domain system there is a human being who must
keep track of the names, addresses, contacts, and other data in a database.    The longer the
name, the more likely the data maintainer is to make a mistake.    Users also will appreciate 
shorter names.    Most people agree that short names are easier to remember and type; 
most domain names registered so far are 12 characters or fewer.

Domain name assignments are made on a first-come-first-served basis.    The NIC has chosen
not to register individual hosts directly under the top-level domains it administers.    One 
advantage of the domain naming system is that administration and data maintenance can 
be delegated down a hierarchical tree.    Registration of hosts at the same level in the tree as
a second-level domain would dilute the usefulness of this feature.    In addition, the 
administrator of a domain is responsible for the actions of hosts within his domain.    We 
would not want to find ourselves in the awkward position of policing the actions of individual 
hosts.    Rather, the subdomains registered under these top-level domains retain the 
responsibility for this function.

Countries that wish to be registered as top-level domains are required to name themselves 
after the two-letter country code listed in the international standard ISO-3166.    In some 
cases, however, the two-letter ISO country code is identical to a state code used by the U.S. 
Postal Service.    Requests made by countries to use the three- letter form of country code 
specified in the ISO-3166 standard will be considered in such cases so as to prevent possible
conflicts and confusion.



RFC-1032 Domain Administrators Guide

How To Register
Obtain a domain questionnaire from the NIC hostmaster, or FTP the file NETINFO:DOMAIN-
TEMPLATE.TXT from host SRI-NIC.ARPA.

Fill out the questionnaire completely.    Return it via electronic mail to HOSTMASTER@SRI-
NIC.ARPA.

The APPENDIX to this memo contains the application form for registering a top-level or 
second-level domain with the NIC.    It supersedes the version of the questionnaire found in 
RFC-920.    The application should be submitted by the person administratively responsible 
for the domain, and must be filled out completely before the NIC will authorize 
establishment of a top-level or second-level domain.    The DA is responsible for keeping his 
domain's data current with the NIC or with the registration agent with which his domain is 
registered.    For example, the CSNET and UUCP managements act as domain filters, 
processing domain applications for their own organizations.    They pass pertinent 
information along periodically to the NIC for incorporation into the domain database and root
server files.    The online file NETINFO:ALTERNATE-DOMAIN-PROCEDURE.TXT outlines this 
procedure.    It is highly recommended that the DA review this information periodically and 
provide any corrections or additions.    Corrections should be submitted via electronic mail.



RFC-1032 Domain Administrators Guide

Which Domain Name?
The designers of the domain-naming system initiated several general categories of names 
as top-level domain names, so that each could accommodate a variety of organizations.    
The current top-level domains registered with the DDN Network Information Center are 
ARPA, COM, EDU, GOV, MIL, NET, and ORG, plus a number of top-level country domains.    To 
join one of these, a DA needs to be aware of the purpose for which it was intended.

"ARPA" is a temporary domain.    It is by default appended to the names of hosts that have 
not yet joined a domain.    When the system was begun in 1984, the names of all hosts in the
Official DoD Internet Host Table maintained by the NIC were changed by adding of the label 
".ARPA" in order to accelerate a transition to the domain-naming system.    Another reason 
for the blanket name changes was to force hosts to become accustomed to using the new 
style names and to modify their network software, if necessary.    This was done on a 
network-wide basis and was directed by DCA in DDN Management Bulletin No. 22.    Hosts 
that fall into this domain will eventually move to other branches of the domain tree.

"COM" is meant to incorporate subdomains of companies and businesses.

"EDU" was initiated to accommodate subdomains set up by universities and other 
educational institutions.

"GOV" exists to act as parent domain for subdomains set up by government agencies.

"MIL" was initiated to act as parent to subdomains that are developed by military 
organizations.

"NET" was introduced as a parent domain for various network-type organizations.    
Organizations that belong within this top-level domain are generic or network-
specific, such as network service centers and consortia.    "NET" also encompasses 
network management-related organizations, such as information centers and 
operations centers.

"ORG" exists as a parent to subdomains that do not clearly fall within the other top-
level domains.    This may include technical- support groups, professional societies, or 
similar organizations.

One of the guidelines in effect in the domain-naming system is that a host should have only 
one name regardless of what networks it is connected to.    This implies, that, in general, 
domain names should not include routing information or addresses.    For example, a host 
that has one network connection to the Internet and another to BITNET should use the same 
name when talking to either network.    RFC-1034 contains a description of the syntax of 
domain names.



RFC-1032 Domain Administrators Guide

Verification Of Data
The verification process can be accomplished in several ways.    One of these is through the 
NIC WHOIS server.    If he has access to WHOIS, the DA can type the command "whois 
domain <domain name><return>".    The reply from WHOIS will supply the following: the 
name and address of the organization "owning" the domain; the name of the domain; its 
administrative, technical, and zone contacts; the host names and network addresses of sites
providing name service for the domain.

Example:

@whois domain rice.edu<Return>

Rice University (RICE-DOM)
Advanced Studies and Research
Houston, TX 77001

Domain Name: RICE.EDU

Administrative Contact:
Kennedy, Ken  (KK28)  Kennedy@LLL-CRG.ARPA (713) 527-4834
Technical Contact, Zone Contact:
Riffle, Vicky R.  (VRR)  rif@RICE.EDU
(713) 527-8101 ext 3844

Domain servers:

RICE.EDU                     128.42.5.1
PENDRAGON.CS.PURDUE.EDU      128.10.2.5

Alternatively, the DA can send an electronic mail message to SERVICE@SRI-NIC.ARPA.    In 
the subject line of the message header, the DA should type "whois domain <domain 
name>".    The requested information will be returned via electronic mail.    This method is 
convenient for sites that do not have access to the NIC WHOIS service.

The initial application for domain authorization should be submitted via electronic mail, if 
possible, to HOSTMASTER@SRI-NIC.ARPA.    The questionnaire described in the appendix may 
be used or a separate application can be FTPed from host SRI-NIC.ARPA.    The information 
provided by the administrator will be reviewed by hostmaster personnel for completeness.    
There will most likely be a few exchanges of correspondence via electronic mail, the 
preferred method of communication, prior to authorization of the domain.



RFC-1032 Domain Administrators Guide

How To Get More Information
An informational table of the top-level domains and their root servers is contained in the file 
NETINFO:DOMAINS.TXT online at SRI- NIC.ARPA. This table can be obtained by FTPing the 
file.    Alternatively, the information can be acquired by opening a TCP or UDP connection to 
the NIC Host Name Server, port 101 on SRI-NIC.ARPA, and invoking the command "ALL-
DOM".

The following online files, all available by FTP from SRI-NIC.ARPA, contain pertinent domain 
information:

o NETINFO:DOMAINS.TXT, a table of all top-level domains 
and the network addresses of the machines providing 
domain name service for them.    It is updated each time 
a new top-level domain is approved.

o NETINFO:DOMAIN-INFO.TXT contains a concise list of all 
top-level and second-level domain names registered with
the NIC and is updated monthly.

o NETINFO:DOMAIN-CONTACTS.TXT also contains a list of all
the top level and second-level domains, but includes the 
administrative, technical and zone contacts for each as 
well.

o NETINFO:DOMAIN-TEMPLATE.TXT contains the 
questionnaire to be completed before registering a top-
level or second-level domain.

For either general or specific information on the domain system, do one or more of the 
following:

o Send electronic mail to HOSTMASTER@SRI-NIC.ARPA

o  Call the toll-free NIC hotline at (800) 235-3155



RFC-1032 Domain Administrators Guide: Appendix

Registration Form
The following questionnaire may be FTPed from SRI-NIC.ARPA as NETINFO:DOMAIN-
TEMPLATE.TXT.

To establish a domain, the following information must be sent to the NIC Domain Registrar 
(HOSTMASTER@SRI-NIC.ARPA):

NOTE: The key people must have electronic mailboxes and NIC "handles," unique NIC 
database identifiers.    If you have access to "WHOIS", please check to see if you are 
registered and if so, make sure the information is current.    Include only your handle and any
changes (if any) that need to be made in your entry.    If you do not have access to "WHOIS", 
please provide all the information indicated and a NIC handle will be assigned.

(1) The name of the top-level domain to join.

For example:    COM

(2) The NIC handle of the administrative head of the organization.    Alternately, the 
person's name, title, mailing address, phone number, organization, and network 
mailbox.    This is the contact point for administrative and policy questions about 
the domain.    In the case of a research project, this should be the principal 
investigator.

For example:

Administrator

Organization  The NetWorthy Corporation
Name          Penelope Q. Sassafrass
Title         President
Mail Address  The NetWorthy Corporation

4676 Andrews Way, Suite 100
Santa Clara, CA 94302-1212

Phone Number  (415) 123-4567
Net Mailbox   Sassafrass@ECHO.TNC.COM
NIC Handle    PQS

(3) The NIC handle of the technical contact for the domain.    Alternately, the person's
name, title, mailing address, phone number, organization, and network mailbox.    
This is the contact point for problems concerning the domain or zone, as well as 
for updating information about the domain or zone.

For example:

Technical and Zone Contact

Organization  The NetWorthy Corporation
Name          Ansel A. Aardvark
Title         Executive Director
Mail Address  The NetWorthy Corporation

4676 Andrews Way, Suite 100



Santa Clara, CA. 94302-1212
Phone Number  (415) 123-6789
Net Mailbox   Aardvark@ECHO.TNC.COM
NIC Handle    AAA2

(4) The name of the domain (up to 12 characters).    This is the name that will be used
in tables and lists associating the domain with the domain server addresses.    
[While, from a technical standpoint, domain names can be quite long 
(programmers beware), shorter names are easier for people to cope with.]

For example:    TNC

(5) A description of the servers that provide the domain service for translating names
to addresses for hosts in this domain, and the date they will be operational.

For example:    Our server is a copy of the one operated by the NIC; it will be 
installed and made operational on 1 November 1987.

(6) Domains must provide at least two independent servers for the domain.    
Establishing the servers in physically separate locations and on different PSNs is 
strongly recommended.    A description of the server machine and its backup, 
including

(a) Hardware and software (using keywords from the Assigned Numbers RFC).

(b) Host domain name and network addresses (which host on which network 
for each connected network).

(c) Any domain-style nicknames (please limit your domain-style nickname 
request to one)

For example:

- Hardware and software

VAX-11/750  and  UNIX,    or
IBM-PC      and  MS-DOS,  or
DEC-1090    and  TOPS-20

- Host domain names and network addresses

BAR.FOO.COM 10.9.0.193 on ARPANET

- Domain-style nickname

BR.FOO.COM (same as BAR.FOO.COM 10.9.0.13 on ARPANET)

(7) Planned mapping of names of any other network hosts, other than the server 
machines, into the new domain's naming space.

For example:

BAR-FOO2.ARPA (10.8.0.193) -> FOO2.BAR.COM
BAR-FOO3.ARPA (10.7.0.193) -> FOO3.BAR.COM



BAR-FOO4.ARPA (10.6.0.193) -> FOO4.BAR.COM

(8)    An estimate of the number of hosts that will be in the domain.

(a) Initially
(b) Within one year
(c) Two years
(d) Five years.

For example:

(a) Initially    =      50
(b) One year      =    100
(c) Two years    =    200
(d) Five years =    500

(9) The date you expect the fully qualified domain name to become the official host 
name in HOSTS.TXT.

Please note: If changing to a fully qualified domain name (e.g., FOO.BAR.COM) 
causes a change in the official host name of an ARPANET or MILNET host, DCA 
approval must be obtained beforehand.    Allow 10 working days for your requested 
changes to be processed.

ARPANET sites should contact ARPANETMGR@DDN1.ARPA.    MILNET sites should 
contact HOSTMASTER@SRI-NIC.ARPA, 800-235-3155, for further instructions.

(10) Please describe your organization briefly.

For example: The NetWorthy Corporation is a consulting organization of people
working with UNIX and the C language in an electronic networking 
environment.    It sponsors two technical conferences annually and distributes 
a bimonthly newsletter.



RFC-1032 Domain Administrators Guide: Appendix

Example of Completed Registration Form
This example of a completed application corresponds to the examples found in the 
companion document (RFC-1033) entitled "Domain Administrators Operations Guide."

(1)    The name of the top-level domain to join.

COM

(2)    The NIC handle of the administrative contact person.

NIC Handle        JAKE

(3)    The NIC handle of the domain's technical and zone contact person.

NIC Handle        DLE6

(4)    The name of the domain.

SRI

(5)    A description of the servers.

Our server is the TOPS20 server JEEVES supplied by ISI; it will be installed and 
made operational on 1 July 1987.

(6)    A description of the server machine and its backup:

(a) Hardware and software

DEC-1090T      and    TOPS20
DEC-2065        and    TOPS20

(b) Host domain name and network address

KL.SRI.COM  10.1.0.2 on ARPANET, 128.18.10.6 on SRINET
STRIPE.SRI.COM  10.4.0.2 on ARPANET, 128.18.10.4 on SRINET

(c) Domain-style nickname

None

(7) Planned mapping of names of any other network hosts, other than the server 
machines, into the new domain's naming space.

SRI-Blackjack.ARPA (128.18.2.1) -> Blackjack.SRI.COM
SRI-CSL.ARPA (192.12.33.2) -> CSL.SRI.COM

(8)    An estimate of the number of hosts that will be directly within this domain.

(a) Initially    =      50
(b) One year      =    100
(c) Two years    =    200



(d) Five years =    500

(9) A date when you expect the fully qualified domain name to become the official 
host name in HOSTS.TXT.

31 September 1987

(10)    Brief description of organization.

SRI International is an independent, nonprofit, scientific research organization. 
It performs basic and applied research for government and commercial 
clients, and contributes to worldwide economic, scientific, industrial, and 
social progress through research and related services.



[ISO-3166]  "Codes for the Representation of Names of Countries", ISO-3166, 
International Standards Organization, May 1981.

[ Not online ]



RFC-1033 Domain Administrators Operations Guide
M. Lottor

SRI International
November 1987

This RFC provides guidelines for domain administrators in operating a domain server and 
maintaining their portion of the hierarchical database.    Familiarity with the domain system 
is assumed.    Distribution of this memo is unlimited.

Introduction
Zones
Root Servers
Resource Records
Instructions
Complaints
Example Domain Server Database File
Appendix: BIND Files:



RFC-1033--Domain Administrators Operations Guide

Introduction
A domain server requires a few files to get started.    It will normally have some number of 
boot/startup files (also known as the "safety belt" files).    One section will contain a list of 
possible root servers that the server will use to find the up-to-date list of root servers.    
Another section will list the zone files to be loaded into the server for your local domain 
information.    A zone file typically contains all the data for a particular domain.    This guide 
describes the data formats that can be used in zone files and suggested parameters to use 
for certain fields.    If you are attempting to do anything advanced or tricky, consult the 
appropriate domain RFC's for more details.

Note:    Each implementation of domain software may require different files.    Zone files are 
standardized but some servers may require other startup files.    See the appropriate 
documentation that comes with your software.    See the appendix for some specific 
examples.



RFC-1033--Domain Administrators Operations Guide

Zones
A zone defines the contents of a contiguous section of the domain space, usually bounded 
by administrative boundaries.    There will typically be a separate data file for each zone.    
The data contained in a zone file is composed of entries called Resource Records (RRs).

You may only put data in your domain server that you are authoritative for.    You must not 
add entries for domains other than your own (except for the special case of "glue records").

A domain server will probably read a file on start-up that lists the zones it should load into its
database.    The format of this file is not standardized and is different for most domain server
implementations.    For each zone it will normally contain the domain name of the zone and 
the file name that contains the data to load for the zone.



RFC-1033--Domain Administrators Operations Guide

Root Servers
A resolver will need to find the root servers when it first starts.    When the resolver boots, it 
will typically read a list of possible root servers from a file.

The resolver will cycle through the list trying to contact each one.    When it finds a root 
server, it will ask it for the current list of root servers.    It will then discard the list of root 
servers it read from the data file and replace it with the current list it received.

Root servers will not change very often.    You can get the names of current root servers from
the NIC.

FTP the file NETINFO:ROOT-SERVERS.TXT or send a mail request to NIC@SRI-NIC.ARPA.

As of this date (June 1987) they are:

SRI-NIC.ARPA       10.0.0.51    26.0.0.73
C.ISI.EDU          10.0.0.52
BRL-AOS.ARPA       192.5.25.82  192.5.22.82   128.20.1.2
A.ISI.EDU          26.3.0.103



RFC-1033--Domain Administrators Operations Guide

Resource Records
Records in the zone data files are called resource records (RRs).    They are specified in RFC-
1034 and RFC-1035.

Format
Names
TTL (Time to Live)
Classes
Types
SOA (Start of Authority)
NS (Name_Servers)
Glue Records

HINFO (Host Info)
CNAME (Canonical Name)
WKS (Well Known Services)
MX (Mail Exchanger)
IN_ADDR.ARPA
PTR RR
Gateway PTRs



RFC-1033--Domain Operations Guide: Resource Records 

Format
An RR has a standard format as shown:

<name>   [<ttl>]   [<class>]   <type>   <data>

The record is divided into fields which are separated by white space.

<name>

The name field defines what domain name applies to the given RR.    In some cases 
the name field can be left blank and it will default to the name field of the previous 
RR.

<ttl>

TTL stands for Time To Live.    It specifies how long a domain resolver should cache 
the RR before it throws it out and asks a domain server again.    See the section on 
TTL's.    If you leave the TTL field blank it will default to the minimum time specified in
the SOA record (described later).

<class>

The class field specifies the protocol group.    If left blank it will default to the last 
class specified.

<type>

The type field specifies what type of data is in the RR.    See the section on types.

<data>

The data field is defined differently for each type and class of data.    Popular RR data 
formats are described later.

The domain system does not guarantee to preserve the order of resource records.    Listing 
RRs (such as multiple address records) in a certain order does not guarantee they will be 
used in that order.

Case is preserved in names and data fields when loaded into the name server.    All 
comparisons and lookups in the name server are case insensitive.

Parenthesis ("(",")") are used to group data that crosses a line boundary.

A semicolon (";") starts a comment; the remainder of the line is ignored.

The asterisk ("*") is used for wildcarding.

The at-sign ("@") denotes the current default domain name.



RFC-1033--Domain Administrators Guide: Resource Records

Names
A domain name is a sequence of labels separated by dots.

Domain names in the zone files can be one of two types, either absolute or relative.    An 
absolute name is the fully qualified domain name and is terminated with a period.    A 
relative name does not terminate with a period, and the current default domain is appended 
to it.    The default domain is usually the name of the domain that was specified in the boot 
file that loads each zone.

The domain system allows a label to contain any 8-bit character.    Although the domain 
system has no restrictions, other protocols such as SMTP do have name restrictions.    
Because of other protocol restrictions, only the following characters are recommended for 
use in a host name (besides the dot separator):

"A-Z", "a-z", "0-9", dash and underscore



RFC-1033--Domain Operations Guide: Resource Records

TTL's    (Time to Live)
It is important that TTLs are set to appropriate values.    The TTL is the time (in seconds) that 
a resolver will use the data it got from your server before it asks your server again.    If you 
set the value too low, your server will get loaded down with lots of repeat requests.    If you 
set it too high, then information you change will not get distributed in a reasonable amount 
of time.    If you leave the TTL field blank, it will default to what is specified in the SOA record 
for the zone.

Most host information does not change much over long time periods.    A good way to set up 
your TTLs would be to set them at a high value, and then lower the value if you know a 
change will be coming soon.    You might set most TTLs to anywhere between a day (86400) 
and a week (604800).    Then, if you know some data will be changing in the near future, set 
the TTL for that RR down to a lower value (an hour to a day) until the change takes place, 
and then put it back up to its previous value.

Also, all RRs with the same name, class, and type should have the same TTL value.



RFC-1033--Domain Operations Guide: Resource Records

Classes
The domain system was designed to be protocol independent.    The class field is used to 
identify the protocol group that each RR is in.

The class of interest to people using TCP/IP software is the class "Internet".    Its standard 
designation is "IN".

A zone file should only contain RRs of the same class.



RFC-1033--Domain Operations Guide: Resource Records

Types
There are many defined RR types.    For a complete list, see the domain specification RFCs.    
Here is a list of current commonly used types.    The data for each type is described in the 
data section.

  Designation             Description
==========================================
 SOA                 Start Of Authority
 NS                  Name Server

 A                   Internet Address
 CNAME               Canonical Name (nickname pointer)
 HINFO               Host Information
 WKS                 Well Known Services

 MX                  Mail Exchanger

 PTR                 Pointer



RFC-1033--Domain Operations Guide: Resource Records

SOA    (Start Of Authority)
<name>  [<ttl>]  [<class>]  SOA  <origin>  <person>  (
                <serial>
                <refresh>
                <retry>
                <expire>
                <minimum> )

The Start Of Authority record designates the start of a zone.    The zone ends at the next SOA
record.

<name> is the name of the zone.

<origin> is the name of the host on which the master zone file resides.

<person> is a mailbox for the person responsible for the zone.    It is formatted like a 
mailing address but the at-sign that normally separates the user from the host name 
is replaced with a dot.

<serial> is the version number of the zone file.    It should be incremented anytime a
change is made to data in the zone.

<refresh> is how long, in seconds, a secondary name server is to check with the 
primary name server to see if an update is needed.    A good value here would be one
hour (3600).

<retry> is how long, in seconds, a secondary name server is to retry after a failure to
check for a refresh.    A good value here would be 10 minutes (600).

<expire> is the upper limit, in seconds, that a secondary name server is to use the 
data before it expires for lack of getting a refresh.    You want this to be rather large, 
and a nice value is 3600000, about 42 days.

<minimum> is the minimum number of seconds to be used for TTL values in RRs.    A 
minimum of at least a day is a good value here (86400).

There should only be one SOA record per zone.    A sample SOA record would look 
something like:

@   IN   SOA   SRI-NIC.ARPA.   HOSTMASTER.SRI-NIC.ARPA. (
                45         ;serial
                3600       ;refresh
                600        ;retry
                3600000    ;expire
                86400 )    ;minimum



RFC-1033--Domain Operations Guide: Resource Records

NS    (Name Server)
<domain>   [<ttl>] [<class>]   NS   <server>

The NS record lists the name of a machine that provides domain service for a particular 
domain.    The name associated with the RR is the domain name and the data portion is the 
name of a host that provides the service.    If machines SRI-NIC.ARPA and C.ISI.EDU 
provide name lookup service for the domain COM then the following entries would be used:

COM.    NS      SRI-NIC.ARPA.
        NS      C.ISI.EDU.

Note that the machines providing name service do not have to live in the named domain.    
There should be one NS record for each server for a domain.    Also note that the name 
"COM" defaults for the second NS record.

NS records for a domain exist in both the zone that delegates the domain, and in the domain
itself.



RFC-1033--Domain Operations Guide: Resource Records

Glue Records
If the name server host for a particular domain is itself inside the domain, then a 'glue' 
record will be needed.    A glue record is an A (address) RR that specifies the address of the 
server.    Glue records are only needed in the server delegating the domain, not in the 
domain itself.    If for example the name server for domain SRI.COM was KL.SRI.COM, then 
the NS record would look like this, but you will also need to have the following A record.

           SRI.COM.     NS      KL.SRI.COM.
           KL.SRI.COM.  A       10.1.0.2



RFC-1033--Domain Operations Guide: Resource Records

A    (Address)
                      <host>      [<ttl>] [<class>]      A      <address>

The data for an A record is an internet address in dotted decimal form.    A sample A record 
might look like:

           SRI-NIC.ARPA.           A       10.0.0.51

There should be one A record for each address of a host.



RFC-1033--Domain Operations Guide: Resource Records

CNAME ( Canonical Name)
                      <nickname>      [<ttl>] [<class>]      CNAME      <host>

The CNAME record is used for nicknames.    The name associated with the RR is the 
nickname.    The data portion is the official name.    For example, a machine named SRI-
NIC.ARPA may want to have the nickname NIC.ARPA.    In that case, the following RR would 
be used:

           NIC.ARPA.       CNAME   SRI-NIC.ARPA.

There must not be any other RRs associated with a nickname of the same class.

Nicknames are also useful when a host changes it's name.    In that case, it is usually a good 
idea to have a CNAME pointer so that people still using the old name will get to the right 
place.



RFC-1033--Domain Operations Guide: Resource Records

HINFO (Host Info)
                      <host>      [<ttl>] [<class>]      HINFO      <hardware>      <software>

The HINFO record gives information about a particular host.    The data is two strings 
separated by whitespace.    The first string is a hardware description and the second is 
software.    The hardware is usually a manufacturer name followed by a dash and model 
designation.    The software string is usually the name of the operating system.

Official HINFO types can be found in the latest Assigned Numbers RFC, the latest of which
is RFC-1060.    The Hardware type is called the Machine name and the Software type is 
called the System name.

Some sample HINFO records:

           SRI-NIC.ARPA.           HINFO   DEC-2060 TOPS20
           UCBARPA.Berkeley.EDU.   HINFO   VAX-11/780 UNIX



RFC-1033--Domain Operations Guide: Resource Records

WKS (Well Known Services)
                      <host> [<ttl>] [<class>] WKS <address> <protocol> <services>

The WKS record is used to list Well Known Services a host provides.    WKS's are defined to 
be services on port numbers below 256.    The WKS record lists what services are available at
a certain address using a certain protocol.    The common protocols are TCP or UDP.    A 
sample WKS record for a host offering the same services on all address would look like:

Official protocol names can be found in the latest Assigned Numbers RFC, the latest of 
which is RFC-1060.

           SRI-NIC.ARPA.   WKS  10.0.0.51  TCP  TELNET FTP SMTP
                           WKS  10.0.0.51  UDP  TIME
                           WKS  26.0.0.73  TCP  TELNET FTP SMTP
                           WKS  26.0.0.73  UDP  TIME



RFC-1033--Domain Operations Guide: Resource Records

MX (Mail Exchanger)  (See RFC-974 for more details.)

                      <name>      [<ttl>] [<class>]      MX      <preference>      <host>

MX records specify where mail for a domain name should be delivered.    There may be 
multiple MX records for a particular name.    The preference value specifies the order a 
mailer should try multiple MX records when delivering mail.    Zero is the highest preference.  
Multiple records for the same name may have the same preference.

A host BAR.FOO.COM may want its mail to be delivered to the host PO.FOO.COM and would 
then use the MX record:

           BAR.FOO.COM.    MX      10      PO.FOO.COM.

A host BAZ.FOO.COM may want its mail to be delivered to one of three different machines, in 
the following order:

           BAZ.FOO.COM.    MX      10      PO1.FOO.COM.
                           MX      20      PO2.FOO.COM.
                           MX      30      PO3.FOO.COM.

An entire domain of hosts not connected to the Internet may want their mail to go through a 
mail gateway that knows how to deliver mail to them.    If they would like mail addressed to 
any host in the domain FOO.COM to go through the mail gateway they might use:

           FOO.COM.        MX       10     RELAY.CS.NET.
           *.FOO.COM.      MX       20     RELAY.CS.NET.

Note that you can specify a wildcard in the MX record to match on anything in FOO.COM, but 
that it won't match a plain FOO.COM.



RFC-1033--Domain Operations Guide: Resource Records

IN-ADDR.ARPA
The structure of names in the domain system is set up in a hierarchical way such that the 
address of a name can be found by tracing down the domain tree contacting a server for 
each label of the name.    Because of this 'indexing' based on name, there is no easy way to 
translate a host address back into its host name.

In order to do the reverse translation easily, a domain was created that uses hosts' 
addresses as part of a name that then points to the data for that host.    In this way, there is 
now an 'index' to hosts' RRs based on their address.    This address mapping domain is called
IN-ADDR.ARPA.    Within that domain are subdomains for each network, based on network 
number.    Also, for consistency and natural groupings, the 4 octets of a host number are 
reversed.

For example, the ARPANET is net 10.    That means there is a domain called 10.IN-
ADDR.ARPA.    Within this domain there is a PTR RR at 51.0.0.10.IN-ADDR that points to the 
RRs for the host SRI-NIC.ARPA (who's address is 10.0.0.51).    Since the NIC is also on the 
MILNET (Net 26, address 26.0.0.73), there is also a PTR RR at 73.0.0.26.IN- ADDR.ARPA 
that points to the same RR's for SRI-NIC.ARPA.    The format of these special pointers is 
defined below along with the examples for the NIC.



RFC-1033--Domain Operations Guide: Resource Records

PTR
                      <special-name>      [<ttl>] [<class>]      PTR      <name>

The PTR record is used to let special names point to some other location in the domain tree.  
They are mainly used in the IN-ADDR.ARPA   records   for translation of addresses to names.    
PTR's should use official names and not aliases.

For example, host SRI-NIC.ARPA with addresses 10.0.0.51 and 26.0.0.73 would have the 
following records in the respective zone files for net 10 and net 26:

           51.0.0.10.IN-ADDR.ARPA.  PTR   SRI-NIC.ARPA.
           73.0.0.26.IN-ADDR.ARPA.  PTR   SRI-NIC.ARPA.



RFC-1033--Domain Operations Guide: Resource Records

Gateway PTR's
The IN-ADDR tree is also used to locate gateways on a particular network.    Gateways have 
the same kind of PTR RRs as hosts (as above) but in addition they have other PTRs used to 
locate them by network number alone.    These records have only 1, 2, or 3 octets as part of 
the name depending on whether they are class A, B, or C networks, respectively.

Lets take the SRI-CSL gateway for example.    It connects 3 different networks, one class A, 
one class B and one class C.    It will have the standard RR's for a host in the CSL.SRI.COM 
zone:

           GW.CSL.SRI.COM.    A    10.2.0.2
                              A    128.18.1.1
                              A    192.12.33.2

Also, in 3 different zones (one for each network), it will have one of the following number to 
name translation pointers:

           2.0.2.10.IN-ADDR.ARPA.      PTR   GW.CSL.SRI.COM.
           1.1.18.128.IN-ADDR.ARPA.    PTR   GW.CSL.SRI.COM.
           1.33.12.192.IN-ADDR.ARPA.   PTR   GW.CSL.SRI.COM.

In addition, in each of the same 3 zones will be one of the following gateway location 
pointers:

           10.IN-ADDR.ARPA.            PTR   GW.CSL.SRI.COM.
           18.128.IN-ADDR.ARPA.        PTR   GW.CSL.SRI.COM.
           33.12.192.IN-ADDR.ARPA.     PTR   GW.CSL.SRI.COM.



RFC-1033--Domain Administrators Operations Guide

Instructions
Adding A Subdomain.

To add a new subdomain to your domain:

Setup the other domain server and/or the new zone file.

Add an NS record for each server of the new domain to the zone file of the parent 
domain.

                  Add any necessary glue RRs.

Adding A Host.

To add a new host to your zone files:

Edit the appropriate zone file for the domain the host is in.

Add an entry for each address of the host.

Optionally add CNAME, HINFO, WKS, and MX records.

Add the reverse IN-ADDR entry for each host address in the appropriate zone files 
for each network the host in on.

Deleting A Host.

To delete a host from the zone files:

Remove all the hosts' resource records from the zone file of the domain the host 
is in.

Remove all the hosts' PTR records from the IN-ADDR zone files for each network 
the host was on.

Also delete the gateway location PTR records for each network the gateway was 
on.



RFC-1033--Domain Administrators Operations Guide

Complaints
      These are the suggested steps you should take if you are having problems that you 
believe are caused by someone else's name server:

            1. Complain privately to the responsible person for 
the domain.    You can find their mailing address in the 
SOA record for the domain.

            2. Complain publicly to the responsible person for 
the domain.

            3. Ask the NIC for the administrative person 
responsible for the domain.    Complain.    You can also 
find domain contacts on the NIC in the file 
NETINFO:DOMAIN-CONTACTS.TXT

            4. Complain to the parent domain authorities.

            5. Ask the parent authorities to excommunicate the 
domain.



RFC-1033--Domain Administrators Operations Guide

Example Domain Server Database Files
The following examples show how zone files are set up for a typical organization.    SRI will be
used as the example organization.    SRI has decided to divided their domain SRI.COM into a 
few subdomains, one for each group that wants one.    The subdomains are CSL and ISTC.

Note the following interesting items:

There are both hosts and domains under SRI.COM.

CSL.SRI.COM is both a domain name and a host name.

All the domains are serviced by the same pair of domain servers.

All hosts at SRI are on net 128.18 except hosts in the CSL domain which are on net 
192.12.33.    Note that a domain does not have to correspond to a physical network.

The examples do not necessarily correspond to actual data in use by the SRI domain.

[File "CONFIG.CMD".    Since bootstrap files are not standardized, this file is presented using a 
pseudo configuration file syntax.]

   load root server list             from file ROOT.SERVERS
   load zone SRI.COM.                from file SRI.ZONE
   load zone CSL.SRI.COM.            from file CSL.ZONE
   load zone ISTC.SRI.COM.           from file ISTC.ZONE
   load zone 18.128.IN-ADDR.ARPA.    from file SRINET.ZONE
   load zone 33.12.192.IN-ADDR.ARPA. from file SRI-CSL-NET.ZONE

      [File "ROOT.SERVERS".    Again, the format of this file is not standardized.]

      ;list of possible root servers
   SRI-NIC.ARPA       10.0.0.51    26.0.0.73
   C.ISI.EDU          10.0.0.52



   BRL-AOS.ARPA       192.5.25.82  192.5.22.82   128.20.1.2
   A.ISI.EDU          26.3.0.103

      [File "SRI.ZONE"]

   SRI.COM.        IN      SOA     KL.SRI.COM. DLE.STRIPE.SRI.COM. (
                                   870407  ;serial
                                   1800    ;refresh every 30 minutes
                                   600     ;retry every 10 minutes
                                   604800  ;expire after a week
                                   86400   ;default of an hour
                                   )

   SRI.COM.        NS      KL.SRI.COM.
                   NS      STRIPE.SRI.COM.
                   MX      10      KL.SRI.COM.

   ;SRI.COM hosts

   KL              A       10.1.0.2
                   A       128.18.10.6
                   MX      10      KL.SRI.COM.

   STRIPE          A       10.4.0.2
   STRIPE          A       128.18.10.4
                   MX      10      STRIPE.SRI.COM.

   NIC             CNAME   SRI-NIC.ARPA.

   Blackjack       A       128.18.2.1
                   HINFO   VAX-11/780      UNIX
                   WKS     128.18.2.1      TCP TELNET FTP

   CSL             A       192.12.33.2
                   HINFO   FOONLY-F4       TOPS20
                   WKS     192.12.33.2     TCP TELNET FTP SMTP FINGER
                   MX      10      CSL.SRI.COM.

      [File "CSL.ZONE"]

   CSL.SRI.COM.    IN      SOA     KL.SRI.COM. DLE.STRIPE.SRI.COM. (
                                   870330  ;serial
                                   1800    ;refresh every 30 minutes
                                   600     ;retry every 10 minutes
                                   604800  ;expire after a week
                                   86400   ;default of a day
                                   )

   CSL.SRI.COM.    NS              KL.SRI.COM.
                   NS              STRIPE.SRI.COM.
                   A               192.12.33.2

   ;CSL.SRI.COM hosts

   A               CNAME   CSL.SRI.COM.
   B               A       192.12.33.3



                   HINFO   FOONLY-F4       TOPS20
                   WKS     192.12.33.3     TCP TELNET FTP SMTP
   GW              A       10.2.0.2
                   A       192.12.33.1
                   A       128.18.1.1
                   HINFO   PDP-11/23       MOS
   SMELLY          A       192.12.33.4
                   HINFO   IMAGEN          IMAGEN
   SQUIRREL        A       192.12.33.5
                   HINFO   XEROX-1100      INTERLISP
   VENUS           A       192.12.33.7
                   HINFO   SYMBOLICS-3600  LISPM
   HELIUM          A       192.12.33.30
                   HINFO   SUN-3/160       UNIX
   ARGON           A       192.12.33.31
                   HINFO   SUN-3/75        UNIX
   RADON           A       192.12.33.32
                   HINFO   SUN-3/75        UNIX

      [File "ISTC.ZONE"]

   ISTC.SRI.COM.   IN  SOA     KL.SRI.COM. roemers.JOYCE.ISTC.SRI.COM. (
                               870406      ;serial
                               1800        ;refresh every 30 minutes
                               600         ;retry every 10 minutes
                               604800      ;expire after a week
                               86400       ;default of a day
                               )

   ISTC.SRI.COM.   NS              KL.SRI.COM.
                   NS              STRIPE.SRI.COM.
                   MX              10      SPAM.ISTC.SRI.COM.

   ; ISTC hosts

   joyce           A       128.18.4.2
                   HINFO   VAX-11/750 UNIX
   bozo            A       128.18.0.6
                   HINFO   SUN UNIX
   sundae          A       128.18.0.11
                   HINFO   SUN UNIX
   tsca            A       128.18.0.201
                   A       10.3.0.2
                   HINFO   VAX-11/750 UNIX
                   MX      10  TSCA.ISTC.SRI.COM.
   tsc             CNAME   tsca
   prmh            A       128.18.0.203
                   A       10.2.0.51
                   HINFO   PDP-11/44 UNIX
   spam            A       128.18.4.3
                   A       10.2.0.107
                   HINFO   VAX-11/780 UNIX
                   MX      10  SPAM.ISTC.SRI.COM.

      [File "SRINET.ZONE"]



   18.128.IN-ADDR.ARPA.    IN  SOA  KL.SRI.COM  DLE.STRIPE.SRI.COM. (
                               870406  ;serial
                               1800    ;refresh every 30 minutes
                               600     ;retry every 10 minutes
                               604800  ;expire after a week
                               86400   ;default of a day
                               )

   18.128.IN-ADDR.ARPA.    NS      KL.SRI.COM.
                           NS      STRIPE.SRI.COM.
                           PTR     GW.CSL.SRI.COM.

   ; SRINET [128.18.0.0] Address Translations

   ; SRI.COM Hosts
   1.2.18.128.IN-ADDR.ARPA.        PTR     Blackjack.SRI.COM.

   ; ISTC.SRI.COM Hosts
   2.4.18.128.IN-ADDR.ARPA.        PTR     joyce.ISTC.SRI.COM.
   6.0.18.128.IN-ADDR.ARPA.        PTR     bozo.ISTC.SRI.COM.
   11.0.18.128.IN-ADDR.ARPA.       PTR     sundae.ISTC.SRI.COM.
   201.0.18.128.IN-ADDR.ARPA.      PTR     tsca.ISTC.SRI.COM.
   203.0.18.128.IN-ADDR.ARPA.      PTR     prmh.ISTC.SRI.COM.
   3.4.18.128.IN-ADDR.ARPA.        PTR     spam.ISTC.SRI.COM.

   ; CSL.SRI.COM Hosts
   1.1.18.128.IN-ADDR.ARPA.        PTR     GW.CSL.SRI.COM.

      [File "SRI-CSL-NET.ZONE"]

   33.12.192.IN-ADDR.ARPA. IN  SOA KL.SRI.COM  DLE.STRIPE.SRI.COM. (
                               870404  ;serial
                               1800    ;refresh every 30 minutes
                               600     ;retry every 10 minutes
                               604800  ;expire after a week
                               86400   ;default of a day
                               )

   33.12.192.IN-ADDR.ARPA. NS      KL.SRI.COM.
                           NS      STRIPE.SRI.COM.
                           PTR     GW.CSL.SRI.COM.

   ; SRI-CSL-NET [192.12.33.0] Address Translations

   ; SRI.COM Hosts
   2.33.12.192.IN-ADDR.ARPA.       PTR     CSL.SRI.COM.

   ; CSL.SRI.COM Hosts
   1.33.12.192.IN-ADDR.ARPA.       PTR     GW.CSL.SRI.COM.
   3.33.12.192.IN-ADDR.ARPA.       PTR     B.CSL.SRI.COM.
   4.33.12.192.IN-ADDR.ARPA.       PTR     SMELLY.CSL.SRI.COM.
   5.33.12.192.IN-ADDR.ARPA.       PTR     SQUIRREL.CSL.SRI.COM.
   7.33.12.192.IN-ADDR.ARPA.       PTR     VENUS.CSL.SRI.COM.
   30.33.12.192.IN-ADDR.ARPA.      PTR     HELIUM.CSL.SRI.COM.
   31.33.12.192.IN-ADDR.ARPA.      PTR     ARGON.CSL.SRI.COM.
   32.33.12.192.IN-ADDR.ARPA.      PTR     RADON.CSL.SRI.COM.





RFC-1033--Domain Administrators Operations Guide: Appendix

BIND Files
BIND (Berkeley Internet Name Domain server) distributed with 4.3 BSD UNIX

This section describes two BIND implementation specific files; the boot file and the cache 
file.    BIND has other options, files, and specifications that are not described here.    See the 
Name Server Operations Guide for BIND for details.

The boot file for BIND is usually called "named.boot".    This corresponds to file 
"CONFIG.CMD" in the example section.

                      --------------------------------------------------------
           cache         .                         named.ca
           primary       SRI.COM                   SRI.ZONE
           primary       CSL.SRI.COM               CSL.ZONE
           primary       ISTC.SRI.COM              ISTC.ZONE
           primary       18.128.IN-ADDR.ARPA       SRINET.ZONE
           primary       33.12.192.IN-ADDR.ARPA    SRI-CSL-NET.ZONE
           --------------------------------------------------------

The cache file for BIND is usually called "named.ca".    This corresponds to file 
"ROOT.SERVERS" in the example section.

           -------------------------------------------------
           ;list of possible root servers
           .       1          IN   NS   SRI-NIC.ARPA.
                                   NS   C.ISI.EDU.
                                   NS   BRL-AOS.ARPA.
                                   NS   C.ISI.EDU.
           ;and their addresses
           SRI-NIC.ARPA.           A    10.0.0.51
                                   A    26.0.0.73
           C.ISI.EDU.              A    10.0.0.52
           BRL-AOS.ARPA.           A    192.5.25.82
                                   A    192.5.22.82
                                   A    128.20.1.2
           A.ISI.EDU.              A    26.3.0.103
           -------------------------------------------------



Dunlap, K., "Name Server Operations Guide for BIND", CSRG, Department of Electrical 
Engineering and Computer Sciences, University of California, Berkeley, California.



RFC-1034/RFC-1035:    Domain Name System
P. Mockapetris

 ISI
November 1987

Introduction
Domain Name Space and Resource Records
Messages
Name Servers
Resolvers
Mail Support
A    Scenario



Domain Name System -- RFC-1034 and RFC-1035
RFC-1034 describes the domain style names and their use for host address look up and 
electronic mail forwarding.    It discusses the clients and servers in the domain name system 
and the protocol used between them. RFC-1035 documents the details of the domain name 
client - server communication.

These two RFCs have been merged in this document, under a single Table of Contents.    
RFC-1183, "New DNS RR Definitions" has also been integrated under the resource record 
section.

Other related RFCs are listed below:

o RFC-821 entitled "Simple Mail Transfer Protocol", and its 
companion, RFC-822 entitled "Standard for ARPA Internet
Text Messages" specify a protocol and syntax for text 
messages within the framework of "electronic mail".

o RFC-974 entitled "Mail routing and the domain system" 
details the transition from HOSTS.TXT mail addressing to
MX system.

o RFC-1031 entitled "MILNET Name Domain Transition" 
describes a plan for converting the MILNET to the DNS.

o RFC-1032 entitled "Establishing a Domain -- Guidelines 
for Administrators" discusses NIC registration policies.

o RFC-1033 entitled "Domain Administrators Operations 
Guide" provides guidelines for operating a domain 
server.



RFC-1034/5 Domain Name System

Introduction
This section introduces domain style names, their use for Internet mail and host 
address support, and the protocols and servers used to implement domain name 
facilities.

Overview
The History of Domain Names
DNS Design Goals
Assumptions About Usage
Elements of the DNS
Common Configurations
Conventions



RFC-1034/5 Domain Name System: Introduction

Overview
The goal of domain names is to provide a mechanism for naming resources in such a way 
that the names are usable in different hosts, networks, protocol families, internets, and 
administrative organizations.

From the user's point of view, domain names are useful as arguments to a local agent, called
a resolver, which retrieves information associated with the domain name.    Thus a user 
might ask for the host address or mail information associated with a particular domain 
name.    To enable the user to request a particular type of information, an appropriate query 
type is passed to the resolver with the domain name.    To the user, the domain tree is a 
single information space; the resolver is responsible for hiding the distribution of data 
among name servers from the user.

From the resolver's point of view, the database that makes up the domain space is 
distributed among various name servers.    Different parts of the domain space are stored in 
different name servers, although a particular data item will be stored redundantly in two or 
more name servers.    The resolver starts with knowledge of at least one name server.    
When the resolver processes a user query it asks a known name server for the information; 
in return, the resolver either receives the desired information or a referral to another name 
server.    Using these referrals, resolvers learn the identities and contents of other name 
servers.    Resolvers are responsible for dealing with the distribution of the domain space and
dealing with the effects of name server failure by consulting redundant databases in other 
servers.

Name servers manage two kinds of data.    The first kind of data held in sets called zones; 
each zone is the complete database for a particular "pruned" subtree of the domain space.    
This data is called authoritative.    A name server periodically checks to make sure that its 
zones are up to date, and if not, obtains a new copy of updated zones from master files 
stored locally or in another name server.    The second kind of data is cached data which was 
acquired by a local resolver.    This data may be incomplete, but improves the performance of
the retrieval process when non-local data is repeatedly accessed.    Cached data is 
eventually discarded by a timeout mechanism.

This functional structure isolates the problems of user interface, failure recovery, and 
distribution in the resolvers and isolates the database update and refresh problems in the 
name servers.



RFC-1034/5 Domain Name System: Introduction

The History of Domain Names
The impetus for the development of the domain system was growth in the Internet:
 

o Host name to address mappings were maintained by the Network 
Information Center (NIC) in a single file (HOSTS.TXT) which was FTPed 
by all hosts (RFC-952, RFC-953).    The total network bandwidth 
consumed in distributing a new version by this scheme is proportional 
to the square of the number of hosts in the network, and even when 
multiple levels of FTP are used, the outgoing FTP load on the NIC host 
is considerable. Explosive growth in the number of hosts didn't bode 
well for the future.

o The network population was also changing in character.    The 
timeshared hosts that made up the original ARPANET were being 
replaced with local networks of workstations.    Local organizations were
administering their own names and addresses, but had to wait for the 
NIC to change HOSTS.TXT to make changes visible to the Internet at 
large.    Organizations also wanted some local structure on the name 
space.

o The applications on the Internet were getting more sophisticated and 
creating a need for general purpose name service.

The result was several ideas about name spaces and their management (IEN-116,,RFC-799, 
RFC-819, RFC-830).    The proposals varied, but a common thread was the idea of a 
hierarchical name space, with the hierarchy roughly corresponding to organizational 
structure, and names using "."    as the character to mark the boundary between hierarchy 
levels.    A design using a distributed database and generalized resources was described in 
RFC-882, RFC-883.    Based on experience with several implementations, the system evolved
into the scheme described in this memo.

The terms "domain" or "domain name" are used in many contexts beyond the DNS 
described here.    Very often, the term domain name is used to refer to a name with structure
indicated by dots, but no relation to the DNS.    This is particularly true in mail addressing 
(Quarterman 86).



RFC-1034/5 Domain Name System: Introduction

DNS Design Goals
The design goals of the DNS influence its structure.    They are:

      o The primary goal is a consistent name space which will be used for 
referring to resources.    In order to avoid the problems caused by ad 
hoc encodings, names should not be required to contain network 
identifiers, addresses, routes, or similar information as part of the 
name.

      o The sheer size of the database and frequency of updates suggest that 
it must be maintained in a distributed manner, with local caching to 
improve performance.    Approaches that attempt to collect a consistent
copy of the entire database will become more and more expensive and 
difficult, and hence should be avoided.    The same principle holds for 
the structure of the name space, and in particular mechanisms for 
creating and deleting names; these should also be distributed.

      o Where there tradeoffs between the cost of acquiring data, the speed of
updates, and the accuracy of caches, the source of the data should 
control the tradeoff.

      o The costs of implementing such a facility dictate that it be generally 
useful, and not restricted to a single application.    We should be able to
use names to retrieve host addresses, mailbox data, and other as yet 
undetermined information.    All data associated with a name is tagged 
with a type, and queries can be limited to a single type.

      o Because we want the name space to be useful in dissimilar networks 
and applications, we provide the ability to use the same name space 
with different protocol families or management.    For example, host 
address formats differ between protocols, though all protocols have the
notion of address.    The DNS tags all data with a class as well as the 
type, so that we can allow parallel use of different formats for data of 
type address.

      o We want name server transactions to be independent of the 
communications system that carries them.    Some systems may wish 
to use datagrams for queries and responses, and only establish virtual 
circuits for transactions that need the reliability (e.g., database 
updates, long transactions); other systems will use virtual circuits 
exclusively.

      o The system should be useful across a wide spectrum of host 
capabilities.    Both personal computers and large timeshared hosts 
should be able to use the system, though perhaps in different ways.



 RFC-1034/5 Domain Name System: Introduction

Assumptions About Usage
The organization of the domain system derives from some assumptions about the needs and
usage patterns of its user community and is designed to avoid many of the the complicated 
problems found in general purpose database systems.

The assumptions are:

      o The size of the total database will initially be proportional to the 
number of hosts using the system, but will eventually grow to be 
proportional to the number of users on those hosts as mailboxes and 
other information are added to the domain system.

      o Most of the data in the system will change very slowly (e.g., mailbox 
bindings, host addresses), but that the system should be able to deal 
with subsets that change more rapidly (on the order of seconds or 
minutes).

      o The administrative boundaries used to distribute responsibility for the 
database will usually correspond to organizations that have one or 
more hosts.    Each organization that has responsibility for a particular 
set of domains will provide redundant name servers, either on the 
organization's own hosts or other hosts that the organization arranges 
to use.

      o Clients of the domain system should be able to identify trusted name 
servers they prefer to use before accepting referrals to name servers 
outside of this "trusted" set.

      o Access to information is more critical than instantaneous updates or 
guarantees of consistency.    Hence the update process allows updates 
to percolate out through the users of the domain system rather than 
guaranteeing that all copies are simultaneously updated.    When 
updates are unavailable due to network or host failure, the usual 
course is to believe old information while continuing efforts to update 
it.    The general model is that copies are distributed with timeouts for 
refreshing.    The distributor sets the timeout value and the recipient of 
the distribution is responsible for performing the refresh.    In special 
situations, very short intervals can be specified, or the owner can 
prohibit copies.

      o In any system that has a distributed database, a particular name 
server may be presented with a query that can only be answered by 
some other server.    The two general approaches to dealing with this 
problem are "recursive", in which the first server pursues the query for 
the client at another server, and "iterative", in which the server refers 
the client to another server and lets the client pursue the query.    Both 
approaches have advantages and disadvantages, but the iterative 
approach is preferred for the datagram style of access.    The domain 
system requires implementation of the iterative approach, but allows 
the recursive approach as an option.

The domain system assumes that all data originates in master files scattered through the 



hosts that use the domain system.    These master files are updated by local system 
administrators.    Master files are text files that are read by a local name server, and hence 
become available through the name servers to users of the domain system.    The user 
programs access name servers through standard programs called resolvers.

The standard format of master files allows them to be exchanged between hosts (via FTP, 
mail, or some other mechanism); this facility is useful when an organization wants a domain,
but doesn't want to support a name server.    The organization can maintain the master files 
locally using a text editor, transfer them to a foreign host which runs a name server, and 
then arrange with the system administrator of the name server to get the files loaded.

Each host's name servers and resolvers are configured by a local system administrator (see 
RFC-1033 Domain Administrators Guide).    For a name server, this configuration data 
includes the identity of local master files and instructions on which non-local master files are
to be loaded from foreign servers.    The name server uses the master files or copies to load 
its zones.    For resolvers, the configuration data identifies the name servers which should be 
the primary sources of information.

The domain system defines procedures for accessing the data and for referrals to other 
name servers.    The domain system also defines procedures for caching retrieved data and 
for periodic refreshing of data defined by the system administrator.

The system administrators provide:

      o The definition of zone boundaries.

      o Master files of data.

      o Updates to master files.

      o Statements of the refresh policies desired.

The domain system provides:

      o Standard formats for resource data.

      o Standard methods for querying the database.

      o Standard methods for name servers to refresh local data from foreign 
name servers.



RFC-1034/5 Domain Name System: Introduction

Elements of the DNS
The DNS has three major components:

      o The Domain Name Space and Resource Records, which are 
specifications for a tree structured name space and data associated 
with the names.    Conceptually, each node and leaf of the domain 
name space tree names a set of information, and query operations are 
attempts to extract specific types of information from a particular set.   
A query names the domain name of interest and describes the type of 
resource information that is desired.    For example, the Internet uses 
some of its domain names to identify hosts; queries for address 
resources return Internet host addresses.

      o Name Servers are server programs which hold information about the 
domain tree's structure and set information.    A name server may 
cache structure or set information about any part of the domain tree, 
but in general a particular name server has complete information 
about a subset of the domain space, and pointers to other name 
servers that can be used to lead to information from any part of the 
domain tree.    Name servers know the parts of the domain tree for 
which they have complete information; a name server is said to be an 
AUTHORITY for these parts of the name space.    Authoritative 
information is organized into units called ZONEs, and these zones can 
be automatically distributed to the name servers which provide 
redundant service for the data in a zone.

      o RESOLVERS are programs that extract information from name servers 
in response to client requests.    Resolvers must be able to access at 
least one name server and use that name server's information to 
answer a query directly, or pursue the query using referrals to other 
name servers.    A resolver will typically be a system routine that is 
directly accessible to user programs; hence no protocol is necessary 
between the resolver and the user program.

These three components roughly correspond to the three layers or views of the domain 
system:

      o From the user's point of view, the domain system is accessed through a
simple procedure or OS call to a local resolver.    The domain space 
consists of a single tree and the user can request information from any 
section of the tree.

      o From the resolver's point of view, the domain system is composed of 
an unknown number of name servers.    Each name server has one or 
more pieces of the whole domain tree's data, but the resolver views 
each o1f these databases as essentially static.

      o From a name server's point of view, the domain system consists of 
separate sets of local information called zones.    The name server has 
local copies of some of the zones.    The name server must periodically 
refresh its zones from master copies in local files or foreign name 
servers.    The name server must concurrently process queries that 



arrive from resolvers.

In the interests of performance, implementations may couple these functions.    For example,
a resolver on the same machine as a name server might share a database consisting of the 
the zones managed by the name server and the cache managed by the resolver.



RFC-1034/5 Domain Name System: Introduction

Common Configurations
A host can participate in the domain name system in a number of ways, depending on 
whether the host runs programs that retrieve information from the domain system, name 
servers that answer queries from other hosts, or various combinations of both functions.    
The simplest, and perhaps most typical, configuration is shown below:

User programs interact with the domain name space through resolvers; the format of user 
queries and user responses is specific to the host and its operating system.    User queries 
will typically be operating system calls, and the resolver and its cache will be part of the 
host operating system.    Less capable hosts may choose to implement the resolver as a 
subroutine to be linked in with every program that needs its services.    Resolvers answer 
user queries with information they acquire via queries to foreign name servers and the local 
cache.

Note that the resolver may have to make several queries to several different foreign name 
servers to answer a particular user query, and hence the resolution of a user query may 
involve several network accesses and an arbitrary amount of time.    The queries to foreign 
name servers and the corresponding responses have a standard format described in this 
memo, and may be datagrams.

Depending on its capabilities, a name server could be a stand alone program on a dedicated 
machine or a process or processes on a large timeshared host.    A simple configuration 
might be:

Here a primary name server acquires information about one or more zones by reading 
master files from its local file system, and answers queries about those zones that arrive 
from foreign resolvers.



The DNS requires that all zones be redundantly supported by more than one name server.    
Designated secondary servers can acquire zones and check for updates from the primary 
server using the zone transfer protocol of the DNS.    This configuration is shown below:

In this configuration, the name server periodically establishes a virtual circuit to a foreign 
name server to acquire a copy of a zone or to check that an existing copy has not changed.   
The messages sent for these maintenance activities follow the same form as queries and 
responses, but the message sequences are somewhat different.

The information flow in a host that supports all aspects of the domain name system is shown
below:



The shared database holds domain space data for the local name server and resolver.    The 
contents of the shared database will typically be a mixture of authoritative data maintained 
by the periodic refresh operations of the name server and cached data from previous 
resolver requests.    The structure of the domain data and the necessity for synchronization 
between name servers and resolvers imply the general characteristics of this database, but 
the actual format is up to the local implementor.    Information flow can also be tailored so 
that a group of hosts act together to optimize activities.    Sometimes this is done to offload 
less capable hosts so that they do not have to implement a full resolver.    This can be 
appropriate for PCs or hosts which want to minimize the amount of new network code which 
is required.    This scheme can also allow a group of hosts can share a small number of 
caches rather than maintaining a large number of separate caches, on the premise that the 
centralized caches will have a higher hit ratio.    In either case, resolvers are replaced with 
stub resolvers which act as front ends to resolvers located in a recursive server in one or 
more name servers known to perform that service:



In any case, note that domain components are always replicated for reliability whenever 
possible.



RFC-1034/5 Domain Name System: Introduction

Conventions

The domain system has several conventions dealing with low-level, but fundamental, issues. 
While the implementor is free to violate these conventions WITHIN HIS OWN SYSTEM, he 
must observe these conventions in ALL behavior observed from other hosts.

Preferred Name Syntax
Data Transmission Order
Character Case
Size Limits



RFC-1034/5 Domain Name System: Conventions

Preferred Name Syntax
The DNS specifications attempt to be as general as possible in the rules for constructing 
domain names.    The idea is that the name of any existing object can be expressed as a 
domain name with minimal changes.    However, when assigning a domain name for an 
object, the prudent user will select a name which satisfies both the rules of the domain 
system and any existing rules for the object, whether these rules are published or implied by
existing programs.

For example, when naming a mail domain, the user should satisfy both the rules of this 
memo and those in RFC-822 describing mail format.    When creating a new host name, the 
old rules for HOSTS.TXT should be followed.    This avoids problems when old software is 
converted to use domain names.

The following syntax will result in fewer problems with many applications that use domain 
names (e.g., mail, TELNET).

<domain> ::= <subdomain> | " "

<subdomain> ::= <label> | <subdomain> "." <label>

<label> ::= <letter> [ [ <ldh-str> ] <let-dig> ]

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig-hyp> ::= <let-dig> | "-"

<let-dig> ::= <letter> | <digit>

<letter> ::= any one of the 52 alphabetic characters A through Z in upper case
and a through z in lower case

<digit> ::= any one of the ten digits 0 through 9

Note that while upper and lower case letters are allowed in domain names, no significance is
attached to the case.    That is, two names with the same spelling but different case are to be
treated as if identical.

The labels must follow the rules for ARPANET host names.    They must start with a letter, 
end with a letter or digit, and have as interior characters only letters, digits, and hyphen.    
There are also some restrictions on the length.    Labels must be 63 characters or less.

For example, the following strings identify hosts in the Internet:

A.ISI.EDU XX.LCS.MIT.EDU SRI-NIC.ARPA



RFC-1034/5 Domain Name System: Conventions

Data Transmission Order
The order of transmission of the header and data described in this document is resolved to 
the octet level.    Whenever a diagram shows a group of octets, the order of transmission of 
those octets is the normal order in which they are read in English.    For example, in the 
following diagram, the octets are transmitted in the order they are numbered.

Whenever an octet represents a numeric quantity, the left most bit in the diagram is the 
high order or most significant bit.    That is, the bit labeled 0 is the most significant bit.    For 
example, the following diagram represents the value 170 (decimal).

Similarly, whenever a multi-octet field represents a numeric quantity the left most bit of the 
whole field is the most significant bit.    When a multi-octet quantity is transmitted the most 
significant octet is transmitted first.



RFC-1034/5 Domain Name System: Conventions

Character Case
For all parts of the DNS that are part of the official protocol, all comparisons between 
character strings (e.g., labels, domain names, etc.) are done in a case-insensitive manner.    
At present, this rule is in force throughout the domain system without exception.    However, 
future additions beyond current usage may need to use the full binary octet capabilities in 
names, so attempts to store domain names in 7-bit ASCII or use of special bytes to terminate
labels, etc., should be avoided.

When data enters the domain system, its original case should be preserved whenever 
possible.    In certain circumstances this cannot be done.    For example, if two RRs are stored 
in a database, one at x.y and one at X.Y, they are actually stored at the same place in the 
database, and hence only one casing would be preserved.    The basic rule is that case can 
be discarded only when data is used to define structure in a database, and two names are 
identical when compared in a case insensitive manner.

Loss of case sensitive data must be minimized.    Thus while data for x.y and X.Y may both 
be stored under a single location x.y or X.Y, data for a.x and B.X would never be stored 
under A.x, A.X, b.x, or b.X.    In general, this preserves the case of the first label of a 
domain name, but forces standardization of interior node labels.

Systems administrators who enter data into the domain database should take care to 
represent the data they supply to the domain system in a case-consistent manner if their 
system is case-sensitive.    The data distribution system in the domain system will ensure 
that consistent representations are preserved.



RFC-1034/5 Domain Name System: Conventions

Size limits
Various objects and parameters in the DNS have size limits.    They are listed below.    Some 
could be easily changed, others are more fundamental.

labels 63 octets or less

names 255 octets or less

TTL positive values of a signed 32 bit number.

UDP messages 512 octets or less



RFC-1034/5 Domain Name System

Domain Name Space and Resource Records
Name Space Specifications and Terminology
Name Space Definitions
Administrative Guidelines on Use
Technical Guidelines on Use
Example Name Space
Resource Records
RR Definitions  
Standard RRs  
Textual Expression of RRs  
Master Files  
            Master File Format  
            Defining Zones  
            Master File Example  
Aliases and Canonical Names  
ARPA Internet-Specific RRs  
IN_ADDR.ARPA Domain  
Defining New Types, Classes and Namespaces  
New DNS RR Definitions (RFC-1183)  
Queries
Standard Queries  
Inverse Queries (Optional)  
Status Queries (Experimental)
Completion Queries (Obsolete)



RFC-1034/5 Domains: Name Space and Resource Records

Name Space Specifications and Terminology
The domain name space is a tree structure.    Each node and leaf on the tree corresponds to 
a resource set (which may be empty).    The domain system makes no distinctions between 
the uses of the interior nodes and leaves, and this memo uses the term "node" to refer to 
both.

Each node has a label, which is zero to 63 octets in length.    Brother nodes may not have the
same label, although the same label can be used for nodes which are not brothers.    One 
label is reserved, and that is the null (i.e., zero length) label used for the root.

The domain name of a node is the list of the labels on the path from the node to the root of 
the tree.    By convention, the labels that compose a domain name are printed or read left to 
right, from the most specific (lowest, farthest from the root) to the least specific (highest, 
closest to the root).

Internally, programs that manipulate domain names should represent them as sequences of 
labels, where each label is a length octet followed by an octet string.Because all domain 
names end at the root, which has a null string for a label, these internal representations can 
use a length byte of zero to terminate a domain name.

By convention, domain names can be stored with arbitrary case, but domain name 
comparisons for all present domain functions are done in a case-insensitive manner, 
assuming an ASCII character set, and a high order zero bit.    This means that you are free to 
create a node with label "A" or a node with label "a", but notboth as brothers; you could 
refer to either using "a" or "A".    When you receive a domain name or label, you should 
preserve its case.    The rationale for this choice is that we may someday need to add full 
binary domain names for new services; existing services would not be changed.

When a user needs to type a domain name, the length of each label is omitted and the 
labels are separated by dots (".").    Since a complete domain name ends with the root label, 
this leads to a printed form which ends in a dot.    We use this property to distinguish 
between:

      o a character string which represents a complete domain name (often 
called "absolute").    For example, "poneria.ISI.EDU."

      o a character string that represents the starting labels of a domain name
which is incomplete, and should be completed by local software using 
knowledge of the local domain (often called "relative").    For example, 
"poneria" used in the ISI.EDU domain.

Relative names are either taken relative to a well known origin, or to a list of domains used 
as a search list.    Relative names appear mostly at the user interface, where their 
interpretation varies from implementation to implementation, and in master files, where 
they are relative to a single origin domain name.    The most common interpretation uses the
root "." as either the single origin or as one of the members of the search list, so a multi-
label relative name is oftenone where the trailing dot has been omitted to save typing.

To simplify implementations, the total number of octets that represent a domain name (i.e., 
the sum of all label octets and label lengths) is limited to 255.

A domain is identified by a domain name, and consists of that part of the domain name 



space that is at or below the domain name which specifies the domain.    A domain is a 
subdomain of another domain if it is contained within that domain.    This relationship can be 
tested by seeing if the subdomain's name ends with the containing domain's name.    For 
example, A.B.C.D is a subdomain of B.C.D, C.D, D, and " ".



RFC-1034/5 Domains: Name Space and Resource Records

Name Space Definitions
Domain names in messages are expressed in terms of a sequence of labels.    Each label is 
represented as a one octet length field followed by that number of octets.    Since every 
domain name ends with the null label of the root, a domain name is terminated by a length 
byte of zero.    The high order two bits of every length octet must be zero, and the remaining 
six bits of the length field limit the label to 63 octets or less.

To simplify implementations, the total length of a domain name (i.e., label octets and label 
length octets) is restricted to 255 octets or less.

Although labels can contain any 8 bit values in octets that make up a label, it is strongly 
recommended that labels follow the preferred syntax described elsewhere in this memo, 
which is compatible with existing host naming conventions.    Name servers and resolvers 
must compare labels in a case-insensitive manner (i.e., A=a), assuming ASCII with zero 
parity.    Non-alphabetic codes must match exactly.



RFC-1034/5 Domains: Name Space and Resource Records

Administrative Guidelines on Use
As a matter of policy, the DNS technical specifications do not mandate a particular tree 
structure or rules for selecting labels; its goal is to be as general as possible, so that it can 
be used to build arbitrary applications.    In particular, the system was designed so that the 
name space did not have to be organized along the lines of network boundaries, name 
servers, etc.    The rationale for this is not that the name space should have no implied 
semantics, but rather that the choice of implied semantics should be left open to be used for
the problem at hand, and that different parts of the tree can have different implied 
semantics.    For example, the IN-ADDR.ARPA domain is organized and distributed by 
network and host address because its role is to translate from network or host numbers to 
names; NetBIOS domains (RFC-1001, RFC- 1002) are flat because that is appropriate for that
application.

However, there are some guidelines that apply to the "normal" parts of the name space 
used for hosts, mailboxes, etc., that will make the name space more uniform, provide for 
growth, and minimize problems as software is converted from the older host table.    The 
political decisions about the top levels of the tree originated in RFC-920.    Current policy for 
the top levels is discussed in RFC-1032, the Administrators Guide.    MILNET conversion 
issues are covered in RFC-1031.

Lower domains which will eventually be broken into multiple zones should provide branching
at the top of the domain so that the eventual decomposition can be done without renaming.  
Node labels which use special characters, leading digits, etc., are likely to break older 
software which depends on more restrictive choices.



RFC-1034/5 Domains: Name Space and Resource Records

Technical Guidelines on Use
Before the DNS can be used to hold naming information for some kind of object, two needs 
must be met:

      o A convention for mapping between object names and domain names.    
This describes how information about an object is accessed.

      o RR types and data formats for describing the object.

These rules can be quite simple or fairly complex.    Very often, the designer must take into 
account existing formats and plan for upward compatibility for existing usage.    Multiple 
mappings or levels of mapping may be required.

For hosts, the mapping depends on the existing syntax for host names which is a subset of 
the usual text representation for domain names, together with RR formats for describing 
host addresses, etc.    Because we need a reliable inverse mapping from address to host 
name, a special mapping for addresses into the IN-ADDR.ARPA domain is also defined.

For mailboxes, the mapping is slightly more complex.    The usual mail address <local-
part>@<mail-domain> is mapped into a domain name by converting <local-part>into a 
single label (regardles of dots it contains), converting <mail-domain> into a domain name 
using the usual text format for domain names (dots denote label breaks), and concatenating
the two to form a single domain name.    Thus the mailbox HOSTMASTER@SRI-NIC.ARPA is 
represented as a domain name by HOSTMASTER.SRI-NIC.ARPA.    An appreciation for the 
reasons behind this design also must take into account the scheme for mail exchanges 
(RFC- 974).

The typical user is not concerned with defining these rules, but should understand that they 
usually are the result of numerous compromises between desires forupward compatibility 
with old usage, interactions between different object definitions, and the inevitable urge to 
add new features when defining the rules.    The way the DNS is used to support some object
is often more crucial than the restrictions inherent in the DNS.



RFC-1034/5 Domains: Name Space and Resource Records

Example Name Space
The following figure shows a part of the current domain name space, and is used in many 
examples in this RFC.    Note that the tree is a very small subset of the actual name space.

In this example, the root domain has three immediate subdomains: MIL, EDU, and ARPA.    The
LCS.MIT.EDU domain has one immediate subdomain named XX.LCS.MIT.EDU.    All of the 
leaves are also domains.



Domain Names--RFC-1034 and RFC-1035

Resource Records
A domain name identifies a node.    Each node has a set of resource information, which may 
be empty.    The set of resource information associated with a particular name is composed 
of separate resource records (RRs).    The order of RRs in a set is not significant, and need 
not be preserved by name servers, resolvers, or other parts of the DNS.



RFC-1034/5 Domains: Name Space and Resource Records

RR Definitions
Format
TYPE Values
QTYPE Values
CLASS Values
QCLASS Values



RFC-1034/5 Domains: Name Space and Resource Records

Format
All RRs have the same top level format shown below:

where:

NAME an owner name, i.e., the name of the node to which this resource 
record pertains.

TYPE                        two octets containing one of the RR TYPE codes.

CLASS                      two octets containing one of the RR CLASS codes.

TTL                          a 32 bit signed integer that specifies the time interval that the resource
record may be cached before the source of the information should 
again be consulted.    Zero values are interpreted to mean that the RR 
can only be used for the transaction in progress, and should not be 
cached.    For example, SOA records are always distributed with a zero 
TTL to prohibit caching.    Zero values can also be used for extremely 
volatile data.

RDLENGTH an unsigned 16 bit integer that specifies the length in octets of the 
RDATA field.

RDATA                      a variable length string of octets that describes the resource.    The 
format of this information varies according to the TYPE and CLASS of 
the resource record.



RFC-1034/5 Domains: Name Space and Resource Records

TYPE Values
TYPE fields are used in resource records.    Note that these types are a subset of QTYPEs.

TYPE                        value and meaning

A 1 a host address

NS 2 an authoritative name server

MD 3 a mail destination (Obsolete - use MX)

MF 4 a mail forwarder (Obsolete - use MX)

CNAME 5 the canonical name for an alias

SOA 6 marks the start of a zone of authority

MB 7 a mailbox domain name (EXPERIMENTAL)

MG 8 a mail group member (EXPERIMENTAL)

MR 9 a mail rename domain name (EXPERIMENTAL)

NULL 10 a null RR (EXPERIMENTAL)

WKS 11 a well known service description

PTR 12 a domain name pointer

HINFO 13 host information

MINFO 14 mailbox or mail list information

MX 15 mail exchange

TXT 16 text strings



RFC-1034/5 Domains: Name Space and Resource Records

QTYPE Values
QTYPE fields appear in the question part of a query.    QTYPES are a superset of TYPEs, hence
all TYPEs are valid QTYPEs.    In addition, the following QTYPEs are defined:

AXFR 252 A request for a transfer of an entire zone

MAILB 253 A request for mailbox-related records (MB, MG or MR)

MAILA 254 A request for mail agent RRs (Obsolete - see MX)

      * 255 A request for all records



RFC-1034/5 Domains: Name Space and Resource Records

CLASS Values
CLASS fields appear in resource records.    The following CLASS mnemonics and values are 
defined:

IN 1      the Internet

CS 2      the CSNET class (Obsolete - used only for examples in some 
obsolete RFCs)

CH 3      the CHAOS class

HS 4      Hesiod {Dyer 87)



RFC-1034/5 Domains: Name Space and Resource Records

QCLASS Values
QCLASS fields appear in the question section of a query.    QCLASS values are a superset of 
CLASS values; every CLASS is a valid QCLASS.    In addition to CLASS values, the following 
QCLASSes are defined:

      * 255 any class



RFC-1034/5 Domains: Name Space and Resource Records

Standard RRs
The following RR definitions are expected to occur, at least potentially, in all classes.    In 
particular, NS, SOA, CNAME, and PTR will be used in all classes, and have the same format in
all classes.    Because their RDATA format is known, all domain names in the RDATA section of
these RRs may be compressed.

<domain-name> is a domain name represented as a series of labels, and terminated by a 
label with zero length.    <character-string> is a single length octet followed by that 
number of characters.    <character-string> is treated as binary information, and can be 
up to 256 characters in length (including the length octet).

CNAME RDATA Format
HINFO RDATA Format
MB RDATA Format (Experimental)
MD RDATA Format (Obsolete)
MF RDATA Format (Obsolete)
MG RDATA Format (Experimental)
MINFO RDATA Format (Experimental)
MR RDATA Format (Experimental)
MX RDATA Format
NULL RDATA Format (Experimental)
NS RDATA Format
PTR RDATA Format
SOA RDATA Format
TXT RDATA Format



RFC-1034/5 Domain System: Standard RRs

CNAME RDATA Format

where:

CNAME  A <domain-name> which specifies the canonical or primary name for 
the owner.    The owner name is an alias.

CNAME RRs cause no additional section processing, but name servers may 
choose to restart the query at the canonical name in certain cases.    
See the description of name server logic for details.



RFC-1034/5 Domain System: Standard RRs

HINFO RDATA Format

where:

CPU A <character-string> which specifies the CPU type.

OS A <character-string> which specifies the operating system type.

Standard values for CPU and OS can be found in RFC-1010.

HINFO records are used to acquire general information about a host.    The main use is for 
protocols such as FTP that can use special procedures when talking between machines or 
operating systems of the same type.



RFC-1034/5 Domain System: Standard RRs

MB RDATA Format (EXPERIMENTAL)

where:

MADNAME A <domain-name> which specifies a host which has the specified 
mailbox.

MB records cause additional section processing which looks up an A type RRs corresponding 
to MADNAME.



RFC-1034/5 Domain System: Standard RRs

MD RDATA Format (Obsolete)

where:

MADNAME A <domain-name> which specifies a host which has a mail agent for 
the domain which should be able to deliver mail for the domain.

MD records cause additional section processing which looks up an A type record 
corresponding to MADNAME.

MD is obsolete.    See the definition of MX and RFC-974 on mail routing for details of the new 
scheme.    The recommended policy for dealing with MD RRs found in a master file is to 
reject them, or to convert them to MX RRs with a preference of 0.



RFC-1034/5 Domain System: Standard RRs

MF RDATA Format (Obsolete)

where:

MADNAME A <domain-name> which specifies a host which has a mail agent for 
the domain which will accept mail for forwarding to the domain.

MF records cause additional section processing which looks up an A type record 
corresponding to MADNAME.

MF is obsolete.    See the definition of MX and RFC-974 on mail routingfor details of the new 
scheme.    The recommended policy for dealing with MD RRs found in a master file is to 
reject them, or to convert them to MX RRs with a preference of 10.



RFC-1034/5 Domain System: Standard RRs

MG RDATA Format (EXPERIMENTAL)

where:

MGMNAME A <domain-name> which specifies a mailbox which is a member of the 
mail group specified by the domain name.

MG records cause no additional section processing.



RFC-1034/5 Domain System: Standard RRs

MINFO RDATA Format (EXPERIMENTAL)

where:

RMAILBX A <domain-name> which specifies a mailbox which is responsible for 
the mailing list or mailbox.    If this domain name names the root, the 
owner of the MINFO RR is responsible for itself.    Note that many 
existing mailing lists use a mailbox X-request for the RMAILBX field of 
mailing list X, e.g., Msgroup-request for Msgroup.    This field provides a 
more general mechanism.

EMAILBX A <domain-name> which specifies a mailbox which is to receive error 
messages related to the mailing list or mailbox specified by the owner 
of the MINFO RR (similar to the ERRORS-TO: field which has been 
proposed).    If this domain name names the root, errors should be 
returned to the sender of the message.

MINFO records cause no additional section processing.    Although these records can be 
associated with a simple mailbox, they are usually used with a mailing list.



RFC-1034/5 Domain System: Standard RRs

MR RDATA Format (EXPERIMENTAL)

where:

NEWNAME A <domain-name> which specifies a mailbox which is the proper 
rename of the specified mailbox.

MR records cause no additional section processing.    The main use for MR is as a forwarding 
entry for a user who has moved to a different mailbox.



RFC-1034/5 Domain System: Standard RRs

MX RDATA Format

where:

PREFERENCE A 16 bit integer which specifies the preference given to this RR among 
others at the same owner.    Lower values are preferred.

EXCHANGE A <domain-name> which specifies a host willing to act as a mail 
exchange for the owner name.

MX records cause type A additional section processing for the host specified by EXCHANGE.   
The use of MX RRs is explained in detail in RFC-974 on mail routing.



RFC-1034/5 Domain System: Standard RRs

NULL RDATA Format (EXPERIMENTAL)

Anything at all may be in the RDATA field so long as it is 65535 octets or less.

NULL records cause no additional section processing.    NULL RRs are not allowed in master 
files.    NULLs are used as placeholders in some experimental extensions of the DNS.



RFC-1034/5 Domain System: Standard RRs

NS RDATA Format

where:

NSDNAME A <domain-name> which specifies a host which should be authoritative
for the specified class and domain.

NS records cause both the usual additional section processing to locate a type A record, and,
when used in a referral, a special search of the zone in which they reside for glue 
information.

The NS RR states that the named host should be expected to have a zone starting at owner 
name of the specified class.    Note that the class may not indicate the protocol family which 
should be used to communicate with the host, although it is typically a strong hint.    For 
example, hosts which are name servers for either Internet (IN) or Hesiod (HS) class 
information are normally queried using IN class protocols.



RFC-1034/5 Domain System: Standard RRs

PTR RDATA Format

where:

PTRDNAME A <domain-name> which points to some location in the domain name 
space.

PTR records cause no additional section processing.    These RRs are used in special domains 
to point to some other location in the domain space.    These records are simple data, and 
don't imply any special processing similar to that performed by CNAME, which identifies 
aliases.    See the description of the IN-ADDR.ARPA domain for an example.



RFC-1034/5 Domain System: Standard RRs

SOA RDATA Format

where:

MNAME The <domain-name> of the name server that was the original or 
primary source of data for this zone.

RNAME A <domain-name> which specifies the mailbox of the person 
responsible for this zone.

SERIAL The unsigned 32 bit version number of the original copy of the zone.    
Zone transfers preserve this value.    This value wraps and should be 
compared using sequence space arithmetic.

REFRESH A 32 bit time interval before the zone should be refreshed.

RETRY A 32 bit time interval that should elapse before a failed refresh should 
be retried.

EXPIRE A 32 bit time value that specifies the upper limit on the time interval 
that can elapse before the zone is no longer authoritative.

MINIMUM The unsigned 32 bit minimum TTL field that should be exported with 
any RR from this zone.

SOA records cause no additional section processing.

All times are in units of seconds.

Most of these fields are pertinent only for name server maintenance operations.    However, 
MINIMUM is used in all query operations that retrieve RRs from a zone.    Whenever a RR is 
sent in a response to a query, the TTL field is set to the maximum of the TTL field from the 
RR and the MINIMUM field in the appropriate SOA.    Thus MINIMUM is a lower bound on the 
TTL field for all RRs in a zone.    Note that this use of MINIMUM should occur when the RRs 



are copied into the response and not when the zone is loaded from a master file or via a 
zone transfer.    The reason for this provison is to allow future dynamic update facilities to 
change the SOA RR with known semantics.



RFC-1034/5 Domain System: Standard RRs

TXT RDATA format

where:

TXT-DATA One or more <character-string>s.

TXT RRs are used to hold descriptive text.    The semantics of the text depends on the 
domain where it is found.



RFC-1034/5 Domain System: Standard RRs

Textual Expression of RRs
RRs are represented in binary form in the packets of the DNS protocol, and are usually 
represented in highly encoded form when stored in a name server or resolver.    In this 
memo, we adopt a style similar to that used in master files in order to show the contents of 
RRs.    In this format, most RRs are shown on a singleline, although continuation lines are 
possible using parentheses.

The start of the line gives the owner of the RR.    If a line begins with a blank, then the owner 
is assumed to be the same as that of the previous RR.    Blank lines are often included for 
readability.

In order to avoid ambiguity in parsing, type and class mnemonics are disjoint, TTLs are 
integers, and the type mnemonic is always last. The IN class and TTL values are often 
omitted from examples in the interests of clarity.

The resource data or RDATA section of the RR are given using knowledge of the typical 
representation for the data.

For example, we might show the RRs carried in a message as:

   ISI.EDU.        MX      10 VENERA.ISI.EDU.
                   MX      10 VAXA.ISI.EDU.
   VENERA.ISI.EDU. A       128.9.0.32
                   A       10.1.0.52
   VAXA.ISI.EDU.   A       10.2.0.27
                   A       128.9.0.33

The MX RRs have an RDATA section which consists of a 16 bit number followed by a domain 
name.    The address RRs use a standard IP address format to contain a 32bit internet 
address.

This example shows six RRs, with two RRs at each of three domain names.

Similarly we might see:

    XX.LCS.MIT.EDU. IN      A       10.0.0.44
                    CH      A       MIT.EDU. 2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different class.



RFC-1034/5 Domains: Name Space and Resource Records

Master Files
Master files are text files that contain RRs in text form.    Since the contents of a zone can be 
expressed in the form of a list of RRs a master file is most often used to define a zone, 
though it can be used to list a cache's contents.    Hence, this section first discusses the 
format of RRs in a master file, and then the special considerations when a master file is used
to create a zone in some name server.



RFC-1034/5 Domains: Name Space and Resource Records

Master File Format
The format of these files is a sequence of entries.    Entries are predominantly line-oriented, 
though parentheses can be used to continue a list of items across a line boundary, and text 
literals can contain CRLF within the text.    Any combination of tabs and spaces act as a 
delimiter between the separate items that make up an entry.    The end of any line in the 
master file can end with a comment.    The comment starts with a ";" (semicolon).

The following entries are defined:

    <blank>[<comment>]

    $ORIGIN <domain-name> [<comment>]

    $INCLUDE <file-name> [<domain-name>] [<comment>]

    <domain-name><rr> [<comment>]

    <blank><rr> [<comment>]

Blank lines, with or without comments, are allowed anywhere in the file.

Two control entries are defined: $ORIGIN and $INCLUDE.    $ORIGIN is followed by a domain 
name, and resets the current origin for relative domain names to the stated name.    
$INCLUDE inserts the named file into the current file, and may optionally specify a domain 
name that sets the relative domain name origin for the included file.    $INCLUDE may also 
have a comment.    Note that a $INCLUDE entry never changes the relative origin of the 
parent file, regardless of changes to the relative origin made within the included file.

The last two forms represent RRs.    If an entry for an RR begins with a blank, then the RR is 
assumed to be owned by the last stated owner.    If an RR entry begins with a <domain-
name>, then the owner name is reset.

<rr> contents take one of the following forms:

    [<TTL>] [<class>] <type> <RDATA>

    [<class>] [<TTL>] <type> <RDATA>

The RR begins with optional TTL and class fields, followed by a type and RDATA field 
appropriate to the type and class.    Class and type use the standard mnemonics, TTL is a 
decimal integer.    Omitted class and TTL values are default to the last explicitly stated 
values.    Since type and class mnemonics are disjoint, the parse is unique.    (Note that this 
order is different from the order used in examples and the order used in the actual RRs; the 
given order allows easier parsing and defaulting.)

<domain-name>s make up a large share of the data in the master file.    The labels in the 
domain name are expressed as character strings and separated by dots.    Quoting 
conventions allow arbitrary characters to be stored in domain names.    Domain names that 
end in a dot are called absolute, and are taken as complete.    Domain names which do not 
end in a dot are called relative; the actual domain name is the concatenation of the relative 
part with an origin specified in a $ORIGIN, $INCLUDE, or as an argument to the master file 
loading routine.    A relative name is an error when no origin is available.



<character-string> is expressed in one or two ways: as a contiguous set of characters 
without interior spaces, or as a string beginning with a " and ending with a ".    Inside a " 
delimited string any character can occur, except for a " itself, which must be quoted using \ 
(back slash).

Because these files are text files several special encodings are necessary to allow arbitrary 
data to be loaded.    In particular:

 of the root.

      @ A free standing @ is used to denote the current origin.

    \X where X is any character other than a digit (0-9), is used to quote that 
character so that its special meaning does not apply.    For example, "\."
can be used to place a dot character in a label.

\DDD where each D is a digit is the octet corresponding to the decimal 
number described by DDD.    The resulting octet is assumed to be text 
and is not checked for special meaning.

    ( ) Parentheses are used to group data that crosses a line boundary.    In 
effect, line terminations are not recognized within parentheses.

      ; Semicolon is used to start a comment; the remainder of the line is 
ignored.



RFC-1034/5 Domains: Name Space and Resource Records

Use of Master Files to Define Zones
When a master file is used to load a zone, the operation should be suppressed if any errors 
are encountered in the master file.    The rationale for this is that a single error can have 
widespread consequences.    For example, suppose that the RRs defining a delegation have 
syntax errors; then the server will return authoritative name errors for all names in the 
subzone (except in the case where the subzone is also present on the server).

Several other validity checks that should be performed in addition to insuring that the file is 
syntactically correct:

1.    All RRs in the file should have the same class.

2. Exactly one SOA RR should be present at the top of the zone.

3. If delegations are present and glue information is required, it should be present.

4. Information present outside of the authoritative nodes in the zone should be glue 
information, rather than the result of an origin or similar error.



RFC-1034/5 Domains: Name Space and Resource Records

Master File Example
The following is an example file which might be used to define the ISI.EDU zone.and is 
loaded with an origin of ISI.EDU:

@   IN  SOA     VENERA      Action\.domains (
                                 20     ; SERIAL
                                 7200   ; REFRESH
                                 600    ; RETRY
                                 3600000; EXPIRE
                                 60)    ; MINIMUM

        NS      A.ISI.EDU.
        NS      VENERA
        NS      VAXA
        MX      10      VENERA
        MX      20      VAXA

A       A       26.3.0.103

VENERA  A       10.1.0.52
        A       128.9.0.32

VAXA    A       10.2.0.27
        A       128.9.0.33

$INCLUDE <SUBSYS>ISI-MAILBOXES.TXT

Where the file <SUBSYS>ISI-MAILBOXES.TXT is:

    MOE     MB      A.ISI.EDU.
    LARRY   MB      A.ISI.EDU.



RFC-1034/5 Domains: Name Space and Resource Records

Aliases and Canonical Names
In existing systems, hosts and other resources often have several names that identify the 
same resource.    For example, the names C.ISI.EDU and USC-ISIC.ARPA both identify the 
same host.    Similarly, in the case of mailboxes, many organizations provide many names 
that actually go to the same mailbox; for example Mockapetris@C.ISI.EDU, 
Mockapetris@B.ISI.EDU, and PVM@ISI.EDU all go to the same mailbox (although the 
mechanism behind this is somewhat complicated).

Most of these systems have a notion that one of the equivalent set of names is the canonical
or primary name and all others are aliases.

The domain system provides such a feature using the canonical name (CNAME) RR.    A 
CNAME RR identifies its owner name as an alias, and specifies the corresponding canonical 
name in the RDATA section of the RR.    If a CNAME RR is present at a node, no other data 
should be present; this ensures that the data for a canonical name and its aliases cannot be 
different.    This rule also insures that a cached CNAME can be used without checking with an
authoritative server for other RR types.

CNAME RRs cause special action in DNS software.    When a name server fails to find a 
desired RR in the resource set associated with the domain name, it checks to see if the 
resource set consists of a CNAME record with a matching class.    If so, the name server 
includes the CNAME record in the response and restarts the query at the domain name 
specified in the data field of the CNAME record.    The one exception to this rule is that 
queries which match the CNAME type are not restarted.

For example, suppose a name server was processing a query with for USC- ISIC.ARPA, 
asking for type A information, and had the following resource records:

    USC-ISIC.ARPA   IN      CNAME   C.ISI.EDU

    C.ISI.EDU       IN      A       10.0.0.52

Both of these RRs would be returned in the response to the type A query, while a type 
CNAME or * query should return just the CNAME.

Domain names in RRs which point at another name should always point at the primary name
and not the alias.    This avoids extra indirections in accessing information.    For example, the
address to name RR for the above host should be:

    52.0.0.10.IN-ADDR.ARPA  IN      PTR     C.ISI.EDU

rather than pointing at USC-ISIC.ARPA.    Of course, by the robustness principle, domain 
software should not fail when presented with CNAME chains or loops; CNAME chains should 
be followed and CNAME loops signalled as an error.



RFC-1034/5 Domains: Name Space and Resource Records

ARPA Internet Specific RRs

A RDATA Format

where:

ADDRESS A 32 bit Internet address.

Hosts that have multiple Internet addresses will have multiple A records.

A records cause no additional section processing.    The RDATA section of an A line in a 
master file is an Internet address expressed as four decimal numbers separated by dots 
without any imbedded spaces (e.g., "10.2.0.52" or "192.0.5.6").

WKS RDATA Format

where:

ADDRESS An 32 bit Internet address

PROTOCOL An 8 bit IP protocol number

<BIT MAP> A variable length bit map.    The bit map must be a multiple of 8 bits 
long.

The WKS record is used to describe the well known services supported by a particular 
protocol on a particular internet address.    The PROTOCOL field specifies an IP protocol 
number, and the bit map has one bit per port of the specified protocol.    The first bit 
corresponds to port 0, the second to port 1, etc.    If the bit map does not include a bit for a 
protocol of interest, that bit is assumed zero.    The appropriate values and mnemonics for 
ports and protocols are specified in RFC-1010.

For example, if PROTOCOL=TCP (6), the 26th bit corresponds to TCP port 25 (SMTP).    If this 
bit is set, a SMTP server should be listening on TCP port 25; if zero, SMTP service is not 
supported on the specified address.

The purpose of WKS RRs is to provide availability information for servers for TCP and UDP.    If
a server supports both TCP and UDP, or has multiple Internet addresses, then multiple WKS 
RRs are used.



WKS RRs cause no additional section processing.

In master files, both ports and protocols are expressed using mnemonics or decimal 
numbers.



RFC-1034/5 Domains: Name Space and Resource Records

IN-ADDR.ARPA Domain
The Internet uses a special domain to support gateway location and Internet address to host 
mapping.    Other classes may employ a similar strategy in other domains.    The intent of this
domain is to provide a guaranteed method to perform host address to host name mapping, 
and to facilitate queries to locate all gateways on a particular network in the Internet.

Note that both of these services are similar to functions that could be performed by inverse 
queries; the difference is that this part of the domain name space is structured according to 
address, and hence can guarantee that the appropriate data can be located without an 
exhaustive search of the domain space.

The domain begins at IN-ADDR.ARPA and has a substructure which follows the Internet 
addressing structure.

Domain names in the IN-ADDR.ARPA domain are defined to have up to four labels in addition
to the IN-ADDR.ARPA suffix.    Each label represents one octet of an Internet address, and is 
expressed as a character string for a decimal value in the range 0-255 (with leading zeros 
omitted except in the case of a zero octet which is represented by a single zero).

Host addresses are represented by domain names that have all four labels specified.    Thus 
data for Internet address 10.2.0.52 is located at domain name 52.0.2.10.IN-ADDR.ARPA.    
The reversal, though awkward to read, allows zones to be delegated which are exactly one 
network of address space.    For example, 10.IN-ADDR.ARPA can be a zone containing data 
for the ARPANET, while 26.IN-ADDR.ARPA can be a separate zone for MILNET.    Address 
nodes are used to hold pointers to primary host names in the normal domain space.

Network numbers correspond to some non-terminal nodes at various depths in the IN-
ADDR.ARPA domain, since Internet network numbers are either 1, 2, or 3 octets.    Network 
nodes are used to hold pointers to the primary host names of gateways attached to that 
network.    Since a gateway is, by definition, on more than one network, it will typically have 
two or more network nodes which point at it.    Gateways will also have host level pointers at 
their fully qualified addresses.

Both the gateway pointers at network nodes and the normal host pointers at full address 
nodes use the PTR RR to point back to the primary domain names of the corresponding 
hosts.

For example, the IN-ADDR.ARPA domain will contain information about the ISI gateway 
between net 10 and 26, an MIT gateway from net 10 to MIT's net 18, and hosts A.ISI.EDU 
and MULTICS.MIT.EDU.    Assuming that ISI gateway has addresses 10.2.0.22 and 
26.0.0.103, and a name MILNET- GW.ISI.EDU, and the MIT gateway has addresses 
10.0.0.77 and 18.10.0.4 and a name GW.LCS.MIT.EDU, the domain database would 
contain:

    10.IN-ADDR.ARPA.           PTR MILNET-GW.ISI.EDU.
    10.IN-ADDR.ARPA.           PTR GW.LCS.MIT.EDU.
    18.IN-ADDR.ARPA.           PTR GW.LCS.MIT.EDU.
    26.IN-ADDR.ARPA.           PTR MILNET-GW.ISI.EDU.
    22.0.2.10.IN-ADDR.ARPA.    PTR MILNET-GW.ISI.EDU.
    103.0.0.26.IN-ADDR.ARPA.   PTR MILNET-GW.ISI.EDU.
    77.0.0.10.IN-ADDR.ARPA.    PTR GW.LCS.MIT.EDU.



    4.0.10.18.IN-ADDR.ARPA.    PTR GW.LCS.MIT.EDU.
    103.0.3.26.IN-ADDR.ARPA.   PTR A.ISI.EDU.
    6.0.0.10.IN-ADDR.ARPA.     PTR MULTICS.MIT.EDU.

Thus a program which wanted to locate gateways on net 10 would originate a query of the 
form QTYPE=PTR, QCLASS=IN, QNAME=10.IN-ADDR.ARPA.    It would receive two RRs in 
response:

    10.IN-ADDR.ARPA.           PTR MILNET-GW.ISI.EDU.
    10.IN-ADDR.ARPA.           PTR GW.LCS.MIT.EDU.

The program could then originate QTYPE=A, QCLASS=IN queries for MILNET- GW.ISI.EDU. and 
GW.LCS.MIT.EDU. to discover the Internet addresses of these gateways.

A resolver which wanted to find the host name corresponding to Internet host address 
10.0.0.6 would pursue a query of the form QTYPE=PTR, QCLASS=IN, QNAME=6.0.0.10.IN-
ADDR.ARPA, and would receive:

    6.0.0.10.IN-ADDR.ARPA.     PTR MULTICS.MIT.EDU.

Several cautions apply to the use of these services:
o Since the IN-ADDR.ARPA special domain and the normal domain for a 

particular host or gateway will be in different zones, the possibility 
exists that that the data may be inconsistent.

o Gateways will often have two names in separate domains, only one of 
which can be primary.

o Systems that use the domain database to initialize their routing tables 
must start with enough gateway information to guarantee that they 
can access the appropriate name server.

o The gateway data only reflects the existence of a gateway in a manner 
equivalent to the current HOSTS.TXT file.    It doesn't replace the 
dynamic availability information from GGP or EGP.



RFC-1034/5 Domains: Name Space and Resource Records

Defining New Types, Classes, and Special Name Spaces
The previously defined types and classes are the ones in use as of the date of this memo.    
New definitions should be expected.    This section makes some recommendations to 
designers considering additions to the existing facilities.    The mailing list 
NAMEDROPPERS@SRI-NIC.ARPA is the forum where general discussion of design issues takes 
place.

In general, a new type is appropriate when new information is to be added to the database 
about an existing object, or we need new data formats for some totally new object.    
Designers should attempt to define types and their RDATA formats that are generally 
applicable to all classes, and which avoid duplication of information.    New classes are 
appropriate when the DNS is to be used for a new protocol, etc which requires new class-
specific data formats, or when a copy of the existing name space is desired, but a separate 
management domain is necessary.

New types and classes need mnemonics for master files; the format of the master files 
requires that the mnemonics for type and class be disjoint.

TYPE and CLASS values must be a proper subset of QTYPEs and QCLASSes respectively.

The present system uses multiple RRs to represent multiple values of a type rather than 
storing multiple values in the RDATA section of a single RR.    This is less efficient for most 
applications, but does keep RRs shorter.    The multiple RRs assumption is incorporated in 
some experimental work on dynamic update methods.

The present system attempts to minimize the duplication of data in the database in order to 
insure consistency.    Thus, in order to find the address of the host for a mail exchange, you 
map the mail domain name to a host name, then the host name to addresses, rather than a 
direct mapping to host address.    This approach is preferred because it avoids the 
opportunity for inconsistency.

In defining a new type of data, multiple RR types should not be used to create an ordering 
between entries or express different formats for equivalent bindings, instead this information
should be carried in the body of the RR and a single type used.    This policy avoids problems 
with caching multiple types and defining QTYPEs to match multiple types.

For example, the original form of mail exchange binding used two RR types one to represent 
a "closer" exchange (MD) and one to represent a "less close" exchange (MF).    The difficulty 
is that the presence of one RR type in a cache doesn't convey any information about the 
other because the query which acquired the cached information might have used a QTYPE of
MF, MD, or MAILA (which matched both).    The redesigned service used a single type (MX) 
with a "preference" value in the RDATA section which can order different RRs.    However, if 
any MX RRs are found in the cache, then all should be there.



RFC-1034/5 Domains: Name Space and Resource Records

Queries
Queries are messages which may be sent to a name server to provoke a response.    In the 
Internet, queries are carried in UDP datagrams or over TCP connections.    The response by 
the name server either answers the question posed in the query, refers the requester to 
another set of name servers, or signals some error condition.

In general, the user does not generate queries directly, but instead makes a request to a 
resolver which in turn sends one or more queries to name servers and deals with the error 
conditions and referrals that may result.    Of course, the possible questions which can be 
asked in a query does shape the kind of service a resolver can provide.

DNS queries and responses are carried in a standard message format.    The message format
has a header containing a number of fixed fields which are always present, and four sections
which carry query parameters and RRs.

The most important field in the header is a four bit field called an opcode which separates 
different queries.    Of the possible 16 values, one (standard query)is part of the official 
protocol, two (inverse query and status query) are options, one (completion) is obsolete, and
the rest are unassigned.

The four sections are:

Question Carries the query name and other query parameters.

Answer Carries RRs which directly answer the query.

Authority Carries RRs which describe other authoritative servers.    May optionally carry 
the SOA RR for the authoritative data in the answer section.

Additional Carries RRs which may be helpful in using the RRs in the other sections.

Note that the content, but not the format, of these sections varies with header opcode.



RFC-1034/5 Domains: Name Space and Resource Records

Standard Queries
A standard query specifies a target domain name (QNAME), query type (QTYPE), and query 
class (QCLASS) and asks for RRs which match.    This type of query makes up such a vast 
majority of DNS queries that we use the term "query" to mean standard query unless 
otherwise specified.    The QTYPE and QCLASS fields are each 16 bits long, and are a 
superset of defined types and classes.

The QTYPE field may contain:

<any type> matches just that type. (e.g., A, PTR).

AXFR special zone transfer QTYPE.

MAILB matches all mail box related RRs (e.g. MB and MG).

      * matches all RR types.

The QCLASS field may contain:

<any class> matches just that class (e.g., IN, CH).

      * matches aLL RR classes.

Using the query domain name, QTYPE, and QCLASS, the name server looks for matching 
RRs.    In addition to relevant records, the name server may return RRs that point toward a 
name server that has the desired information or RRs that are expected to be useful in 
interpreting the relevant RRs.    For example, a name server that doesn't have the requested 
information may know a name server that does; a name server that returns a domain name 
in a relevant RR may also return the RR that binds that domain name to an address.

For example, a mailer tying to send mail to Mockapetris@ISI.EDU might ask the resolver for
mail information about ISI.EDU, resulting in a query for QNAME=ISI.EDU, QTYPE=MX, 
QCLASS=IN.    The response's answer section would be:

    ISI.EDU.        MX      10 VENERA.ISI.EDU.
                    MX      10 VAXA.ISI.EDU.

while the additional section might be:

    VAXA.ISI.EDU.   A       10.2.0.27
                    A       128.9.0.33
    VENERA.ISI.EDU. A       10.1.0.52
                    A       128.9.0.32

Because the server assumes that if the requester wants mail exchange information, it will 
probably want the addresses of the mail exchanges soon afterward.

Note that the QCLASS=* construct requires special interpretation regarding authority.    Since
a particular name server may not know all of the classes availablein the domain system, it 
can never know if it is authoritative for all classes.    Hence responses to QCLASS=* queries 
can never be authoritative.



For a further discussion of standard queries, see Standard Query Processing under Name 
Server Implementation.



RFC-1034/5 Domains: Name Space and Resource Records

Inverse Queries (Optional)
Name servers may also support inverse queries that map a particular resource to a domain 
name or domain names that have that resource.    For example, while a standard query 
might map a domain name to a SOA RR, the corresponding inverse query might map the 
SOA RR back to the domain name.

Implementation of this service is optional in a name server, but all name servers must at 
least be able to understand an inverse query message and return a not-implemented error 
response.

The domain system cannot guarantee the completeness or uniqueness of inverse queries 
because the domain system is organized by domain name rather than by host address or 
any other resource type.    Inverse queries are primarily useful for debugging and database 
maintenance activities.

Inverse queries may not return the proper TTL, and do not indicate cases where the 
identified RR is one of a set (for example, one address for a host having multiple addresses). 
Therefore, the RRs returned in inverse queries should never be cached.

Inverse queries are NOT an acceptable method for mapping host addresses to host names; 
use the IN-ADDR.ARPA domain instead.

For a further discussion of inverse queries, see Inverse Queries under Name Server 
Implementation.



RFC-1034/5 Domains: Name Space and Resource Records

Status Queries (Experimental)
To be defined.



RFC-1034/5 Domains: Name Space and Resource Records

Completion Queries (Obsolete)
The optional completion services described in RFCs 882 and RFC-883 have been deleted.    
Redesigned services may become available in the future, or the opcodes may be reclaimed 
for other use.



RFC-1034/5 Domain Name System

Messages
Format
Header Section Format  
Question Section Format  
Resource Record Format  
Message Compression  
Transport



RFC-1034/5 Domain Name System: Messages

Format
All communications inside of the domain protocol are carried in a single format called a 
message.    The top level format of message is divided into 5 sections (some of which are 
empty in certain cases) shown below:

The header section is always present.    The header includes fields that specify which of the 
remaining sections are present, and also specify whether the message is a query or a 
response, a standard query or some other opcode, etc.

The names of the sections after the header are derived from their use in standard queries.    
The question section contains fields that describe a question to a name server.    These fields
are a query type (QTYPE), a query class (QCLASS), and a query domain name (QNAME).    
The last three sections have the same format: a possibly empty list of concatenated 
resource records (RRs).    The answer section contains RRs that answer the question; the 
authority section contains RRs that point toward an authoritative name server; the 
additional records section contains RRs which relate to the query, but are not strictly 
answers for the question.



RFC-1034/5 Domain Name System: Messages

Header Section Format
The header contains the following fields:

where:

ID A 16 bit identifier assigned by the program that generates any kind of 
query.    This identifier is copied the corresponding reply and can be 
used by the requester to match up replies to outstanding queries.

QR A one bit field that specifies whether this message is a query (0), or a 
response (1).

OPCODE A four bit field that specifies kind of query in this message.    This value 
is set by the originator of a query and copied into the response.    The 
values are:

0 a standard query (QUERY)

1 an inverse query (IQUERY)

2 a server status request (STATUS)

3-15 reserved for future use

AA Authoritative Answer - this bit is valid in responses, and specifies that 
the responding name server is an authority for the domain name in 
question section.

                                Note that the contents of the answer section may have multiple owner 
names because of aliases.    The AA bit corresponds to the name which 
matches the query name, or the first owner name in the answer 
section.

TC TrunCation - specifies that this message was truncated due to length 
greater than that permitted on the transmission channel.



RD Recursion Desired - this bit may be set in a query and is copied into the
response.    If RD is set, it directs the name server to pursue the query 
recursively.    Recursive query support is optional.

RA Recursion Available - this be is set or cleared in a response, and 
denotes whether recursive query support is available in the name 
server.

Z Reserved for future use.    Must be zero in all queries and responses.

RCODE Response code - this 4 bit field is set as part of responses.    The values 
have the following interpretation:

0 No error condition

1 Format error - The name server was unable to 
interpret the query.

2 Server failure - The name server was unable to 
process this query due to a problem with the 
name server.

3 Name Error - Meaningful only for responses from 
an authoritative name server, this code signifies 
that the domain name referenced in the query 
does not exist.

4 Not Implemented - The name server does not 
support the requested kind of query.

5 Refused - The name server refuses to perform the
specified operation for policy reasons.    For 
example, a name server may not wish to provide 
the information to the particular requester, or a 
name server may not wish to perform a particular
operation (e.g., zone transfer) for particular data.

6-15 Reserved for future use.

QDCOUNT an unsigned 16 bit integer specifying the number of entries in the 
question section.

ANCOUNT an unsigned 16 bit integer specifying the number of resource records in
the answer section.

NSCOUNT an unsigned 16 bit integer specifying the number of name records in 
the authority records section.

ARCOUNT an unsigned 16 bit integer specifying the number of resource records in
the additional records section.



RFC-1034/5 Domain Name System: Messages

Question Section Format
The question section is used to carry the "question" in most queries, i.e., the parameters 
that define what is being asked.    The section contains QDCOUNT (usually 1) entries, each of
the following format:

where:

QNAME a domain name represented as a sequence of labels, where each label 
consists of a length octet followed by that number of octets.    The 
domain name terminates with the zero length octet for the null label of 
the root.    Note that this field may be an odd number of octets; no 
padding is used.

QTYPE a two octet code which specifies the type of the query.    The values for 
this field include all codes valid for a TYPE field, together with some 
more general codes which can match more than one type of RR.

QCLASS a two octet code that specifies the class of the query.    For example, 
the QCLASS field is IN for the Internet.



RFC-1034/5 Domain Name System: Messages

Resource Record Format
The answer, authority, and additional sections all share the same format: a variable number 
of resource records, where the number of records is specified in the corresponding count 
field in the header.    Each resource record has the following format:

where:

NAME a domain name to which this resource record pertains.

TYPE two octets containing one of the RR type codes.    This field specifies 
the meaning of the data in the RDATA field.

CLASS two octets which specify the class of the data in the RDATA field.

TTL a 32 bit unsigned integer that specifies the time interval (in seconds) 
that the resource record may be cached before it should be discarded.   
Zero values are interpreted to mean that the RR can only be used for 
the transaction in progress, and should not be cached.

RDLENGTH an unsigned 16 bit integer that specifies the length in octets of the 
RDATA field.

RDATA a variable length string of octets that describes the resource.    The 
format of this information varies according to the TYPE and CLASS of 
the resource record.    For example, the if the TYPE is A and the CLASS 
is IN, the RDATA field is a 4 octet ARPA Internet address.



RFC-1034/5 Domain Name System: Messages

Message Compression
In order to reduce the size of messages, the domain system utilizes a compression scheme 
which eliminates the repetition of domain names in a message.    In this scheme, an entire 
domain name or a list of labels at the end of a domain name is replaced with a pointer to a 
prior occurance of the same name.

The pointer takes the form of a two octet sequence:

The first two bits are ones.    This allows a pointer to be distinguished from a label, since the 
label must begin with two zero bits because labels are restricted to 63 octets or less.    (The 
10 and 01 combinations are reserved for future use.)    The OFFSET field specifies an offset 
from the start of the message (i.e., the first octet of the ID field in the domain header).    A 
zero offset specifies the first byte of the ID field, etc.

The compression scheme allows a domain name in a message to be represented as either:

o a sequence of labels ending in a zero octet

o a pointer

o a sequence of labels ending with a pointer

Pointers can only be used for occurances of a domain name where the format is not class 
specific.    If this were not the case, a name server or resolver would be required to know the 
format of all RRs it handled.    As yet, there are no such cases, but they may occur in future 
RDATA formats.

If a domain name is contained in a part of the message subject to a length field (such as the 
RDATA section of an RR), and compression is used, the length of the compressed name is 
used in the length calculation, rather than the length of the expanded name.

Programs are free to avoid using pointers in messages they generate, although this will 
reduce datagram capacity, and may cause truncation.    However all programs are required 
to understand arriving messages that contain pointers.

For example, a datagram might need to use the domain names F.ISI.ARPA, 
FOO.F.ISI.ARPA, ARPA, and the root.    Ignoring the other fields of the message, these 
domain names might be represented as:



The domain name for F.ISI.ARPA is shown at offset 20.    The domain name 
FOO.F.ISI.ARPA is shown at offset 40; this definition uses a pointer to concatenate a label 
for FOO to the previously defined F.ISI.ARPA.    The domain name ARPA is defined at offset 
64 using a pointer to the ARPA component of the name F.ISI.ARPA at 20; note that this 
pointer relies on ARPA being the last label in the string at 20.    The root domain name is 
defined by a single octet of zeros at 92; the root domain name has no labels.



RFC-1034/5 Domain Name System: Messages

Transport
The DNS assumes that messages will be transmitted as datagrams or in a byte stream 
carried by a virtual circuit.    While virtual circuits can be used for any DNS activity, 
datagrams are preferred for queries due to their lower overhead and better performance.    
Zone refresh activities must use virtual circuits because of the need for reliable transfer.

The Internet supports name server access using TCP (RFC-793) on server port 53 (decimal) 
as well as datagram access using UDP (RFC-768) on UDP port 53 (decimal).

UDP usage
Messages sent using UDP user server port 53 (decimal).

Messages carried by UDP are restricted to 512 bytes (not counting the IP or UDP headers).    
Longer messages are truncated and the TC bit is set in the header.

UDP is not acceptable for zone transfers, but is the recommended method for standard 
queries in the Internet.    Queries sent using UDP may be lost, and hence a retransmission 
strategy is required.    Queries or their responses may be reordered by the network, or by 
processing in name servers, so resolvers should not depend on them being returned in order.

The optimal UDP retransmission policy will vary with performance of the Internet and the 
needs of the client, but the following are recommended:

o The client should try other servers and server addresses before 
repeating a query to a specific address of a server.

o The retransmission interval should be based on prior statistics if 
possible.    Too aggressive retransmission can easily slow responses for 
the community at large.    Depending on how well connected the client 
is to its expected servers, the minimum retransmission interval should 
be 2-5 seconds.

More suggestions on server selection and retransmission policy can be found in the resolver 
section of this memo.

TCP usage
Messages sent over TCP connections use server port 53 (decimal).    The message is prefixed
with a two byte length field which gives the message length, excluding the two byte length 
field.    This length field allows the low-level processing to assemble a complete message 
before beginning to parse it.

Several connection management policies are recommended:

o The server should not block other activities waiting for TCP data.

o The server should support multiple connections.

o The server should assume that the client will initiate connection 



closing, and should delay closing its end of the connection until all 
outstanding client requests have been satisfied.

o If the server needs to close a dormant connection to reclaim resources,
it should wait until the connection has been idle for a period on the 
order of two minutes.    In particular, the server should allow the SOA 
and AXFR request sequence (which begins a refresh operation) to be 
made on a single connection.    Since the server would be unable to 
answer queries anyway, a unilateral close or reset may be used instead
of a graceful close.



RFC-1034/5 Domain Name System

Name Servers
Introduction
Architecture
Control  
Database  
Time  
How the Database Is Divided into Zones
Technical Considerations  
Administrative Considerations  
Queries and Responses
Standard Query Processing  
Zone Refresh and Reload Processing  
Inverse Queries (Optional)  
            Inverse Query Contents  
            Inverse Query Example  
            Inverse Query Processing  
Algorithm  
Wldcards  
Negative Response Caching (Optional)  
Zone Maintenance and Transfers  



RFC-1034/5 Domain System: Name Servers

Introduction
Name servers are the repositories of information that make up the domain database.    The 
database is divided up into sections called zones, which are distributed among the name 
servers.    While name servers can have several optional functions and sources of data, the 
essential task of a name server is to answer queriesusing data in its zones.    By design, 
name servers can answer queries in a simple manner; the response can always be 
generated using only local data, and eithercontains the answer to the question or a referral 
to other name servers "closer" to the desired information.

A given zone will be available from several name servers to insure its availability in spite of 
host or communication link failure.    By administrative fiat, werequire every zone to be 
available on at least two servers, and many zones have more redundancy than that.

A given name server will typically support one or more zones, but this gives it authoritative 
information about only a small section of the domain tree.    It may also have some cached 
non-authoritative data about other parts of the tree.    The name server marks its responses 
to queries so that the requester can tell whether the response comes from authoritative data
or not.



RFC-1034/5 Domain System: Name Servers

Architecture
The optimal structure for the name server will depend on the host operating system and 
whether the name server is integrated with resolver operations, either by supporting 
recursive service, or by sharing its database with a resolver.    This section discusses 
implementation considerations for a name server which shares a database with a resolver, 
but most of these concerns are present in any name server.



RFC-1034/5 Domain System: Name Servers

Control
A name server must employ multiple concurrent activities, whether they are implemented as
separate tasks in the host's OS or multiplexing inside a single name server program.    It is 
simply not acceptable for a name server to block the service of UDP requests while it waits 
for TCP data for refreshing or query activities.    Similarly, a name server should not attempt 
to provide recursive service without processing such requests in parallel, though it may 
choose to serialize requests from a single client, or to regard identical requests from the 
same client as duplicates.    A name server should not substantially delay requests while it 
reloads a zone from master files or while it incorporates a newly refreshed zone into its 
database.



RFC-1034/5 Domain System: Name Servers

Database
While name server implementations are free to use any internal data structures they 
choose, the suggested structure consists of three major parts:

o A "catalog" data structure which lists the zones available to this server,
and a "pointer" to the zone data structure.    The main purpose of this 
structure is to find the nearest ancestor zone, if any, for arriving 
standard queries.

o Separate data structures for each of the zones held by the name 
server.

o A data structure for cached data. (or perhaps separate caches for 
different classes)

All of these data structures can be implemented an identical tree structure format, with 
different data chained off the nodes in different parts: in the catalog the data is pointers to 
zones, while in the zone and cache data structures, the data will be RRs.    In designing the 
tree framework the designer should recognize that query processing will need to traverse 
the tree using case-insensitive label comparisons; and that in real data, a few nodes have a 
very high branching factor (100-1000 or more), but the vast majority have a very low 
branching factor (0-1).

One way to solve the case problem is to store the labels for each node in two pieces: a 
standardized-case representation of the label where all ASCII characters are in a single case,
together with a bit mask that denotes which characters are actually of a different case.    The
branching factor diversity can be handled using a simple linked list for a node until the 
branching factor exceeds some threshold, and transitioning to a hash structure after the 
threshold is exceeded.    In any case, hash structures used to store tree sections must insure 
that hash functions and procedures preserve the casing conventions of the DNS.

The use of separate structures for the different parts of the database is motivated by several
factors:

o The catalog structure can be an almost static structure that need 
change only when the system administrator changes the zones 
supported by the server.    This structure can also be used to store 
parameters used to control refreshing activities.

o The individual data structures for zones allow a zone to be replaced 
simply by changing a pointer in the catalog.    Zone refresh operations 
can build a new structure and, when complete, splice it into the 
database via a simple pointer replacement.    It is very important that 
when a zone is refreshed, queries should not use old and new data 
simultaneously.

o With the proper search procedures, authoritative data in zones will 
always "hide", and hence take precedence over, cached data.

o Errors in zone definitions that cause overlapping zones, etc., may 
cause erroneous responses to queries, but problem determination is 
simplified, and the contents of one "bad" zone can't corrupt another.



o Since the cache is most frequently updated, it is most vulnerable to 
corruption during system restarts.    It can also become full of expired 
RR data.    In either case, it can easily be discarded without disturbing 
zone data.

A major aspect of database design is selecting a structure which allows the name server to 
deal with crashes of the name server's host.    State information which a name server should 
save across system crashes includes the catalog structure (including the state of refreshing 
for each zone) and the zone data itself.



RFC-1034/5 Domain System: Name Servers

Time
Both the TTL data for RRs and the timing data for refreshing activities depends on 32 bit 
timers in units of seconds.    Inside the database, refresh timers and TTLs for cached data 
conceptually "count down", while data in the zone stays with constant TTLs.

A recommended implementation strategy is to store time in two ways:    as a relative 
increment and as an absolute time.    One way to do this is to use positive 32 bit numbers for
one type and negative numbers for the other.    The RRs in zones use relative times; the 
refresh timers and cache data use absolute times.    Absolute numbers are taken with respect
to some known origin and converted to relative values when placed in the response to a 
query.    When an absolute TTL is negative after conversion to relative, then the data is 
expired and should be ignored.



RFC-1034/5 Domain System: Name Servers

How the Database is Dvided into Zones
The domain database is partitioned in two ways: by class, and by "cuts" made in the name 
space between nodes.

The class partition is simple.    The database for any class is organized, delegated, and 
maintained separately from all other classes.    Since, by convention, the name spaces are 
the same for all classes, the separate classes can be thought of as an array of parallel 
namespace trees.    Note that the data attached to nodes will be different for these different 
parallel classes.    The most common reasons for creating a new class are the necessity for a 
new data format for existing types or a desire for a separately managed version of the 
existing name space.

Within a class, "cuts" in the name space can be made between any two adjacent nodes.    
After all cuts are made, each group of connected name space is a separatezone.    The zone 
is said to be authoritative for all names in the connected region.    Note that the "cuts" in the 
name space may be in different places for different classes, the name servers may be 
different, etc.

These rules mean that every zone has at least one node, and hence domain name, for which
it is authoritative, and all of the nodes in a particular zone are connected.    Given, the tree 
structure, every zone has a highest node which is closer to the root than any other node in 
the zone.    The name of this node is often used to identify the zone.

It would be possible, though not particularly useful, to partition the name space so that each
domain name was in a separate zone or so that all nodes were in a single zone.    Instead, 
the database is partitioned at points where a particular organization wants to take over 
control of a subtree.    Once an organization controls its own zone it can unilaterally change 
the data in the zone, grow new tree sections connected to the zone, delete existing nodes, 
or delegate new subzones under its zone.

If the organization has substructure, it may want to make further internal partitions to 
achieve nested delegations of name space control.    In some cases, suchdivisions are made 
purely to make database maintenance more convenient.



RFC-1034/5 Domain System: Name Servers

Technical Considerations
The data that describes a zone has four major parts:

      o Authoritative data for all nodes within the zone.

      o Data that defines the top node of the zone (can be thought of as part 
of the authoritative data).

      o Data that describes delegated subzones, i.e., cuts around the bottom 
of the zone.

      o Data that allows access to name servers for subzones (sometimes 
called "glue" data).

All of this data is expressed in the form of RRs, so a zone can be completely described in 
terms of a set of RRs.    Whole zones can be transferred between name servers by 
transferring the RRs, either carried in a series of messages or by FTPing a master file which 
is a textual representation.

The authoritative data for a zone is simply all of the RRs attached to all of the nodes from 
the top node of the zone down to leaf nodes or nodes above cuts around the bottom edge of
the zone.

Though logically part of the authoritative data, the RRs that describe the top node of the 
zone are especially important to the zone's management.    These RRs are of two types: 
name server RRs that list, one per RR, all of the servers for the zone, and a single SOA RR 
that describes zone management parameters.

The RRs that describe cuts around the bottom of the zone are NS RRs that name the servers 
for the subzones.    Since the cuts are between nodes, these RRs are NOT part of the 
authoritative data of the zone, and should be exactly the same as the corresponding RRs in 
the top node of the subzone.    Since name servers are always associated with zone 
boundaries, NS RRs are only found at nodes which are the top node of some zone.    In the 
data that makes up a zone, NS RRs are found at the top node of the zone (and are 
authoritative) and at cuts around the bottom of the zone (where they are not authoritative), 
but never in between.

One of the goals of the zone structure is that any zone have all the data required to set up 
communications with the name servers for any subzones.    That is, parent zones have all the
information needed to access servers for their children zones.    The NS RRs that name the 
servers for subzones are often not enough forthis task since they name the servers, but do 
not give their addresses.    In particular, if the name of the name server is itself in the 
subzone, we could be faced with the situation where the NS RRs tell us that in order to learn 
a name server's address, we should contact the server using the address we wish to learn.    
To fix this problem, a zone contains "glue" RRs which are not part of the authoritative data, 
and are address RRs for the servers.    These RRs are only necessary if the name server's 
name is "below" the cut, and are only used as part of a referral response.



RFC-1034/5 Domain System: Name Servers

Administrative Considerations
When some organization wants to control its own domain, the first step is to identify the 
proper parent zone, and get the parent zone's owners to agree to the delegation of control.   
While there are no particular technical constraints dealing with where in the tree this can be 
done, there are some administrative groupings discussed in RFC-1032 which deal with top 
level organization, and middle level zones are free to create their own rules.    For example, 
one university might choose to use a single zone, while another might choose to organize by
subzones dedicated to individual departments or schools.    RFC-1033 catalogs available DNS
software an discusses administration procedures.

Once the proper name for the new subzone is selected, the new owners should be required 
to demonstrate redundant name server support.    Note that there is no requirement that the 
servers for a zone reside in a host which has a name in that domain.    In many cases, a zone
will be more accessible to the internet at largeif its servers are widely distributed rather than
being within the physical facilities controlled by the same organization that manages the 
zone.    For example,in the current DNS, one of the name servers for the United Kingdom, or 
UK domain, is found in the US.    This allows US hosts to get UK data without using limited 
transatlantic bandwidth.

As the last installation step, the delegation NS RRs and glue RRs necessary to make the 
delegation effective should be added to the parent zone.    The administrators of both zones 
should insure that the NS and glue RRs which mark both sides of the cut are consistent and 
remain so.



RFC-1034/5 Domain System: Name Servers

Queries and Responses
The principal activity of name servers is to answer standard queries.    Both the query and its
response are carried in a standard message format (RFC_974).    The query contains a 
QTYPE, QCLASS, and QNAME, which describe the types and classes of desired information 
and the name of interest.

The way that the name server answers the query depends upon whether it is operating in 
recursive mode or not:

      o The simplest mode for the server is non-recursive, since it can answer 
queries using only local information: the response contains an error, 
the answer, or a referral to some other server "closer" to the answer.    
All name servers must implement non-recursive queries.

      o The simplest mode for the client is recursive, since in this mode the 
name server acts in the role of a resolver and returns either an error or 
the answer, but never referrals. This service is optional in a name 
server, and the name server may also choose to restrict the clients 
which can use recursive mode.

Recursive service is helpful in several situations:

      o a relatively simple requester that lacks the ability to use anything other
than a direct answer to the question.

      o a request that needs to cross protocol or other boundaries and can be 
sent to a server which can act as intermediary.

      o a network where we want to concentrate the cache rather than having 
a separate cache for each client.

Non-recursive service is appropriate if the requester is capable of pursuing referrals and 
interested in information which will aid future requests.

The use of recursive mode is limited to cases where both the client and the name server 
agree to its use.    The agreement is negotiated through the use of two bits in query and 
response messages:

      o The recursion available, or RA bit, is set or cleared by a name server in 
all responses.    The bit is true if the name server is willing to provide 
recursive service for the client, regardless of whether the client 
requested recursive service.    That is, RA signals availability rather than
use.

      o Queries contain a bit called recursion desired or RD.    This bit specifies 
specifies whether the requester wants recursive service for this query.   
Clients may request recursive service from any name server, though 
they should depend upon receiving it only from servers which have 
previously sent an RA, or servers which have agreed to provide service 
through private agreement or some other means outside of the DNS 
protocol.



The recursive mode occurs when a query with RD set arrives at a server which is willing to 
provide recursive service; the client can verify that recursive modewas used by checking 
that both RA and RD are set in the reply.    Note that the name server should never perform 
recursive service unless asked via RD, since this interferes with trouble shooting of name 
servers and their databases.

If recursive service is requested and available, the recursive response to a query will be one 
of the following:

      o The answer to the query, possibly preface by one or more CNAME RRs 
that specify aliases encountered on the way to an answer.

      o A name error indicating that the name does not exist.    This may 
include CNAME RRs that indicate that the original query name was an 
alias for a name which does not exist.

      o A temporary error indication.

If recursive service is not requested or is not available, the non-recursive response will be 
one of the following:

      o An authoritative name error indicating that the name does not exist.

      o A temporary error indication.

      o Some combination of:

RRs that answer the question, together with an indication whether the data comes from a 
zone or is cached.

A referral to name servers which have zones which are closer ancestors to the name than 
the server sending the reply.

      o RRs that the name server thinks will prove useful to the requester.



RFC-1034/5 Domains: Name Server Queries and Responses

Standard Query Processing
When processing queries with QCLASS=*, or some other QCLASS which matches multiple 
classes, the response should never be authoritative unless the server can guarantee that the
response covers all classes.

When composing a response, RRs which are to be inserted in the additional section, but 
duplicate RRs in the answer or authority sections, may be omitted from the additional 
section.

When a response is so long that truncation is required, the truncation should start at the end
of the response and work forward in the datagram.    Thus if there is any data for the 
authority section, the answer section is guaranteed to be unique.

The MINIMUM value in the SOA should be used to set a floor on the TTL of data distributed 
from a zone.    This floor function should be done when the data is copied into a response.    
This will allow future dynamic update protocols to change the SOA MINIMUM field without 
ambiguous semantics.



RFC-1034/5 Domains: Name Server Queries and Responses

Zone Refresh and Reload Processing
In spite of a server's best efforts, it may be unable to load zone data from a master file due 
to syntax errors, etc., or be unable to refresh a zone within the its expiration parameter.    In 
this case, the name server should answer queries as if it were not supposed to possess the 
zone.

If a master is sending a zone out via AXFR, and a new version is created during the transfer, 
the master should continue to send the old version if possible.    In any case, it should never 
send part of one version and part of another.    If completion is not possible, the master 
should reset the connection on which the zone transfer is taking place.



RFC-1034/5 Domains: Name Server Queries and Responses

Inverse Queries (Optional)
Inverse queries are an optional part of the DNS.    Name servers are not required to support 
any form of inverse queries.    If a name server receives an inverse query that it does not 
support, it returns an error response with the "Not Implemented" error set in the header.    
While inverse query support is optional, all name servers must be at least able to return the 
error response.



RFC-1034/5 Domains: Name Server Inverse Queries

Contents of Inverse Queries and Responses
Inverse queries reverse the mappings performed by standard query operations; while a 
standard query maps a domain name to a resource, an inverse query maps a resource to a 
domain name.    For example, a standard query might bind a domain name to a host address;
the corresponding inverse query binds the host address to a domain name.

Inverse queries take the form of a single RR in the answer section of the message, with an 
empty question section.    The owner name of the query RR and its TTL are not significant.    
The response carries questions in the question section which identify all names possessing 
the query RR WHICH THE NAME SERVER KNOWS.    Since no name server knows about all of 
the domain name space, the response can never be assumed to be complete.    Thus inverse
queries are primarily useful for database management and debugging activities.    Inverse 
queries are NOT an acceptable method of mapping host addresses to host names; use the 
IN- ADDR.ARPA domain instead.

Where possible, name servers should provide case-insensitive comparisons for inverse 
queries.    Thus an inverse query asking for an MX RR of "Venera.isi.edu" should get the same
response as a query for "VENERA.ISI.EDU"; an inverse query for HINFO RR "IBM-PC UNIX" 
should produce the same result as an inverse query for "IBM-pc unix".    However, this cannot
be guaranteed because name servers may possess RRs that contain character strings but 
the name server does not know that the data is character.

When a name server processes an inverse query, it either returns:

1.      zero, one, or multiple domain names for the specified resource as QNAMEs in 
the question section

2.      an error code indicating that the name server doesn't support inverse mapping 
of the specified resource type.

When the response to an inverse query contains one or more QNAMEs, the owner name and 
TTL of the RR in the answer section which defines the inverse query is modified to exactly 
match an RR found at the first QNAME.

RRs returned in the inverse queries cannot be cached using the same mechanism as is used 
for the replies to standard queries.    One reason for this is that a name might have multiple 
RRs of the same type, and only one would appear.    For example, an inverse query for a 
single address of a multiply homed host might create the impression that only one address 
existed.



RFC-1034/5 Domains: Name Server Inverse Queries

Query and Response Example
The overall structure of an inverse query for retrieving the domain name that corresponds to
Internet address 10.1.0.52 is shown below:

This query asks for a question whose answer is the Internet style address 10.1.0.52.    Since
the owner name is not known, any domain name can be used as a placeholder (and is 
ignored).    A single octet of zero, signifying the root, is usually used because it minimizes the
length of the message.    The TTL of the RR is not significant.    The response to this query 
might be:

Note that the QTYPE in a response to an inverse query is the same as the TYPE field in the 
answer section of the inverse query.    Responses to inverse queries may contain multiple 
questions when the inverse is not unique.    If the question section in the response is not 
empty, then the RR in the answer section is modified to correspond to be an exact copy of 
an RR at the first QNAME.



RFC-1034/5 Domains: Name Server Inverse Queries

Processing
Name servers that support inverse queries can support these operations through exhaustive
searches of their databases, but this becomes impractical as the size of the database 
increases.    An alternative approach is to invert the database according to the search key.

For name servers that support multiple zones and a large amount of data, the recommended
approach is separate inversions for each zone.    When a particular zone is changed during a 
refresh, only its inversions need to be redone.

Support for transfer of this type of inversion may be included in future versions of the 
domain system, but is not supported in this version.



RFC-1034/5 Domain System: Name Servers

Algorithm
The actual algorithm used by the name server will depend on the local OS and data 
structures used to store RRs.    The following algorithm assumes that the RRs are organized 
in several tree structures, one for each zone, and another for the cache:

(1) Set or clear the value of recursion available in the response depending 
on whether the name server is willing to provide recursive service.    If 
recursive service is available and requested via the RD bit in the query,
go to step 5, otherwise step 2.

(2) Search the available zones for the zone which is the nearest ancestor 
to QNAME.    If such a zone is found, go to step 3, otherwise step 4.

(3) Start matching down, label by label, in the zone.    The matching 
process can terminate several ways:

 (a) If the whole of QNAME is matched, we have found the 
node.

If the data at the node is a CNAME, and QTYPE doesn't 
match CNAME, copy the CNAME RR into the answer 
section of the response, change QNAME to the canonical 
name in the CNAME RR, and go back to step 1.

Otherwise, copy all RRs which match QTYPE into the 
answer section and go to step 6.

(b) If a match would take us out of the authoritative data, 
we have a referral.    This happens when we encounter a 
node with NS RRs marking cuts along the bottom of a 
zone.

Copy the NS RRs for the subzone into the authority 
section of the reply.    Put whatever addresses are 
available into the additional section, using glue RRs if 
the addresses are not available from authoritative data 
or the cache.    Go to step 4.

(c) If at some label, a match is impossible (i.e., the 
corresponding label does not exist), look to see if a the * 
label exists.

If the * label does not exist, check whether the name we 
are looking for is the original QNAME in the query or a 
name we have followed due to a CNAME.    If the name is 
original, set an authoritative name error in the response 
and exit.    Otherwise just exit.

If the * label does exist, match RRs at that node against 
QTYPE.    If any match, copy them into the answer 
section, but set the owner of the RR to be QNAME, and 
not the node with the * label.    Go to step 6.



(4) Start matching down in the cache.    If QNAME is found in the cache, 
copy all RRs attached to it that match QTYPE into the answer section.    
If there was no delegation from authoritative data, look for the best 
one from the cache, and put it in the authority section.    Go to step 6.

(5) Using the local resolver or a copy of its algorithm (see resolver section 
of this memo) to answer the query.    Store the results, including any 
intermediate CNAMEs, in the answer section of the response.

(6) Using local data only, attempt to add other RRs which may be useful to
the additional section of the query.    Exit.



RFC-1034/5 Domain System: Name Servers

Wildcards
In the previous algorithm, special treatment was given to RRs with owner names starting 
with the label *.    Such RRs are called wildcards.    Wildcard RRs can be thought of as 
instructions for synthesizing RRs.    When the appropriate conditions are met, the name 
server creates RRs with an owner name equal to the query name and contents taken from 
the wildcard RRs.

This facility is most often used to create a zone which will be used to forward mail from the 
Internet to some other mail system.    The general idea is that anyname in that zone which is
presented to server in a query will be assumed to exist, with certain properties, unless 
explicit evidence exists to the contrary.    Note that the use of the term zone here, instead of 
domain, is intentional; such defaults do not propagate across zone boundaries, although a 
subzone may choose to achieve that appearance by setting up similar defaults.

The contents of the wildcard RRs follows the usual rules and formats for RRs.    The wildcards
in the zone have an owner name that controls the query names they will match.    The owner
name of the wildcard RRs is of the form "*.<anydomain>", where <anydomain> is any 
domain name.    <anydomain> should not contain other * labels, and should be in the 
authoritative data of the zone.    The wildcards potentially apply to descendants of 
<anydomain>, but not to <anydomain> itself.    Another way to look at this is that the * label 
always matches at least one whole label and sometimes more, but always whole labels.

Wildcard RRs do not apply:

      o When the query is in another zone.    That is, delegation cancels the 
wildcard defaults.

      o When the query name or a name between the wildcard domain and the
query name is know to exist.    For example, if a wildcard RR has an 
owner name of "*.X", and the zone also contains RRs attached to B.X, 
the wildcards would apply to queries for name Z.X (presuming there is 
no explicit information for Z.X), but not to B.X, A.B.X, or X.

A * label appearing in a query name has no special effect, but can be used to test for 
wildcards in an authoritative zone; such a query is the only way to get a response containing
RRs with an owner name with * in it.    The result of such a query should not be cached.

Note that the contents of the wildcard RRs are not modified when used to synthesize RRs.

To illustrate the use of wildcard RRs, suppose a large company with a large, non-IP/TCP, 
network wanted to create a mail gateway.    If the company was called X.COM, and IP/TCP 
capable gateway machine was called A.X.COM, the following RRs might be entered into the 
COM zone:

    X.COM           MX      10      A.X.COM

    *.X.COM         MX      10      A.X.COM

    A.X.COM         A       1.2.3.4
    A.X.COM         MX      10      A.X.COM

    *.A.X.COM       MX      10      A.X.COM



This would cause any MX query for any domain name ending in X.COM to return an MX RR 
pointing at A.X.COM.    Two wildcard RRs are required since the effect of the wildcard at 
*.X.COM is inhibited in the A.X.COM subtree by the explicit data for A.X.COM.    Note also that 
the explicit MX data at X.COM and A.X.COM is required, and that none of the RRs above would
match a query name of XX.COM.



RFC-1034/5 Domain System: Name Servers

Negative Response Caching (Optional)
The DNS provides an optional service which allows name servers to distribute, and resolvers 
to cache, negative results with TTLs.    For example, a name server can distribute a TTL along
with a name error indication, and a resolver receiving such information is allowed to assume 
that the name does not exist during the TTL period without consulting authoritative data.    
Similarly, a resolver can make a query with a QTYPE which matches multiple types, and 
cache the fact that some of the types are not present.

This feature can be particularly important in a system which implements naming shorthands 
that use search lists beacuse a popular shorthand, which happens to require a suffix toward 
the end of the search list, will generate multiple name errors whenever it is used.

The method is that a name server may add an SOA RR to the additional section of a 
response when that response is authoritative.    The SOA must be that of the zone which was 
the source of the authoritative data in the answer section, or name error if applicable.    The 
MINIMUM field of the SOA controls the length of timethat the negative result may be cached.

Note that in some circumstances, the answer section may contain multiple owner names.    
In this case, the SOA mechanism should only be used for the data which matches QNAME, 
which is the only authoritative data in this section.

Name servers and resolvers should never attempt to add SOAs to the additional section of a 
non-authoritative response, or attempt to infer results which are not directly stated in an 
authoritative response.    There are several reasons for this, including: cached information 
isn't usually enough to match up RRs and their zone names, SOA RRs may be cached due to 
direct SOA queries, and name servers are not required to output the SOAs in the authority 
section.

This feature is optional, although a refined version is expected to become part of the 
standard protocol in the future.    Name servers are not required to add the SOA RRs in all 
authoritative responses, nor are resolvers required to cache negative results.    Both are 
recommended.    All resolvers and recursive name servers are required to at least be able to 
ignore the SOA RR when it is present in a response.

Some experiments have also been proposed which will use this feature.    The idea is that if 
cached data is known to come from a particular zone, and if an authoritative copy of the 
zone's SOA is obtained, and if the zone's SERIAL has not changed since the data was cached,
then the TTL of the cached data can be reset to the zone MINIMUM value if it is smaller.    
This usage is mentioned for planning purposes only, and is not recommended as yet.



RFC-1034/5 Domain System: Name Servers

Zone Maintenance and Transfers
Part of the job of a zone administrator is to maintain the zones at all of the name servers 
which are authoritative for the zone.    When the inevitable changes are made, they must be 
distributed to all of the name servers.    While this distribution can be accomplished using 
FTP or some other ad hoc procedure, the preferred method is the zone transfer part of the 
DNS protocol.

The general model of automatic zone transfer or refreshing is that one of the name servers 
is the master or primary for the zone.    Changes are coordinated at the primary, typically by 
editing a master file for the zone.    After editing, the administrator signals the master server 
to load the new zone.    The other non-master or secondary servers for the zone periodically 
check for changes (at a selectable interval) and obtain new zone copies when changes have 
been made.

To detect changes, secondaries just check the SERIAL field of the SOA for the zone.    In 
addition to whatever other changes are made, the SERIAL field in the SOA of the zone is 
always advanced whenever any change is made to the zone.    The advancing can be a 
simple increment, or could be based on the write date and time of the master file, etc.    The 
purpose is to make it possible to determine which of two copies of a zone is more recent by 
comparing serial numbers.    Serial number advances and comparisons use sequence space 
arithmetic, so there is a theoretic limit on how fast a zone can be updated, basically that old 
copies must die out before the serial number covers half of its 32 bit range.    In practice, the
only concern is that the compare operation deals properly with comparisons around the 
boundary between the most positive and most negative 32 bit numbers.

The periodic polling of the secondary servers is controlled by parameters in the SOA RR for 
the zone, which set the minimum acceptable polling intervals.    The parameters are called 
REFRESH, RETRY, and EXPIRE.    Whenever a new zone is loaded in a secondary, the 
secondary waits REFRESH seconds before checking with the primary for a new serial.    If this
check cannot be completed, new checks are started every RETRY seconds.    The check is a 
simple query to the primary for the SOA RR of the zone.    If the serial field in the secondary's
zone copy is equal to the serial returned by the primary, then no changes have occurred, 
and the REFRESH interval wait is restarted.    If the secondary finds it impossible to perform a
serial check for the EXPIRE interval, it must assume that its copy of the zone is obsolete an 
discard it.

When the poll shows that the zone has changed, then the secondary server must request a 
zone transfer via an AXFR request for the zone.    The AXFR may cause an error, such as 
refused, but normally is answered by a sequence of response messages.    The first and last 
messages must contain the data for the top authoritative node of the zone.    Intermediate 
messages carry all of the other RRs from the zone, including both authoritative and non-
authoritative RRs.    The stream of messages allows the secondary to construct a copy of the 
zone.    Because accuracy is essential, TCP or some other reliable protocol must be used for 
AXFR requests.

Each secondary server is required to perform the following operations against the master, 
but may also optionally perform these operations against other secondary servers.    This 
strategy can improve the transfer process when the primary is unavailable due to host 
downtime or network problems, or when a secondary server has better network access to an
"intermediate" secondary than to the primary.



RFC-1034/5 Domain Name System

Resolvers
Introduction
Client-Resolver Interface
Typical Functions  
Aliases  
Temporary Failures  
Resolver Internals
Stub Resolvers  
Resources  
Algorithm  
Resolver Implementation
Transorming a User Request Into a Query  
Sending Queries  
Processing Responses  
Using the Cache  



RFC-1034/5 Domain Name System: Resolvers

Introduction
Resolvers are programs that interface user programs to domain name servers.    In the 
simplest case, a resolver receives a request from a user program (e.g., mail programs, 
TELNET, FTP) in the form of a subroutine call, system call etc., and returns the desired 
information in a form compatible with the local host's data formats.

The resolver is located on the same machine as the program that requests the resolver's 
services, but it may need to consult name servers on other hosts.    Because a resolver may 
need to consult several name servers, or may have the requested information in a local 
cache, the amount of time that a resolver will take to complete can vary quite a bit, from 
milliseconds to several seconds.

A very important goal of the resolver is to eliminate network delay and name server load 
from most requests by answering them from its cache of prior results.    It follows that caches
which are shared by multiple processes, users, machines, etc., are more efficient than non-
shared caches.



RFC-1034/5 Domain Name System: Client-Resolver Interface

Typical Functions
The client interface to the resolver is influenced by the local host's conventions, but the 
typical resolver-client interface has three functions:

(1) Host name to host address translation.

This function is often defined to mimic a previous HOSTS.TXT based 
function.    Given a character string, the caller wants one or more 32 bit
IP addresses.    Under the DNS, it translates into a request for type A 
RRs.    Since the DNS does not preserve the order of RRs, this function 
may choose to sort the returned addresses or select the "best" address
if the service returns only one choice to the client.    Note that a 
multiple address return is recommended, but a single address may be 
the only way to emulate prior HOSTS.TXT services.

(2) Host address to host name translation

This function will often follow the form of previous functions.    Given a 
32 bit IP address, the caller wants a character string.    The octets of the
IP address are reversed, used as name components, and suffixed with 
"IN-ADDR.ARPA".    A type PTR query is used to get the RR with the 
primary name of the host.    For example, a request for the host name 
corresponding to IP address 1.2.3.4 looks for PTR RRs for domain 
name "4.3.2.1.IN-ADDR.ARPA".

(3) General lookup function

This function retrieves arbitrary information from the DNS, and has no 
counterpart in previous systems.    The caller supplies a QNAME, QTYPE,
and QCLASS, and wants all of the matching RRs.    This function will 
often use the DNS format for all RR data instead of the local host's, and
returns all RR content (e.g., TTL) instead of a processed form with local 
quoting conventions.

When the resolver performs the indicated function, it usually has one of the following results 
to pass back to the client:

o One or more RRs giving the requested data.

In this case the resolver returns the answer in the appropriate format.

o A name error (NE).

This happens when the referenced name does not exist.    For example, 
a user may have mistyped a host name.

o A data not found error.

This happens when the referenced name exists, but data of the 
appropriate type does not.    For example, a host address function 
applied to a mailbox name would return this error since the name 
exists, but no address RR is present.



It is important to note that the functions for translating between host names and addresses 
may combine the "name error" and "data not found" error conditions into a single type of 
error return, but the general function should not.    One reason for this is that applications 
may ask first for one type of information about a name followed by a second request to the 
same name for some other type of information; if the two errors are combined, then useless 
queries may slow the application.



RFC-1034/5 Domain Name System: Client-Resolver Interface

Aliases
While attempting to resolve a particular request, the resolver may find that the name in 
question is an alias.    For example, the resolver might find that the name given for host 
name to address translation is an alias when it finds the CNAME RR.    If possible, the alias 
condition should be signalled back from the resolver to the client.

In most cases a resolver simply restarts the query at the new name when it encounters a 
CNAME.    However, when performing the general function, the resolver should not pursue 
aliases when the CNAME RR matches the query type.    This allows queries which ask 
whether an alias is present.    For example, if the query type isCNAME, the user is interested 
in the CNAME RR itself, and not the RRs at the name it points to.

Several special conditions can occur with aliases.    Multiple levels of aliases should be 
avoided due to their lack of efficiency, but should not be signalled as an error.    Alias loops 
and aliases which point to non-existent names should be caught and an error condition 
passed back to the client.



RFC-1034/5 Domain Name System: Client-Resolver Interface

Temporary Failures
In a less than perfect world, all resolvers will occasionally be unable to resolve a particular 
request.    This condition can be caused by a resolver which becomes separated from the rest
of the network due to a link failure or gateway problem, or less often by coincident failure or 
unavailability of all servers for aparticular domain.

It is essential that this sort of condition should not be signalled as a name or data not 
present error to applications.    This sort of behavior is annoying to humans, and can wreak 
havoc when mail systems use the DNS.

While in some cases it is possible to deal with such a temporary problem by blocking the 
request indefinitely, this is usually not a good choice, particularly when the client is a server 
process that could move on to other tasks.    The recommended solution is to always have 
temporary failure as one of the possible results of a resolver function, even though this may 
make emulation of existing HOSTS.TXT functions more difficult.



RFC-1034/5 Domain Name System: Resolvers

Resolver Internals
Every resolver implementation uses slightly different algorithms, and typically spends much 
more logic dealing with errors of various sorts than typical occurances.    This section outlines
a recommended basic strategy for resolver operation.



RFC-1034/5 Domain Name System: Resolvers

Stub Resolvers
One option for implementing a resolver is to move the resolution function out of the local 
machine and into a name server which supports recursive queries.    This can provide an 
easy method of providing domain service in a PC which lacks the resources to perform the 
resolver function, or can centralize the cache for awhole local network or organization.

All that the remaining stub needs is a list of name server addresses that will perform the 
recursive requests.    This type of resolver presumably needs the information in a 
configuration file, since it probably lacks the sophistication to locate it in the domain 
database.    The user also needs to verify that the listedservers will perform the recursive 
service; a name server is free to refuse to perform recursive services for any or all clients.    
The user should consult the local system administrator to find name servers willing to 
perform the service.

This type of service suffers from some drawbacks.    Since the recursive requests may take 
an arbitrary amount of time to perform, the stub may have difficulty optimizing 
retransmission intervals to deal with both lost UDP packets and dead servers; the name 
server can be easily overloaded by too zealous a stub if it interprets retransmissions as new 
requests.    Use of TCP may be an answer, but TCP may well place burdens on the host's 
capabilities which are similar to those ofa real resolver.



RFC-1034/5 Domain Name System: Resolvers

Resources
In addition to its own resources, the resolver may also have shared access to zones 
maintained by a local name server.    This gives the resolver the advantage of more rapid 
access, but the resolver must be careful to never let cached information override zone data.  
In this discussion the term "local information" is meant to mean the union of the cache and 
such shared zones, with the understanding that authoritative data is always used in 
preference to cached data when bothare present.

The following resolver algorithm assumes that all functions have been converted to a 
general lookup function, and uses the following data structures to represent the state of a 
request in progress in the resolver:

SNAME the domain name we are searching for.

STYPE the QTYPE of the search request.

SCLASS the QCLASS of the search request.

SLIST a structure which describes the name servers and the zone which the resolver
is currently trying to query.    This structure keeps track of the resolver's 
current best guess about which name servers hold the desired information; it 
is updated when arriving information changes the guess.    This structure 
includes the equivalent of a zone name, the known name servers for the zone,
the known addresses for the name servers, and history information which can 
be used to suggest which server is likely to be the best one to try next.    The 
zone name equivalent is a match count of the number of labels from the root 
down which SNAME has in common with the zone being queried; this is used 
as a measure of how "close" the resolver is to SNAME.

SBELT a "safety belt" structure of the same form as SLIST, which is initialized from a 
configuration file, and lists servers which should be used when the resolver 
doesn't have any local information to guide name server selection.    The 
match count will be -1 to indicate that no labels are known to match.

CACHE A structure which stores the results from previous responses.    Since resolvers 
are responsible for discarding old RRs whose TTL has expired, most 
implementations convert the interval specified in arriving RRs to some sort of 
absolute time when the RR is stored in the cache.    Instead of counting the 
TTLs down individually, the resolver just ignores or discards old RRs when it 
runs across them in the course of a search, or discards them during periodic 
sweeps to reclaim the memory consumed by old RRs.



RFC-1034/5 Domain Name System: Resolvers

Algorithm
The top level algorithm has four steps:

(1) See if the answer is in local information, and if so return it to the client.

(2) Find the best servers to ask.

(3) Send them queries until one returns a response.

(4) Analyze the response, either:

(a) if the response answers the question or contains a name 
error, cache the data as well as returning it back to the 
client.

(b) if the response contains a better delegation to other 
servers, cache the delegation information, and go to step
2.

(c) if the response shows a CNAME and that is not the 
answer itself, cache the CNAME, change the SNAME to 
the canonical name in the CNAME RR and go to step 1.

(d) if the response shows a servers failure or other bizarre 
contents, delete the server from the SLIST and go back 
to step 3.

Step 1 searches the cache for the desired data. If the data is in the cache, it is assumed to 
be good enough for normal use.    Some resolvers have an option at the user interface which 
will force the resolver to ignore the cached data and consult with an authoritative server.    
This is not recommended as the default.    If the resolver has direct access to a name server's
zones, it should check to see if the desired data is present in authoritative form, and if so, 
use the authoritative data in preference to cached data.

Step 2 looks for a name server to ask for the required data.    The general strategy is to look 
for locally-available name server RRs, starting at SNAME, then the parent domain name of 
SNAME, the grandparent, and so on toward the root.    Thus if SNAME were 
Mockapetris.ISI.EDU, this step would look for NS RRs for Mockapetris.ISI.EDU, then 
ISI.EDU, then EDU, and then . (the root).    These NS RRs list the names of hosts for a zone at
or above SNAME.    Copy the names into SLIST.    Set up their addresses using local data.    It 
may be the case that the addresses are not available.    The resolver has many choices here; 
the best is to start parallel resolver processes looking for the addresses while continuing 
onward with the addresses which are available.    Obviously, the design choices and options 
are complicated and a function of the local host's capabilities.    The recommended priorities 
for the resolver designer are:

(1) Bound the amount of work (packets sent, parallel processes started) so
that a request can't get into an infinite loop or start off a chain reaction
of requests or queries with other implementations EVEN IF SOMEONE 
HAS INCORRECTLY CONFIGURED SOME DATA.

(2) Get back an answer if at all possible.



(3) Avoid unnecessary transmissions.

(4) Get the answer as quickly as possible.

If the search for NS RRs fails, then the resolver initializes SLIST from the safety belt SBELT.    
The basic idea is that when the resolver has no idea what servers to ask, it should use 
information from a configuration file that lists several servers which are expected to be 
helpful.    Although there are special situations, the usual choice is two of the root servers 
and two of the servers for the host's domain.    The reason for two of each is for redundancy.  
The root servers will provide eventual access to all of the domain space.    The two local 
servers will allow the resolver to continue to resolve local names if the local network 
becomes isolated from the internet due to gateway or link failure.

In addition to the names and addresses of the servers, the SLIST data structure can be 
sorted to use the best servers first, and to insure that all addresses of all servers are used in 
a round-robin manner.    The sorting can be a simple function of preferring addresses on the 
local network over others, or may involve statistics from past events, such as previous 
response times and batting averages.

Step 3 sends out queries until a response is received.    The strategy is to cycle around all of 
the addresses for all of the servers with a timeout between eachtransmission.    In practice it 
is important to use all addresses of a multihomed host, and too aggressive a retransmission 
policy actually slows response when used by multiple resolvers contending for the same 
name server and even occasionally for a single resolver.    SLIST typically contains data 
values to control thetimeouts and keep track of previous transmissions.

Step 4 involves analyzing responses.    The resolver should be highly paranoid in its parsing 
of responses.    It should also check that the response matches the query it sent using the ID 
field in the response.

The ideal answer is one from a server authoritative for the query which either gives the 
required data or a name error.    The data is passed back to the user and entered in the 
cache for future use if its TTL is greater than zero.

If the response shows a delegation, the resolver should check to see that the delegation is 
"closer" to the answer than the servers in SLIST are.    This can be done by comparing the 
match count in SLIST with that computed from SNAME and the NS RRs in the delegation.    If 
not, the reply is bogus and should be ignored.    If the delegation is valid the NS delegation 
RRs and any address RRs for the servers should be cached.    The name servers are entered 
in the SLIST, and the search is restarted.

If the response contains a CNAME, the search is restarted at the CNAME unless the response 
has the data for the canonical name or if the CNAME is the answer itself.



RFC-1034/5 Domain Name System: Resolvers

Resolver Implementation
This section discusses implementation details assuming the database structure suggested in
the name server implementation section of this memo.



RFC-1034/5 Domain Name System: Resolvers

Transforming a User Request Into a Query
The first step a resolver takes is to transform the client's request, stated in a format suitable 
to the local OS, into a search specification for RRs at a specific name which match a specific 
QTYPE and QCLASS.    Where possible, the QTYPE and QCLASS should correspond to a single 
type and a single class, because this makes the use of cached data much simpler.    The 
reason for this is that the presence of data of one type in a cache doesn't confirm the 
existence or non-existence of data of other types, hence the only way to be sure is to 
consult an authoritative source.    If QCLASS=* is used, then authoritative answers won't be 
available.

Since a resolver must be able to multiplex multiple requests if it is to perform its function 
efficiently, each pending request is usually represented in some block of state information.    
This state block will typically contain:

o A timestamp indicating the time the request began.    The timestamp is 
used to decide whether RRs in the database can be used or are out of 
date.    This timestamp uses the absolute time format previously 
discussed for RR storage in zones and caches.    Note that when an RRs 
TTL indicates a relative time, the RR must be timely, since it is part of a
zone.    When the RR has an absolute time, it is part of a cache, and the
TTL of the RR is compared against the timestamp for the start of the 
request.

o Note that using the timestamp is superior to using a current time, since
it allows RRs with TTLs of zero to be entered in the cache in the usual 
manner, but still used by the current request, even after intervals of 
many seconds due to system load, query retransmission timeouts, etc.

o Some sort of parameters to limit the amount of work which will be 
performed for this request.

o The amount of work which a resolver will do in response to a client 
request must be limited to guard against errors in the database, such 
as circular CNAME references, and operational problems, such as 
network partition which prevents the resolver from accessing the name
servers it needs.    While local limits on the number of times a resolver 
will retransmit a particular query to a particular name server address 
are essential, the resolver should have a global per-request counter to 
limit work on a single request.    The counter should be set to some 
initial value and decremented whenever the resolver performs any 
action (retransmission timeout, retransmission, etc.)    If the counter 
passes zero, the request is terminated with a temporary error.

o Note that if the resolver structure allows one request to start others in 
parallel, such as when the need to access a name server for one 
request causes a parallel resolve for the name server's addresses, the 
spawned request should be started with a lower counter.    This 
prevents circular references in the database from starting a chain 
reaction of resolver activity.



RFC-1034/5 Domain Name System: Resolvers

Sending Queries
The basic task of the resolver is to formulate a query which will answer the client's request 
and direct that query to name servers which can provide the information.    The resolver will 
usually only have very strong hints about which servers to ask, in the form of NS RRs, and 
may have to revise the query, in response to CNAMEs, or revise the set of name servers the 
resolver is asking, in response to delegation responses which point the resolver to name 
servers closer to the desired information.    In addition to the information requested by the 
client, the resolver may have to call upon its own services to determine the address of name
servers it wishes to contact.

In any case, the model used in this memo assumes that the resolver is multiplexing 
attention between multiple requests, some from the client, and some internally generated.    
Each request is represented by some state information, and the desired behavior is that the 
resolver transmit queries to name servers in a way that maximizes the probability that the 
request is answered, minimizes the time that the request takes, and avoids excessive 
transmissions.    The key algorithm uses the state information of the request to select the 
next name server address to query, and also computes a timeout which will cause the next 
action should a response not arrive.    The next action will usually be a transmission to some 
other server, but may be a temporary error to the client.

The resolver always starts with a list of server names to query (SLIST).    This list will be all 
NS RRs which correspond to the nearest ancestor zone that the resolver knows about.    To 
avoid startup problems, the resolver should have a set of default servers which it will ask 
should it have no current NS RRs which are appropriate.    The resolver then adds to SLIST all 
of the known addresses for the name servers, and may start parallel requests to acquire the 
addresses of the servers when the resolver has the name, but no addresses, for the name 
servers.

To complete initialization of SLIST, the resolver attaches whatever history information it has 
to the each address in SLIST.    This will usually consist of some sort of weighted averages for
the response time of the address, and the batting average of the address (i.e., how often the
address responded at all to the request).    Note that this information should be kept on a per
address basis, rather than on a per name server basis, because the response time and 
batting average of a particular server may vary considerably from address to address.    Note
also that this information is actually specific to a resolver address / server address pair, so a 
resolver with multiple addresses may wish to keep separate histories for each of its 
addresses.    Part of this step must deal with addresses which have no such history; in this 
case an expected round trip time of 5-10 seconds should be the worst case, with lower 
estimates for the same local network, etc.

Note that whenever a delegation is followed, the resolver algorithm reinitializes SLIST.

The information establishes a partial ranking of the available name server addresses.    Each 
time an address is chosen and the state should be altered to prevent its selection again until
all other addresses have been tried.    The timeout for each transmission should be 50-100% 
greater than the average predicted value to allow for variance in response.

Some fine points:

o The resolver may encounter a situation where no addresses are 
available for any of the name servers named in SLIST, and where the 
servers in the list are precisely those which would normally be used to 



look up their own addresses.    This situation typically occurs when the 
glue address RRs have a smaller TTL than the NS RRs marking 
delegation, or when the resolver caches the result of a NS search.    The
resolver should detect this condition and restart the search at the next 
ancestor zone, or alternatively at the root.

o If a resolver gets a server error or other bizarre response from a name 
server, it should remove it from SLIST, and may wish to schedule an 
immediate transmission to the next candidate server address.



RFC-1034/5 Domain Name System: Resolvers

Processing Responses
The first step in processing arriving response datagrams is to parse the response.    This 
procedure should include:

o Check the header for reasonableness.    Discard datagrams which are 
queries when responses are expected.

o Parse the sections of the message, and insure that all RRs are correctly
formatted.

o As an optional step, check the TTLs of arriving data looking for RRs with
excessively long TTLs.    If a RR has an excessively long TTL, say greater
than 1 week, either discard the whole response, or limit all TTLs in the 
response to 1 week.

The next step is to match the response to a current resolver request.    The recommended 
strategy is to do a preliminary matching using the ID field in the domain header, and then to
verify that the question section corresponds to the information currently desired.    This 
requires that the transmission algorithm devote several bits of the domain ID field to a 
request identifier of some sort.    This step has several fine points:

o Some name servers send their responses from different addresses than
the one used to receive the query.    That is, a resolver cannot rely that 
a response will come from the same address which it sent the 
corresponding query to.    This name server bug is typically 
encountered in UNIX systems.

o If the resolver retransmits a particular request to a name server it 
should be able to use a response from any of the transmissions.    
However, if it is using the response to sample the round trip time to 
access the name server, it must be able to determine which 
transmission matches the response (and keep transmission times for 
each outgoing message), or only calculate round trip times based on 
initial transmissions.

o A name server will occasionally not have a current copy of a zone 
which it should have according to some NS RRs.    The resolver should 
simply remove the name server from the current SLIST, and continue.



RFC-1034/5 Domain Name System: Resolvers

Using the Cache
In general, we expect a resolver to cache all data which it receives in responses since it may 
be useful in answering future client requests.    However, there are several types of data 
which should not be cached:

o When several RRs of the same type are available for a particular owner
name, the resolver should either cache them all or none at all.    When 
a response is truncated, and a resolver doesn't know whether it has a 
complete set, it should not cache a possibly partial set of RRs.

o Cached data should never be used in preference to authoritative data, 
so if caching would cause this to happen the data should not be 
cached.

o The results of an inverse query should not be cached.

o The results of standard queries where the QNAME contains "*" labels if 
the data might be used to construct wildcards.    The reason is that the 
cache does not necessarily contain existing RRs or zone boundary 
information which is necessary to restrict the application of the 
wildcard RRs.

o RR data in responses of dubious reliability.    When a resolver receives 
unsolicited responses or RR data other than that requested, it should 
discard it without caching it.    The basic implication is that all sanity 
checks on a packet should be performed before any of it is cached.

In a similar vein, when a resolver has a set of RRs for some name in a response, and wants 
to cache the RRs, it should check its cache for already existing RRs.    Depending on the 
circumstances, either the data in the response or the cache is preferred, but the two should 
never be combined.    If the data in the response is from authoritative data in the answer 
section, it is always preferred.



RFC-1034/5 Domain Name System

Mail Support
Mail Support --Introduction
Mail Exchange Binding
Mailbox Binding (Experimental)



RFC-1034/5 Domain System: Mail Support

Introduction

The domain system defines a standard for mapping mailboxes into domain names, and two 
methods for using the mailbox information to derive mail routing information.    The first 
method is called mail exchange binding and the other method is mailbox binding.    The 
mailbox encoding standard and mail exchange binding are part of the DNS official protocol, 
and are the recommended method for mail routing in the Internet.    Mailbox binding is an 
experimental feature which is still under development and subject to change.

The mailbox encoding standard assumes a mailbox name of the form "<local-
part>@<mail-domain>".    While the syntax allowed in each of these sections varies 
substantially between the various mail internets, the preferred syntax for the ARPA Internet 
is given in (RFC-822).

The DNS encodes the <local-part> as a single label, and encodes the <mail-domain> as 
a domain name.    The single label from the <local-part> is prefaced to the domain name 
from <mail-domain> to form the domain name corresponding to the mailbox.    Thus the 
mailbox HOSTMASTER@SRI- NIC.ARPA is mapped into the domain name HOSTMASTER.SRI-
NIC.ARPA.    If the <local-part> contains dots or other special characters, its 
representation in a master file will require the use of backslash quoting to ensure that the 
domain name is properly encoded.    For example, the mailbox Action.domains@ISI.EDU 
would be represented as Action\.domains.ISI.EDU.



RFC-1034/5 Domain System: Mail Support

Mail exchange binding
Mail exchange binding uses the <mail-domain> part of a mailbox specification to determine
where mail should be sent.    The <local-part> is not even consulted.    RFC-974 on mail 
routing specifies this method in detail, and should be consulted before attempting to use 
mail exchange support.

One of the advantages of this method is that it decouples mail destination naming from the 
hosts used to support mail service, at the cost of another layer of indirection in the lookup 
function.    However, the addition layer should eliminate the need for complicated "%", "!", 
etc encodings in <local-part>.

The essence of the method is that the <mail-domain> is used as a domain name to 
locate type MX RRs which list hosts willing to accept mail for <mail-domain>, 
together with preference values which rank the hosts according to an order specified 
by the administrators for <mail-domain>.

In this memo, the <mail-domain> ISI.EDU is used in examples, together with the hosts 
VENERA.ISI.EDU and VAXA.ISI.EDU as mail exchanges for ISI.EDU.    If a mailer had a 
message for Mockapetris@ISI.EDU, it would route it by looking up MX RRs for ISI.EDU.    
The MX RRs at ISI.EDU name VENERA.ISI.EDU and VAXA.ISI.EDU, and type A queries can 
find the host addresses.



RFC-1034/5 Domain System: Mail Support

Mailbox Binding (Experimental)
In mailbox binding, the mailer uses the entire mail destination specification to construct a 
domain name.    The encoded domain name for the mailbox is used as the QNAME field in a 
QTYPE=MAILB query.

Several outcomes are possible for this query:

1. The query can return a name error indicating that the mailbox does not
exist as a domain name.

In the long term, this would indicate that the specified mailbox doesn't 
exist.    However, until the use of mailbox binding is universal, this error
condition should be interpreted to mean that the organization 
identified by the global part does not support mailbox binding.    The 
appropriate procedure is to revert to exchange binding at this point.

2. The query can return a Mail Rename (MR) RR.

The MR RR carries new mailbox specification in its RDATA field.    The 
mailer should replace the old mailbox with the new one and retry the 
operation.

3. The query can return a MB RR.

The MB RR carries a domain name for a host in its RDATA field.    The 
mailer should deliver the message to that host via whatever protocol is
applicable, e.g., b,SMTP.

4. The query can return one or more Mail Group (MG) RRs.

This condition means that the mailbox was actually a mailing list or 
mail group, rather than a single mailbox.    Each MG RR has a RDATA 
field that identifies a mailbox that is a member of the group.    The 
mailer should deliver a copy of the message to each member.

5. The query can return a MB RR as well as one or more MG RRs.

This condition means the the mailbox was actually a mailing list.    The 
mailer can either deliver the message to the host specified by the MB 
RR, which will in turn do the delivery to all members, or the mailer can 
use the MG RRs to do the expansion itself.

In any of these cases, the response may include a Mail Information (MINFO) RR.    This RR is 
usually associated with a mail group, but is legal with a MB.    The MINFO RR identifies two 
mailboxes.    One of these identifies a responsible person for the original mailbox name.    
This mailbox should be used for requests to be added to a mail group, etc.    The second 
mailbox name in the MINFO RR identifies a mailbox that should receive error messages for 
mail failures.    This is particularly appropriate for mailing lists when errors in member names 
should be reported to a person other than the one who sends a message to the list.

New fields may be added to this RR in the future.



RFC-1034/5 Domain Name System

A Scenario
In our sample domain space, suppose we wanted separate administrative control for the 
root, MIL, EDU, MIT.EDU and ISI.EDU zones.    We might allocate name servers as follows:

In this example, the authoritative name server is shown in parentheses at the point in the 
domain tree at which is assumes control.

Thus the root name servers are on C.ISI.EDU, SRI-NIC.ARPA, and A.ISI.EDU.    The MIL 
domain is served by SRI-NIC.ARPA and A.ISI.EDU.    The EDU domain is served by SRI-
NIC.ARPA. and C.ISI.EDU.    Note that servers may have zones which are contiguous or 
disjoint.    In this scenario, C.ISI.EDU has contiguous zones at the root and EDU domains.    
A.ISI.EDU has contiguous zones at the root and MIL domains, but also has a non- 
contiguous zone at ISI.EDU.

C.ISI.EDU Name Server
Example Standard Queries
QNAME=SRI-NIC.ARPA, QTYPE=A  
QNAME=SRI-NIC.ARPA, QTYPE=*  
QNAME=SRI-NIC.ARPA, QTYPE=MX  
QNAME=SRI-NIC.ARPA, QTYPE=NS  
QNAME=SIR-NIC.ARPA, QTYPE=A  
QNAME=BRL.MIL, QTYPE=A  
QNAME=USC-ISIC.ARPA, QTYPE=A  
QNAME=USC-ISIC.ARPA, QTYPE=CNAME  
Example Resolution
Resolve MX for ISI.EDU.  
Get the Host Name for Address 26.6.0.65  
Get the Host Address of poneria.ISI.EDU  



RFC-1034/5 Domain Name System: Scenario

C.ISI.EDU Name Server
C.ISI.EDU is a name server for the root, MIL, and EDU domains of the IN class, and would 
have zones for these domains.    The zone data for the root domain might be:

    .       IN      SOA     SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. (
                            870611          ;serial
                            1800            ;refresh every 30 min
                            300             ;retry every 5 min
                            604800          ;expire after a week
                            86400)          ;minimum of a day
                    NS      A.ISI.EDU.
                    NS      C.ISI.EDU.
                    NS      SRI-NIC.ARPA.

    MIL.    86400   NS      SRI-NIC.ARPA.
            86400   NS      A.ISI.EDU.

    EDU.    86400   NS      SRI-NIC.ARPA.
            86400   NS      C.ISI.EDU.

    SRI-NIC.ARPA.   A       26.0.0.73
                    A       10.0.0.51
                    MX      0 SRI-NIC.ARPA.
                    HINFO   DEC-2060 TOPS20

    ACC.ARPA.       A       26.6.0.65
                    HINFO   PDP-11/70 UNIX
                    MX      10 ACC.ARPA.

    USC-ISIC.ARPA.  CNAME   C.ISI.EDU.

    73.0.0.26.IN-ADDR.ARPA.  PTR    SRI-NIC.ARPA.
    65.0.6.26.IN-ADDR.ARPA.  PTR    ACC.ARPA.
    51.0.0.10.IN-ADDR.ARPA.  PTR    SRI-NIC.ARPA.
    52.0.0.10.IN-ADDR.ARPA.  PTR    C.ISI.EDU.

    103.0.3.26.IN-ADDR.ARPA. PTR    A.ISI.EDU.

    A.ISI.EDU. 86400 A      26.3.0.103
    C.ISI.EDU. 86400 A      10.0.0.52

This data is represented as it would be in a master file.    Most RRs are single line entries; the
sole exception here is the SOA RR, which uses "(" to start a multi-line RR and ")" to show the 
end of a multi-line RR.    Since the class of all RRs in a zone must be the same, only the first 
RR in a zone need specify the class.    When a name server loads a zone, it forces the TTL of 
all authoritative RRs to be at least the MINIMUM field of the SOA, here 86400 seconds, or one
day.The NS RRs marking delegation of the MIL and EDU domains, together with the glue RRs 
for the servers host addresses, are not part of the authoritative data in the zone, and hence 
have explicit TTLs.

Four RRs are attached to the root node: the SOA which describes the root zone and the 3 NS 
RRs which list the name servers for the root.    The data in the SOA RR describes the 
management of the zone.    The zone data is maintained on host SRI-NIC.ARPA, and the 



responsible party for the zone is HOSTMASTER@SRI-NIC.ARPA.    A key item in the SOA is the 
86400 second minimum TTL, which means that all authoritative data in the zone has at least
that TTL, although higher values may beexplicitly specified.

The NS RRs for the MIL and EDU domains mark the boundary between the root zone and the 
MIL and EDU zones.    Note that in this example, the lower zones happen tobe supported by 
name servers which also support the root zone.

The master file for the EDU zone might be stated relative to the origin EDU.    The zone data 
for the EDU domain might be:

    EDU.  IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. (
                            870729 ;serial
                            1800 ;refresh every 30 minutes
                            300 ;retry every 5 minutes
                            604800 ;expire after a week
                            86400 ;minimum of a day
                            )
                    NS SRI-NIC.ARPA.
                    NS C.ISI.EDU.

    UCI 172800 NS ICS.UCI
                    172800 NS ROME.UCI
    ICS.UCI 172800 A 192.5.19.1
    ROME.UCI 172800 A 192.5.19.31

    ISI 172800 NS VAXA.ISI
                    172800 NS A.ISI
                    172800 NS VENERA.ISI.EDU.
    VAXA.ISI 172800 A 10.2.0.27
                    172800 A 128.9.0.33
    VENERA.ISI.EDU. 172800 A 10.1.0.52
                    172800 A 128.9.0.32
    A.ISI 172800 A 26.3.0.103

    UDEL.EDU.  172800 NS LOUIE.UDEL.EDU.
                    172800 NS UMN-REI-UC.ARPA.
    LOUIE.UDEL.EDU. 172800 A 10.0.0.96
                    172800 A 192.5.39.3

    YALE.EDU.  172800 NS YALE.ARPA.
    YALE.EDU.  172800 NS YALE-BULLDOG.ARPA.

    MIT.EDU.  43200 NS XX.LCS.MIT.EDU.
                      43200 NS ACHILLES.MIT.EDU.
    XX.LCS.MIT.EDU.  43200 A 10.0.0.44
    ACHILLES.MIT.EDU. 43200 A 18.72.0.8

Note the use of relative names here.    The owner name for the ISI.EDU. is stated using a 
relative name, as are two of the name server RR contents.    Relative and absolute domain 
names may be freely intermixed in a master



RFC-1034/5 Domain Name System: Scenario

Example Standard Queries
The following queries and responses illustrate name server behavior.    Unless otherwise 
noted, the queries do not have recursion desired (RD) in the header.    Note that the answers 
to non-recursive queries do depend on the server being asked, but do not depend on the 
identity of the requester.



RFC-1034/5 Domain Name System: Scenario

QNAME=SRI-NIC.ARPA, QTYPE=A
The query would look like:

The response from C.ISI.EDU would be:

The header of the response looks like the header of the query, except that the RESPONSE bit
is set, indicating that this message is a response, not a query, and the Authoritative Answer 
(AA) bit is set indicating that the address RRs in the answer section are from authoritative 
data.    The question section of the response matches the question section of the query.

If the same query was sent to some other server which was not authoritative for SRI-
NIC.ARPA, the response might be:

This response is different from the previous one in two ways: the header does not have AA 
set, and the TTLs are different.    The inference is that the data did not come from a zone, but
from a cache.    The difference between the authoritative TTL and the TTL here is due to 
aging of the data in a cache.    The difference in ordering of the RRs in the answer section is 
not significant.





RFC-1034/5 Domain Name System: Scenario

QNAME=SRI-NIC.ARPA, QTYPE=*
A query similar to the previous one, but using a QTYPE of *, would receive the following 
response from C.ISI.EDU:

If a similar query was directed to two name servers which are not authoritative for SRI-
NIC.ARPA, the responses might be:

and

Neither of these answers have AA set, so neither response comes from authoritative data.    
The different contents and different TTLs suggest that the two servers cached data at 
different times, and that the first server cached the response to a QTYPE=A query and the 
second cached the response to a HINFO query.



RFC-1034/5 Domain Name System: Scenario

QNAME=SRI-NIC.ARPA, QTYPE=MX
This type of query might be result from a mailer trying to look up routing information for the 
mail destination HOSTMASTER@SRI-NIC.ARPA.    The response from C.ISI.EDU would be:

This response contains the MX RR in the answer section of the response.    The additional 
section contains the address RRs because the name server at C.ISI.EDU guesses that the 
requester will need the addresses in order to properly use the information carried by the MX.



RFC-1034/5 Domain Name System: Scenario

QNAME=SRI-NIC.ARPA, QTYPE=NS
C.ISI.EDU would reply to this query with:

The only difference between the response and the query is the AA and RESPONSE bits in the 
header.    The interpretation of this response is that the server is authoritative for the name, 
and the name exists, but no RRs of type NS are present there.



RFC-1034/5 Domain Name System: Scenario

QNAME=SIR-NIC.ARPA, QTYPE=A
If a user mistyped a host name, we might see this type of query.

C.ISI.EDU would answer it with:

This response states that the name does not exist.    This condition is signalled in the 
response code (RCODE) section of the header.

The SOA RR in the authority section is the optional negative caching information which 
allows the resolver using this response to assume that the name will notexist for the SOA 
MINIMUM (86400) seconds.



RFC-1034/5 Domain Name System: Scenario

QNAME=BRL.MIL, QTYPE=A
If this query is sent to C.ISI.EDU, the reply would be:

This response has an empty answer section, but is not authoritative, so it is a referral.    The 
name server on C.ISI.EDU, realizing that it is not authoritativefor the MIL domain, has 
referred the requester to servers on A.ISI.EDU and SRI-NIC.ARPA, which it knows are 
authoritative for the MIL domain.



RFC-1034/5 Domain Name System: Scenario

QNAME=USC-ISIC.ARPA, QTYPE=A
The response to this query from A.ISI.EDU would be:

Note that the AA bit in the header guarantees that the data matching QNAME is 
authoritative, but does not say anything about whether the data for C.ISI.EDU is 
authoritative.    This complete reply is possible because A.ISI.EDU happens to be 
authoritative for both the ARPA domain where USC-ISIC.ARPA is found and the ISI.EDU 
domain where C.ISI.EDU data is found.

If the same query was sent to C.ISI.EDU, its response might be the same as shown above if 
it had its own address in its cache, but might also be:

This reply contains an authoritative reply for the alias USC-ISIC.ARPA, plus a referral to the 
name servers for ISI.EDU.    This sort of reply isn't very likely given that the query is for the 
host name of the name server being asked, but would be common for other aliases.



RFC-1034/5 Domain Name System: Scenario

QNAME=USC-ISIC.ARPA, QTYPE=CNAME
If this query is sent to either A.ISI.EDU or C.ISI.EDU, the reply would be:

Because QTYPE=CNAME, the CNAME RR itself answers the query, and the name server 
doesn't attempt to look up anything for C.ISI.EDU.    (Except possibly for the additional 
section.)



RFC-1034/5 Domain Name System: Scenario

Example Resolution
The following examples illustrate the operations a resolver must perform for its client.    We 
assume that the resolver is starting without a cache, as might be the case after system boot.
We further assume that the system is not one of the hosts in the data and that the host is 
located somewhere on net 26, and that its safety belt (SBELT) data structure has the 
following information:

    Match count = -1
    SRI-NIC.ARPA.   26.0.0.73       10.0.0.51
    A.ISI.EDU.      26.3.0.103

This information specifies servers to try, their addresses, and a match count of -1, which 
says that the servers aren't very close to the target.    Note that the -1 isn't supposed to be 
an accurate closeness measure, just a value so that later stages of the algorithm will work.

The following examples illustrate the use of a cache, so each example assumes that 
previous requests have completed.



RFC-1034/5 Domain Name System: Scenario

Resolve MX for ISI.EDU.
Suppose the first request to the resolver comes from the local mailer, which has mail for 
PVM@ISI.EDU.    The mailer might then ask for type MX RRs for the domain name ISI.EDU.

The resolver would look in its cache for MX RRs at ISI.EDU, but the empty cache wouldn't be
helpful.    The resolver would recognize that it needed to query foreign servers and try to 
determine the best servers to query.    This search would look for NS RRs for the domains 
ISI.EDU, EDU, and the root.    These searches of the cache would also fail.    As a last resort, 
the resolver would use the information from the SBELT, copying it into its SLIST structure.

At this point the resolver would need to pick one of the three available addresses to try.    
Given that the resolver is on net 26, it should choose either 26.0.0.73 or 26.3.0.103 as its 
first choice.    It would then send off a query of the form:

The resolver would then wait for a response to its query or a timeout.    If the timeout occurs,
it would try different servers, then different addresses of the same servers, lastly retrying 
addresses already tried.    It might eventually receive a reply from SRI-NIC.ARPA:

The resolver would notice that the information in the response gave a closer delegation to 
ISI.EDU than its existing SLIST (since it matches three labels).    The resolver would then 
cache the information in this response and use it to set up a new SLIST:

    Match count = 3
    A.ISI.EDU.      26.3.0.103
    VAXA.ISI.EDU.   10.2.0.27       128.9.0.33
    VENERA.ISI.EDU. 10.1.0.52       128.9.0.32



A.ISI.EDU appears on this list as well as the previous one, but that is purely coincidental.    
The resolver would again start transmitting and waiting for responses.    Eventually it would 
get an answer:

The resolver would add this information to its cache, and return the MX RRs to its client.



RFC-1034/5 Domain Name System: Scenario

Get the Host Name for Address 26.6.0.65
The resolver would translate this into a request for PTR RRs for 65.0.6.26.IN-ADDR.ARPA.    
This information is not in the cache, so the resolver would look for foreign servers to ask.    
No servers would match, so it would use SBELT again.    (Note that the servers for the 
ISI.EDU domain are in the cache, but ISI.EDU is not an ancestor of 65.0.6.26.IN-
ADDR.ARPA, so the SBELT is used.)

Since this request is within the authoritative data of both servers in SBELT, eventually one 
would return:



RFC-1034/5 Domain Name System: Scenario

Get the Host Address of poneria.ISI.EDU
This request would translate into a type A request for poneria.ISI.EDU.    The resolver 
would not find any cached data for this name, but would find the NS RRs in the cache for 
ISI.EDU when it looks for foreign servers to ask.    Using this data, it would construct a SLIST 
of the form:

    Match count = 3

    A.ISI.EDU.      26.3.0.103
    VAXA.ISI.EDU.   10.2.0.27       128.9.0.33
    VENERA.ISI.EDU. 10.1.0.52

A.ISI.EDU is listed first on the assumption that the resolver orders its choices by 
preference, and A.ISI.EDU is on the same network.

One of these servers would answer the query.



[Dyer 87]              Dyer, S., and F. Hsu, "Hesiod", Project Athena Technical Plan - Name 
Service, April 1987, version 1.9.

Describes the fundamentals of the Hesiod name service.



[IEN-116]              J. Postel, "Internet Name Server", IEN-116, USC/Information Sciences 
Institute, August 1979.

A name service obsoleted by the Domain Name System, but still in use.



[Quarterman 86] Quarterman, J., and J. Hoskins, "Notable Computer 
Networks",Communications of the ACM, October 1986, volume 29, number 10.



RFC-1042 A Standard for the Transmission of
IP Datagrams over IEEE 802 Networks

J. Postel & J. Reynolds
USC/Information Sciences Institute

February 1988

Introduction
Description
Header Format
Address Mappings
Broadcast Address
Trailer Formats
Byte Order
Maximum Transmission Unit
Frame Format and MAC Level Issues

For all Hardware Types
IEEE 802.2 Details
IEEE 802.3 Details
IEEE 802.4 Details
IEEE 802.5 Details

Multi-Ring Extension Details
IEEE 802.5 Packet Size Issues
IEEE 802.5 Broadcast Issues

Interoperation with Ethernet
Appendix on Numbers

Status of this Memo
This RFC specifies a standard method of encapsulating the Internet Protocol (IP) RFC-791 
datagrams and Address Resolution Protocol (ARP) RFC-826 requests and replies on IEEE 802
Networks.    This RFC specifies a protocol standard for the Internet community.    Distribution 
of this memo is unlimited. 
Acknowledgment
This memo would not exist with out the very significant contributions of Drew Perkins of 
Carnegie Mellon University, Jacob Rekhter of the T.J. Watson Research Center, IBM 
Corporation, and Joseph Cimmino of the University of Maryland. 



RFC-1042 IP and ARP on IEEE 802 Networks

Introduction

The goal of this specification is to allow compatible and interoperable implementations for 
transmitting IP datagrams and ARP requests and replies.    To achieve this it may be 
necessary in a few cases to limit the use that IP and ARP make of the capabilities of a 
particular IEEE 802 standard. 
The IEEE 802 specifications define a family of standards for Local Area Networks (LANs) that 
deal with the Physical and Data Link Layers as defined by the ISO Open System 
Interconnection Reference Model (ISO/OSI).    Several Physical Layer standards (802.3, 802.4,
and 802.5) [3,4,5] and one Data Link Layer Standard (802.2) [6] have been defined.    The 
IEEE Physical Layer standards specify the ISO/OSI Physical Layer and the Media Access 
Control Sublayer of the ISO/OSI Data Link Layer.    The 802.2 Data Link Layer standard 
specifies the Logical Link Control Sublayer of the ISO/OSI Data Link Layer. 
This memo describes the use of IP and ARP on the three types of networks.    At this time, it 
is not necessary that the use of IP and ARP be consistent across all three types of networks, 
only that it be consistent within each type.    This may change in the future as new IEEE 802 
standards are defined and the existing standards are revised allowing for interoperability at 
the Data Link Layer. 
It is the goal of this memo to specify enough about the use of IP and ARP on each type of 
network to ensure that: 

(1) all equipment using IP or ARP on 802.3 networks will interoperate, 
(2) all equipment using IP or ARP on 802.4 networks will interoperate, 
(3) all equipment using IP or ARP on 802.5 networks will interoperate. 

Of course, the goal of IP is interoperability between computers attached to different 
networks, when those networks are interconnected via an IP gateway [8].    The use of IEEE 
802.1 compatible Transparent Bridges to allow interoperability across different networks is 
not fully described pending completion of that standard. 



RFC-1042 IP and ARP on IEEE 802 Networks

Description

IEEE 802 networks may be used as IP networks of any class (A, B, or C).    These systems use
two Link Service Access Point (LSAP) fields of the LLC header in much the same way the 
ARPANET uses the "link" field.    Further, there is an extension of the LLC header called the 
Sub-Network Access Protocol (SNAP). 
IP datagrams are sent on IEEE 802 networks encapsulated within the 802.2 LLC and SNAP 
data link layers, and the 802.3, 802.4, or 802.5 physical networks layers.    The SNAP is used 
with an Organization Code indicating that the following 16 bits specify the EtherType code. 
Normally, all communication is performed using 802.2 type 1 communication.    Consenting 
systems on the same IEEE 802 network may use 802.2 type 2 communication after verifying
that it is supported by both nodes.    This is accomplished using the 802.2 XID mechanism.    
However, type 1 communication is the recommended method at this time and must be 
supported by all implementations.    The rest of this specification assumes the use of type 1 
communication. 
The IEEE 802 networks may have 16-bit or 48-bit physical addresses. This specification 
allows the use of either size of address within a given IEEE 802 network. 
Note that the 802.3 standard specifies a transmission rate of from 1 to 20 megabit/second, 
the 802.4 standard specifies 1, 5, and 10 megabit/second, and the 802.5 standard specifies 
1 and 4 megabit/second.    The typical transmission rates used are 10 megabit/second for 
802.3, 10 megabit/second for 802.4, and 4 megabit/second for 802.5.    However, this 
specification for the transmission of IP Datagrams does not depend on the transmission rate.



RFC-1042 IP and ARP on IEEE 802 Networks

Header Format

The total length of the LLC Header and the SNAP header is 8-octets, making 
the 802.2 protocol overhead come out on an nice boundary. 
The K1 value is 170 (decimal).
The K2 value is 0 (zero).
The control value is 3 (Unnumbered Information).



RFC-1042 IP and ARP on IEEE 802 Networks

Address Mappings

The mapping of 32-bit Internet addresses to 16-bit or 48-bit IEEE 802 addresses must be 
done via the dynamic discovery procedure of the Address Resolution Protocol (ARP) RFC-826.
Internet addresses are assigned arbitrarily on Internet networks. Each host's implementation
must know its own Internet address and respond to Address Resolution requests 
appropriately.    It must also use ARP to translate Internet addresses to IEEE 802 addresses 
when needed. 

The ARP Details
The ARP protocol has several fields that parameterize its use in any specific 
context.    These fields are: 

hrd 16 - bits The Hardware Type Code
pro 16 - bits The Protocol Type Code
hln 8 - bits Octets in each hardware address
pln 8 - bits Octets in each protocol address
op 16 - bits Operation Code

The hardware type code assigned for the IEEE 802 networks (of all kinds) is 6. 
The protocol type code for IP is 2048.
The hardware address length is 2 for 16-bit IEEE 802 addresses, or 6 for 48-bit 
IEEE 802 addresses. 
The protocol address length (for IP) is 4.
The operation code is 1 for request and 2 for reply.



RFC-1042 IP and ARP on IEEE 802 Networks

Broadcast Address

The broadcast Internet address (the address on that network with a host part of all binary 
ones) should be mapped to the broadcast IEEE 802 address (of all binary ones). 



RFC-1042 IP and ARP on IEEE 802 Networks

Trailer Formats

Some versions of Unix 4.x bsd use a different encapsulation method in order to get better 
network performance with the VAX virtual memory architecture.    Consenting systems on the
same IEEE 802 network may use this format between themselves.    Details of the trailer 
encapsulation method may be found in RFC-893.    However, all hosts must be able to 
communicate using the standard (non-trailer) method. 



RFC-1042 IP and ARP on IEEE 802 Networks

Byte Order
As described in Appendix B of the Internet Protocol specification RFC-791, the IP datagram is
transmitted over IEEE 802 networks as a series of 8-bit bytes.    This byte transmission order 
has been called "big-endian" [11]. 



RFC-1042 IP and ARP on IEEE 802 Networks

Maximum Transmission Unit

The Maximum Transmission Unit (MTU) differs on the different types of IEEE 802 networks.    
In the following there are comments on the MTU for each type of IEEE 802 network.    
However, on any particular network all hosts must use the same MTU.    In the following, the 
terms "maximum packet size" and "maximum transmission unit" are equivalent. 



RFC-1042 IP on IEEE 802 Networks - Frame Format and MAC Level Issues

For all hardware types

IP datagrams and ARP requests and replies are transmitted in standard 802.2 LLC Type 1 
Unnumbered Information format, control code 3, with the DSAP and the SSAP fields of the 
802.2 header set to 170, the assigned global SAP value for SNAP [6].    The 24-bit 
Organization Code in the SNAP is zero, and the remaining 16 bits are the EtherType from 
Assigned Numbers (IP = 2048, ARP = 2054). 
IEEE 802 packets may have a minimum size restriction.    When necessary, the data field 
should be padded (with octets of zero) to meet the IEEE 802 minimum frame size 
requirements.    This padding is not part of the IP datagram and is not included in the total 
length field of the IP header. 
For compatibility (and common sense) the minimum packet size used with IP datagrams is 
28 octets, which is 20 (minimum IP header) + 8 (LLC+SNAP header) = 28 octets (not 
including the MAC header). 
The minimum packet size used with ARP is 24 octets, which is 20 (ARP with 2 octet hardware
addresses and 4 octet protocol addresses) + 8 (LLC+SNAP header) = 24 octets (not 
including the MAC header). 
In typical situations, the packet size used with ARP is 32 octets, which is 28 (ARP with 6 octet
hardware addresses and 4 octet protocol addresses) + 8 (LLC+SNAP header) = 32 octets 
(not including the MAC header). 
IEEE 802 packets may have a maximum size restriction. Implementations are encouraged to 
support full-length packets. 
For compatibility purposes, the maximum packet size used with IP datagrams or ARP 
requests and replies must be consistent on a particular network. 
Gateway implementations must be prepared to accept full-length packets and fragment 
them when necessary. 
Host implementations should be prepared to accept full-length packets, however hosts must 
not send datagrams longer than 576 octets unless they have explicit knowledge that the 
destination is prepared to accept them.    A host may communicate its size preference in TCP 
based applications via the TCP Maximum Segment Size option [RFC-879]. 
Datagrams on IEEE 802 networks may be longer than the general Internet default maximum 
packet size of 576 octets.    Hosts connected to an IEEE 802 network should keep this in mind
when sending datagrams to hosts not on the same IEEE 802 network.    It may be 
appropriate to send smaller datagrams to avoid unnecessary fragmentation at intermediate 
gateways.    Please see "TCP Maximum Segment Size and Related Information" [RFC-879] for 
further information. 



RFC-1042 IP on IEEE 802 Networks - Frame Format and MAC Level Issues

IEEE 802.2 Details

While not necessary for supporting IP and ARP, all implementations are required to support 
IEEE 802.2 standard Class I service.    This requires supporting Unnumbered Information (UI) 
Commands, eXchange IDentification (XID) Commands and Responses, and TEST link (TEST) 
Commands and Responses. 
When either an XID or a TEST command is received a response must be returned; with the 
Destination and Source addresses, and the DSAP and SSAP swapped. 
When responding to an XID or a TEST command the sense of the poll/final bit must be 
preserved.    That is, a command received with the poll/final bit reset must have the response
returned with the poll/final bit reset and vice versa. 
The XID command or response has an LLC control field value of 175 (decimal) if poll is off or 
191 (decimal) if poll is on. (See Appendix on Numbers.) 
The TEST command or response has an LLC control field value of 227 (decimal) if poll is off 
or 243 (decimal) if poll is on. (See Appendix on Numbers.) 
A command frame is identified with high order bit of the SSAP address reset.    Response 
frames have high order bit of the SSAP address set to one. 
XID response frames should include an 802.2 XID Information field of 129.1.0 indicating 
Class I (connectionless) service. (type 1). 
TEST response frames should echo the information field received in the corresponding TEST 
command frame. 



RFC-1042 IP on IEEE 802 Networks - Frame Format and MAC Level Issues

IEEE 802.3 Details

A particular implementation of an IEEE 802.3 Physical Layer is denoted using a three field 
notation.    The three fields are data rate in megabit/second, medium type, and maximum 
segment length in hundreds of meters.    One combination of of 802.3 parameters is 
10BASE5 which specifies a 10 megabit/second transmission rate, baseband medium, and 
500 meter segments.    This correspondes to the specifications of the familiar "Ethernet" 
network. 
The MAC header contains 6 (2) octets of source address, 6 (2) octets of destination address, 
and 2 octets of length.    The MAC trailer contains 4 octets of Frame Check Sequence (FCS), 
for a total of 18 (10) octets. 
IEEE 802.3 networks have a minimum packet size that depends on the transmission rate.    
For type 10BASE5 802.3 networks the minimum packet size is 64 octets. 
IEEE 802.3 networks have a maximum packet size which depends on the transmission rate.   
For type 10BASE5 802.3 networks the maximum packet size is 1518 octets including all 
octets between the destination address and the FCS inclusive. 
This allows 1518 - 18 (MAC header+trailer) - 8 (LLC+SNAP header) = 1492 for the IP 
datagram (including the IP header).    Note that 1492 is not equal to 1500 which is the MTU 
for Ethernet networks. 



RFC-1042 IP on IEEE 802 Networks - Frame Format and MAC Level Issues

IEEE 802.4 Details

The MAC header contains 1 octet of frame control, 6 (2) octets of source address, and 6 (2) 
octets of destination address.    The MAC trailer contains 4 octets of Frame Check Sequence 
(FCS), for a total of 17 (9) octets. 
IEEE 802.4 networks have no minimum packet size.
IEEE 802.4 networks have a maximum packet size of 8191 octets including all octets 
between the frame control and the FCS inclusive. 
This allows 8191 - 17 (MAC header+trailer) - 8 (LLC+SNAP header) = 8166 for the IP 
datagram (including the IP header). 



RFC-1042 IP on IEEE 802 Networks - Frame Format and MAC Level Issues

IEEE 802.5 Details

The current standard for token ring's, IEEE 802.5-1985, specifies the operation of single ring 
networks.    However, most implementations of 802.5 have added extensions for multi-ring 
networks using source-routing of packets at the MAC layer.    There is now a Draft Addendum 
to IEEE 802.5, "Enhancement for Multi-Ring Networks" which attempts to standardize these 
extensions. Unfortunately, the most recent draft (November 10, 1987) is still rapidly 
evolving.    More importantly, it differs significantly from the existing implementations.    
Therefore, the existing implementations of 802.5 [13] are described but no attempt is made 
to specify any future standard. 
The MAC header contains 1 octet of access control, 1 octet of frame control, 6 (2) octets of 
source address, 6 (2) octets of destination address, and (for multi-ring networks) 0 to 18 
octets of Routing Information Field (RIF).    The MAC trailer contains 4 octets of FCS, for a 
total of 18 (10) to 36 (28) octets.    There is one additional octet of frame status after the 
FCS. 



RFC-1042 IP on IEEE 802 Networks - 802.5 Frame Format and MAC Level Issues

Multi-Ring Extension Details

The presence of a Routing Information Field is indicated by the Most Significant Bit (MSB) of 
the source address, called the Routing Information Indicator (RII).    If the RII equals zero, a 
RIF is not present.    If the RII equals 1, the RIF is present. Although the RII is indicated in the 
source address, it is not part of a stations MAC layer address.    In particular, the MSB of a 
destination address is the individual/group address indicator, and if set will cause such 
frames to be interpreted as multicasts.    Implementations should be careful to reset the RII 
to zero before passing source addresses to other protocol layers which may be confused by 
their presence. 
The RIF consists of a two-octet Routing Control (RC) field followed by 0 to 8 two-octet Route-
Designator (RD) fields.    The RC for all-routes broadcast frames is formatted as follows: 

B - Broadcast Indicators: 3 bits
The Broadcast Indicators are used to indicate the routing desired for a 
particular frame.    A frame may be routed through a single specified route, 
through every distinct non-repeating route in a multi-ring network, or through 
a single route determined by a spanning tree algorithm such that the frame 
appears on every ring exactly once.    The values which may be used at this 
time are (in binary): 

000 - Non-broadcast (specific route)
100 - All-routes broadcast (global broadcast)
110 - Single-route broadcast (limited broadcast)

All other values are reserved for future use.
LTH - Length: 5 bits

The Length bits are used to indicate the length or the RI field, including the RC
and RD fields.    Only even values between 2 and 30 inclusive are allowed. 

D - Direction Bit: 1 bit
The D bit specifies the order of the RD fields.    If D equals 1, the routing-
designator fields are specified in reverse order. 

LF - Largest Frame: 3 bits
The LF bits specify the maximum MTU supported by all bridges along a 
specific route.    All multi-ring broadcast frames should be transmitted with a 
value at least as large as the supported MTU.    The values used are: 
LF (binary)         MAC MTU           IP MTU  
000 552 508
001 1064 1020
010 2088 2044
011 4136 4092
100 8232 8188
All other values are reserved for future use.



The receiver should compare the LF received with the MTU. If the LF is greater than or equal 
to the MTU then no action is taken; however, if the LF is less than the MTU    the frame is 
rejected. 
There are actually three possible actions if LF < MTU. First is the one required for this 
specification (reject the frame).    Second is to reduce the MTU for all hosts to equal the LF.    
And, third is to keep a separate MTU per communicating host based on the received LFs. 
r - reserved: 4 bits

These bits are reserved for future use and must be set to 0 by the transmitter 
and ignored by the receiver. 



RFC-1042 IP on IEEE 802 Networks - Frame Format and MAC Level Issues

IEEE 802.5 Packet Size Issues

It is not necessary for an implementation to interpret routing-designators.    Their format is 
left unspecified. Routing-designators should be transmitted exactly as received. 
IEEE 802.5 networks have no minimum packet size.
IEEE 802.5 networks have a maximum packet size based on the maximum time a node may 
hold the token.    This time depends on many factors including the data signalling rate and 
the number of nodes on the ring.    The determination of maximum packet size becomes 
even more complex when multi-ring networks with bridges are considered. 
Given a token-holding time of 9 milliseconds and a 4 megabit/second ring, the maximum 
packet size possible is 4508 octets including all octets between the access control and the 
FCS inclusive. 
This allows 4508 - 36 (MAC header+trailer with 18 octet RIF) - 8 (LLC+SNAP header) = 4464 
for the IP datagram (including the IP header). 
However, some current implementations are known to limit packets to 2046 octets (allowing 
2002 octets for IP).    It is recommended that all implementations support IP packets of at 
least 2002 octets. 
By convention, source routing bridges used in multi-ring 802.5 networks will not support 
packets larger than 8232 octets.    With a MAC header+trailer of 36 octets and the LLC+SNAP
header of 8 octets, the IP datagram (including IP header) may not exceed 8188 octets. 
A source routing bridge linking two rings may be configured to limit the size of packets 
forwarded to 552 octets, with a MAC header+trailer of 36 octets and the LLC+SNAP of 8 
octets, the IP datagram (including the IP header) may be limited to 508 octets. This is less 
that the default IP MTU of 576 octets, and may cause significant performance problems due 
to excessive datagram fragmentation.    An implementation is not required to support an 
MTU of less than 576 octets, although it is suggest that the MTU be a user-configurable 
parameter to allow for it. 



RFC-1042 IP on IEEE 802 Networks - Frame Format and MAC Level Issues

IEEE 802.5 Broadcast Issues

IEEE 802.5 networks support three different types of broadcasts. All-Stations broadcasts are 
sent with no RIF or with the Broadcast Indicators set to 0 and no Routing Designators, and 
are copied once by all stations on the local ring.    All-Routes broadcasts are sent with the 
corresponding Broadcast Indicators and result in multiple copies equal to the number of 
distinct non-repeating routes a packet may follow to a particular ring.    Single-Route 
broadcasts result in exactly one copy of a frame being received by all stations on the multi-
ring network. 
The dynamic address discovery procedure is to broadcast an ARP request.    To limit the 
number of all rings broadcasts to a minimum, it is desirable (though not required) that an 
ARP request first be sent as an all-stations broadcast, without a Routing Information Field 
(RIF).    If the all-stations (local ring) broadcast is not supported or if the all-stations 
broadcast is unsuccessful after some reasonable time has elapsed, then send the ARP 
request as an all-routes or single-route broadcast with an empty RIF (no routing 
designators).    An all-routes broadcast is preferable since it yields an amount of fault 
tolerance.    In an environment with multiple redundant bridges, all-routes broadcast allows 
operation in spite of spanning-tree bridge failures. However, single-route broadcasts may be 
used if IP and ARP must use the same broadcast method. 
When an ARP request or reply is received, all implementations are required to understand 
frames with no RIF (local ring) and frames with an empty RIF (also from the local ring).    If 
the implementation supports multi-ring source routing, then a non- empty RIF is stored for 
future transmissions to the host originating the ARP request or reply.    If source routing is not
supported them all packets with non-empty RIFs should be gracefully ignored.    This policy 
will allow all implementations in a single ring environment, to interoperate, whether or not 
they support the multi-ring extensions. 
It is possible that when sending an ARP request via an all-routes broadcast that multiple 
copies of the request will arrive at the destination as a result of the request being forwarded 
by several bridges.    However, these "copies" will have taken different routes so the contents
of the RIF will differ.    An implementation of ARP in this context must determine which of 
these "copies" to use and to ignore the others.    There are three obvious and legal 
strategies: (1) take the first and ignore the rest (that is, once you have an entry in the ARP 
cache don't change it), (2) take the last, (that is, always up date the ARP cache with the 
latest ARP message), or (3) take the one with the shortest path, (that is, replace the ARP 
cache information with the latest ARP message data if it is a shorter route).    Since there is 
no problem of incompatibility for interworking of different implementations if different 
strategies are chosen, the choice is up to each implementor.    The recipient of the ARP 
request must send an ARP reply as a point to point message using the RIF information. 
The RIF information should be kept distinct from the ARP table. That is, there is, in principle, 
the ARP table to map from IP addresses to 802 48-bit addresses, and the RIF table to map 
from those to 802.5 source routes, if necessary.    In practical implementations it may be 
convenient to store the ARP and RIF information together. 

Storing the information together may speed up access to the information 
when it is used.    On the other hand, in a generalized implementation for all 
types of 802 networks a significant amount of memory might be wasted in an 
ARP cache if space for the RIF information were always reserved. 

IP broadcasts (datagrams with a IP broadcast address) must be sent as 802.5 single-route 
broadcasts.    Unlike ARP, all-routes broadcasts are not desirable for IP.    Receiving multiple 
copies of IP broadcasts would have undesirable effects on many protocols using IP.    As with 



ARP, when an IP packet is received, all implementations are required to understand frames 
with no RIF and frames with an empty RIF. 
Since current interface hardware allows only one group address, and since the functional 
addresses are not globally unique, IP and ARP do not use either of these features.    Further, 
in the IBM style 802.5 networks there are only 31 functional addresses available for user 
definition. 
IP precedence should not be mapped to 802.5 priority.    All IP and ARP packets should be 
sent at the default 802.5 priority.    The default priority is 3. 
After packet transmission, 802.5 provides frame not copied and address not recognized 
indicators.    Implementations may use these indicators to provide some amount of error 
detection and correction.    If the frame not copied bit is set but the address not recognized 
bit is reset, receiver congestion has occurred.    It is suggested, though not required, that 
hosts should retransmit the offending packet a small number of times (4) or until congestion 
no longer occurs.    If the address not recognized bit is set, an implementation has 3 options: 
(1) ignore the error and throw the packet away, (2) return an ICMP destination unreachable 
message to the source, or (3) delete the ARP entry which was used to send this packet and 
send a new ARP request to the destination address.    The latter option is the preferred 
approach since it will allow graceful recovery from first hop bridge and router failures and 
changed hardware addresses. 



RFC-1042 IP on IEEE 802 Networks - Frame Format and MAC Level Issues

Interoperation with Ethernet
It is possible to use the Ethernet link level protocol [12] on the same physical cable with the 
IEEE 802.3 link level protocol.    A computer interfaced to a physical cable used in this way 
could potentially read both Ethernet and 802.3 packets from the network. If a computer does
read both types of packets, it must keep track of which link protocol was used with each 
other computer on the network and use the proper link protocol when sending packets. 
One should note that in such an environment, link level broadcast packets will not reach all 
the computers attached to the network, but only those using the link level protocol used for 
the broadcast. 
Since it must be assumed that most computers will read and send using only one type of link
protocol, it is recommended that if such an environment (a network with both link protocols) 
is necessary, an IP gateway be used as if there were two distinct networks. 
Note that the MTU for the Ethernet allows a 1500 octet IP datagram, with the MTU for the 
802.3 network allows only a 1492 octet IP datagram. 



RFC-1042 IP on IEEE 802 Networks - Frame Format and MAC Level Issues

Appendix on Numbers

The IEEE likes to specify numbers in bit transmission order, or bit- wise little-endian order.    
The Internet protocols are documented in byte-wise big-endian order.    This may cause some
confusion about the proper values to use for numbers.    Here are the conversions for some 
numbers of interest. 

IEEE IEEE Internet Internet
Number             HEX           Binary          Binary        Decimal  
UI Op Code C0 11000000 00000011 3
SAP for SNAP 55 01010101 10101010 170
XID F5 11110101 10101111 175
XID FD 11111101 10111111 191
TEST C7 11000111 11100011 227
TEST CF 11001111 11110011 243
Info 818000 129.1.0



References

[1]      Postel, J., "Internet Protocol", RFC-791, USC/Information
Sciences Institute, September 1981.

[2]      Plummer, D., "An Ethernet Address Resolution Protocol - or -
Converting Network Protocol Addresses to 48.bit Ethernet
Address for Transmission on Ethernet Hardware", RFC-826, MIT,
November 1982.

[3]      IEEE, "IEEE Standards for Local Area Networks: Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications", IEEE, New York, New
York, 1985.

[4]      IEEE, "IEEE Standards for Local Area Networks: Token-Passing
Bus Access Method and Physical Layer Specification", IEEE, New
York, New York, 1985.

[5]      IEEE, "IEEE Standards for Local Area Networks: Token Ring
Access Method and Physical Layer Specifications", IEEE, New
York, New York, 1985.

[6]      IEEE, "IEEE Standards for Local Area Networks: Logical Link
Control", IEEE, New York, New York, 1985.

[7]      Reynolds, J.K., and J. Postel, "Assigned Numbers", RFC-1010,
USC/Information Sciences Institute, May 1987.

[8]      Braden, R., and J. Postel, "Requirements for Internet
Gateways", RFC-1009, USC/Information Sciences Institute, June
1987.

[9]      Leffler, S., and M. Karels, "Trailer Encapsulations", RFC-893,
University of California at Berkeley, April 1984.

[10]    Postel, J., "The TCP Maximum Segment Size Option and Related



Topics", RFC-879, USC/Information Sciences Institute, November
1983.

[11]    Cohen, D., "On Holy Wars and a Plea for Peace", Computer, IEEE,
October 1981.

[12]    D-I-X, "The Ethernet - A Local Area Network: Data Link Layer
and Physical Layer Specifications", Digital, Intel, and Xerox,
November 1982.

[13]    IBM, "Token-Ring Network Architecture Reference", Second
Edition, SC30-3374-01, August 1987.



RFC-1049 A Content-Type Header Field
for

Internet Messages
M. Sirbu; CMU
March 1988

Status Of This Memo
This RFC suggests proposed additions to the Internet Mail Protocol, RFC-822, for the Internet 
community, and requests discussion and suggestions for improvements.    Distribution of this
memo is unlimited.      As of May 1990 the IAB has classified this RFC as recommended.

Introduction
Problems with Structured Messages
Format of the Content-type Header Field

Type Values
Version Number
Resource Reference
Comment

Conclusion
Abstract
A standardized Content-type field allows mail reading systems to automatically identify the 
type of a structured message body and to process it for display accordingly.    The structured 
message body must still conform to the RFC-822 requirements concerning allowable 
characters.    A mail reading system need not take any specific action upon receiving a 
message with a valid Content-Type header field.    The ability to recognize this field and 
invoke the appropriate display process accordingly will, however, improve the readability of 
messages, and allow the exchange of messages containing mathematical symbols, or 
foreign language characters. 



RFC-1049 A Content-Type Header Field

Introduction

As defined in RFC-822, [RFC-822], an electronic mail message consists of a number of 
defined header fields, some containing structured information (e.g., date, addresses), and a 
message body consisting of an unstructured string of ASCII characters. 
The success of the Internet mail system has led to a desire to use the mail system for 
sending around information with a greater degree of structure, while remaining within the 
constraints imposed by the limited character set.    A prime example is the use of mail to 
send a    document with embedded TROFF formatting commands.    A more sophisticated 
example would be a message body encoded in a Page Description Language (PDL) such as 
Postscript.    In both cases, simply mapping the ASCII characters to the screen or printer in 
the usual fashion will not render the document image intended by the sender; an additional 
processing step is required to produce an image of the message text on a display device or a
piece of paper. 
In both of these examples, the message body contains only the legal character set, but the 
content has a structure which produces some desirable result after appropriate processing 
by the recipient.    If a message header field could be used to indicate the structuring 
technique used in the message body, then a sophisticated mail system could use such a 
field to automatically invoke the appropriate processing of the message body.    For example,
a header field which indicated that the message body was encoded using Postscript could be
used to direct a mail system running under Sun Microsystem's NEWS window manager to 
process the Postscript to produce the appropriate page image on the screen. 
Private header fields (beginning with "X-") are already being used by some systems to affect 
such a result (e.g., the Andrew Message System developed at Carnegie Mellon University).    
However, the widespread use of such techniques will require general agreement on the 
name and allowed parameter values for a header field to be used for this purpose. 
We propose that a new header field, "Content-type:"    be recognized as the standard field for
indicating the structure of the message body. The contents of the "Content-Type:"    field are 
parameters which specify what type of structure is used in the message body. 
Note that we are not proposing that the message body contain anything other than ASCII 
characters as specified in RFC-822.    Whatever structuring is contained in the message body 
must be represented using only the allowed ASCII characters.    Thus, this proposal should 
have no impact on existing mailers, only on mail reading systems. 
At the same time, this restriction eliminates the use of more general structuring techniques 
such as Abstract Syntax Notation, (CCITT Recommendation X.409) as used in the X.400 
messaging standard, which are octet-oriented. 
This is not the first proposal for structuring message bodies. RFC-767 [RFC-767] discusses a 
proposed technique for structuring multi-media mail messages.    We are also aware that 
many users already employ mail to send TROFF, SCRIBE, TEX, Postscript or other structured 
information.    Such postprocessing as is required must be invoked    manually by the 
message recipient who looks at the message text displayed as conventional ASCII and 
recognizes that it is structured in some way that requires additional processing to be 
properly rendered.    Our proposal is designed to facilitate automatic processing of messages 
by a mail reading system. 



RFC-1049 A Content-Type Header Field

Problems with Structured Messages

Once we introduce the notion that a message body might require some processing other 
than simply painting the characters to the screen we raise a number of fundamental 
questions.    These generally arise due to the certainty that some receiving systems will have
the facilities to process the received message and some will not.    The problem is what to do
in the presence of systems with different levels of capability. 
First, we must recognize that the purpose of structured messages is to be able to send types
of information, ultimately intended for human consumption, not expressable in plain ASCII.    
Thus, there is no way in plain ASCII to send the italics, boldface, or greek characters that can
be expressed in Postscript.    If some different processing is necessary to render these 
glyphs, then that is the minimum price to be paid in order to send them at all. 
Second, by insisting that the message body contain only ASCII, we insure that it will not 
"break" current mail reading systems which are not equipped to process the structure; the 
result on the screen may not be readily interpretable by the human reader, however. 
If a message sender knows that the recipient cannot process Postscript, he or she may 
prefer that the message be revised to eliminate the use of italics and boldface, rather than 
appear incomprehensible.    If Postscript is being used because the message contains 
passages in Greek, there may be no suitable ASCII equivalent, however. 
Ideally, the details of structuring the message (or not) to conform to the capabilities of the 
recipient system could be completely hidden from the message sender.    The distributed 
Internet mail system would somehow determine the capabilities of the recipient system, and
convert the message automatically; or, if there was no way to send Greek text in ASCII, 
inform the sender that his message could not be transmitted. 
In practice, this is a difficult task.    There are three possible approaches: 

1. Each mail system maintains a database of capabilities of remote systems 
it knows how to send to.    Such a database would be very difficult to keep 
up to date. 

2. The mail transport service negotiates with the receiving system as to its 
capabilities.    If the receiving system cannot support the specified content 
type, the mail is transformed into conventional ASCII before transmission. 
This would require changes to all existing SMTP implementations, and 
could not be implemented in the case where RFC-822 type messages are 
being forwarded via Bitnet or other networks which do not implement 
SMTP. 

3. An expanded directory service maintains information on mail processing 
capabilities of receiving hosts.    This eliminates the need for real-time 
negotiation with the final destination, but still requires direct interaction 
with the directory service.    Since directory querying is part of mail sending
as opposed to mail composing/reading systems, this requires changes to 
existing mailers as well as a major change to the domain name directory 
service. 

We note in passing that the X.400 protocol implements approach number 2, and that the 
Draft Recommendations for X.DS, the Directory Service, would support option 3. 
In the interest of facilitating early usage of structured messages, we choose not to 
recommend any of the three approaches described above at the present time.    In a 
forthcoming RFC we will propose a solution based on option 2, requiring modification to 



mailers to support negotiation over capabilities.    For the present, then, users would be 
obliged to keep their own private list of capabilities of recipients and to take care that they 
do not send Postscript, TROFF or other structured messages to recipients who cannot 
process them. The penalty for failure to do so will be the frustration of the recipient in trying 
to read a raw Postscript or TROFF file painted on his or her screen.    Some System 
Administrators may attempt to implement option 1 for the benefit of their users, but this 
does not impose a requirement for changes on any other mail system. 
We recognize that the long-term solution must require changes to mailers.    However, in 
order to begin now to standardize the header fields, and to facilitate experimentation, we 
issue the present RFC. 



RFC-1049 A Content-Type Header Field

Format of the Content-type Header Field

Whatever structuring technique is specified by the Content-type field, it must be known 
precisely to both the sender and the recipient of the message in order for the message to be
properly interpreted.    In general, this means that the allowed parameter values for the 
Content-type:    field must identify a well-defined, standardized, document structuring 
technique.    We do not preclude, however, the use of a Content-type:    parameter value to 
specify a private structuring technique known only to the sender and the recipient. 
More precisely, we propose that the Content-type:    header field consist of up to four 
parameter values.    The first, or type parameter names the structuring technique; the 
second, optional, parameter is a version number, ver-num, which indicates a particular 
version or revision of the standardized structuring technique.    The third parameter is a 
resource reference, resource-ref, which may indicate a standard database of information to 
be used in interpreting the structured document.    The last parameter is a comment. 
In the Extended Backus Naur Form of RFC-822, we have:
Content-Type:= type [";" ver-num [";" 1#resource-ref]] [comment]



RFC-1049 A Content-Type Header Field - Format

Type Values

Initially, the type parameter would be limited to the following set of values: 
type:= "POSTSCRIPT"/"SCRIBE"/"SGML"/"TEX"/"TROFF"/ "DVI"/"X-"atom 
These values are not case sensitive.    POSTSCRIPT, Postscript, and POStscriPT are all 
equivalent. 

POSTSCRIPT Indicates the enclosed document consists of information encoded 
using the Postscript Page Definition Language developed by Adobe 
Systems, Inc. [1] 

SCRIBE Indicates the document contains embedded formatting information 
according to the syntax used by the Scribe document formatting 
language distributed by the Unilogic Corporation. [6] 

SGML Indicates the document contains structuring information to 
according the rules specified for    the Standard Generalized Markup 
Language, IS 8879, as published by the International Organization 
for Standardization. [3] Documents structured according to the ISO 
DIS 8613--Office Docment Architecture and Interchange Format--
may also be encoded using SGML syntax. 

TEX Indicates the document contains embedded formatting information 
according to the syntax of the TEX document production language. 
[4] 

TROFF Indicates the document contains embedded formatting information 
according to the syntax specified for the TROFF formatting package
developed by AT&T Bell Laboratories. [5] 

DVI Indicates the document contains information according to the 
device independent file format produced by TROFF or TEX. 

"X-"atom Any type value beginning with the characters "X-" is a private 
value. 



RFC-1049 A Content-Type Header Field - Format

Version Number

Since standard structuring techniques in fact evolve over time, we leave room for specifying 
a version number for the content type. Valid values will depend upon the type parameter. 
ver-num:=            local-part

In particular, we have the following valid values:
For type=POSTSCRIPT

ver-num:= "1.0"/"2.0"/"null"
For type=SCRIBE

ver-num:= "3"/"4"/"5"/"null"
For type=SGML

ver-num:="IS.8879.1986"/"null"



RFC-1049 A Content-Type Header Field

Resource Reference

resource-ref:=    local-part
As Apple has demonstrated with their implementation of the Laserwriter, a very general 
document structuring technique can be made more efficient by defining a set of macros or 
other similar resources to be used in interpreting any transmitted stream.    The Macintosh 
transmits a LaserPrep file to the Laserwriter containing font and macro definitions which can 
be called upon by subsequent documents.    The result is that documents as sent to the 
Laserwriter are considerably more compact than if they had to include the LaserPrep file 
each time.    The Resource Reference parameter allows specification of a well known 
resource, such as a LaserPrep file, which should be used by the receiving system when 
processing the message. 
Resource references could also include macro packages for use with TEX or references to 
preprocessors such as eqn and tbl for use with troff.    Allowed values will vary according to 
the type parameter. 

In particular, we propose the following values:
For type = POSTSCRIPT

resource-ref:=    "laserprep2.9"/"laserprep3.0"/"laserprep3.1"/ "laserprep4.0"/local-
part 

For type = TROFF
resource-ref:=    "eqn"/"tbl"/"me"/local-part



RFC-1049 A Content-Type Header Field

Comment

The comment field can be any additional comment text the user desires.    Comments are 
enclosed in parentheses as specified in RFC-822. 



RFC-1049 A Content-Type Header Field

Conclusion

A standardized Content-type field allows mail reading systems to automatically identify the 
type of a structured message body and to process it for display accordingly.    The strcutured 
message body must still conform to the RFC-822 requirements concerning allowable 
characters.    A mail reading system need not take any specific action upon receiving a 
message with valid Content-Type header field.    The ability to recognize this field and invoke 
the appropriate display process accordingly will, however, improve the readability of 
messages, and allow the exchange of messages containing mathematical symbols, or 
foreign language characters.    In the near term, the major use of a Content-Type:    header 
field is likely to be for designating the message body as containing a Page Definition 
Language representation such as Postscript. 
Additional type values shall be registered with Internet Assigned Numbers Coordinator at 
USC-ISI.    Please contact: 

Joyce K. Reynolds
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA    90292-6695
213-822-1511        JKReynolds@ISI.EDU



                                                                REFERENCES

      1.    Adobe Systems, Inc.    Postscript Language Reference Manual.
              Addison-Wesley, Reading, Mass., 1985.

      2.    Crocker, David H.    RFC-822:    Standard for the Format of ARPA
              Internet Text Messages.    Network Information Center,
              August 13, 1982.

      3.    ISO TC97/SC18.    Standard Generalized Markup Language.
              Tech. Rept. DIS 8879, ISO, 1986.

      4.    Knuth, Donald E.    The TEXbook.    Addison-Wesley, Reading, Mass.,
              1984.

      5.    Ossanna, Joseph F. NROFF/TROFF User's Manual.    Bell
              Laboratories, Murray Hill, New Jersey, 1976.    Computing Science
              Technical Report No.54.

      6.    Unilogic.    SCRIBE Document Production Software.    Unilogic, 1985.
              Fourth Edition.



RFC-1055 A Non-Standard for the Transmission
of

IP Datagrams over Serial Lines
SLIP

John Romkey
June 1988

Introduction
The TCP/IP protocol family runs over a variety of network media: IEEE 802.3 (ethernet) and 
802.5 (token ring) LAN's, X.25 lines, satellite links, and serial lines.    There are standard 
encapsulations for IP packets defined for many of these networks, but there is no standard 
for serial lines.    SLIP, Serial Line IP, is a currently a de facto standard, commonly used for 
point-to-point serial connections running TCP/IP.    It is not an Internet standard.
Distribution of this memo is unlimited. 

History
Availability
Protocol
Deficiencies
SLIP Drivers



RFC-1055 Transmission of IP Datagrams over Serial Lines (SLIP)

History

SLIP has its origins in the 3COM UNET TCP/IP implementation from the early 1980's.    It is 
merely a packet framing protocol: SLIP defines a sequence of characters that frame IP 
packets on a serial line, and nothing more. It provides no addressing, packet type 
identification, error detection/correction or compression mechanisms.    Because the protocol
does so little, though, it is usually very easy to implement. 
Around 1984, Rick Adams implemented SLIP for 4.2 Berkeley Unix and Sun Microsystems 
workstations and released it to the world.    It quickly caught on as an easy reliable way to 
connect TCP/IP hosts and routers with serial lines. 
SLIP is commonly used on dedicated serial links and sometimes for dialup purposes, and is 
usually used with line speeds between 1200bps and 19.2Kbps.    It is useful for allowing 
mixes of hosts and routers to communicate with one another (host-host, host-router and 
router- router are all common SLIP network configurations). 



RFC-1055 Transmission of IP Datagrams over Serial Lines (SLIP)

Availability

SLIP is available for most Berkeley UNIX-based systems.    It is included in the standard 
4.3BSD release from Berkeley.    SLIP is available for Ultrix, Sun UNIX and most other 
Berkeley-derived UNIX systems.    Some terminal concentrators and IBM PC implementations 
also support it. 
SLIP for Berkeley UNIX is available via anonymous FTP from uunet.uu.net in pub/sl.shar.Z.    
Be sure to transfer the file in binary mode and then run it through the UNIX uncompress 
program. Take the resulting file and use it as a shell script for the UNIX /bin/sh (for 
instance, /bin/sh sl.shar). 



RFC-1055 Transmission of IP Datagrams over Serial Lines (SLIP)

Protocol

The SLIP protocol defines two special characters: END and ESC. END is octal 300 (decimal 
192) and ESC is octal 333 (decimal 219) not to be confused with the ASCII ESCape character;
for the purposes of this discussion, ESC will indicate the SLIP ESC character.    To send a 
packet, a SLIP host simply starts sending the data in the packet.    If a data byte is the same 
code as END character, a two byte sequence of ESC and octal 334 (decimal 220) is sent 
instead.    If it the same as an ESC character, an two byte sequence of ESC and octal 335 
(decimal 221) is sent instead.    When the last byte in the packet has been sent, an END 
character is then transmitted. 
Phil Karn suggests a simple change to the algorithm, which is to begin as well as end 
packets with an END character.    This will flush any erroneous bytes which have been caused
by line noise.    In the normal case, the receiver will simply see two back-to-back END 
characters, which will generate a bad IP packet.    If the SLIP implementation does not throw 
away the zero-length IP packet, the IP implementation certainly will.    If there was line noise, 
the data received due to it will be discarded without affecting the following packet. 
Because there is no 'standard' SLIP specification, there is no real defined maximum packet 
size for SLIP.    It is probably best to accept the maximum packet size used by the Berkeley 
UNIX SLIP drivers: 1006 bytes including the IP and transport protocol headers (not including 
the framing characters).    Therefore any new SLIP implementations should be prepared to 
accept 1006 byte datagrams and should not send more than 1006 bytes in a datagram. 



RFC-1055 Transmission of IP Datagrams over Serial Lines (SLIP)

Deficiencies

There are several features that many users would like SLIP to provide which it doesn't.    In all
fairness, SLIP is just a very simple protocol designed quite a long time ago when these 
problems were not really important issues.    The following are commonly perceived 
shortcomings in the existing SLIP protocol: 

addressing:
both computers in a SLIP link need to know each other's IP addresses for 
routing purposes.    Also, when using SLIP for hosts to dial-up a router, the 
addressing scheme may be quite dynamic and the router may need to inform 
the dialing host of the host's IP address.    SLIP currently provides no 
mechanism for hosts to communicate addressing information over a SLIP 
connection. 
type identification:
SLIP has no type field.    Thus, only one protocol can be run over a SLIP 
connection, so in a configuration of two DEC computers running both TCP/IP 
and DECnet, there is no hope of having TCP/IP and DECnet share one serial 
line between them while using SLIP.    While SLIP is "Serial Line IP", if a serial 
line connects two multi-protocol computers, those computers should be able 
to use more than one protocol over the line. 
error detection/correction:
noisy phone lines will corrupt packets in transit. Because the line speed is 
probably quite low (likely 2400 baud), retransmitting a packet is very 
expensive.    Error detection is not absolutely necessary at the SLIP level 
because any IP application should detect damaged packets (IP header and 
UDP and TCP checksums should suffice), although some common applications 
like NFS usually ignore the checksum and depend on the network media to 
detect damaged packets.    Because it takes so long to retransmit a packet 
which was corrupted by line noise, it would be efficient if SLIP could provide 
some sort of simple error correction mechanism of its own. 
compression:
because dial-in lines are so slow (usually 2400bps), packet compression would
cause large improvements in packet throughput. Usually, streams of packets 
in a single TCP connection have few changed fields in the IP and TCP headers, 
so a simple compression algorithms might just send the changed parts of the 
headers instead of the complete headers. 

Some work is being done by various groups to design and implement a successor to SLIP 
which will address some or all of these problems. 



RFC-1055 Transmission of IP Datagrams over Serial Lines (SLIP)

Slip Drivers

The following C language functions send and receive SLIP packets. They depend on two 
functions, send_char() and recv_char(), which send and receive a single character over the 
serial line. 
/* SLIP special character codes
 */
#define END             0300    /* indicates end of packet */
#define ESC             0333    /* indicates byte stuffing */
#define ESC_END         0334    /* ESC ESC_END means END data byte */
#define ESC_ESC         0335    /* ESC ESC_ESC means ESC data byte */

/* SEND_PACKET: sends a packet of length "len", starting at
 * location "p".
 */
void send_packet(p, len)

char *p;
int len;

{

/* send an initial END character to flush out any data that may
 * have accumulated in the receiver due to line noise
 */

send_char(END);

/* for each byte in the packet, send the appropriate character
 * sequence
 */

while(len--) {
switch(*p) {

/* if it's the same code as an END character, we send a
 * special two character code so as not to make the
 * receiver think we sent an END
 */
case END:

send_char(ESC);
send_char(ESC_END);
break;

/* if it's the same code as an ESC character,
 * we send a special two character code so as not
 * to make the receiver think we sent an ESC
 */
case ESC:

send_char(ESC);
send_char(ESC_ESC);
break;

/* otherwise, we just send the character
 */
default:

send_char(*p);



}
p++;

}

/* tell the receiver that we're done sending the packet
 */
send_char(END);

}

/* RECV_PACKET: receives a packet into the buffer located at "p".
 *      If more than len bytes are received, the packet will
 *      be truncated.
 *      Returns the number of bytes stored in the buffer.
 */
int recv_packet(p, len)

char *p;
int len; {
char c;
int received = 0;

/* sit in a loop reading bytes until we put together
 * a whole packet.
 * Make sure not to copy them into the packet if we
 * run out of room.
 */
while(1) {

/* get a character to process
 */
c = recv_char();

/* handle bytestuffing if necessary
 */
switch(c) {

/* if it's an END character then we're done with
 * the packet
 */

case END:
/* a minor optimization: if there is no
 * data in the packet, ignore it. This is
 * meant to avoid bothering IP with all
 * the empty packets generated by the
 * duplicate END characters which are in
 * turn sent to try to detect line noise.
 */
if(received)
        return received;
else
        break;

/* if it's the same code as an ESC character, wait
 * and get another character and then figure out
 * what to store in the packet based on that.
 */
case ESC:

c = recv_char();



/* if "c" is not one of these two, then we
 * have a protocol violation.  The best bet
 * seems to be to leave the byte alone and
 * just stuff it into the packet
 */
switch(c) {
case ESC_END:

c = END;
break;

case ESC_ESC:
c = ESC;
break;

}

/* here we fall into the default handler and let
 * it store the character for us
 */
default:

if(received < len)
p[received++] = c;

}
}

}



RFC-1057    
RPC: Remote Procedure Call    Protocol Specification Version 2

Network Working Group                                                          
Sun Microsystems, Inc., June 1988

(Obsoletes: RFC 1050)

This RFC describes a standard that Sun Microsystems and others are using, and is one we 
wish to propose for the Internet's consideration.    This memo is not an Internet standard at 
this time.    Distribution of this memo is unlimited.

Introduction
Terminology
The RPC Model
Transports and Semantics
Binding and Rendezvous Independence
Authentication
RPC Protocols
The RPC Message Protocol
Authentication Protocols
Record Marking Standard
The RPC Language

Appendix: Port Mapper Program Protocol



RFC-1057 Remote Procedure Call Version 2

Introduction
This document specifies version two of the message protocol used in Sun's Remote 
Procedure Call (RPC) package.    The message protocol is specified with the eXternal Data 
Representation (XDR) language.    This document assumes that the reader is familiar with 
XDR.    It does not attempt to justify remote procedure calls systems or describe their use.    
The paper by Birrell and Nelson is recommended as an excellent background for the remote 
procedure call concept.



RFC-1057 Remote Procedure Call Version 2

Terminology
This document discusses clients, calls, servers, replies, services, programs, procedures, and 
versions.    Each remote procedure call has two sides: an active client side that sends the call
to a server, which sends back a reply.    A network service is a collection of one or more 
remote programs.    A remote program implements one or more remote procedures; the 
procedures, their parameters, and results are documented in the specific program's protocol 
specification (see Appendix for an example).    A server may support more than one version 
of a remote program in order to be compatible with changing protocols.

For example, a network file service may be composed of two programs.    One program may 
deal with high-level applications such as file system access control and locking.    The other 
may deal with low-level file input and output and have procedures like "read" and "write".    A
client of the network file service would call the procedures associated with the two programs
of the service on behalf of the client.

The terms client and server only apply to a particular transaction; a particular hardware 
entity (host) or software entity (process or program) could operate in both roles at different 
times.    For example, a program that supplies remote execution service could also be a client
of a network file service.    On the other hand, it may simplify software to separate client and 
server functionality into separate libraries or programs.



RFC-1057 Remote Procedure Call Version 2

The RPC Model
The Sun RPC protocol is based on the remote procedure call model, which is similar to the 
local procedure call model.    In the local case, the caller places arguments to a procedure in 
some well- specified location (such as a register window).    It then transfers control to the 
procedure, and eventually regains control.    At that point, the results of the procedure are 
extracted from the well- specified location, and the caller continues execution.

The remote procedure call model is similar.    One thread of control logically winds through 
two processes: the caller's process, and a server's process.    The caller process first sends a 
call message to the server process and waits (blocks) for a reply message.    The call 
message includes the procedure's parameters, and the reply message includes the 
procedure's results.    Once the reply message is received, the results of the procedure are 
extracted, and caller's execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message.    When one 
arrives, the server process extracts the procedure's parameters, computes the results, sends
a reply message, and then awaits the next call message.

In this model, only one of the two processes is active at any given time.    However, this 
model is only given as an example.    The Sun RPC protocol makes no restrictions on the 
concurrency model implemented, and others are possible.    For example, an implementation
may choose to have RPC calls be asynchronous, so that the client may do useful work while 
waiting for the reply from the server.    Another possibility is to have the server create a 
separate task to process an incoming call, so that the original server can be free to receive 
other requests.

There are a few important ways in which remote procedure calls differ from local procedure 
calls:

1. Error handling: failures of the remote server or network must be 
handled when using remote procedure calls.

2. Global variables and side-effects: since the server does not have 
access to the client's address space, hidden arguments cannot be 
passed as global variables or returned as side effects.

3. Performance:    remote procedures usually operate one or more orders 
of magnitude slower than local procedure calls.

4. Authentication: since remote procedure calls can be transported over 
insecure networks, authentication may be necessary.

The conclusion is that even though there are tools to automatically generate client and 
server libraries for a given service, protocols must still be designed carefully.



RFC-1057 Remote Procedure Call Version 2

Transports and Semantics
The RPC protocol can be implemented on several different transport protocols.    The RPC 
protocol does not care how a message is passed from one process to another, but only with 
specification and interpretation of messages.    On the other hand, the application may wish 
to obtain information about (and perhaps control over) the transport layer through an 
interface not specified in this document.    For example, the transport protocol may impose a 
restriction on the maximum size of RPC messages, or it may be stream-oriented like TCP 
with no size limit.    The client and server must agree on their transport protocol choices, 
through a mechanism such as the one described in Appendix A.

It is important to point out that RPC does not try to implement any kind of reliability and that
the application may need to be aware of the type of transport protocol underneath RPC.    If it
knows it is running on top of a reliable transport such as TCP, then most of the work is 
already done for it.    On the other hand, if it is running on top of an unreliable transport such
as UDP, it must implement its own time-out, retransmission, and duplicate detection policies
as the RPC layer does not provide these services.

Because of transport independence, the RPC protocol does not attach specific semantics to 
the remote procedures or their execution requirements.    Semantics can be inferred from 
(but should be explicitly specified by) the underlying transport protocol.    For example, 
consider RPC running on top of an unreliable transport such as UDP.    If an application 
retransmits RPC call messages after time- outs, and does not receive a reply, it cannot infer 
anything about the number of times the procedure was executed.    If it does receive a reply, 
then it can infer that the procedure was executed at least once.

A server may wish to remember previously granted requests from a client and not regrant 
them in order to insure some degree of execute-at-most-once semantics.    A server can do 
this by taking advantage of the transaction ID that is packaged with every RPC message.    
The main use of this transaction is by the client RPC layer in matching replies to calls.    
However, a client application may choose to reuse its previous transaction ID when 
retransmitting a call.    The server may choose to remember this ID after executing a call and
not execute calls with the same ID in order to achieve some degree of execute-at-most-once
semantics.    The server is not allowed to examine this ID in any other way except as a test 
for equality.

On the other hand, if using a "reliable" transport such as TCP, the application can infer from 
a reply message that the procedure was executed exactly once, but if it receives no reply 
message, it cannot assume the remote procedure was not executed.    Note that even if a 
connection-oriented protocol like TCP is used, an application still needs time-outs and 
reconnection to handle server crashes.

There are other possibilities for transports besides datagram- or connection-oriented 
protocols.    For example, a request-reply protocol such as VMTP is perhaps a natural 
transport for RPC.    The Sun RPC package currently uses both TCP and UDP transport 
protocols, with experimentation underway on others such as ISO TP4 and TP0.



RFC-1057 Remote Procedure Call Version 2

Binding and Rendezvous Independence
The act of binding a particular client to a particular service and transport parameters is NOT 
part of this RPC protocol specification.    This important and necessary function is left up to 
some higher-level software.    (The software may use RPC itself; see Appendix.)

Implementors could think of the RPC protocol as the jump-subroutine instruction ("JSR") of a 
network; the loader (binder) makes JSR useful, and the loader itself uses JSR to accomplish 
its task.    Likewise, the binding software makes RPC useful, possibly using RPC to accomplish
this task.



RFC-1057 Remote Procedure Call Version 2

Authentication
The RPC protocol provides the fields necessary for a client to identify itself to a service, and 
vice-versa, in each call and reply message.    Security and access control mechanisms can be
built on top of this message authentication.    Several different authentication protocols can 
be supported.    A field in the RPC header indicates which protocol is being used. More 
information on specific authentication protocols is in the section "Authentication Protocols".



RFC-1057 Remote Procedure Call Version 2

RPC Protocols
RPC Protocol Requirements
RPC Programs and Procedures
Authentication
Program Number Assignment
Other Uses of the RPC Protocol



RFC-1057 Remote Procedure Call Version 2

RPC Protocol Requirements
The RPC protocol must provide for the following:

1 Unique specification of a procedure to be called.
2 Provisions for matching response messages to request messages.
3 Provisions for authenticating the caller to service and vice- versa.

Besides these requirements, features that detect the following are worth supporting because
of protocol roll-over errors, implementation bugs, user error, and network administration:

1 RPC protocol mismatches.
2 Remote program protocol version mismatches.
3 Protocol errors (such as misspecification of a procedure's parameters).
4 Reasons why remote authentication failed.
5 Any other reasons why the desired procedure was not called.



RFC-1057 Remote Procedure Call Version 2

RPC Programs and Procedures
The RPC call message has three unsigned integer fields -- remote program number, remote 
program version number, and remote procedure number -- which uniquely identify the 
procedure to be called.    Program numbers are administered by some central authority (like 
Sun).    Once implementors have a program number, they can implement their remote 
program; the first implementation would most likely have the version number 1.    Because 
most new protocols evolve, a version field of the call message identifies which version of the
protocol the caller is using.    Version numbers make speaking old and new protocols through 
the same server process possible.

The procedure number identifies the procedure to be called.    These numbers are 
documented in the specific program's protocol specification.    For example, a file service's 
protocol specification may state that its procedure number 5 is "read" and procedure 
number 12 is "write".

Just as remote program protocols may change over several versions, the actual RPC 
message protocol could also change.    Therefore, the call message also has in it the RPC 
version number, which is always equal to two for the version of RPC described here.

The reply message to a request message has enough information to distinguish the following
error conditions:

1 The remote implementation of RPC does not speak protocol version 2. 
The lowest and highest supported RPC version numbers are returned.

2 The remote program is not available on the remote system.

3 The remote program does not support the requested version number.    
The lowest and highest supported remote program version numbers 
are returned.

4 The requested procedure number does not exist.    (This is usually a 
client side protocol or programming error.)

5 The parameters to the remote procedure appear to be garbage from 
the server's point of view.    (Again, this is usually caused by a 
disagreement about the protocol between client and service.)



RFC-1057 Remote Procedure Call Version 2

Authentication
Provisions for authentication of caller to service and vice-versa are provided as a part of the 
RPC protocol.    The call message has two authentication fields, the credentials and verifier.    
The reply message has one authentication field, the response verifier.    The RPC protocol 
specification defines all three fields to be the following opaque type (in the eXternal Data 
Representation (XDR) language:

         enum auth_flavor {
            AUTH_NULL       = 0,
            AUTH_UNIX       = 1,
            AUTH_SHORT      = 2,
            AUTH_DES        = 3
            /* and more to be defined */
         };

         struct opaque_auth {
            auth_flavor flavor;
            opaque body<400>;
         };

In other words, any "opaque_auth" structure is an "auth_flavor" enumeration followed by 
bytes which are opaque to (uninterpreted by) the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication fields is 
specified by individual, independent authentication protocol specifications.    ( See the 
section on "Authentication Protocols".)

If authentication parameters were rejected, the reply message contains information stating 
why they were rejected.



RFC-1057 Remote Procedure Call Version 2

Program Number Assignment
Program numbers are given out in groups of hexadecimal 20000000 (decimal 536870912) 
according to the following chart:

                 0 - 1fffffff   defined by Sun
          20000000 - 3fffffff   defined by user
          40000000 - 5fffffff   transient
          60000000 - 7fffffff   reserved
          80000000 - 9fffffff   reserved
          a0000000 - bfffffff   reserved
          c0000000 - dfffffff   reserved
          e0000000 - ffffffff   reserved
The first group is a range of numbers administered by Sun Microsystems and should be 
identical for all sites.    The second range is for applications peculiar to a particular site.    This
range is intended primarily for debugging new programs.    When a site develops an 
application that might be of general interest, that application should be given an assigned 
number in the first range.    The third group is for applications that generate program 
numbers dynamically.    The final groups are reserved for future use, and should not be used.



RFC-1057 Remote Procedure Call Version 2

Other Uses of the RPC Protocol
The intended use of this protocol is for calling remote procedures.    Normally, each call 
message is matched with a reply message.    However, the protocol itself is a message-
passing protocol with which other (non-procedure call) protocols can be implemented.    Sun 
currently uses, or perhaps abuses, the RPC message protocol for the batching (or pipelining) 
and broadcast remote procedure calls.

Batching
Broadcast Remote Procedure Calls



RFC-1057 Remote Procedure Call Version 2: Other Uses

Batching
Batching is useful when a client wishes to send an arbitrarily large sequence of call 
messages to a server.    Batching typically uses reliable byte stream protocols (like TCP) for 
its transport.    In the case of batching, the client never waits for a reply from the server, and 
the server does not send replies to batch calls.    A sequence of batch calls is usually 
terminated by a legitimate remote procedure call operation in order to flush the pipeline and
get positive acknowledgement.



RFC-1057 Remote Procedure Call Version 2: Other Uses

Broadcast Remote Procedure Calls
In broadcast protocols, the client sends a broadcast call to the network and waits for 
numerous replies.    This requires the use of packet-based protocols (like UDP) as its 
transport protocol.    Servers that support broadcast protocols only respond when the call is 
successfully processed, and are silent in the face of errors.    Broadcast calls use the Port 
Mapper RPC service to achieve their semantics.    See Appendix for more information.



RFC-1057 Remote Procedure Call Version 2

The RPC Message Protocol
This section defines the RPC message protocol in the XDR data description language.

         enum msg_type {
            CALL  = 0,
            REPLY = 1
         };
A reply to a call message can take on two forms: The message was either accepted or 
rejected.

         enum reply_stat {
            MSG_ACCEPTED = 0,
            MSG_DENIED   = 1
         };

Given that a call message was accepted, the following is the status of an attempt to call a 
remote procedure.

         enum accept_stat {
            SUCCESS       = 0, /* RPC executed successfully       */
            PROG_UNAVAIL  = 1, /* remote hasn't exported program  */
            PROG_MISMATCH = 2, /* remote can't support version #  */
            PROC_UNAVAIL  = 3, /* program can't support procedure */
            GARBAGE_ARGS  = 4  /* procedure can't decode params   */
         };

Reasons why a call message was rejected:

         enum reject_stat {
            RPC_MISMATCH = 0, /* RPC version number != 2          */
            AUTH_ERROR = 1    /* remote can't authenticate caller */
         };

Why authentication failed:

         enum auth_stat {
            AUTH_BADCRED      = 1,  /* bad credentials (seal broken) */
            AUTH_REJECTEDCRED = 2,  /* client must begin new session */
            AUTH_BADVERF      = 3,  /* bad verifier (seal broken)    */
            AUTH_REJECTEDVERF = 4,  /* verifier expired or replayed  */
            AUTH_TOOWEAK      = 5   /* rejected for security reasons */
         };

The RPC message:

All messages start with a transaction identifier, xid, followed by a two-armed discriminated 
union.    The union's discriminant is a msg_type which switches to one of the two types of the
message.    The xid of a REPLY message always matches that of the initiating CALL message. 
NB: The xid field is only used for clients matching reply messages with call messages or for 
servers detecting retransmissions; the service side cannot treat this id as any type of 
sequence number.



         struct rpc_msg {
            unsigned int xid;
            union switch (msg_type mtype) {
            case CALL:
               call_body cbody;
            case REPLY:
               reply_body rbody;
            } body;
         };

Body of an RPC call:

In version 2 of the RPC protocol specification, rpcvers must be equal to 2.    The fields prog, 
vers, and proc specify the remote program, its version number, and the procedure within 
the remote program to be called.    After these fields are two authentication parameters:    
cred (authentication credentials) and verf (authentication verifier).    The two authentication
parameters are followed by the parameters to the remote procedure, which are specified by 
the specific program protocol.

         struct call_body {
            unsigned int rpcvers;       /* must be equal to two (2) */
            unsigned int prog;
            unsigned int vers;
            unsigned int proc;
            opaque_auth cred;
            opaque_auth verf;
            /* procedure specific parameters start here */
         };

Body of a reply to an RPC call:

         union reply_body switch (reply_stat stat) {
         case MSG_ACCEPTED:
            accepted_reply areply;
         case MSG_DENIED:
            rejected_reply rreply;
         } reply;

Reply to an RPC call that was accepted by the server:

There could be an error even though the call was accepted.    The first field is an 
authentication verifier that the server generates in order to validate itself to the client.    It is 
followed by a union whose discriminant is an enum accept_stat.    The SUCCESS arm of the 
union is protocol specific.    The PROG_UNAVAIL, PROC_UNAVAIL, and GARBAGE_ARGS arms of 
the union are void.    The PROG_MISMATCH arm specifies the lowest and highest version 
numbers of the remote program supported by the server.

         struct accepted_reply {
            opaque_auth verf;
            union switch (accept_stat stat) {
            case SUCCESS:
               opaque results[0];
               /*
                * procedure-specific results start here
                */
             case PROG_MISMATCH:



                struct {
                   unsigned int low;
                   unsigned int high;
                } mismatch_info;
             default:
                /*
                 * Void.  Cases include PROG_UNAVAIL, PROC_UNAVAIL,
                 * and GARBAGE_ARGS.
                 */
                void;
             } reply_data;
         };

Reply to an RPC call that was rejected by the server:

The call can be rejected for two reasons: either the server is not running a compatible 
version of the RPC protocol (RPC_MISMATCH), or the server refuses to authenticate the caller 
(AUTH_ERROR). In case of an RPC version mismatch, the server returns the lowest and highest
supported RPC version numbers.    In case of refused authentication, failure status is 
returned.

         union rejected_reply switch (reject_stat stat) {
         case RPC_MISMATCH:
            struct {
               unsigned int low;
               unsigned int high;
            } mismatch_info;
         case AUTH_ERROR:
            auth_stat stat;
         };



RFC-1057 Remote Procedure Call Version 2

Authentication Protocols
As previously stated, authentication parameters are opaque, but open-ended to the rest of 
the RPC protocol.    This section defines some "flavors" of authentication implemented at 
(and supported by) Sun.    Other sites are free to invent new authentication types, with the 
same rules of flavor number assignment as there is for program number assignment.

Null Authentication
UNIX Authentication
DES Authentication



RFC-1057 Remote Procedure Call Version 2: Authentication Protocols

Null Authentication
Often calls must be made where the client does not know its identity or the server does not 
care who the client is.    In this case, the flavor value (the discriminant of the opaque_auth's 
union) of the RPC message's credentials, verifier, and reply verifier is "AUTH_NULL".    The 
bytes of the opaque_auth's body are undefined.    It is recommended that the opaque length 
be zero.



RFC-1057 Remote Procedure Call Version 2: Authentication Protocols

UNIX Authentication
The client may wish to identify itself as it is identified on a UNIX(tm) system.    The value of 
the credential's discriminant of an RPC call message is "AUTH_UNIX".    The bytes of the 
credential's opaque body encode the the following structure:

         struct auth_unix {
            unsigned int stamp;
            string machinename<255>;
            unsigned int uid;
            unsigned int gid;
            unsigned int gids<16>;
         };

The "stamp" is an arbitrary ID which the caller machine may generate.    The "machinename" 
is the name of the caller's machine (like "krypton").    The "uid" is the caller's effective user 
ID.    The "gid" is the caller's effective group ID.    The "gids" is a counted array of groups 
which contain the caller as a member.    The verifier accompanying the credentials should be 
of "AUTH_NULL" (defined above).    Note these credentials are only unique within a particular 
domain of machine names, uids, and gids.    Inter-domain naming is beyond the scope of this 
document.

The value of the discriminant of the reply verifier received in the reply message from the 
server may be "AUTH_NULL" or "AUTH_SHORT".    In the case of "AUTH_SHORT", the bytes of the 
reply verifier's string encode an opaque structure.    This new opaque structure may now be 
passed to the server instead of the original "AUTH_UNIX" flavor credentials.    The server may 
keep a cache which maps shorthand opaque structures (passed back by way of an 
"AUTH_SHORT" style reply verifier) to the original credentials of the caller.    The caller can 
save network bandwidth and server cpu cycles by using the new credentials.

The server may flush the shorthand opaque structure at any time.    If this happens, the 
remote procedure call message will be rejected due to an authentication error.    The reason 
for the failure will be "AUTH_REJECTEDCRED".    At this point, the client may wish to try the 
original "AUTH_UNIX" style of credentials.



RFC-1057 Remote Procedure Call Version 2: Authentication Protocols

DES Authentication
UNIX authentication suffers from three major problems:

1 The naming is too UNIX oriented.
2 There is no universal name, uid, and gid space.
3 There is no verifier, so credentials can easily be faked.

DES authentication attempts to address these problems.

Naming
DES Authentication Verifiers
Nicknames and Clock Synchronization
DES Authentication Protocol Specification
Dffie-Hellman Encryption



RFC-1057 Remote Procedure Call Version 2: DES Authentication 

Naming
The first problem is handled by addressing the client by a simple string of characters instead
of by an operating system specific integer.    This string of characters is known as the 
"netname" or network name of the client. The server is not allowed to interpret the contents 
of the client's name in any other way except to identify the client.    Thus, netnames should 
be unique for every client in the Internet.

It is up to each operating system's implementation of DES authentication to generate 
netnames for its users that insure this uniqueness when they call upon remote servers.    
Operating systems already know how to distinguish users local to their systems. It is usually 
a simple matter to extend this mechanism to the network.    For example, a UNIX user at Sun
with a user ID of 515 might be assigned the following netname: "unix.515@sun.com".    This 
netname contains three items that serve to insure it is unique.    Going backwards, there is 
only one naming domain called "sun.com" in the Internet.    Within this domain, there is only 
one UNIX user with user ID 515.    However, there may be another user on another operating 
system, for example VMS, within the same naming domain that, by coincidence, happens to 
have the same user ID. To insure that these two users can be distinguished we add the 
operating system name. So one user is "unix.515@sun.com" and the other is 
"vms.515@sun.com".

The first field is actually a naming method rather than an operating system name.    It 
happens that today there is almost a one-to-one correspondence between naming methods 
and operating systems.    If the world could agree on a naming standard, the first field could 
be the name of that standard, instead of an operating system name.



RFC-1057 Remote Procedure Call Version 2: Authentication Protocols

DES Authentication Verifiers
Unlike UNIX authentication, DES authentication does have a verifier so the server can 
validate the client's credential (and vice-versa).    The contents of this verifier is primarily an 
encrypted timestamp.    The server can decrypt this timestamp, and if it is close to the real 
time, then the client must have encrypted it correctly.    The only way the client could 
encrypt it correctly is to know the "conversation key" of the RPC session. And if the client 
knows the conversation key, then it must be the real client.

The conversation key is a DES key which the client generates and passes to the server in its 
first RPC call.    The conversation key is encrypted using a public key scheme in this first 
transaction.    The particular public key scheme used in DES authentication is Diffie- Hellman 
with 192-bit keys.    The details of this encryption method are described later.

The client and the server need the same notion of the current time in order for all of this to 
work, perhaps by using the Network Time Protocol.    If network time synchronization cannot 
be guaranteed, then the client can determine the server's time before beginning the 
conversation using a simpler time request protocol.

The way a server determines if a client timestamp is valid is somewhat complicated. For any
other transaction but the first, the server just checks for two things:

1 the timestamp is greater than the one    previously seen from the same 
client.

2 the timestamp has not expired.

A timestamp is expired if the server's time is later than the sum of the client's timestamp 
plus what is known as the client's "window".    The "window" is a number the client passes 
(encrypted) to the server in its first transaction.    You can think of it as a lifetime for the 
credential.

This explains everything but the first transaction.    In the first transaction, the server checks 
only that the timestamp has not expired.    If this was all that was done though, then it would
be quite easy for the client to send random data in place of the timestamp with a fairly good
chance of succeeding.    As an added check, the client sends an encrypted item in the first 
transaction known as the "window verifier" which must be equal to the window minus 1, or 
the server will reject the credential.

The client too must check the verifier returned from the server to be sure it is legitimate.    
The server sends back to the client the encrypted timestamp it received from the client, 
minus one second.    If the client gets anything different than this, it will reject it.



RFC-1057 Remote Procedure Call Version 2: Authentication Protocols

Nicknames and Clock Synchronization
After the first transaction, the server's DES authentication subsystem returns in its verifier to
the client an integer "nickname" which the client may use in its further transactions instead 
of passing its netname, encrypted DES key and window every time. The nickname is most 
likely an index into a table on the server which stores for each client its netname, decrypted 
DES key and window.

Though they originally were synchronized, the client's and server's clocks can get out of 
sync again.    When this happens the client RPC subsystem most likely will get back 
"RPC_AUTHERROR" at which point it should resynchronize.

A client may still get the "RPC_AUTHERROR" error even though it is synchronized with the 
server.    The reason is that the server's nickname table is a limited size, and it may flush 
entries whenever it wants.    A client should resend its original credential in this case and the 
server will give it a new nickname.    If a server crashes, the entire nickname table gets 
flushed, and all clients will have to resend their original credentials.



RFC-1057 Remote Procedure Call Version 2: Authentication Protocols

DES Authentication Protocol Specification
There are two kinds of credentials: one in which the client uses its full network name, and 
one in which it uses its "nickname" (just an unsigned integer) given to it by the server.    The 
client must use its fullname in its first transaction with the server, in which the server will 
return to the client its nickname.    The client may use its nickname in all further transactions
with the server. There is no requirement to use the nickname, but it is wise to use it for 
performance reasons.

      enum authdes_namekind {
         ADN_FULLNAME = 0,
         ADN_NICKNAME = 1
      };

A 64-bit block of encrypted DES data:

   typedef opaque des_block[8];

Maximum length of a network user's name:

   const MAXNETNAMELEN = 255;

A fullname contains the network name of the client, an encrypted conversation key and the 
window. The window is actually a lifetime for the credential.    If the time indicated in the 
verifier timestamp plus the window has past, then the server should expire the request and 
not grant it.    To insure that requests are not replayed, the server should insist that 
timestamps are greater than the previous one seen, unless it is the first transaction.    In the 
first transaction, the server checks instead that the window verifier is one less than the 
window.

   struct authdes_fullname {
      string name<MAXNETNAMELEN>;  /* name of client                */
      des_block key;               /* PK encrypted conversation key */
      opaque window[4];            /* encrypted window              */
   };

A credential is either a fullname or a nickname:

   union authdes_cred switch (authdes_namekind adc_namekind) {
   case ADN_FULLNAME:
      authdes_fullname adc_fullname;
   case ADN_NICKNAME:
      int adc_nickname;
   };

A timestamp encodes the time since midnight,      March 1, 1970.

   struct timestamp {
      unsigned int seconds;    /* seconds          */
      unsigned int useconds;   /* and microseconds */
   };

Verifier: client variety.



The window verifier is only used in the first transaction.    In conjunction with a fullname 
credential, these items are packed into the following structure before being encrypted:

   struct {
       adv_timestamp;        -- one DES block
       adc_fullname.window;  -- one half DES block
       adv_winverf;          -- one half DES block
   }

This structure is encrypted using CBC mode encryption with an input vector of zero.    All 
other encryptions of timestamps use ECB mode encryption.

   struct authdes_verf_clnt {
      des_block adv_timestamp;    /* encrypted timestamp       */
      opaque adv_winverf[4];      /* encrypted window verifier */
   };

Verifier: server variety.

The server returns (encrypted) the same timestamp the client gave it minus one second.    It 
also tells the client its nickname to be used in future transactions (unencrypted).

   struct authdes_verf_svr {
      des_block adv_timeverf;     /* encrypted verifier      */
      int adv_nickname;      /* new nickname for client */
   };



RFC-1057 Remote Procedure Call Version 2: Authentication Protocols

Diffie-Hellman Encryption
In this scheme, there are two constants "BASE" and "MODULUS".    The particular values Sun 
has chosen for these for the DES authentication protocol are:

   const BASE = 3;
   const MODULUS = "d4a0ba0250b6fd2ec626e7efd637df76c716e22d0944b88b"

The way this scheme works is best explained by an example.    Suppose there are two people
"A" and "B" who want to send encrypted messages to each other.    So, A and B both 
generate "secret" keys at random which they do not reveal to anyone.    Let these keys be 
represented as SK(A) and SK(B).    They also publish in a public directory their "public" keys. 
These keys are computed as follows:

         PK(A) = ( BASE ** SK(A) ) mod MODULUS
         PK(B) = ( BASE ** SK(B) ) mod MODULUS

The "**" notation is used here to represent exponentiation. Now, both A and B can arrive at 
the "common" key between them, represented here as CK(A, B), without revealing their 
secret keys.

A computes:

      CK(A, B) = ( PK(B) ** SK(A)) mod MODULUS

while B computes:

      CK(A, B) = ( PK(A) ** SK(B)) mod MODULUS

These two can be shown to be equivalent:

      (PK(B) ** SK(A)) mod MODULUS = (PK(A) ** SK(B)) mod MODULUS

We drop the "mod MODULUS" parts and assume modulo arithmetic to simplify things:

      PK(B) ** SK(A) = PK(A) ** SK(B)

Then, replace PK(B) by what B computed earlier and likewise for PK(A).

      ((BASE ** SK(B)) ** SK(A) = (BASE ** SK(A)) ** SK(B)

which leads to:

      BASE ** (SK(A) * SK(B)) = BASE ** (SK(A) * SK(B))

This common key CK(A, B) is not used to encrypt the timestamps used in the protocol. 
Rather, it is used only to encrypt a conversation key which is then used to encrypt the 
timestamps.    The reason for doing this is to use the common key as little as possible, for 
fear that it could be broken.    Breaking the conversation key is a far less serious offense, 
since conversations are relatively short-lived.

The conversation key is encrypted using 56-bit DES keys, yet the common key is 192 bits.    



To reduce the number of bits, 56 bits are selected from the common key as follows. The 
middle-most 8-bytes are selected from the common key, and then parity is added to the 
lower order bit of each byte, producing a 56-bit key with 8 bits of parity.



RFC-1057 Remote Procedure Call Version 2

Record Marking Standard
When RPC messages are passed on top of a byte stream transport protocol (like TCP), it is 
necessary to delimit one message from another in order to detect and possibly recover from 
protocol errors.    This is called record marking (RM).    Sun uses this RM/TCP/IP transport for 
passing RPC messages on TCP streams.    One RPC message fits into one RM record.

A record is composed of one or more record fragments.    A record fragment is a four-byte 
header followed by 0 to (2**31) - 1 bytes of fragment data.    The bytes encode an unsigned 
binary number; as with XDR integers, the byte order is from highest to lowest.    The number 
encodes two values -- a boolean which indicates whether the fragment is the last fragment 
of the record (bit value 1 implies the fragment is the last fragment) and a 31-bit unsigned 
binary value which is the length in bytes of the fragment's data.    The boolean value is the 
highest-order bit of the header; the length is the 31 low-order bits.    (Note that this record 
specification is NOT in XDR standard form!)



RFC-1057 Remote Procedure Call Version 2

The RPC Language
Just as there was a need to describe the XDR data-types in a formal language, there is also 
need to describe the procedures that operate on these XDR data-types in a formal language 
as well.    The RPC Language is an extension to the XDR language, with the addition of 
"program", "procedure", and "version" declarations.    The following example is used to 
describe the essence of the language.

An Example Service Described in the RPC Language
The RPC Language Specification
Syntax Notes



RFC-1057 Remote Procedure Call Version 2: RPC Language

An Example Service Described in the RPC Language
Here is an example of the specification of a simple ping program.

      program PING_PROG {
            /*
             * Latest and greatest version
             */
            version PING_VERS_PINGBACK {
               void
               PINGPROC_NULL(void) = 0;

               /*
                * Ping the client, return the round-trip time
                * (in microseconds). Returns -1 if the operation
                * timed out.
                */
               int
               PINGPROC_PINGBACK(void) = 1;
            } = 2;

            /*
             * Original version
             */
            version PING_VERS_ORIG {
               void
               PINGPROC_NULL(void) = 0;
            } = 1;
         } = 1;

         const PING_VERS = 2;      /* latest version */

The first version described is PING_VERS_PINGBACK with two procedures, PINGPROC_NULL and
PINGPROC_PINGBACK.    PINGPROC_NULL takes no arguments and returns no results, but it is 
useful for computing round-trip times from the client to the server and back again.    By 
convention, procedure 0 of any RPC protocol should have the same semantics, and never 
require any kind of authentication.    The second procedure is used for the client to have the 
server do a reverse ping operation back to the client, and it returns the amount of time (in 
microseconds) that the operation used.    The next version, PING_VERS_ORIG, is the original 
version of the protocol and it does not contain PINGPROC_PINGBACK procedure. It is useful for
compatibility with old client programs, and as this program matures it may be dropped from 
the protocol entirely.



RFC-1057 Remote Procedure Call Version 2: RPC Language

The RPC Language Specification
The RPC language is identical to the XDR language defined in RFC 1014, except for the 
added definition of a "program-def" described below.

   program-def:
      "program" identifier "{"
         version-def
         version-def *
      "}" "=" constant ";"

   version-def:
      "version" identifier "{"
          procedure-def
          procedure-def *
      "}" "=" constant ";"

   procedure-def:
      type-specifier identifier "(" type-specifier
        ("," type-specifier )* ")" "=" constant ";"



RFC-1057 Remote Procedure Call Version 2: RPC Language

Syntax Notes
1 The following keywords are added and cannot be used as identifiers: 

"program" and "version";

2 A version name cannot occur more than once within the scope of a 
program definition. Nor can a version number occur more than once 
within the scope of a program definition.

3 A procedure name cannot occur more than once within the scope of a 
version definition. Nor can a procedure number occur more than once 
within the scope of version definition.

4 Program identifiers are in the same name space as constant and type 
identifiers.

5 Only unsigned constants can be assigned to programs, versions and 
procedures.



RFC-1057 Remote Procedure Call Version 2: Appendix

Appendix: Port Mapper Program Protocol
The port mapper program maps RPC program and version numbers to transport-specific port
numbers.    This program makes dynamic binding of remote programs possible.

This is desirable because the range of reserved port numbers is very small and the number 
of potential remote programs is very large.    By running only the port mapper on a reserved 
port, the port numbers of other remote programs can be ascertained by querying the port 
mapper.

The port mapper also aids in broadcast RPC.    A given RPC program will usually have 
different port number bindings on different machines, so there is no way to directly 
broadcast to all of these programs. The port mapper, however, does have a fixed port 
number.    So, to broadcast to a given program, the client actually sends its message to the 
port mapper located at the broadcast address. Each port mapper that picks up the broadcast
then calls the local service specified by the client.    When the port mapper gets the reply 
from the local service, it sends the reply on back to the client.

Port Mapper Protocol Specification (in RPC Language)
Port Mapper Operation



RFC-1057 Remote Procedure Call Version 2: Appendix

Port Mapper Protocol Specification (in RPC Language)
         const PMAP_PORT = 111;      /* portmapper port number */

A mapping of (program, version, protocol) to port number:

         struct mapping {
            unsigned int prog;
            unsigned int vers;
            unsigned int prot;
            unsigned int port;
         };

Supported values for the "prot" field:

         const IPPROTO_TCP = 6;      /* protocol number for TCP/IP */
         const IPPROTO_UDP = 17;     /* protocol number for UDP/IP */

A list of mappings:

         struct *pmaplist {
            mapping map;
            pmaplist next;
         };

Arguments to callit:

         struct call_args {
            unsigned int prog;
            unsigned int vers;
            unsigned int proc;
            opaque args<>;
         };

Results of callit:

         struct call_result {
            unsigned int port;
            opaque res<>;
         };

Port mapper procedures:

         program PMAP_PROG {
            version PMAP_VERS {
               void
               PMAPPROC_NULL(void)         = 0;

               bool
               PMAPPROC_SET(mapping)       = 1;

               bool
               PMAPPROC_UNSET(mapping)     = 2;



               unsigned int
               PMAPPROC_GETPORT(mapping)   = 3;

               pmaplist
               PMAPPROC_DUMP(void)         = 4;

               call_result
               PMAPPROC_CALLIT(call_args)  = 5;
            } = 2;
         } = 100000;



RFC-1057 Remote Procedure Call Version 2: Appendix

Port Mapper Operation
The portmapper program currently supports two protocols (UDP and TCP).    The portmapper 
is contacted by talking to it on assigned port number 111 (SUNRPC) on either of these 
protocols.

The following is a description of each of the portmapper procedures:

   PMAPPROC_NULL:

This procedure does no work.    By convention, procedure zero of any protocol takes no 
parameters and returns no results.

   PMAPPROC_SET:

When a program first becomes available on a machine, it registers itself with the port 
mapper program on the same machine.    The program passes its program number "prog", 
version number "vers", transport protocol number "prot", and the port "port" on which it 
awaits service request.    The procedure returns a boolean reply whose value is "TRUE" if the 
procedure successfully established the mapping and "FALSE" otherwise.    The procedure 
refuses to establish a mapping if one already exists for the tuple "(prog, vers, prot)".

   PMAPPROC_UNSET:

When a program becomes unavailable, it should unregister itself with the port mapper 
program on the same machine.    The parameters and results have meanings identical to 
those of "PMAPPROC_SET".    The protocol and port number fields of the argument are ignored.

   PMAPPROC_GETPORT:

Given a program number "prog", version number "vers", and transport protocol number 
"prot", this procedure returns the port number on which the program is awaiting call 
requests.    A port value of zeros means the program has not been registered.    The "port" 
field of the argument is ignored.

   PMAPPROC_DUMP:

This procedure enumerates all entries in the port mapper's database.    The procedure takes 
no parameters and returns a list of program, version, protocol, and port values.

   PMAPPROC_CALLIT:

This procedure allows a client to call another remote procedure on the same machine 
without knowing the remote procedure's port number.    It is intended for supporting 
broadcasts to arbitrary remote programs via the well-known port mapper's port.    The 
parameters "prog", "vers", "proc", and the bytes of "args" are the program number, 
version number, procedure number, and parameters of the remote procedure.    

Note:
1 This procedure only sends a reply if the procedure was successfully 

executed and is silent (no reply) otherwise.



2 The port mapper communicates with the remote program using UDP 
only.

The procedure returns the remote program's port number, and the reply is the reply of the 
remote procedure.



Birrell, A. D.    & Nelson, B. J., "Implementing Remote Procedure Calls", XEROX CSL-83-7, 
October 1983.



Cheriton, D., "VMTP: Versatile Message Transaction Protocol", Preliminary Version 0.3, 
Stanford University, January 1987.



Diffie & Hellman, "New Directions in Cryptography", IEEE Transactions on Information Theory
IT-22, November 1976.



National Bureau of Standards, "Data Encryption Standard", Federal Information Processing 
Standards Publication 46, January 1977.





RFC-1060 Assigned Numbers
March 1990

Status Of This Memo
This memo is a status report on the parameters (i.e., numbers and keywords) used in 
protocols in the Internet community. Distribution of this memo is unlimited. 

Introduction
Data Notations
Special Addresses
Version Numbers
Protocol Numbers
Port Numbers
Unix Ports
Internet Multicast Addresses
IANA Ethernet Address Block
IP TOS Parameters
IP Time To Live Parameter
Domain System Parameters
BOOTP Parameters
Network Management Parameters
ARPANET and MILNET Logical Addresses
ARPANET and MILNET Link Numbers
ARPANET and MILNET X. 25 Address Mappings
IEEE 802 Numbers Of Interest
Ethernet Numbers Of Interest
Ethernet Vendor Address Components
Ethernet Multicast Addresses
XNS Protocol Types
Protocol/Type Field Assignments
PRONET 80 Type Numbers
Address Resolution Protocol Parameters
Reverse Address Resolution Protocol Operation Codes
X.25 Type Numbers
Public Data Network Numbers
Telnet Options
Mail Encryption Types
Machine Names
System Names
Protocol and Service Names
Terminal Type Names



RFC-1060 Assigned Numbers March 1990

Introduction

This Network Working Group Request for Comments documents the currently assigned 
values from several series of numbers used in network protocol implementations.    This RFC 
will be updated periodically, and in any case current information can be obtained from the 
Internet Assigned Numbers Authority (IANA).    If you are developing a protocol or application
that will require the use of a link, socket, port, protocol, etc., please contact the IANA to 
receive a number assignment. 

Joyce K. Reynolds
Internet Assigned Numbers Authority
USC - Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90292-6695

Phone: (213) 822-1511
Electronic mail: JKREY@ISI.EDU

Most of the protocols mentioned here are documented in the RFC series of notes.    Some of 
the items listed are undocumented.    Further information on protocols can be found in the 
memo "Official Internet Protocols" [118].    The more prominent and more generally used are 
documented in the "DDN Protocol Handbook, Volume Two, DARPA Internet Protocols" [45] 
prepared by the NIC.    Other collections of older or obsolete protocols are contained in the 
"Internet Protocol Transition Workbook" [76], or in the "ARPANET Protocol Transition 
Handbook" [47].    For further information on ordering the complete 1985 DDN Protocol 
Handbook, write: SRI International (SRI-NIC), DDN Network Information Center, Room EJ291, 
333 Ravenswood Avenue, Menlo Park, CA., 94025; or call: 1-800-235-3155.    Also, the 
Internet Activities Board (IAB) publishes the "IAB Official Protocol Standards" [62], which 
describes the state of standardization of protocols used in the Internet.    This document is 
issued quarterly.    Current copies may be obtained from the DDN Network Information 
Center or from the IANA. 
In the entries below, the name and mailbox of the responsible individual is indicated.    The 
bracketed entry, e.g., [nn,iii], at the right hand margin of the page indicates a reference for 
the listed protocol, where the number ("nn") cites the document and the letters ("iii") cites 
the person.    Whenever possible, the letters are a NIC Ident as used in the WhoIs (NICNAME) 
service. 



RFC-1060 Assigned Numbers March 1990

Data Notations

The convention in the documentation of Internet Protocols is to express numbers in decimal 
and to picture data in "big-endian" order [21].    That is, fields are described left to right, with
the most significant octet on the left and the least significant octet on the right. 
The order of transmission of the header and data described in this document is resolved to 
the octet level.    Whenever a diagram shows a group of octets, the order of transmission of 
those octets is the normal order in which they are read in English.    For example, in the 
following diagram the octets are transmitted in the order they are numbered. 

0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       1       |       2       |       3       |       4       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       5       |       6       |       7       |       8       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       9       |      10       |       11      |      12       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Transmission Order of Bytes

Whenever an octet represents a numeric quantity the left most bit in the diagram is the high
order or most significant bit.    That is, the bit labeled 0 is the most significant bit.    For 
example, the following diagram represents the value 170 (decimal). 

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|1 0 1 0 1 0 1 0|
+-+-+-+-+-+-+-+-+
Significance of Bits

Similarly, whenever a multi-octet field represents a numeric quantity the left most bit of the 
whole field is the most significant bit.    When a multi-octet quantity is transmitted the most 
significant octet is transmitted first.



RFC-1060 Assigned Numbers March 1990

Special Addresses
There are five classes of IP addresses: Class A through Class E [119].    Of 
these, Class D and Class E addresses are reserved for experimental use. A 
gateway which is not participating in these experiments must ignore all 
datagrams with a Class D or Class E destination IP address.    ICMP Destination 
Unreachable or ICMP Redirect messages must not result from receiving such 
datagrams. 
There are certain special cases for IP addresses [11].    These special cases can
be concisely summarized using the earlier notation for an IP address: 
IP-address ::= { <Network-number>, <Host-number> }
or
IP-address ::= { <Network-number>, <Subnet-number>, <Host-
number> } 
if we also use the notation "-1" to mean the field contains all 1 bits.    Some 
common special cases are as follows: 
(a) {0, 0}

This host on this network.    Can only be used as a source address (see 
note later). 

(b) {0, <Host-number>}
Specified host on this network.    Can only be used as a source address. 

(c) { -1, -1}
Limited broadcast.    Can only be used as a destination address, and a 
datagram with this address must never be forwarded outside the (sub-)net
of the source. 

(d) {<Network-number>, -1}
Directed broadcast to specified network.    Can only be used as a 
destination address. 

(e) {<Network-number>, <Subnet-number>, -1}
Directed broadcast to specified subnet.Can only be used as a destination 
address. 

(f) {<Network-number>, -1, -1}
Directed broadcast to all subnets of specified subnetted network.    Can 
only be used as a destination address. 

(g) {127, <any>}
Internal host loopback address.    Should never appear outside a host. 



RFC-1060 Assigned Numbers March 1990

Version Numbers

In the Internet Protocol (IP) [45,105] there is a field to identify the version of the 
internetwork general protocol.    This field is 4 bits in size. 

Assigned Internet Version Numbers
     Decimal     Keyword       Version                    References  

0 Reserved [JBP]
1-3 Unassigned [JBP]
4 IP Internet Protocol [105,JBP]
5 ST ST Datagram Mode [49,JWF]

6-14 Unassigned [JBP]
15 Reserved [JBP]



RFC-1060 Assigned Numbers March 1990

Protocol Numbers

In the Internet Protocol (IP) [45,105] there is a field, called Protocol, to identify the the next 
level protocol.    This is an 8 bit field. 

Assigned Internet Protocol Numbers
     Decimal       Keyword             Protocol                                 References  

0 Reserved [JBP]
1 ICMP Internet Control Message [97,JBP]
2 IGMP Internet Group Management [43,JBP]
3 GGP Gateway-to-Gateway [60,MB]
4 Unassigned [JBP]
5 ST Stream [49,JWF]
6 TCP Transmission Control [106,JBP]
7 UCL UCL [PK]
8 EGP Exterior Gateway Protocol [123,DLM1]
9 IGP any private interior gateway [JBP]

10 BBN-RCC-MON BBN RCC Monitoring [SGC]
11 NVP-II Network Voice Protocol [22,SC3]
12 PUP PUP [8,XEROX]
13 ARGUS ARGUS [RWS4]
14 EMCON EMCON [BN7]
15 XNET Cross Net Debugger [56,JFH2]
16 CHAOS Chaos [NC3]
17 UDP User Datagram [104,JBP]
18 MUX Multiplexing [23,JBP]
19 DCN-MEAS DCN Measurement Subsystems [DLM1]
20 HMP Host Monitoring [59,RH6]
21 PRM Packet Radio Measurement [ZSU]
22 XNS-IDP XEROX NS IDP [133,XEROX]
23 TRUNK-1 Trunk-1 [BWB6]
24 TRUNK-2 Trunk-2 [BWB6]
25 LEAF-1 Leaf-1 [BWB6]
26 LEAF-2 Leaf-2 [BWB6]
27 RDP Reliable Data Protocol [138,RH6]
28 IRTP Internet Reliable Transaction [79,TXM]
29 ISO-TP4 ISO Transport Protocol Class 4 [63,RC77]
30 NETBLT Bulk Data Transfer Protocol [20,DDC1]
31 MFE-NSP MFE Network Services Protocol [124,BCH2]
32 MERIT-INP MERIT Internodal Protocol [HWB]
33 SEP Sequential Exchange Protocol [JC120]
34 3PC Third Party Connect Protocol [SAF3]

35-60 Unassigned [JBP]
61 any host internal protocol [JBP]
62 CFTP CFTP [50,HCF2]
63 any local network [JBP]
64 SAT-EXPAK SATNET and Backroom EXPAK [SHB]
65 Unassigned [JBP]
66 RVD MIT Remote Virtual Disk Protocol [MBG]
67 IPPC Internet Pluribus Packet Core [SHB]
68 any distributed file system [JBP]
69 SAT-MON SATNET Monitoring [SHB]



70 VISA VISA Protocol [GXT1]
71 IPCV Internet Packet Core Utility [SHB]

72-75 Unassigned [JBP]
76 BR-SAT-MON Backroom SATNET Monitoring [SHB]
77 SUN-ND SUN ND PROTOCOL-Temporary [WM3]
78 WB-MON WIDEBAND Monitoring [SHB]
79 WB-EXPAK WIDEBAND EXPAK [SHB]
80 ISO-IP ISO Internet Protocol [MTR]
81 VMTP VMTP [DRC3]
82 SECURE-VMTP SECURE-VMTP [DRC3]
83 VINES VINES [BXH]
84 TTP TTP [JXS]
85 NSFNET-IGP NSFNET-IGP [HWB]
86 DGP Dissimilar Gateway Protocol [74,ML109]
87 TCF TCF [GAL5]
88 IGRP IGRP [18,GXS]
89 OSPFIGP OSPFIGP [83,JTM4]
90 Sprite-RPC Sprite RPC Protocol [143,BXW]
91 LARP Locus Address Resolution [BXH]

92-254 Unassigned [JBP]
255 Reserved [JBP]



RFC-1060 Assigned Numbers March 1990

Port Numbers

Ports are used in the TCP [45,106] to name the ends of logical connections which carry long 
term conversations.    For the purpose of providing services to unknown callers, a service 
contact port is defined.    This list specifies the port used by the server process as its contact 
port.    The contact port is sometimes called the "well-known port".      See also UNIX Ports.
To the extent possible, these same port assignments are used with the UDP [46,104]. 
To the extent possible, these same port assignments are used with the ISO-TP4 [64]. 
The assigned ports use a small portion of the possible port numbers.
The assigned ports have all except the low order eight bits cleared to zero.    The low order 
eight bits are specified here. 

Port Assignments:
     Decimal     Keyword           Description                           References  

0 Reserved [JBP]
1 TCPMUX TCP Port Service Multiplexer [MKL]

2-4 Unassigned [JBP]
5 RJE Remote Job Entry [12,JBP]
7 ECHO Echo [95,JBP]
9 DISCARD Discard [94,JBP]

11 USERS Active Users [89,JBP]
13 DAYTIME Daytime [93,JBP]
15 Unassigned [JBP]
17 QUOTE Quote of the Day [100,JBP]
19 CHARGEN Character Generator [92,JBP]
20 FTP-DATA File Transfer [Default Data] [96,JBP]
21 FTP File Transfer [Control] [96,JBP]
23 TELNET Telnet [112,JBP]
25 SMTP Simple Mail Transfer [102,JBP]
27 NSW-FE NSW User System FE [24,RHT]
29 MSG-ICP MSG ICP [85,RHT]
31 MSG-AUTH MSG Authentication [85,RHT]
33 DSP Display Support Protocol [EXC]
35 any private printer server [JBP]
37 TIME Time [108,JBP]
39 RLP Resource Location Protocol [MA]
41 GRAPHICS Graphics [129,JBP]
42 NAMESERVER Host Name Server [99,JBP]
43 NICNAME Who Is [55,MARY]
44 MPM-FLAGS MPM FLAGS Protocol [JBP]
45 MPM MPM [recv] [98,JBP]
46 MPM-SND MPM [default send] [98,JBP]
47 NI-FTP NI FTP [134,SK8]
49 LOGIN Login Host Protocol [PHD1]
51 LA-MAINT IMP Logical Address Maint [76,AGM]
53 DOMAIN Domain Name Server [81,82,PM1]
55 ISI-GL ISI Graphics Language [7,RB9]
57 any private terminal access [JBP]
59 any private file service [JBP]
61 NI-MAIL NI MAIL [5,SK8]



63 VIA-FTP VIA Systems - FTP [DXD]
65 TACACS-DS TACACS-Database Service [3,KH43]
67 BOOTPS Bootstrap Protocol Server [36,WJC2]
68 BOOTPC Bootstrap Protocol Client [36,WJC2]
69 TFTP Trivial File Transfer [126,DDC1]
71 NETRJS-1 Remote Job Service [10,RTB3]
72 NETRJS-2 Remote Job Service [10,RTB3]
73 NETRJS-3 Remote Job Service [10,RTB3]
74 NETRJS-4 Remote Job Service [10,RTB3]
75 any private dial out service [JBP]
77 any private RJE service [JBP]
79 FINGER Finger [52,KLH]
81 HOSTS2-NS HOSTS2 Name Server [EAK1]
83 MIT-ML-DEV MIT ML Device [DPR]
85 MIT-ML-DEV MIT ML Device [DPR]
87 any private terminal link [JBP]
89 SU-MIT-TG SU/MIT Telnet Gateway [MRC]
91 MIT-DOV MIT Dover Spooler [EBM]
93 DCP Device Control Protocol [DT15]
95 SUPDUP SUPDUP [27,MRC]
97 SWIFT-RVF Swift Remote Vitural File [MXR]
98 TACNEWS TAC News [ANM2]
99 METAGRAM Metagram Relay [GEOF]

101 HOSTNAME NIC Host Name Server [54,MARY]
102 ISO-TSAP ISO-TSAP [16,MTR]
103 X400 X400 [HCF2]
104 X400-SND X400-SND [HCF2]
105 CSNET-NS Mailbox Name Nameserver [127,MS56]
107 RTELNET Remote Telnet Service [101,JBP]
109 POP2 Post Office Protocol - Ver 2 [14,JKR1]
110 POP3 Post Office Protocol - Ver 3 [122,MTR]
111 SUNRPC SUN Remote Procedure Call [DXG]
113 AUTH Authentication Service [130,MCSJ]
115 SFTP Simple File Transfer Protocol [73,MKL1]
117 UUCP-PATH UUCP Path Service [44,MAE]
119 NNTP Network News Transfer [65,PL4]
121 ERPC Encore Expedited RPC [132,JXO]
123 NTP Network Time Protocol [80,DLM1]
125 LOCUS-MAP Locus PC-Interface Net Map [137,EP53]
127 LOCUS-CON Locus PC-Interface Conn [137,EP53]
129 PWDGEN Password Generator Protocol [141,FJW]
130 CISCO-FNA CISCO FNATIVE [WXB]
131 CISCO-TNA CISCO TNATIVE [WXB]
132 CISCO-SYS CISCO SYSMAINT [WXB]
133 STATSRV Statistics Service [DLM1]
134 INGRES-NET INGRES-NET Service [MXB]
135 LOC-SRV Location Service [JXP]
136 PROFILE PROFILE Naming System [LLP]
137 NETBIOS-NS NETBIOS Name Service [JBP]
138 NETBIOS-DGM NETBIOS Datagram Service [JBP]
139 NETBIOS-SSN NETBIOS Session Service [JBP]
140 EMFIS-DATA EMFIS Data Service [GB7]
141 EMFIS-CNTL EMFIS Control Service [GB7]
142 BL-IDM Britton-Lee IDM [SXS1]
143 IMAP2 InterimMail Access v2 [MRC]



144 NEWS NewS [JAG]
145 UAAC UAAC Protocol [DAG4]
146 ISO-TP0 ISO-IP0 [86,MTR]
147 ISO-IP ISO-IP [MTR]
148 CRONUS CRONUS-SUPPORT [135,JXB]
149 AED-512 AED 512 Emulation Service [AXB]
150 SQL-NET SQL-NET [MXP]
151 HEMS HEMS [87,CXT]
152 BFTP Background FTP [AD14]
153 SGMP SGMP [37,MS9]
154 NETSC-PROD NETSC [SH37]
155 NETSC-DEV NETSC [SH37]
156 SQLSRV SQL Service [CMR]
157 KNET-CMP KNET/VM Com/Mess [77,GSM11]
158 PCMail-SRV PCMail Server [19,MXL]
159 NSS-Routing NSS-Routing [JXR]
160 SGMP-TRAPS SGMP-TRAPS [37,MS9]
161 SNMP SNMP [15,MTR]
162 SNMPTRAP SNMPTRAP [15,MTR]
163 CMIP-Manage CMIP/TCP    Manager [4,AXB1]
164 CMIP-Agent CMIP/TCP Agent [4,AXB1]
165 XNS-Courier Xerox [144,SXA]
166 S-Net Sirius Systems [BXL]
167 NAMP NAMP [MS9]
168 RSVD RSVD [NT12]
169 SEND SEND [WDW11]
170 Print-SRV Network PostScript [BKR]
171 Multiplex Network Innovations Multiplex [KXD]
172 CL/1 Network Innovations CL/1 [KXD]
173 Xyplex-MUX Xyplex [BXS]
174 MAILQ MAILQ [RXZ]
175 VMNET VMNET [CXT]
176 GENRAD-MUX GENRAD-MUX [RXT]
177 XDMCP X Display Manager Control [RWS4]
178 NextStep NextStep Window Server [LXH]
179 BGP Border Gateway Protocol [KSL]
180 RIS Intergraph [DXB]
181 Unify Unify [VXS]
182 Unisys-Cam Unisys-Cam [GXG]
183 OCBinder OCBinder [JXO1]
184 OCServer OCServer [JXO1]
185 Remote-KIS Remote-KIS [RXD1]
186 KIS KIS Protocol [RXD1]
187 ACI Application Comm Interface [RXC1]
188 MUMPS MUMPS [HS23]
189 QFT Queued File Transport [WXS]
190 GACP Gateway Access Control [PCW]
191 Prospero Prospero [BCN]
192 OSU-NMS OSU Network Monitoring [DXK]
193 SRMP Spider Remote Monitoring [TXS]
194 IRC Internet Relay Chat Protocol [JXO2]
195 DN6-NLM-AUD DNSIX Network Level Mo Audit [LL69]
196 DN6-SMM-RED DNSIX Sess Mgt Mod Audir Red [LL69]
197 DLS Directory Location Service [SXB]
198 DLS-Mon Directory Location Service Mon [SXB]



198-200 Unassigned [JBP]
201 AT-RMTP AppleTalk Routing Maint [RXC]
202 AT-NBP AppleTalk Name Binding [RXC]
203 AT-3 AppleTalk Unused [RXC]
204 AT-ECHO AppleTalk Echo [RXC]
205 AT-5 AppleTalk Unused [RXC]
206 AT-ZIS AppleTalk Zone Information [RXC]
207 AT-7 AppleTalk Unused [RXC]
208 AT-8 AppleTalk Unused [RXC]

209-223 Unassigned [JBP]
224-241 Reserved [JBP]

243 SUR-MEAS Survey Measurement [6,DDC1]
245 LINK LINK [1,RDB2]
246 DSP3270 Display Systems Protocol [39,WJS1]

247-255 Reserved [JBP]



RFC-1060 Assigned Numbers March 1990

UNIX Ports

By convention, ports in the range 256 to 1024 are used for "Unix Standard" services.    Listed
here are some of the normal uses of these port numbers. 
      Service Name        Port/Protocol             Description  
TCP

echo 7/tcp
discard 9/tcp sink null
systat 11/tcp users

daytime 13/tcp
netstat 15/tcp

qotd 17/tcp quote
chargen 19/tcp ttytst source
ftp-data 20/tcp

ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
time 37/tcp timserver
name 42/tcp nameserver
whois 43/tcp nicname

nameserver 53/tcp domain
apts 57/tcp any private terminal service
apfs 59/tcp any private file service
rje 77/tcp netrjs

finger 79/tcp
link 87/tcp ttylink

supdup 95/tcp
newacct 100/tcp [unauthorized use]

hostnames 101/tcp hostname
iso-tsap 102/tcp tsap

x400 103/tcp
x400-snd 104/tcp
csnet-ns 105/tcp CSNET Name Service

pop-2 109/tcp pop postoffice
sunrpc 111/tcp
auth 113/tcp authentication
sftp 115/tcp

uucp-path 117/tcp
nntp 119/tcp usenet readnews untp
ntp 123/tcp network time protocol

statsrv 133/tcp
profile 136/tcp
NeWS 144/tcp news

print-srv 170/tcp
exec 512/tcp remote process execution; authentication performed 

using    passwords and UNIX login names
login 513/tcp remotelogin a la telnet; automatic authentication 

performed based on priviledged port numbers and 
distributed data bases which identify "authentication 
domains"

cmd 514/tcp like exec, but automatic authentication is performed as 



for login server
printer 515/tcp spooler

efs 520/tcp extended file name server
tempo 526/tcp newdate
courier 530/tcp rpc

conference 531/tcp chat
netnews 532/tcp readnews

uucp 540/tcp uucpd
klogin 543/tcp
kshell 544/tcp krcmd

dsf 555/tcp
remotefs 556/tcp rfs server
chshell 562/tcp chcmd
meter 570/tcp demon

pcserver 600/tcp Sun IPC server
nqs 607/tcp nqs

mdqs 666/tcp
rfile 750/tcp

pump 751/tcp
qrh 752/tcp
rrh 753/tcp
tell 754/tcp send

nlogin 758/tcp
con 759/tcp
ns 760/tcp
rxe 761/tcp

quotad 762/tcp
cycleserv 763/tcp
omserv 764/tcp
webster 765/tcp

phonebook 767/tcp phone
vid 769/tcp
rtip 771/tcp

cycleserv2 772/tcp
submit 773/tcp

rpasswd 774/tcp
entomb 775/tcp
wpages 776/tcp
wpgs 780/tcp

mdbs_daemon 800/tcp
device 801/tcp
maitrd 997/tcp
busboy 998/tcp
garcon 999/tcp

blackjack 1025/tcp network blackjack
bbn-mmc 1347/tcp multi media conferencing
bbn-mmx 1348/tcp multi media conferencing

orasrv 1525/tcp oracle
ingreslock 1524/tcp

issd 1600/tcp
nkd 1650/tcp
dc 2001/tcp

mailbox 2004/tcp
berknet 2005/tcp

invokator 2006/tcp



dectalk 2007/tcp
conf 2008/tcp
news 2009/tcp

search 2010/tcp
raid-cc 2011/tcp raid
ttyinfo 2012/tcp
raid-am 2013/tcp

troff 2014/tcp
cypress 2015/tcp

cypress-stat 2017/tcp
terminaldb 2018/tcp

whosockami 2019/tcp
servexec 2021/tcp

down 2022/tcp
ellpack 2025/tcp

shadowserver 2027/tcp
submitserver 2028/tcp

device2 2030/tcp
blackboard 2032/tcp

glogger 2033/tcp
scoremgr 2034/tcp
imsldoc 2035/tcp

objectmanager 2038/tcp
lam 2040/tcp

interbase 2041/tcp
isis 2042/tcp

rimsl 2044/tcp
dls 2047/tcp

dls-monitor 2048/tcp
shilp 2049/tcp

NSWS 3049/tcp
rfa 4672/tcp remote file access server

commplex-main 5000/tcp
commplex-link 5001/tcp

padl2sim 5236/tcp
man 9535/tcp

UDP
echo 7/udp

discard 9/udp sink null
systat 11/udp users

daytime 13/udp
netstat 15/udp

qotd 17/udp quote
chargen 19/udp ttytst source

time 37/udp timserver
rlp 39/udp resource

name 42/udp nameserver
whois 43/udp nicname

nameserver 53/udp domain
bootps 67/udp bootp
bootpc 68/udp

tftp 69/udp
sunrpc 111/udp
erpc 121/udp
ntp 123/udp



statsrv 133/udp
profile 136/udp
snmp 161/udp

snmp-trap 162/udp
at-rtmp 201/udp
at-nbp 202/udp

at-3 203/udp
at-echo 204/udp

at-5 205/udp
at-zis 206/udp
at-7 207/udp
at-8 208/udp
biff 512/udp used by mail system to notify users of new mail 

received; currently receives messages only from 
processes on the same machine

who 513/udp maintains data bases showing who's logged in to 
machines on a local net and the load average of the 
machine

syslog 514/udp
talk 517/udp like tenex link, but across machine - unfortunately, 

doesn't use link protocol (this is actually just a 
rendezvous port from which a tcp connection is 
established)

ntalk 518/udp
utime 519/udp unixtime
router 520/udp local routing process (on site); uses variant of Xerox NS 

routing information protocol
timed 525/udp timeserver

netwall 533/udp for emergency broadcasts
new-rwho 550/udp new-who
rmonitor 560/udp rmonitord
monitor 561/udp
meter 571/udp udemon
elcsd 704/udp errlog copy/server daemon

loadav 750/udp
vid 769/udp

cadlock 770/udp
notify 773/udp

acmaint_dbd 774/udp
acmaint_transd 775/udp

wpages 776/udp
puparp 998/udp
applix 999/udp Applix ac

puprouter 999/udp
cadlock 1000/udp
hermes 1248/udp
wizard 2001/udp curry
globe 2002/udp
emce 2004/udp CCWS mm conf
oracle 2005/udp
raid-cc 2006/udp raid
raid-am 2007/udp

terminaldb 2008/udp
whosockami 2009/udp
pipe_server 2010/udp



servserv 2011/udp
raid-ac 2012/udp
raid-cd 2013/udp
raid-sf 2014/udp
raid-cs 2015/udp

bootserver 2016/udp
bootclient 2017/udp
rellpack 2018/udp
about 2019/udp

xinupageserver 2020/udp
xinuexpansion1 2021/udp
xinuexpansion2 2022/udp
xinuexpansion3 2023/udp
xinuexpansion4 2024/udp

xribs 2025/udp
scrabble 2026/udp

isis 2042/udp
isis-bcast 2043/udp

rimsl 2044/udp
cdfunc 2045/udp
sdfunc 2046/udp

dls 2047/udp
shilp 2049/udp

rmonitor_secure 5145/udp
xdsxdm 6558/udp

isode-dua 17007/udp



RFC-1060 Assigned Numbers March 1990

Internet Multicast Addresses

Host Extensions for IP Multicasting (RFC-1112) [43] specifies the extensions required of a 
host implementation of the Internet Protocol (IP) to support multicasting.    Current addresses
are listed below. 

224.0.0.0 Reserved [43,JBP]
224.0.0.1 All Hosts on this Subnet [43,JBP]
224.0.0.2 All Gateways on this Subnet (prop) [JBP]
224.0.0.3 Unassigned [JBP]
224.0.0.4 DVMRP Routers [140,JBP]
224.0.0.5 OSPFIGP All Routers [83,JXM1]
224.0.0.6 OSPFIGP Designated Routers [83,JXM1]
244.0.0.7-244.0.0.255 Unassigned [JBP]
224.0.1.0 VMTP Managers Group [17,DRC3]
224.0.1.1 NTP Network Time Protocol [80,DLM1]
224.0.1.2 SGI-Dogfight [AXC]
224.0.1.3 Rwhod [SXD]
224.0.1.4 VNP [DRC3]
244.0.1.5-244.0.1.255 Unassigned [JBP]
224.0.2.1 "rwho" Group (BSD) (unofficial) [JBP]
232.x.x.x VMTP transient groups [17,DRC3]

Note that when used on an Ethernet or IEEE 802 network, the 23 low-order bits of the IP 
Multicast address are placed in the low- order 23 bits of the Ethernet or IEEE 802 net 
multicast address 1.0.94.0.0.0.    See the next section on "IANA ETHERNET ADDRESS BLOCK".



RFC-1060 Assigned Numbers March 1990

IANA Ethernet Address Block

The IANA owns an Ethernet address block which may be used for multicast address 
asignments or other special purposes. 
The address block in IEEE binary is (which is in bit transmission order): 

0000 0000 0000 0000 0111 1010
In the normal Internet dotted decimal notation this is 0.0.94 since the bytes are transmitted 
higher order first and bits within bytes are transmitted lower order first (see "Data Notation" 
in the Introduction). 

IEEE CSMA/CD and Token Bus bit transmission order: 00 00 5E
IEEE Token Ring bit transmission order: 00 00 7A
Appearance on the wire (bits transmitted from left to right):
0                          23                            47
|                           |                             |
1000 0000 0000 0000 0111 1010 xxxx xxx0 xxxx xxxx xxxx xxxx
|                                 |
Multicast Bit                         0 = Internet Multicast

                                            1 = Assigned by IANA for
                                                other uses
Appearance in memory (bits transmitted right-to-left within octets, octets transmitted left-to-
right): 

0                          23                            47
|                           |                             |
0000 0001 0000 0000 0101 1110 0xxx xxxx xxxx xxxx xxxx xxxx
|                             |
Multicast Bit                 0 = Internet Multicast

                                    1 = Assigned by IANA for
                                        other uses

The latter representation corresponds to the Internet standard bit- order, and is the format 
that most programmers have to deal with. Using this representation, the range of Internet 
Multicast addresses is: 

01-00-5E-00-00-00 to 01-00-5E-7F-FF-FF in hex, or
1.0.94.0.0.0 to 1.0.94.127.255.255 in dotted decimal



RFC-1060 Assigned Numbers March 1990

IP TOS Parameters

This documents the default Type-of-Service values that are currently recommended for the 
most important Internet protocols. 
There are three binary TOS attributes: low delay, high throughput, and high reliability; in 
each case, an attribute bit is turned on to indicate "better".    The three attributes cannot all 
be optimized simultanously, and in fact the TOS algorithms that have been discussed tend 
to make "better" values of the attributes mutually exclusive.    Therefore, the recommended 
values have at most one bit on. 
Generally, protocols which are involved in direct interaction with a human should select low 
delay, while data transfers which may involve large blocks of data are need high throughput.
Finally, high reliability is most important for datagram-based Internet management 
functions. 
Application protocols not included in these tables should be able to make appropriate choice 
of low delay (1 0 0) or high throughput (0 1 0). 
The following are recommended values for TOS:

----- Type-of-Service Value -----
Low High High

Protocol Delay Throughput Reliability
TELNET (1) 1 0 0

FTP
Control 1 0 0
Data (2) 0 1 0

TFTP 1 0 0

SMTP (3)
Cmd phase 1 0 0
DATA phase 0 1 0

Domain Name Service
UDP Query 1 0 0
TCP Query 0 0 0
Zone Tnsfr 0 1 0

NNTP 0 0 0

ICMP
Errors 0 0 0
Queries 0 0 0

Any IGP 0 0 1

EGP 0 0 0

SNMP 0 0 1



BOOTP 0 0 0

Notes:
(1) Includes all interactive user protocols (e.g., rlogin).
(2) Includes all bulk data transfer protocols (e.g., rcp).
(3) If the implementation does not support changing the TOS during the 

lifetime of the connection, then the recommended TOS on opening the 
connection is (0,0,0). 



RFC-1060 Assigned Numbers March 1990

IP Time To Live Parameter

The current recommended default TTL for the Internet Protocol (IP) RFC-791 [45,105] is 32. 



RFC-1060 Assigned Numbers March 1990

Domain System Parameters

The Internet Domain Naming System (DOMAIN) includes several parameters.    These are 
documented in RFC-1034, [81] and RFC-1035 [82].    The CLASS parameter is listed here.    
The per CLASS parameters are defined in separate RFCs as indicated. 

Domain System Parameters:
Decimal Name References

0 Reserved [PM1]
1 Internet (IN) [81,PM1]
2 Unassigned [PM1]
3 Chaos (CH) [PM1]
4 Hessoid (HS) [PM1]

5-65534 Unassigned [PM1]
65535 Reserved



RFC-1060 Assigned Numbers March 1990

BOOTP Parameters

The Bootstrap Protocol (BOOTP) RFC-951 [36] describes an IP/UDP bootstrap protocol 
(BOOTP) which allows a diskless client machine to discover its own IP address, the address of
a server host, and the name of a file to be loaded into memory and executed.    The BOOTP 
Vendor Information Extensions RFC-1084 [117] proposes an addition to the Bootstrap 
Protocol (BOOTP). 

Vendor Extensions are listed below:
         Tag           Name           Data Length     Meaning  

0 Pad 0 None
1 Subnet Mask 4 Subnet Mask Value
2 Time Zone 4 Time Offset in Seconds from UTC
3 Gateways N N/4 Gateway addresses
4 Time Server N N/4 Timeserver addresses
5 Name Server N N/4 IEN-116 Server addresses
6 Domain Server N N/4 DNS Server addresses
7 Log Server N N/4 Logging Server addresses
8 Quotes Server N N/4 Quotes Server addresses
9 LPR Server N N/4 Printer Server addresses

10 Impress Server N N/4 Impress Server addresses
11 RLP Server N N/4 RLP Server addresses
12 Hostname N Hostname string
13 Boot File Size 2 Size of boot file in 512 byte checks
14 Merit Dump FileClient to dump and name the file to dump it to

15-127 Unassigned
128-154 Reserved

255 End 0 None



RFC-1060 Assigned Numbers March 1990

Network Management Parameters

For the management of hosts and gateways on the Internet a data structure for the 
information has been defined.    This data structure should be used with any of several 
possible management protocols, such as the "Simple Network Management Protocol" (SNMP)
RFC-1098 [15], or the "Common Management Information Protocol over TCP" (CMOT) [142]. 
The data structure is the "Structure and Indentification of Management Information for 
TCP/IP-based Internets" (SMI) RFC-1065 [120], and the "Management Information Base for 
Network Management of TCP/IP-based Internets" (MIB) [121]. 
The SMI includes the provision for parameters or codes to indicate experimental or private 
data structures.    These parameter assignments are listed here. 
The older "Simple Gateway Monitoring Protocol" (SGMP) RFC-1028 [37] also defined a data 
structure.    The parameter assignments used with SGMP are included here for hist orical 
completeness. 
SMI Network Management Experimental Codes:

Prefix: 1.3.6.1.3.
Decimal Name Description References

0 Reserved [JKR1]
1 CLNP ISO CLNP Objects [MTR]
2 T1-Carrier T1 Carrier Objects [MTR]
3 IEEE8023 Ethernet-like Objects [MTR]
4 IEEE8025 Token Ring-like Objects [MTR]

SMI Network Management Private Enterprise Codes:
Prefix: 1.3.6.1.4.1.

Decimal Name References
0 Reserved [JKR1]
1 Proteon [GSM11]
2 IBM [JXR]
3 CMU [SXW]
4 Unix [KXS]
5 ACC [AB20]
6 TWG [KZM]
7 CAYMAN [BP52]
8 NYSERNET [MS9]
9 cisco [GXS]

10 NSC [GS123]
11 HP [RDXS]
12 Epilogue [KA4]
13 U of Tennessee [JDC20]
14 BBN [RH6]
15 Xylogics, Inc. [JRL3]
16 Unisys [UXW]
17 Canstar [SXP]
18 Wellfleet [JCB1]
19 TRW [GGB2]
20 MIT [JR35]



21 EON [MXW]
22 Spartacus [YXK]
23 Excelan [RXB]
24 Spider Systems [VXW]
25 NSFNET [HWB]
26 Hughes LAN Systems [AXC1]
27 Intergraph [SXC]
28 Interlan [FJK2]
29 Vitalink Communications [FXB]
30 Ulana [BXA]
31 NSWC [SRN1]
32 Santa Cruz Operation [KR35]
33 Xyplex [BXS]
34 Cray [HXE]
35 Bell Northern Research [GXW]
36 DEC [RXB1]
37 Touch [BXB]
38 Network Research Corp. [BXV]
39 Baylor College of Medicine [SB98]
40 NMFECC-LLNL [SXH]
41 SRI [DW181]
42 Sun Microsystems [DXY]
43 3Com [TB6]
44 CMC [DXP]
45 SynOptics [BXB1]
46 Cheyenne Software [RXH]
47 Prime Computer [MXS]
48 MCNC/North Carolina Data Network [KXW]
49 Chipcom [JXC]
50 Optical Data Systems [JXF]
51 gated [JXH]
52 Cabletron Systems [RXD]
53 Apollo Computers [JXB]
54 DeskTalk Systems, Inc. [DXK]
55 SSDS [RXS]
56 Castle Rock Computing [JXS1]
57 MIPS Computer Systems [CXM]
58 TGV, Inc. [KAA]
59 Silicon Graphics, Inc. [RXJ]
60 University of British Columbia [DXM]
61 Merit [BXN]
62 FiberCom [EXR]
63 Apple Computer Inc [JXH1]
64 Gandalf [HXK]
65 Dartmouth [PXK]
66 David Systems [DXM]
67 Reuter [BXZ]
68 Cornell [DC126]
69 TMAC [MLS34]
70 Locus Computing Corp. [AXS]
71 NASA [SS92]
72 Retix [AXM]
73 Boeing [JXG]
74 AT&T [AXC2]
75 Ungermann-Bass [DXM]



76 Digital Analysis Corp. [SXK]
77 LAN Manager [JXG1]
78 Netlabs [JB478]
79 ICL [JXI]
80 Auspex Systems [BXE]
81 Lannet Company [EXR]
82 Network Computing Devices [DM280]
83 Raycom Systems [BXW1]
84 Pirelli Focom Ltd. [SXL]
85 Datability Software Systems [LXF]
86 Network Application Technology [YXW]
87 LINK (Lokales Informatik-Netz Karlsruhe) [GXS]
88 NYU [BJR2]
89 RND [RXN]
90 InterCon Systems Corporation [AW90]

SGMP Vendor Specific Codes:
Prefix: 1,255,

Decimal Name References
0 Reserved [JKR1]
1 Proteon [JS18]
2 IBM [JXR]
3 CMU [SXW]
4 Unix [MS9]
5 ACC [AB20]
6 TWG [MTR]
7 CAYMAN [BP52]
8 NYSERNET [MS9]
9 cisco [GS2]

10 BBN [RH6]
11 Unassigned [JKR1]
12 MIT [JR35]

13-254 Unassigned [JKR1]
255 Reserved [JKR1]



RFC-1060 Assigned Numbers March 1990

ARPANET and MILNET Logical Addresses

The ARPANET facility for "logical addressing" is described in RFC-878 [57] and RFC-1005 
[109].    A portion of the possible logical addresses are reserved for standard uses. 
There are 49,152 possible logical host addresses.    Of these, 256 are reserved for 
assignment to well-known functions.    Assignments for well-known functions are made by 
the IANA.    Assignments for other logical host addresses are made by the NIC. 

Logical Address Assignments:
Decimal       Description                  References  

0 Reserved [JBP]
1 The BBN Core Gateways [MB]

2-254 Unassigned [JBP]
255 Reserved [JBP]



RFC-1060 Assigned Numbers March 1990

ARPANET and MILNET Link Numbers

The word "link" here refers to a field in the original ARPANET Host/IMP interface leader.    The 
link was originally defined as an 8- bit field.    Later specifications defined this field as the 
"message- id" with a length of 12 bits.    The name link now refers to the high order 8 bits of 
this 12-bit message-id field.    The Host/IMP interface is defined in BBN Report 1822 [2]. 
The low-order 4 bits of the message-id field are called the sub-link. Unless explicitly specified
otherwise for a particular protocol, there is no sender to receiver significance to the sub-link. 
The sender may use the sub-link in any way he chooses (it is returned in the RFNM by the 
destination IMP), the receiver should ignore the sub-link. 

Link Assignments:
     Decimal       Description                     References  

0-63 BBNCC Monitoring [MB]
64-149 Unassigned [JBP]

150 Xerox NS IDP [133,XEROX]
151 Unassigned [JBP]
152 PARC Universal Protocol [8,XEROX]
153 TIP Status Reporting [JGH]
154 TIP Accounting [JGH]
155 Internet Protocol [regular] [105,JBP]

156-158 Internet Protocol [exper] [105,JBP]
159 Figleaf Link [JBW1]
160 Blacker Local Network [DM28]

161-194 Unassigned [JBP]
195 ISO-IP [64,RXM]

196-247 Experimental Protocols [JBP]
248-255 Network Maintenance [JGH]



RFC-1060 Assigned Numbers March 1990

ARPANET and MILNET X.25 Address Mappings

All MILNET hosts are assigned addresses by the Defense Data Network (DDN).    The address 
of a MILNET host may be obtained from the Network Information Center (NIC), represented 
as an ASCII text string in what is called "host table format".    This section describes the 
process by which MILNET X.25 addresses may be derived from addresses in the NIC host 
table format. 
A NIC host table address consists of the ASCII text string representations of four decimal 
numbers separated by periods, corresponding to the four octeted of a thirty-two bit Internet 
address.    The four decimal numbers are referred to in this section as "n", "h' "l", and "i".    
Thus, a host table address may be represented as: "n.h.l.i".    Each of these four numbers will
have either one, two, or three decimal digits and will never have a value greater than 255. 
For example, in the host table, address: "10.2.0.124", n=10, h=2, l=0, and i=124.    To 
convert a host table address to a MILNET X.25 address: 
1. If h < 64, the host table address corresponds to the X.25 physical address:

ZZZZ F IIIHHZZ (SS)
where:
ZZZZ = 0000 as required
F = 0 because the address is a physical address;
III is a three decimal digit respresentation of "i", right-adjusted and padded 
with leading zeros if required;
HH is a two decimal digit representation of "h", right-adjusted and padded 
with leading zeros if required;
ZZ = 00 and
(SS) is optional
In the example given above, the host table address 10.2.0.124 corresponds to 
the X.25 physical address 000001240200. 

2.    If h > 64 or h = 64, the host table address corresponds to the X.25 logical address
ZZZZ F RRRRRZZ (SS)
where:
ZZZZ = 0000 as required
F = 1 because the address is a logical address;
RRRRR is a five decimal digit representation of the result "r" of the calculation
r = h * 256 + i
(Note that the decimal representation of "r" will always require five digits);
ZZ = 00 and
(SS) is optional
Thus, the host table address 10.83.0.207 corresponds to the X.25 logical 
address 000012145500. 

In both cases, the "n" and "l" fields of the host table address are not used.





RFC-1060 Assigned Numbers March 1990

IEEE 802 Numbers Of Interest

Some of the networks of all classes are IEEE 802 Networks.    These systems may use a Link 
Service Access Point (LSAP) field in much the same way the ARPANET uses the "link" field.    
Further, there is an extension of the LSAP header called the Sub-Network Access Protocol 
(SNAP). 
The IEEE likes to describe numbers in binary in bit transmission order, which is the opposite 
of the big-endian order used throughout the Internet protocol documentation. 

Assignments:
            Link Service Access Point                                   Description      References  

IEEE Internet
binary binary decimal
00000000 00000000 0 Null LSAP [IEEE]
01000000 00000010 2 Indiv LLC Sublayer Mgt [IEEE]
11000000 00000011 3 Group LLC Sublayer Mgt [IEEE]
00100000 00000100 4 SNA Path Control [IEEE]
01100000 00000110 6 Reserved (DOD IP) [104,JBP]
01110000 00001110 14 PROWAY-LAN [IEEE]
01110010 01001110 78 EIA-RS 511 [IEEE]
01111010 01011110 94 ISI IP [JBP]
01110001 10001110 142 PROWAY-LAN [IEEE]
01010101 10101010 170 SNAP [IEEE]
01111111 11111110 254 ISO DIS 8473 [64,JXJ]
11111111 11111111 255 Global DSAP [IEEE]

These numbers (and others) are assigned by the IEEE Standards Office. The address is: IEEE 
Standards Office, 345 East 47th Street, New York, N.Y. 10017, Attn: Vince Condello.    Phone: 
(212) 705-7092. 
At an ad hoc special session on "IEEE 802 Networks and ARP", held during the TCP Vendors 
Workshop (August 1986), an approach to a consistent way to send DoD-IP datagrams and 
other IP related protocols (such as the Address Resolution Protocol (ARP)) on 802 networks 
was developed, using the SNAP extension (see RFC-1010 and RFC-1042 [90]). 



RFC-1060 Assigned Numbers March 1990

ETHERNET Numbers Of Interest

Many of the networks of all classes are Ethernets (10Mb) or Experimental Ethernets (3Mb).    
These systems use a message "type" field in much the same way the ARPANET uses the 
"link" field. 
If you need an Ethernet type, contact the Xerox Corporation, Xerox Systems Institute, 475 
Oakmead Parkway, Sunnyvale, CA 94086, Attn: Ms. Fonda Pallone, (408) 737-4652. 
The following list is contributed unverified information from various sources. 

Assignments:

Ethernet Exp. Ethernet Description References
decimalHex decimaloctal
000 0000-05DC - - IEEE802.3 Length Field
[XEROX]
257 0101-01FF- - Experimental [XEROX]
512 0200 512 1000 XEROX PUP (0A00) [8,XEROX]
513 0201 - - PUP Addr Trans (0A01)[XEROX]
1536 0600 1536 3000 XEROX NS IDP [133,XEROX]
2048 0800 513 1001 DOD IP [105,JBP]
2049 0801 - - X.75 Internet [XEROX]
2050 0802 - - NBS Internet [XEROX]
2051 0803 - - ECMA Internet [XEROX]
2052 0804 - - Chaosnet [XEROX]
2053 0805 - - X.25 Level 3 [XEROX]
2054 0806 - - ARP [88,JBP]
2055 0807 - - XNS Compatability [XEROX]
2076 081C - - Symbolics Private [DCP1]
2184 0888-088A - - Xyplex [XEROX]
2304 0900 - - Ungermann-Bass debug [XEROX]
2560 0A00 - - Xerox IEEE802.3 PUP [XEROX]
2561 0A01 - - PUP Addr Trans [XEROX]
2989 0BAD - - Banyan Systems [XEROX]
4096 1000 - - Berkeley Trailer nego [XEROX]
4097 1001-100F- - Berkeley Trailer encap [XEROX]
5632 1600 - - Valid Systems [XEROX]
16962 4242 - - PCS Basic Block [XEROX]
21000 5208 - - BBN Simnet [XEROX]
24576 6000 - - DEC Unassigned (Exp.) [XEROX]
24577 6001 - - DEC MOP Dump/Load [XEROX]
24578 6002 - - DEC MOP Remote Con. [XEROX]
24579 6003 - - DEC DECNET Phase IV [XEROX]
24580 6004 - - DEC LAT [XEROX]
24581 6005 - - DEC Diagnostic Protocol [XEROX]
24582 6006 - - DEC Customer Protocol [XEROX]
24583 6007 - - DEC LAVC, SCA [XEROX]
24584 6008-6009 - - DEC Unassigned
[XEROX]
24586 6010-6014 - - 3Com Corporation
[XEROX]



28672 7000 - - Ungermann-Bass dnld [XEROX]
28674 7002 - - Ungermann-Bass dia/lp [XEROX]
28704 7020-7029 - - LRT [XEROX]
28720 7030 - - Proteon [XEROX]
28724 7034 - - Cabletron [XEROX]
32771 8003 - - Cronus VLN [131,DT15]
32772 8004 - - Cronus Direct [131,DT15]
32773 8005 - - HP Probe [XEROX]
32774 8006 - - Nestar [XEROX]
32776 8008 - - AT&T [XEROX]
32784 8010 - - Excelan [XEROX]
32787 8013 - - SGI diagnostics [AXC]
32788 8014 - - SGI network games [AXC]
32789 8015 - - SGI reserved [AXC]
32780 8016 - - SGI bounce server [AXC]
32783 8019 - - Apollo Computers [XEROX]
32815 802E - - Tymshare [XEROX]
32816 802F - - Tigan, Inc. [XEROX]
32821 8035 - - Reverse ARP [48,JXM]
32822 8036 - - Aeonic Systems [XEROX]
32824 8038 - - DEC LANBridge [XEROX]
32825 8039-803C - - DEC Unassigned
[XEROX]
32829 803D - - DEC Ethernet Encryption [XEROX]
32830 803E - - DEC Unassigned [XEROX]
32831 803F - - DEC LAN Traffic Monitor [XEROX]
32832 8040-8042 - - DEC Unassigned
[XEROX]
32836 8044 - - Planning Research Corp [XEROX]
32838 8046 - - AT&T [XEROX]
32839 8047 - - AT&T [XEROX]
32841 8049 - - ExperData [XEROX]
32859 805B - - Stanford V Kernel exp.[XEROX]
32860 805C - - Stanford V Kernel prod. [XEROX]
32861 805D - - Evans & Sutherland [XEROX]
32864 8060 - - Little Machines [XEROX]
32866 8062 - - Counterpoint Computers [XEROX]
32869 8065-8066 - - Univ. of Mass. @Amherst 

[XEROX]
32871 8067 - - Veeco Integrated Auto. [XEROX]
32872 8068 - - General Dynamics [XEROX]
32873 8069 - - AT&T [XEROX]
32874 806A - - Autophon [XEROX]
32876 806C - - ComDesign [XEROX]
32877 806D - - Computgraphic Corp. [XEROX]
32878 806E-8077 - - Landmark Graphics Cor
[XEROX]
32890 807A - - Matra [XEROX]
32891 807B - - Dansk Data Elektronik [XEROX]
32892 807C - - Merit Internodal [HWB]
32893 807D-807F - - Vitalink Communications
[XEROX]
32896 8080 - - Vitalink TransLAN III [XEROX]
32897 8081-8083 - - Counterpoint Computers
[XEROX]



32923 809B - - Appletalk [XEROX]
32924 809C-809E - - Datability [XEROX]
32927 809F - - Spider Systems Ltd. [XEROX]
32931 80A3 - - Nixdorf Computers [XEROX]
32932 80A4-80B3 - - Siemens Gammasonics
[XEROX]
32960 80C0-80C3 - - DCA Data Exch Cluster
[XEROX]
32966 80C6 - - Pacer Software [XEROX]
32967 80C7 - - Applitek Corporation [XEROX]
32968 80C8-80CC - - Intergraph Corporation
[XEROX]
32973 80CD-80CE - - Harris Corporation
[XEROX]
32974 80CF-80D2 - - Taylor Instrument
[XEROX]
32979 80D3-80D4 - - Rosemount Corporation
[XEROX]
32981 80D5 - - IBM SNA Serv on Ether [XEROX]
32989 80DD - - Varian Associates [XEROX]
32990 80DE-80DF - - Integrated Solutions
[XEROX]
32992 80E0-80E3 - - Allen-Bradley [XEROX]
32996 80E4-80F0- - Datability [XEROX]
33010 80F2 - - Retix [XEROX]
33011 80F3 - - AppleTalk AARP [XEROX]
33012 80F4-80F5- - Kinetics [XEROX]
33015 80F7 - - Apollo Computer [XEROX]
33023 80FF-8103- - Wellfleet Commun [XEROX]
33031 8107-8109 - - Symbolics Private
[XEROX]
33072 8130 - - Waterloo Microsystems [XEROX]
33073 8131 - - VG Laboratory Systems [XEROX]
33079 8137-8138 - - Novell, Inc. [XEROX]
33081 8139-813D - - KTI [XEROX]
33100 814C - - SNMP [JKR1]
36864 9000 - - Loopback [XEROX]
36865 9001 - - 3Com(Bridge) XNS Mgt [XEROX]
36866 9002 - - 3Com(Bridge) TCP-IP [XEROX]
36867 9003 - - 3Com(Bridge) lp detect [XEROX]
65280 FF00 - - BBN VITAL-LanBridge [XEROX]

The standard for transmission of IP datagrams over Ethernets and Experimental Ethernets is 
specified in RFC-894 [61] and RFC-895 [91] respectively. 
NOTE: Ethernet 48-bit address blocks are assigned by the IEEE.

IEEE Standards Office, 345 East 47th Street, New York, N.Y. 10017,
Attn: Vince Condello.    Phone: (212) 705-7092.



RFC-1060 Assigned Numbers March 1990

Ethernet Vendor Address Components

Ethernet hardware addresses are 48 bits, expressed as 12 hexadecimal digits (0-9, plus A-F, 
capitalized).    These 12 hex digits consist of the first/left 6 digits (which should match the 
vendor of the Ethernet interface within the station) and the last/right 6 digits which specify 
the interface serial number for that interface vendor. 
Ethernet addresses might be written unhyphenated (e.g., 123456789ABC), or with one 
hyphen (e.g., 123456-789ABC), but should be written hyphenated by octets (e.g., 12-34-56-
78-9A-BC). 
These addresses are physical station addresses, not multicast nor broadcast, so the second 
hex digit (reading from the left) will be even, not odd. 
At present, it is not clear how the IEEE assigns Ethernet block addresses.    Whether in blocks
of 2**24 or 2**25, and whether multicasts are assigned with that block or separately.    A 
portion of the vendor block address is reportedly assigned serially, with the other portion 
intentionally assigned randomly.    If there is a global algorithm for which addresses are 
designated to be physical (in a chipset) versus logical (assigned in software), or globally-
assigned versus locally-assigned addresses, some of the known addresses do not follow the 
scheme (e.g., AA0003; 02xxxx). 

00000C Cisco
00000F NeXT
000010 Sytek
00001D Cabletron
000020 DIAB (Data Intdustrier AB)
000022 Visual Technology
00002A TRW
00005A S & Koch
00005E IANA
000065 Network General
00006B MIPS
000077 MIPS
00007A Ardent
000089 Cayman Systems Gatorbox
000093 Proteon
00009F Ameristar Technology
0000A2 Wellfleet
0000A3 Network Application Technology
0000A6 Network General (internal assignment, not for products)
0000A7 NCD X-terminals
0000A9 Network Systems
0000AA Xerox Xerox machines
0000B3 CIMLinc
0000B7 Dove Fastnet
0000BC Allen-Bradley
0000C0 Western Digital
0000C6 HP Intelligent Networks Operation (formerly Eon Systems)
0000C8 Altos
0000C9 Emulex Terminal Servers
0000D7 Dartmouth College (NED Router)
0000D8 3Com? Novell? PS/2
0000DD Gould



0000DE Unigraph
0000E2 Acer Counterpoint
0000EF Alantec
0000FD High Level Hardvare (Orion, UK)
000102 BBN BBN internal usage (not registered)
001700 Kabel
00802D Xylogics, Inc. Annex terminal servers
00808C Frontier Software Development
00AA00 Intel
00DD00 Ungermann-Bass
00DD01 Ungermann-Bass
020701 MICOM/Interlan UNIBUS or QBUS machines, Apollo
020406 BBN BBN internal usage (not registered)
026086 Satelcom MegaPac (UK)
02608C 3Com IBM PC; Imagen; Valid; Cisco
02CF1F CMC Masscomp; Silicon Graphics; Prime EXL
080002 3Com (Formerly Bridge)
080003 ACC (Advanced Computer Communications)
080005 Symbolics Symbolics LISP machines
080008 BBN
080009 Hewlett-Packard
08000A Nestar Systems
08000B Unisys
080010 AT&T
080011 Tektronix, Inc.
080014 Excelan BBN Butterfly, Masscomp, Silicon Graphics
080017 NSC
08001A Data General
08001B Data General
08001E Apollo
080020 Sun Sun machines
080022 NBI
080025 CDC
080026 Norsk Data (Nord)
080027 PCS Computer Systems GmbH
080028 TI Explorer
08002B DEC
08002E Metaphor
08002F Prime Computer Prime 50-Series LHC300
080036 Intergraph CAE stations
080037 Fujitsu-Xerox
080038 Bull
080039 Spider Systems
080041 DCA Digital Comm. Assoc.
080045 ???? (maybe Xylogics, but they claim not to know this number)
080046 Sony
080047 Sequent
080049 Univation
08004C Encore
08004E BICC
080056 Stanford University
080058 ??? DECsystem-20
08005A IBM
080067 Comdesign
080068 Ridge



080069 Silicon Graphics
08006E Excelan
080075 DDE (Danish Data Elektronik A/S)
08007C Vitalink TransLAN III
080080 XIOS
080086 Imagen/QMS
080087 Xyplex terminal servers
080089 Kinetics AppleTalk-Ethernet interface
08008B Pyramid
08008D XyVision XyVision machines
080090 Retix Inc Bridges
484453 HDS ???
800010 AT&T [misrepresentation of 080010?]
AA0000 DEC obsolete
AA0001 DEC obsolete
AA0002 DEC obsolete
AA0003 DEC Global physical address for some DEC machines
AA0004 DEC Local logical address for systems running DECNET



RFC-1060 Assigned Numbers March 1990

Ethernet Multicast Addresses

Ethernet Type
Address Field Usage

Multicast Addresses:
01-00-5E-00-00-00- 0800 Internet Multicast (RFC-1112) [43]
01-00-5E-7F-FF-FF
01-00-5E-80-00-00- ???? Internet reserved by IANA
01-00-5E-FF-FF-FF
01-80-C2-00-00-00 -802- Spanning tree (for bridges)
09-00-02-04-00-01? 8080? Vitalink printer
09-00-02-04-00-02? 8080? Vitalink management
09-00-09-00-00-01 8005 HP Probe
09-00-09-00-00-01 -802- HP Probe
09-00-09-00-00-04 8005? HP DTC
09-00-1E-00-00-00 8019? Apollo DOMAIN
09-00-2B-00-00-00 6009? DEC MUMPS?
09-00-2B-00-00-01 8039? DEC DSM/DTP?
09-00-2B-00-00-02 803B? DEC VAXELN?
09-00-2B-00-00-03 8038 DEC Lanbridge Traffic Monitor (LTM)
09-00-2B-00-00-04 ???? DEC MAP End System Hello?
09-00-2B-00-00-05 ???? DEC MAP Intermediate System Hello?
09-00-2B-00-00-06 803D? DEC CSMA/CD Encryption?
09-00-2B-00-00-07 8040? DEC NetBios Emulator?
09-00-2B-00-00-0F 6004 DEC Local Area Transport (LAT)
09-00-2B-00-00-1x ???? DEC Experimental
09-00-2B-01-00-00 8038 DEC LanBridge Copy packets (All bridges)
09-00-2B-01-00-01 8038 DEC LanBridge Hello packets (All local bridges)

1 packet per second, sent by the designated 
LanBridge

09-00-2B-02-00-00 ???? DEC DNA Level 2 Routing Layer routers?
09-00-2B-02-01-00 803C? DEC DNA Naming Service Advertisement?
09-00-2B-02-01-01 803C? DEC DNA Naming Service Solicitation?
09-00-2B-02-01-02 803E? DEC DNA Time Service?
09-00-2B-03-xx-xx ???? DEC default filtering by bridges?
09-00-2B-04-00-00 8041? DEC Local Area System Transport (LAST)?
09-00-2B-23-00-00 803A? DEC Argonaut Console?
09-00-4E-00-00-02? 8137? Novell IPX
09-00-56-00-00-00- ???? Stanford reserved
09-00-56-FE-FF-FF
09-00-56-FF-00-00- 805C Stanford V Kernel, version 6.0
09-00-56-FF-FF-FF
09-00-77-00-00-01 ???? Retix spanning tree bridges
09-00-7C-02-00-05 8080? Vitalink diagnostics
09-00-7C-05-00-01 8080? Vitalink gateway?
0D-1E-15-BA-DD-06 ???? HP
AB-00-00-01-00-00 6001 DEC Maintenance Operation Protocol (MOP)

Dump/Load Assistance
AB-00-00-02-00-00 6002 DEC Maintenance Operation Protocol (MOP)

Remote Console 1 System ID packet every 8-10 
minutes, by every:

DEC LanBridge



DEC DEUNA interface
DEC DELUA interface
DEC DEQNA interface (in a certain mode)

AB-00-00-03-00-00 6003 DECNET Phase IV end node Hello packets
1 packet every 15 seconds, sent by each DECNET 
host

AB-00-00-04-00-00 6003 DECNET Phase IV Router Hello packets
1 packet every 15 seconds, sent by the

DECNET router
AB-00-00-05-00-00 ???? Reserved DEC
through
AB-00-03-FF-FF-FF
AB-00-03-00-00-00 6004 DEC Local Area Transport (LAT) - old
AB-00-04-00-xx-xx ???? Reserved DEC customer private use
AB-00-04-01-xx-yy 6007 DEC Local Area VAX Cluster groups

System Communication Architecture (SCA)
CF-00-00-00-00-00 9000 Ethernet Configuration Test protocol (Loopback)

Broadcast Address:
FF-FF-FF-FF-FF-FF 0600 XNS packets, Hello or gateway search?

6 packets every 15 seconds, per XNS station
FF-FF-FF-FF-FF-FF 0800 IP (e.g. RWHOD via UDP) as needed
FF-FF-FF-FF-FF-FF 0804 CHAOS
FF-FF-FF-FF-FF-FF 0806 ARP (for IP and CHAOS) as needed
FF-FF-FF-FF-FF-FF 0BAD Banyan
FF-FF-FF-FF-FF-FF 1600 VALID packets, Hello or gateway search?

1 packets every 30 seconds, per VALID station
FF-FF-FF-FF-FF-FF 8035 Reverse ARP
FF-FF-FF-FF-FF-FF 807C Merit Internodal (INP)
FF-FF-FF-FF-FF-FF 809B EtherTalk



RFC-1060 Assigned Numbers March 1990

XNS Protocol Types

Assigned well-known socket numbers
Routing Information 1
Echo 2
Router Error 3
Experimental 40-77

Assigned internet packet types
Routing Information 1
Echo 2
Error 3
Packet Exchange 4
Sequenced Packet 5
PUP 12
DoD IP 13
Experimental 20-37



RFC-1060 Assigned Numbers March 1990

Protocol/Type Field Assignments

Below are two tables describing the arrangement of protocol fields or type 
field assignments so that one could send NS Datagrams on the ARPANET or 
Internet Datagrams on 10Mb Ethernet, and also protocol and type fields so 
one could encapsulate each kind of Datagram in the other. 

              \   upper| DoD IP |  PUP   | NS IP  |
         lower \       |        |        |        |
         --------------|--------|--------|--------|
                       |  Type  |  Type  |  Type  |
         3Mb Ethernet  |  1001  |  1000  |  3000  |
                       |  octal |  octal |  octal |
         --------------|--------|--------|--------|
                       |  Type  |  Type  |  Type  |
         10 Mb Ethernet|  0800  |  0200  |  0600  |
                       |   hex  |   hex  |   hex  |
         --------------|--------|--------|--------|
                       |  Link  |  Link  |  Link  |
         ARPANET       |  155   |  152   |  150   |
                       | decimal| decimal| decimal|
         --------------|--------|--------|--------|

              \   upper| DoD IP |  PUP   | NS IP  |
         lower \       |        |        |        |
         --------------|--------|--------|--------|
                       |        |Protocol|Protocol|
         DoD IP        |   X    |   12   |   22   |
                       |        | decimal| decimal|
         --------------|--------|--------|--------|
                       |        |        |        |
         PUP           |   ?    |   X    |   ?    |
                       |        |        |        |
         --------------|--------|--------|--------|
                       |  Type  |  Type  |        |
         NS IP         |   13   |   12   |   X    |
                       | decimal| decimal|        |
         --------------|--------|--------|--------|



RFC-1060 Assigned Numbers March 1990

PRONET 80 Type Numbers

Below is the current list of PRONET 80 Type Numbers.    Note: a protocol that is on this list 
does not necessarily mean that there is any implementation of it on ProNET. 
Of these, protocols 1, 14, and 20 are the only ones that have ever been seen in ARP packets.
For reference, the header is (one byte/line):

destination hardware address
source hardware address
data link header version (2)
data link header protocol number
data link header reserved (0)
data link header reserved (0)

Some protocols have been known to tuck stuff in the reserved fields.
Those who need a protocol number on ProNET-10/80 should contact John Shriver 
(jas@proteon.com). 

1 IP
2 IP with trailing headers
3 Address Resoloution Protocol
4 Proteon HDLC
5 VAX Debugging Protocol (MIT)
10 Novell NetWare (IPX and pre-IPX) (old format, 3 byte trailer)
11 Vianetix
12 PUP
13 Watstar protocol (University of Waterloo)
14 XNS
15 Diganostics
16 Echo protocol (link level)
17 Banyan Vines
20 DECnet (DEUNA Emulation)
21 Chaosnet
23 IEEE 802.2 or ISO 8802/2 Data Link
24 Reverse Address Resolution Protocol
29 TokenVIEW-10
31 AppleTalk LAP Data Packet
33 Cornell Boot Server Location Protocol
34 Novell NetWare IPX (new format, no trailer, new XOR checksum)



RFC-1060 Assigned Numbers March 1990

Address Resolution Protocol Parameters

The Address Resolution Protocol (ARP) specified in RFC-826 [88] has several parameters.    
The assigned values for these parameters are listed here. 

Assignments:
Operation Code (op)
1 REQUEST
2 REPLY

Hardware Type (hrd)
        Type          Description                                          References  

1 Ethernet (10Mb) [JBP]
2 Experimental Ethernet (3Mb) [JBP]
3 Amateur Radio AX.25 [PXK]
4 Proteon ProNET Token Ring [JBP]
5 Chaos [GXP]
6 IEEE 802 Networks [JBP]
7 ARCNET [JBP]
8 Hyperchannel [JBP]
9 Lanstar [TU]

10 Autonet Short Address [MXB1]
11 LocalTalk [LXE]
12 LocalNet (IBM PCNet or SYTEK LocalNET) [JXM]

Protocol Type (pro)
Use the same codes as listed in the section called "Ethernet Numbers of 
Interest" (all hardware types use this code set for the protocol type). 



RFC-1060 Assigned Numbers March 1990

Reverse Address Resolution Protocol Operation Codes

The Reverse Address Resolution Protocol (RARP) specified in RFC-903 [48] has the following 
operation codes: 

Assignments:

Operation Code (op)
3 request Reverse
4 reply Reverse

Dynamic Reverse Arp
Assignments:
Operation Code (op)
5 DRARP-Request
6 DRARP-Reply
7 DRARP-Error

For further information, contact: David Brownell (suneast!helium!db@Sun.COM). 



RFC-1060 Assigned Numbers March 1990

X.25 Type Numbers

CCITT defines the high order two bits of the first octet of call user data as follows: 
00 - Used for other CCITT recomendations (such as X.29)
01 - Reserved for use by "national" administrative authorities
10 - Reserved for use by international administrative authoorities
11 - Reserved for arbitrary use between consenting DTEs

Call User Data (hex)                                       Protocol  Reference  
01 PAD [GS2]
C5 Blacker front-end descr dev [AGM]
CC IP [69,AGM]*
CD ISO-IP [AGM]

* NOTE: ISO SC6/WG2 approved assignment in ISO 9577 (January 1990).



RFC-1060 Assigned Numbers March 1990

Public Data Network Numbers

One of the Internet Class A Networks is the international system of Public Data Networks.    
This section lists the mapping between the Internet Addresses and the Public Data Network 
Addresses (X.121). 
The numbers below are assigned for networks that are connected to the Internet, and for 
independent networks.    These independent networks are marked with an asterisk preceding
the number. 
Assignments:
       * Internet            Public Data Net       Description                    References  

014.000.000.000 Reserved [JBP]
014.000.000.001 3110-317-00035 00 PURDUE-TN [TN]
014.000.000.002 3110-608-00027 00 UWISC-TN [TN]
014.000.000.003 3110-302-00024 00 UDEL-TN [TN]
014.000.000.004 2342-192-00149 23 UCL-VTEST [PK]
014.000.000.005 2342-192-00300 23 UCL-TG [PK]
014.000.000.006 2342-192-00300 25 UK-SATNET [PK]
014.000.000.007 3110-608-00024 00 UWISC-IBM [MS56]
014.000.000.008 3110-213-00045 00 RAND-TN [MO2]
014.000.000.009 2342-192-00300 23 UCL-CS [PK]
014.000.000.010 3110-617-00025 00 BBN-VAN-GW [JD21]
*014.000.000.011 2405-015-50300 00 CHALMERS [UXB]
014.000.000.012 3110-713-00165 00 RICE [PAM6]
014.000.000.013 3110-415-00261 00 DECWRL [PAM6]
014.000.000.014 3110-408-00051 00 IBM-SJ [SA1]
014.000.000.015 2041-117-01000 00 SHAPE [JFW]
014.000.000.016 2628-153-90075 00 DFVLR4-X25 [GB7]
014.000.000.017 3110-213-00032 00 ISI-VAN-GW [JD21]
014.000.000.018 2624-522-80900 52 FGAN-SIEMENS-X25 [GB7]
014.000.000.019 2041-170-10000 00 SHAPE-X25 [JFW]
014.000.000.020 5052-737-20000 50 UQNET[AXH]
014.000.000.021 3020-801-00057 50 DMC-CRC1 [VXT]
014.000.000.022 2624-522-80329 02 FGAN-FGANFFMVAX-X25
[GB7]
*014.000.000.023 2624-589-00908 01 ECRC-X25 [PXD]
014.000.000.024 2342-905-24242 83 UK-MOD-RSRE[JXE2]
014.000.000.025 2342-905-24242 82 UK-VAN-RSRE [AXM]
014.000.000.026 2624-522-80329 05 DFVLRSUN-X25 [GB7]
014.000.000.027 2624-457-11015 90 SELETFMSUN-X25 [BXD]
014.000.000.028 3110-408-00146 00 CDC-SVL [RAM57]
014.000.000.029 2222-551-04400 00 SUN-CNUCE [ABB2]
014.000.000.030 2222-551-04500 00 ICNUCEVM-CNUCE [ABB2]
014.000.000.031 2222-551-04600 00 SPARE-CNUCE [ABB2]
014.000.000.032 2222-551-04700 00 ICNUCEVX-CNUCE [ABB2]
014.000.000.033 2222-551-04524 00 CISCO-CNUCE [ABB2]
014.000.000.034 2342-313-00260 90 SPIDER-GW [AD67]
014.000.000.035 2342-313-00260 91 SPIDER-EXP [AD67]
014.000.000.036 2342-225-00101 22 PRAXIS-X25A [TXR]
014.000.000.037 2342-225-00101 23 PRAXIS-X25B [TXR]
014.000.000.038 2403-712-30250 00 DIAB-TABY-GW[FXB]



014.000.000.039 2403-715-30100 00 DIAB-LKP-GW [FXB]
014.000.000.040 2401-881-24038 00 DIAB-TABY1-GW [FXB]
014.000.000.041 2041-170-10060 00 STC [TC27]
014.000.000.042-014.255.255.254 Unassigned [JBP]
014.255.255.255 Reserved [JBP]

The standard for transmission of IP datagrams over the Public Data Network is specified in 
RFC-877 [69]. 



RFC-1060 Assigned Numbers March 1990

Telnet Options

The Telnet Protocol has a number of options that may be negotiated. These options are listed
here.    "Official Internet Protocols" [118] provides more detailed information. 
     Options        Name                                              References  

0 Binary Transmission [110,JBP]
1 Echo [111,JBP]
2 Reconnection [42,JBP]
3 Suppress Go Ahead [114,JBP]
4 Approx Message Size Negotiation [133,JBP]
5 Status [113,JBP]
6 Timing Mark [115,JBP]
7 Remote Controlled Trans and Echo [107,JBP]
8 Output Line Width [40,JBP]
9 Output Page Size [41,JBP]

10 Output Carriage-Return Disposition [28,JBP]
11 Output Horizontal Tab Stops [32,JBP]
12 Output Horizontal Tab Disposition [31,JBP]
13 Output Formfeed Disposition [29,JBP]
14 Output Vertical Tabstops [34,JBP]
15 Output Vertical Tab Disposition [33,JBP]
16 Output Linefeed Disposition [30,JBP]
17 Extended ASCII [136,JBP]
18 Logout [25,MRC]
19 Byte Macro [35,JBP]
20 Data Entry Terminal [145,38,JBP]
21 SUPDUP [26,27,MRC]
22 SUPDUP Output [51,MRC]
23 Send Location [68,EAK1]
24 Terminal Type [128,MS56]
25 End of Record [103,JBP]
26 TACACS User Identification [1,BA4]
27 Output Marking [125,SXS]
28 Terminal Location Number [84,RN6]
29 Telnet 3270 Regime [116,JXR]
30 X.3 PAD [70,SL70]
31 Negotiate About Window Size [139,DW183]
32 Terminal Speed [57,CLH3]
33 Remote Flow Control [58,CLH3]
34 Linemode [9,DB14]
35 X Display Location [75,GM23]

255 Extended-Options-List [109,JBP]



RFC-1060 Assigned Numbers March 1990

Mail Encryption Types

RFC-822 specifies that Encryption Types for mail may be assigned. There are currently no 
RFC-822 encryption types assigned.    Please use instead the Mail Privacy procedures defined
in [71,72,66]. 



RFC-1060 Assigned Numbers March 1990

Machine Names

These are the Official Machine Names as they appear in the Domain Name System WKS 
records and the NIC Host Table.    Their use is described in RFC-952 [53]. 
A machine name or CPU type may be up to 40 characters taken from the set of uppercase 
letters, digits, and the two punctuation characters hyphen and slash.    It must start with a 
letter, and end with a letter or digit. 

ALTO ALTOS-6800 AMDAHL-V7
APOLLO ATARI-104ST ATT-3B1
ATT-3B20 ATT-7300 BBN-C/60
BURROUGHS-B/29 BURROUGHS-B/4800 BUTTERFLY
C/30 C/70 CADLINC
CADR CDC-170 CDC-170/750
CDC-173 CELERITY-1200 CLUB-386
COMPAQ-386/20 COMTEN-3690 CP8040
CRAY-1 CRAY-2 CRAY-X/MP
CTIWS-117 DANDELION DEC-10
DEC-1050 DEC-1077 DEC-1080
DEC-1090 DEC-1090B DEC-1090T
DEC-2020T DEC-2040 DEC-2040T
DEC-2050T DEC-2060 DEC-2060T
DEC-2065 DEC-FALCON DEC-KS10
DEC-VAX-11730 DORADO DPS8/70M
ELXSI-6400 EVEREX-386 FOONLY-F2
FOONLY-F3 FOONLY-F4 GOULD
GOULD-6050 GOULD-6080 GOULD-9050
GOULD-9080 H-316 H-60/68
H-68 H-68/80 H-89
HONEYWELL-DPS-6 HONEYWELL-DPS-8/70 HP3000
HP3000/64 IBM-158 IBM-3081
IBM-3084QX IBM-3101 IBM-360/67
IBM-370/3033 IBM-4331 IBM-4341
IBM-4361 IBM-4381 IBM-4956
IBM-6152 IBM-PC IBM-PC/AT
IBM-PC/RT IBM-PC/XT IBM-SERIES/1
IMAGEN IMAGEN-8/300 IMSAI
INTEGRATED-SOLUTIONS INTEGRATED-SOLUTIONS-68K
INTEGRATED-SOLUTIONS-CREATOR INTEL-IPSC
INTEGRATED-SOLUTIONS-CREATOR-8 INTEL-386
IS-1 IS-68010 LMI
LSI-11 LSI-11/2 LSI-11/23
LSI-11/73 M68000 MAC-II
MASSCOMP MC500 MC68000
MICROPORT MICROVAX MICROVAX-I
MV/8000 NAS3-5 NCR-COMTEN-3690
NEXT/N1000-316 NOW ONYX-Z8000
PDP-11 PDP-11/23 PDP-11/24
PDP-11/3 PDP-11/34 PDP-11/40
PDP-11/44 PDP-11/45 PDP-11/50
PDP-11/70 PDP-11/73 PE-3205
PE-7/32 PERQ PLEXUS-P/60



PLI PLURIBUS PRIME-2250
PRIME-2250 PRIME-2350 PRIME-2450
PRIME-2655 PRIME-2755 PRIME-550II
PRIME-750 PRIME-850 PRIME-9650
PRIME-9655 PRIME-9750 PRIME-9755
PRIME-9950 PRIME-9955 PRIME-9955II
PYRAMID-90 PYRAMID-90MX PYRAMID-90X
RIDGE RIDGE-32 RIDGE-32C
ROLM-1666 S1-MKIIA SEQUENT-BALANCE-8000
SGI-IRIS-2400 SGI-IRIS-2500 SGI-IRIS-3010
SGI-IRIS-3020 SGI-IRIS-3030 SGI-IRIS-3110
SGI-IRIS-3115 SGI-IRIS-3120 SGI-IRIS-3130
SGI-IRIS-4D/120GTX SGI-IRIS-4D/120S SGI-IRIS-4D/20
SGI-IRIS-4D/20G SGI-IRIS-4D/210GTX SGI-IRIS-4D/210S
SGI-IRIS-4D/220GTX SGI-IRIS-4D/220S SGI-IRIS-4D/240GTX
SGI-IRIS-4D/240S SGI-IRIS-4D/25 SGI-IRIS-4D/25G
SGI-IRIS-4D/25S SGI-IRIS-4D/280GTX SGI-IRIS-4D/280S
SGI-IRIS-4D/50 SGI-IRIS-4D/50G SGI-IRIS-4D/50GT
SGI-IRIS-4D/60 SGI-IRIS-4D/60G SGI-IRIS-4D/60GT
SGI-IRIS-4D/60T SGI-IRIS-4D/70 SGI-IRIS-4D/70G
SGI-IRIS-4D/70GT SGI-IRIS-4D/80GT SGI-IRIS-4D/80S
SGI-IRIS-4SERVER-8 SGI-IRIS-CS/12 SIEMENS
SILICON-GRAPHICS SILICON-GRAPHICS-IRIS SMI
SPERRY-DCP/10 SUN SUN-100
SUN-120 SUN-130 SUN-150
SUN-170 SUN-2 SUN-2/100
SUN-2/120 SUN-2/130 SUN-2/140
SUN-2/150 SUN-2/160 SUN-2/170
SUN-2/50 SUN-3/110 SUN-3/140
SUN-3/150 SUN-3/160 SUN-3/180
SUN-3/200 SUN-3/260 SUN-3/280
SUN-3/470 SUN-3/480 SUN-3/50
SUN-3/60 SUN-3/75 SUN-3/80
SUN-386i/250 SUN-4/110 SUN-4/150
SUN-4/200 SUN-4/260 SUN-4/280
SUN-4/330 SUN-4/370 SUN-4/390
SUN-4/60 SUN-50 SUN-68000
SYMBOLICS-3600 SYMBOLICS-3670 SYMMETRIC-375
SYMULT TANDEM-TXP TANDY-6000
TEK-6130 TI-EXPLORER TP-4000
TRS-80 UNIVAC-1100 UNIVAC-1100/60
UNIVAC-1100/62 UNIVAC-1100/63 UNIVAC-1100/64
UNIVAC-1100/70 UNIVAC-1160 UNKNOWN
VAX-11/725 VAX-11/730 VAX-11/750
VAX-11/780 VAX-11/785 VAX-11/790
VAX-11/8600 VAX-8600 WANG-PC002
WANG-VS100 WANG-VS400 WYSE-386
XEROX-1108 XEROX-8010 ZENITH-148



RFC-1060 Assigned Numbers March 1990

System Names

These are the Official System Names as they appear in the Domain Name System WKS 
records and the NIC Host Table.    Their use is described in RFC-952 [53]. 
A system name may be up to 40 characters taken from the set of upper- case letters, digits, 
and the two punctuation characters hyphen and slash.    It must start with a letter, and end 
with a letter or digit. 

AEGIS MACOS TP3010
APOLLO MINOS TRSDOS
BS-2000 MOS ULTRIX
CEDAR MPE5 UNIX
CGW MSDOS UNIX-BSD
CHORUS MULTICS UNIX-V1AT
CHRYSALIS MVS UNIX-V
CMOS MVS/SP UNIX-V.1
CMS NEXUS UNIX-V.2
COS NMS UNIX-V.3
CPIX NONSTOP                                    UNIX-PC
CTOS NOS-2 UNKNOWN
CTSS OS/DDP UT2D
DCN OS4 V
DDNOS OS86 VM
DOMAIN OSX VM/370
DOS PCDOS VM/CMS
EDX PERQ/OS VM/SP
ELF PLI VMS
EMBOS PSDOS/MIT VMS/EUNICE
EMMOS PRIMOS VRTX
EPOS RMX/RDOS WAITS
FOONEX ROS WANG
FUZZ RSX11M X11R3
GCOS SATOPS XDE
GPOS SCO-XENIX/386 XENIX
HDOS SCS
IMAGEN SIMP
INTERCOM SUN
IMPRESS SUN OS 3.5
INTERLISP SUN OS 4.0
IOS SWIFT
IRIX TAC
ISI-68020 TANDEM
ITS TENEX
LISP TOPS10
LISPM TOPS20
LOCUS TOS



RFC-1060 Assigned Numbers March 1990

Protocol And Service Names

These are the Official Protocol Names as they appear in the Domain Name System WKS 
records and the NIC Host Table.    Their use is described in RFC-952 [53]. 
A protocol or service may be up to 40 characters taken from the set of uppercase letters, 
digits, and the punctuation character hyphen. It must start with a letter, and end with a 
letter or digit. 

ARGUS - ARGUS Protocol
ARP - Address Resolution Protocol
AUTH - Authentication Service
BBN-RCC-MON - BBN RCC Monitoring
BL-IDM - Britton Lee Intelligent Database Machine
BOOTP - Bootstrap Protocol
BOOTPC - Bootstrap Protocol Client
BOOTPS - Bootstrap Protocol Server
BR-SAT-MON - Backroom SATNET Monitoring
CFTP - CFTP
CHAOS - CHAOS Protocol
CHARGEN - Character Generator Protocol
CISCO-FNA - CISCO FNATIVE
CISCO-TNA - CISCO TNATIVE
CISCO-SYS - CISCO SYSMAINT
CLOCK - DCNET Time Server Protocol
CMOT - Common Mgmnt Info Services and Protocol over TCP/IP
COOKIE-JAR - Authentication Scheme
CSNET-NS - CSNET Mailbox Nameserver Protocol
DAYTIME - Daytime Protocol
DCN-MEAS - DCN Measurement Subsystems Protocol
DCP - Device Control Protocol
DGP - Dissimilar Gateway Protocol
DISCARD - Discard Protocol
DOMAIN - Domain Name System
ECHO - Echo Protocol
EGP - Exterior Gateway Protocol
EMCON - Emission Control Protocol
EMFIS-CNTL - EMFIS Control Service
EMFIS-DATA - EMFIS Data Service
FINGER - Finger Protocol
FTP - File Transfer Protocol
FTP-DATA - File Transfer Protocol Data
GGP - Gateway Gateway Protocol
GRAPHICS - Graphics Protocol
HMP - Host Monitoring Protocol
HOST2-NS - Host2 Name Server
HOSTNAME - Hostname Protocol
ICMP - Internet Control Message Protocol
IGMP - Internet Group Management Protocol
IGP - Interior Gateway Protocol
IMAP2 - Interim Mail Access Protocol version 2



INGRES-NET - INGRES-NET Service
IP - Internet Protocol
IPCU - Internet Packet Core Utility
IPPC - Internet Pluribus Packet Core
IP-ARC - Internet Protocol on ARCNET
IP-ARPA - Internet Protocol on ARPANET
IP-DC - Internet Protocol on DC Networks
IP-DVMRP - Distance Vector Multicast Routing Protocol
IP-E - Internet Protocol on Ethernet Networks
IP-EE - Internet Protocol on Exp. Ethernet Nets
IP-FDDI - Transmission of IP over FDDI
IP-HC - Internet Protocol on Hyperchannnel
IP-IEEE - Internet Protocol on IEEE 802
IP-IPX - Transmission of 802.2 over IPX Networks
IP-MTU - IP MTU Discovery Options
IP-NETBIOS - Internet Protocol Datagrams over NetBIOS Networks
IP-SLIP - Transmission of IP over Serial Lines
IP-WB - Internet Protocol on Wideband Network
IP-X25 - Internet Protocol on X.25 Networks
IRTP - Internet Reliable Transaction Protocol
ISI-GL - ISI Graphics Language Protocol
ISO-TP4 - ISO Transport Protocol Class 4
ISO-TSAP - ISO TSAP
LA-MAINT - IMP Logical Address Maintenance
LARP - Locus Address Resoultion Protocol
LDP - Loader Debugger Protocol
LEAF-1 - Leaf-1 Protocol
LEAF-2 - Leaf-2 Protocol
LINK - Link Protocol
LOC-SRV - Location Service
LOGIN - Login Host Protocol
MAIL - Format of Electronic Mail Messages
MERIT-INP - MERIT Internodal Protocol
METAGRAM - Metagram Relay
MIB - Management Information Base
MIT-ML-DEV - MIT ML Device
MFE-NSP - MFE Network Services Protocol
MIT-SUBNET - MIT Subnet Support
MIT-DOV - MIT Dover Spooler
MPM - Internet Message Protocol (Multimedia Mail)
MPM-FLAGS - MPM Flags Protocol
MPM-SND - MPM Send Protocol
MSG-AUTH - MSG Authentication Protocol
MSG-ICP - MSG ICP Protocol
MUX - Multiplexing Protocol
NAMESERVER - Host Name Server
NETBIOS-DGM - NETBIOS Datagram Service
NETBIOS-NS - NETBIOS Name Service
NETBIOS-SSN - NETBIOS Session Service
NETBLT - Bulk Data Transfer Protocol
NETED - Network Standard Text Editor
NETRJS - Remote Job Service
NI-FTP - NI File Transfer Protocol
NI-MAIL - NI Mail Protocol
NICNAME - Who Is Protocol



NFILE - A File Access Protocol
NNTP - Network News Transfer Protocol
NSW-FE - NSW User System Front End
NTP - Network Time Protocol
NVP-II - Network Voice Protocol
OSPF - Open Shortest Path First Interior GW Protocol
PCMAIL - Pcmail Transport Protocol
POP2 - Post Office Protocol - Version 2
POP3 - Post Office Protocol - Version 3
PPP - Point-to-Point Protocol
PRM - Packet Radio Measurement
PUP - PUP Protocol
PWDGEN - Password Generator Protocol
QUOTE - Quote of the Day Protocol
RARP - A Reverse Address Resolution Protocol
RATP - Reliable Asynchronous Transfer Protocol
RDP - Reliable Data Protocol
RIP - Routing Information Protocol
RJE - Remote Job Entry
RLP - Resource Location Protocol
RTELNET - Remote Telnet Service
RVD - Remote Virtual Disk Protocol
SAT-EXPAK - Satnet and Backroom EXPAK
SAT-MON - SATNET Monitoring
SEP - Sequential Exchange Protocol
SFTP - Simple File Transfer Protocol
SGMP - Simple Gateway Monitoring Protocol
SNMP - Simple Network Management Protocol
SMI - Structure of Management Information
SMTP - Simple Mail Transfer Protocol
SQLSRV - SQL Service
ST - Stream Protocol
STATSRV - Statistics Service
SU-MIT-TG - SU/MIT Telnet Gateway Protocol
SUN-RPC - SUN Remote Procedure Call
SUPDUP - SUPDUP Protocol
SUR-MEAS - Survey Measurement
SWIFT-RVF - Remote Virtual File Protocol
TACACS-DS - TACACS-Database Service
TACNEWS - TAC News
TCP - Transmission Control Protocol
TELNET - Telnet Protocol
TFTP - Trivial File Transfer Protocol
THINWIRE - Thinwire Protocol
TIME - Time Server Protocol
TP-TCP - ISO Transport Service on top of the TCP
TRUNK-1 - Trunk-1 Protocol
TRUNK-2 - Trunk-2 Protocol
UCL - University College London Protocol
UDP - User Datagram Protocol
NNTP - Network News Transfer Protocol
USERS - Active Users Protocol
UUCP-PATH - UUCP Path Service
VIA-FTP - VIA Systems-File Transfer Protocol
VISA - VISA Protocol



VMTP - Versatile Message Transaction Protocol
WB-EXPAK - Wideband EXPAK
WB-MON - Wideband Monitoring
XNET - Cross Net Debugger
XNS-IDP - Xerox NS IDP



RFC-1060 Assigned Numbers March 1990

Terminal Type Names

These are the Official Terminal Type Names.    Their use is described in RFC-930 [128].    The 
maximum length of a name is 40 characters. 
A terminal names may be up to 40 characters taken from the set of upper- case letters, 
digits, and the two punctuation characters hyphen and slash.    It must start with a letter, 
and end with a letter or digit. 

ADDS-CONSUL-980 DATAMEDIA-1521
ADDS-REGENT-100 DATAMEDIA-2500
ADDS-REGENT-20 DATAMEDIA-3025
ADDS-REGENT-200 DATAMEDIA-3025A
ADDS-REGENT-25 DATAMEDIA-3045
ADDS-REGENT-40 DATAMEDIA-3045A
ADDS-REGENT-60 DATAMEDIA-DT80/1
ADDS-VIEWPOINT DATAPOINT-2200
ADDS-VIEWPOINT-60 DATAPOINT-3000
AED-512 DATAPOINT-3300
AMPEX-DIALOGUE-210 DATAPOINT-3360
AMPEX-DIALOGUE-80 DEC-DECWRITER-I
AMPEX-210 DEC-DECWRITER-II
AMPEX-230 DEC-GIGI
ANDERSON-JACOBSON-510 DEC-GT40
ANDERSON-JACOBSON-630 DEC-GT40A
ANDERSON-JACOBSON-832 DEC-GT42
ANDERSON-JACOBSON-841 DEC-LA120
ANN-ARBOR-AMBASSADOR DEC-LA30
ANSI DEC-LA36
ARDS DEC-LA38
BITGRAPH DEC-VT05
BUSSIPLEXER DEC-VT100
CALCOMP-565 DEC-VT101
CDC-456 DEC-VT102
CDI-1030 DEC-VT125
CDI-1203 DEC-VT131
C-ITOH-101 DEC-VT132
C-ITOH-50 DEC-VT200
C-ITOH-80 DEC-VT220
CLNZ DEC-VT240
COMPUCOLOR-II DEC-VT241
CONCEPT-100 DEC-VT300
CONCEPT-104 DEC-VT320
CONCEPT-108 DEC-VT340
DATA-100 DEC-VT50
DATA-GENERAL-6053 DEC-VT50H
DATAGRAPHIX-132A DEC-VT52
DATAMEDIA-1520 DEC-VT55
DEC-VT61 HP-2649A
DEC-VT62 IBM-1050
DELTA-DATA-5000 IBM-2741
DELTA-DATA-NIH-7000 IBM-3101
DELTA-TELTERM-2 IBM-3101-10



DIABLO-1620 IBM-3151
DIABLO-1640 IBM-3275-2
DIGILOG-333 IBM-3276-2
DTC-300S IBM-3276-3
DTC-382 IBM-3276-4
EDT-1200 IBM-3277-2
EXECUPORT-4000 IBM-3278-2
EXECUPORT-4080 IBM-3278-3
FACIT-TWIST-4440 IBM-3278-4
FREEDOM-100 IBM-3278-5
FREEDOM-110 IBM-3279-2
FREEDOM-200 IBM-3279-3
GENERAL-TERMINAL-100A IBM-5151
GENERAL-TERMINAL-101 IBM-5154
GIPSI-TX-M IBM-5081
GIPSI-TX-ME IBM-6153
GIPSI-TX-C4 IBM-6154
GIPSI-TX-C8 IBM-6155
GSI IBM-AED
HAZELTINE-1420 IBM-3278-2-E
HAZELTINE-1500 IBM-3278-3-E
HAZELTINE-1510 IBM-3278-4-E
HAZELTINE-1520 IBM-3278-5-E
HAZELTINE-1552 IBM-3279-2-E
HAZELTINE-2000 IBM-3279-3-E
HAZELTINE-ESPRIT IMLAC
HP-2392 INFOTON-100
HP-2621 INFOTON-400
HP-2621A INFOTONKAS
HP-2621P ISC-8001
HP-2623 LSI-ADM-1
HP-2626 LSI-ADM-11
HP-2626A LSI-ADM-12
HP-2626P LSI-ADM-2
HP-2627 LSI-ADM-20
HP-2640 LSI-ADM-22
HP-2640A LSI-ADM-220
HP-2640B LSI-ADM-3
HP-2645 LSI-ADM-31
HP-2645A LSI-ADM-3A
HP-2648 LSI-ADM-42
HP-2648A LSI-ADM-5
HP-2649 MEMOREX-1240
MICROBEE TELETEC-DATASCREEN
MICROTERM-ACT-IV TELETERM-1030
MICROTERM-ACT-V TELETYPE-33
MICROTERM-ERGO-301 TELETYPE-35
MICROTERM-MIME-1 TELETYPE-37
MICROTERM-MIME-2 TELETYPE-38
MICROTERM-ACT-5A TELETYPE-40
MICROTERM-TWIST TELETYPE-43
NEC-5520 TELEVIDEO-910
NETRONICS TELEVIDEO-912
NETWORK-VIRTUAL-TERMINAL TELEVIDEO-920
OMRON-8025AG TELEVIDEO-920B



PERKIN-ELMER-550 TELEVIDEO-920C
PERKIN-ELMER-1100 TELEVIDEO-925
PERKIN-ELMER-1200 TELEVIDEO-955
PERQ TELEVIDEO-950
PLASMA-PANEL TELEVIDEO-970
QUME-SPRINT-5 TELEVIDEO-975
QUME-101 TERMINET-1200
QUME-102 TERMINET-300
SOROC TI-700
SOROC-120 TI-733
SOUTHWEST-TECHNICAL-PRODUCTS-CT82 TI-735
SUN TI-743
SUPERBEE TI-745
SUPERBEE-III-M TI-800
TEC TYCOM
TEKTRONIX-4006 UNIVAC-DCT-500
TEKTRONIX-4010 VIDEO-SYSTEMS-1200
TEKTRONIX-4012 VIDEO-SYSTEMS-5000
TEKTRONIX-4013 VOLKER-CRAIG-303
TEKTRONIX-4014 VOLKER-CRAIG-303A
TEKTRONIX-4023 VOLKER-CRAIG-404
TEKTRONIX-4024 VISUAL-200
TEKTRONIX-4025 VISUAL-55
TEKTRONIX-4027 WYSE-30
TEKTRONIX-4105 WYSE-50
TEKTRONIX-4107 WYSE-60
TEKTRONIX-4110 WYSE-75
TEKTRONIX-4112 WYSE-85
TEKTRONIX-4113 XEROX-1720
TEKTRONIX-4114 XTERM
TEKTRONIX-4115 ZENITH-H19
TEKTRONIX-4125 ZENITH-Z29
TEKTRONIX-4404 ZENTEC-30
TELERAY-1061
TELERAY-3700
TELERAY-3800



[2] BBN, "Specifications for the Interconnection of a Host and an IMP", Report 1822, Bolt 
Beranek and Newman, Cambridge, Massachusetts, revised, December 1981. 



[3] BBN, "User Manual for TAC User Database Tool", Bolt Beranek and Newman, 
September 1984.



[4] Ben-Artzi, Amatzia, "Network Management for TCP/IP Network: An Overview", 3Com, 
May 1988.



[5] Bennett, C., "A Simple NIFTP-Based Mail System", IEN 169, University College, 
London, January 1981.



[6] Bhushan, A., "A Report on the Survey Project", RFC-530, NIC 17375, June 1973.



[7] Bisbey, R., D. Hollingworth, and B. Britt, "Graphics Language (version 2.1)", ISI/TM-80-
18, Information Sciences Institute, July 1980.



[8] Boggs, D., J. Shoch, E. Taft, and R. Metcalfe, "PUP: An Internetwork Architecture", 
XEROX Palo Alto Research Center, CSL-79-10, July 1979; also in IEEE Transactions on 
Communication, Volume COM-28, Number 4, April 1980.



[12] Bressler, B., "Remote Job Entry Protocol", RFC-407, NIC 12112, October 1972.



[13] Bressler, R., "Inter-Entity Communication -- An Experiment", RFC-441, NIC 13773, 
January 1973.



[18] Cisco Systems, "Gateway Server Reference Manual", Manual Revision B, January 10, 
1988.



[21] Cohen, D., "On Holy Wars and a Plea for Peace", IEEE Computer Magazine, October 
1981.



[23] Cohen, D. and J. Postel, "Multiplexing Protocol", IEN 90, Information Sciences Institute,
May 1979.



[24] COMPASS, "Semi-Annual Technical Report", CADD-7603-0411, Massachusetts 
Computer Associates, 4 March 1976. Also as, "National Software Works, Status 
ReportNo. 1," RADC-TR-76-276, Volume 1, September 1976. And COMPASS. "Second 
Semi-Annual Report," CADD-7608-1611, Massachusetts Computer Associates, August 
1976.



[39] DCA, "3270 Display System Protocol", #1981-08.



[40] DDN Protocol Handbook, "Telnet Output Line Width Option", NIC 50005, December 
1985.



[41] DDN Protocol Handbook, "Telnet Output Page Size Option", NIC 50005, December 
1985.



[42] DDN Protocol Handbook, "Telnet Reconnection Option", NIC 50005, December 1985.



[45] Feinler, E., editor, "DDN Protocol Handbook", Network Information Center, SRI 
International, December 1985.



[46] Feinler, E., editor, "Internet Protocol Transition Workbook", Network Information 
Center, SRI International, March 1982.



[47] Feinler, E. and J. Postel, eds., "ARPANET Protocol Handbook", NIC 7104, for the 
Defense Communications Agency by SRI International, Menlo Park, California, Revised
January 1978.



[49] Forgie, J., "ST - A Proposed Internet Stream Protocol", IEN 119, MIT Lincoln Laboratory,
September 1979.



[50] Forsdick, H., "CFTP", Network Message, Bolt Beranek and Newman, January 1982.



[56] Haverty, J., "XNET Formats for Internet Protocol Version 4", IEN 158, October 1980.



[66] Kent, S., and J. Linn, "Privacy Enhancement for Internet Electronic Mail: Part II -- 
Certificate-Based Key Management", BBNCC and DEC, August 1989.



[74] M/A-COM Government Systems, "Dissimilar Gateway Protocol Specification, Draft 
Version", Contract no. CS901145, November 16, 1987.



[76] Malis, A., "Logical Addressing Implementation Specification", BBN Report 5256, pp 31-
36, May 1983.



[77] Malkin, G., "KNET/VM Command Message Protocol Functional Overview", Spartacus, 
Inc., January 4, 1988.



[78] Metcalfe, R. M. and D. R. Boggs, "Ethernet: Distributed Packet Switching for Local 
Computer Networks", Communications of the ACM, 19 (7), pp 395-402, July1976.



[85] NSW Protocol Committee, "MSG: The Interprocess Communication Facility for the 
National Software Works", CADD-7612-2411, Massachusetts Computer 
Associates,BBN 3237, Bolt Beranek and Newman, Revised December 1976.



[99] Postel, J., "Name Server", IEN 116, Information Sciences Institute, August 1979.



[124] Shuttleworth, B., "A Documentary of MFENet, a National Computer Network", UCRL-
52317, Lawrence Livermore Labs, Livermore, California, June 1977.



[127] Solomon, M., L. Landweber, and D. Neuhengen, "The CSNET Name Server", Computer
Networks, v.6, n.3, pp. 161-172, July 1982.



[129] Sproull, R., and E. Thomas, "A Networks Graphics Protocol", NIC 24308, August 1974.



[132] Taylor, J., "ERPC Functional Specification", Version 1.04, HYDRA Computer Systems, 
Inc., July 1984.



[133] "The Ethernet, A Local Area Network: Data Link Layer and Physical Layer 
Specification", AA-K759B-TK, Digital Equipment Corporation, Maynard, MA.    Also as: 
"The Ethernet - A Local Area Network", Version 1.0, Digital Equipment Corporation, 
Intel Corporation, Xerox Corporation, September 1980.    And: "The Ethernet,A Local 
Area Network: Data Link Layer and Physical Layer Specifications", Digital, Intel and 
Xerox, November 1982.    And: XEROX, "The Ethernet, A Local Area Network: Data Link
Layer and Physical Layer Specification", X3T51/80-50, Xerox Corporation, Stamford, 
CT., October 1980.



[134] The High Level Protocol Group, "A Network Independent File Transfer Protocol", INWG 
Protocol Note 86, December 1977.



[135] Thomas, Bob, "The Interhost Protocol to Support CRONUS/DIAMOND Interprocess 
Communication", BBN, September 1983.



[137] Uttal, J., J. Rothschild, and C. Kline, "Transparent Integration of UNIX and MS-DOS", 
Locus Computing Corporation.



[143] Welch, B., "The Sprite Remote Procedure Call System", Technical Report, 
UCB/Computer Science Dept., 86/302, University of California at Berkeley, June 1986.



[144] Xerox, "Courier: The Remote Procedure Protocol", XSIS 038112, December 1981.



[AB20] Art Berggreen ACC art@SALT.ACC.ARPA



[ABB2] A. Blasco Bonito CNUCE blasco@ICNUCEVM.CNUCE.CNR.IT



[AD14] Annette DeSchon ISI DESCHON@ISI.EDU



[AGM] Andy Malis BBN Malis@BBN.COM



[AKH5] Arthur Hartwig UQNET munnari!wombat.decnet.uq.oz.au!
ccarthur@UUNET.UU.NET



[ANM2] April N. Marine SRI APRIL@NIC.DDN.MIL



[AW90] Amanda Walker Intercon AMANDA@INTERCON.COM



[AXB] Albert G. Broscius UPENN broscius@DSL.CIS.UPENN.EDU



[AXB1] Amatzia Ben-Artzi ---none---



[AXC] Andrew Cherenson SGI arc@SGI.COM



[AXC1] Anthony Chung Sytek sytek!syteka!anthony@HPLABS.HP.COM



[AXC2] Asheem Chandna AT&T ac0@mtuxo.att.com



[AXM] Alex Martin Retix ---none---



[AXS] Arthur Salazar Locus lcc.arthur@SEAS.UCLA.EDU



[BA4] Brian Anderson BBN baanders@CCQ.BBN.COM



[BB257] Brian W. Brown SynOptics BBROWN@MVIS1.SYNOPTICS.COM



[BCH2] Barry Howard LLL Howard@NMFECC.ARPA



[BCN] Clifford B. Newman UWASH bcn@CS.WASHINGTON.EDU



[BD70] Bernd Doleschal SEL Doleschal@A.ISI.EDU



[BH144] Bridget Halsey Banyan bah@BANYAN.BANYAN.COM



[BJR2] Bill Russell NYU russell@cmcl2.NYU.EDU



[BKR] Brian Reid DEC reid@DECWRL.DEC.COM



[BP52] Brad Parker CAYMAN brad@cayman.Cayman.COM



[BS221] Bob Stewart Xyplex STEWART@XYPLEX.COM



[BWB6] Barry Boehm DARPA boehm@DARPA.MIL



[BXA] Bill Anderson MITRE wda@MITRE-BEDFORD.ORG



[BXB] Brad Benson Touch ---none---



[BXE] Brian A. Ehrmantraut Auspex Systems bae@auspex.com



[BXH] Brian Horn Locus ---none---



[BXL] Brian Lloyd SIRIUS ---none---



[BXN] Bill Norton Merit wbn@MERIT.EDU



[BXV] Bill Versteeg NRC bvs@NRC.COM



[BXW] Brent Welch Sprite brent%sprite.berkeley.edu@GINGER.BERKELEY.EDU



[BXW1] Bruce Willins Raycom ---none---



[BXZ] Bob Zaniolo Reuter ---none---



[CLH3] Charles Hedrick RUTGERS HEDRICK@ARAMIS.RUTGERS.EDU



[CMR] Craig Rogers ISI Rogers@ISI.EDU



[CXM] Charles Marker II MIPS marker@MIPS.COM



[CXT] Christopher Tengi Princeton tengi@Princeton.EDU



[DAG4] David A. Gomberg MITRE gomberg@GATEWAY.MITRE.ORG



[DB14] Dave Borman Cray dab@CRAY.COM



[DC126] Dick Cogger Cornell rhx@CORNELLC.CIT.CORNELL.EDU



[DCP1] David Plummer MIT DCP@SCRC-QUABBIN.ARPA



[DDC1] David Clark MIT ddc@LCS.MIT.EDU



[DJK13] David Kaufman DeskTalk ---none---



[DLM1] David Mills LINKABIT Mills@HUEY.UDEL.EDU



[DM28] Dennis Morris DCA Morrisd@IMO-UVAX.DCA.MIL



[DM280] Dave Mackie NCD lupine!djm@UUNET.UU.NET



[DM354] Don McWilliam UBC mcwillm@CC.UBC.CA



[DPR] David Reed MIT-LCS Reed@MIT-MULTICS.ARPA



[DRC3] Dave Cheriton STANFORD cheriton@PESCADERO.STANFORD.EDU



[DT15] Daniel Tappan BBN Tappan@BBN.COM



[DW181] David Wolfe SRI ctabka@TSCA.ISTC.SRI.COM



[DW183] David Waitzman BBN dwaitzman@BBN.COM



[DXB] Dave Buehmann Intergraph ingr!daveb@UUNET.UU.NET



[DXD] Dennis J.W. Dube VIA SYSTEMS ---none---



[DXG] David Goldberg SMI sun!dg@UCBARPA.BERKELEY.EDU



[DXK] Doug Karl OSU KARL-D@OSU-20.IRCC.OHIO-STATE.EDU



[DXM] Didier Moretti Ungermann-Bass ---none---



[DXM1] Donna McMalster David Systems ---none---



[DXP] Dave Preston CMC ---none---



[DY26] Dennis Yaro SUN yaro@SUN.COM



[EAK4] Earl Killian LLL EAK@MORDOR.S1.GOV



[EBM] Eliot Moss MIT EBM@XX.LCS.MIT.EDU



[EP53] Eric Peterson Locus lcc.eric@SEAS.UCLA.EDU



[EXC] Ed Cain DCA cain@edn-unix.dca.mil



[EXR] Eric Rubin FiberCom err@FIBERCOM.COM



[EXR1] Efrat Ramati Lannet Co. ---none---



[FB77] Fred Baker Vitalink baker%vitam6@UUNET.UU.NET



[FJK2] Frank Kastenholz Interlan KASTEN@MITVMA.MIT.EDU



[FJW] Frank J. Wancho WSMR WANCHO@SIMTEL20.ARPA



[FXB1] Felix Burton DIAB FB@DIAB.SE



[GAL5] Guillermo A. Loyola IBM LOYOLA@IBM.COM



[GB7] Gerd Beling FGAN GBELING@ISI.EDU



[GEOF] Geoff Goodfellow OSD Geoff@FERNWOOD.MPK.CA.US



[GGB2] Geoff Baehr SUN geoffb@ENG.SUN.COM



[GM23] Glenn Marcy CMU Glenn.Marcy@A.CS.CMU.EDU



[GS2] Greg Satz cisco satz@CISCO.COM



[GS123] Geof Stone NSC geof@NETWORK.COM



[GSM11] Gary S. Malkin Proteon gmalkin@PROTEON.COM



[GXG] Gil Greebaum Unisys gcole@nisd.cam.unisys.com



[GXP] Gill Pratt MIT gill%mit-ccc@MC.LCS.MIT.EDU



[GXS] Guenther Schreiner LINK guenther%ira.uka.de@RELAY.CS.NET



[GXT] Glenn Trewitt STANFORD trewitt@AMADEUS.STANFORD.EDU



[GXT1] Gene Tsudik USC tsudik@USC.EDU



[GXW] Glenn Waters Bell Northern gwaters@BNR.CA



[HCF2] Harry Forsdick BBN Forsdick@BBN.COM



[HS23] Hokey Stenn Plus5 hokey@PLUS5.COM



[HWB] Hans-Werner Braun MICHIGAN HWB@MCR.UMICH.EDU



[HXE] Hunaid Engineer Cray hunaid@OPUS.CRAY.COM



[HXK] Henry Kaijak Gandalf ---none---



[IEEE] Vince Condello IEEE ---none---



[JAG] James Gosling SUN JAG@SUN.COM



[JB478] Jonathan Biggar Netlabs jon@netlabs.com



[JBP] Jon Postel ISI Postel@ISI.EDU



[JBW1] Joseph Walters, Jr. BBN JWalters@BBN.COM



[JCB1] John Burruss BBN JBurruss@VAX.BBN.COM



[JCM48] Jeff Mogul DEC mogul@DECWRL.DEC.COM



[JD21] Jonathan Dreyer BBN Dreyer@CCV.BBN.COM



[JDC20] Jeffrey Case UTK case@UTKUX1.UTK.EDU



[JFH2] Jack Haverty BBN JHaverty@BBN.COM



[JFW] Jon F. Wilkes STC Wilkes@CCINT1.RSRE.MOD.UK



[JGH] Jim Herman BBN Herman@CCJ.BBN.COM



[JJB25] John Bowe BBN jbowe@PINEAPPLE.BBN.COM



[JKR1] Joyce K. Reynolds ISI JKRey@ISI.EDU



[JR35] Jon Rochlis MIT jon@ATHENA.MIT.EDU



[JRL3] John LoVerso Xylogics loverso@XYLOGICS.COM



[JS28] John A. Shriver Proteon jas@PROTEON.COM



[JTM4] John Moy Proteon jmoy@PROTEON.COM



[JWF] Jim Forgie MIT/LL FORGIE@XN.LL.MIT.EDU



[JXB] Jeffrey Buffun Apollo jbuffum@APOLLO.COM



[JXC] John Cook Chipcom cook@chipcom.com



[JXE2] Jeanne Evans UKMOD JME%RSRE.MOD.UK@CS.UCL.AC.UK



[JXF] Josh Fielk Optical Data Systems ---none---



[JXG] Jerry Geisler Boeing ---none---



[JXG1] Jim Greuel HP jimg%hpcndpc@hplabs.hp.com



[JXH] Jeff Honig Cornell jch@sonne.tn.cornell.edu



[JXH1] Jim Hayes Apple Hayes@APPLE.COM



[JXI] Jon Infante ICL ---none---



[JXM] Joseph Murdock Network Resources Corporation ---none---



[JXO] Jack O'Neil ENCORE ---none---



[JXO1] Jerrilynn Okamura Ontologic ---none---



[JXO2] Jarkko Oikarinen Tolsun jto@TOLSUN.OULU.FI



[JXP] Joe Pato Apollo apollo!pato@EDDIE.MIT.EDU



[JXR] Jacob Rekhter IBM Yakov@IBM.COM



[JXS] Jim Stevens Rockwell Stevens@ISI.EDU



[JXS1] John Sancho CastleRock ---none---



[KAA] Ken Adelman TGV, Inc. Adelman@TGV.COM



[KA4] Karl Auerbach Epilogue auerbach@csl.sri.com



[KH43] Kathy Huber BBN khuber@bbn.com



[KLH] Ken Harrenstien SRI KLH@NIC.DDN.MIL



[KR35] Keith Reynolds SCO keithr@SCO.COM



[KSL] Kirk Lougheed cisco LOUGHEED@MATHOM.CISCO.COM



[KXD] Kevin DeVault NI ---none---



[KXS] Keith Sklower Berkeley sklower@okeeffe.berkeley.edu



[KXW] Ken Whitfield MCNC ken@MCNC.ORG



[KZM] Keith McCloghrie TWG kzm@TWG.ARPA



[LL69] Lawrence Lebahn DIA DIA3@PAXRV-NES.NAVY.MIL



[LLP] Larry Peterson ARIZONA llp@ARIZONA.EDU



[LXE] Len Edmondson SUN len@TOPS.SUN.COM



[LXF] Larry Fischer DSS lfischer@dss.com



[LXH] Leo Hourvitz NeXt leo@NEXT.COM



[MA] Mike Accetta CMU MIKE.ACCETTA@CMU-CS-A.EDU



[MARY] Mary K. Stahl SRI Stahl@NIC.DDN.MIL



[MAR10] Mark A. Rosenstein MIT mar@ATHENA.MIT.EDU



[MB] Michael Brescia BBN Brescia@CCV.BBN.COM



[MBG] Michael Greenwald SYMBOLICS Greenwald@SCRC-STONY-BROOK.ARPA



[MCSJ] Mike StJohns TPSC StJohns@MIT-MULTICS.ARPA



[ME38] Marc A. Elvy Marble ELVY@CARRARA.MARBLE.COM



[MKL] Mark Lottor SRI MKL@NIC.DDN.MIL



[ML109] Mike Little MACOM little@MACOM4.ARPA



[MLS34] L. Michael Sabo TMAC darth!eniac!sabo@Sun.Com



[MO2] Michael O'Brien AEROSPACE obrien@AEROSPACE.AERO.ORG



[MRC] Mark Crispin Simtel MRC@SIMTEL20.ARPA



[MS9] Marty Schoffstahl Nysernet schoff@NISC.NYSER.NET



[MS56] Marvin Solomon WISC solomon@CS.WISC.EDU



[MXB] Mike Berrow Relational Technology ---none---



[MXB1] Mike Burrows DEC burrows@SRC.DEC.COM



[MXL] Mark L. Lambert MIT markl@PTT.LCS.MIT.EDU



[MXP] Martin Picard Oracle ---none---



[MXS] Mike Spina Prime WIZARD%enr.prime.com@RELAY.CS.NET



[MXW] Michael Waters EON ---none---



[NC3] J. Noel Chiappa MIT JNC@XX.LCS.MIT.EDU



[NT12] Neil Todd IST mcvax!ist.co.uk!neil@UUNET.UU.NET



[PAM6] Paul McNabb RICE pam@PURDUE.EDU



[PCW] C. Philip Wood LANL cpw@LANL.GOV



[PD39] Pete Delaney ECRC pete%ecrcvax@CSNET-RELAY.ARPA



[PHD1] Pieter Ditmars BBN pditmars@BBN.COM



[PK] Peter Kirstein UCL Kirstein@NSS.CS.UCL.AC.UK



[PL4] Phil Lapsley BERKELEY phil@UCBARPA.BERKELEY.EDU



[PM1] Paul Mockapetris ISI PVM@ISI.EDU



[PXK] Philip Koch Dartmouth Philip.Koch@DARTMOUTH.EDU



[RAM57] Rex Mann CDC ---none---



[RDXS] R. Dwight Schettler HP rds%hpcndm@HPLABS.HP.COM



[RH6] Robert Hinden BBN Hinden@CCV.BBN.COM



[RHT] Robert Thomas BBN BThomas@F.BBN.COM



[RN6] Rudy Nedved CMU Rudy.Nedved@CMU-CS-A.EDU



[RTB3] Bob Braden ISI Braden@ISI.EDU



[RWS4] Robert W. Scheifler ARGUS RWS@XX.LCS.MIT.EDU



[RXB] Ramesh Babu Excelan mtxinu!excelan!ramesh@UCBVAX.BERKELEY.EDU



[RXB1] Ron Bhanukitsiri DEC rbhank@DECVAX.DEC.COM



[RXC] Rob Chandhok CMU chandhok@gnome.cs.cmu.edu



[RXC1] Rick Carlos TI rick.ticipa.csc.ti.com



[RXD] Roger Dev Cabletron ---none---



[RXD1] Ralph Droms NRI rdroms@NRI.RESTON.VA.US



[RXH] Reijane Huai Cheyenne sibal@CSD2.NYU.EDU



[RXJ] Ronald Jacoby SGI rj@SGI.COM



[RXM] Robert Myhill BBN Myhill@CCS.BBN.COM



[RXN] Rina Nethaniel RND ---none---



[RXS] Ron Strich SSDS ---none---



[RXT] Ron Thornton GenRad thornton@qm7501.genrad.com



[RXZ] Rayan Zachariassen Toronto rayan@AI.TORONTO.EDU



[SA1] Sten Andler IBM
 andler.ibm-sj@RAND-RELAY.ARPA



[SAF3] Stuart A. Friedberg UWISC stuart@CS.WISC.EDU



[SB98] Stan Barber BCM SOB@BCM.TMC.EDU



[SC3] Steve Casner ISI Casner@ISI.EDU



[SGC] Steve Chipman BBN Chipman@F.BBN.COM



[SHB] Steven Blumenthal BBN BLUMENTHAL@VAX.BBN.COM



[SH37] Sergio Heker JVNC heker@JVNCC.CSC.ORG



[SL70] Stuart Levy UMN slevy@UC.MSC.UMN.EDU



[SRN1] Stephen Northcutt NSWC SNORTHC@RELAY-NSWC.NAVY.MIL



[SS92] Steve Schoch NASA SCHOCH@AMES.ARC.NASA.GOV



[SXA] Susie Armstrong XEROX Armstrong.wbst128@XEROX.COM



[SXB] Scott Bellows Purdue smb@cs.purdue.edu



[SXC] Steve Conklin Intergraph tesla!steve@ingr.com



[SXD] Steve Deering Stanford deering@PECASERO.STANFORD.EDU



[SXH] Steven Hunter LLNL hunter@CCC.MFECC.LLNL.GOV



[SXK] Skip Koppenhaver DAC stubby!skip@uunet.UU.NET



[SXL] Sam Lau Pirelli/Focom ---none---



[SXP] Sanand Patel Canstar sanand@HUB.TORONTO.EDU



[SXS] Steve Silverman MITRE Blankert@MITRE-GATEWAY.ORG



[SXS1] Susie Snitzer Britton-Lee ---none---



[SXW] Steve Waldbusser CMU sw01+@andrew.cmu.edu



[TB6] Todd Baker 3COM tzb@BRIDGE2.3COM.COM



[TC27] Thomas Calderwood BBN TCALDERW@BBN.COM



[TN] Thomas Narten Purdue narten@PURDUE.EDU



[TU] Tom Unger UMich tom@CITI.UMICH.EDU



[TXM] Trudy Miller ACC Trudy@ACC.ARPA



[TXR] Tim Rylance Praxis praxis!tkr@UUNET.UU.NET



[TXS] Ted J. Socolofsky Spider Teds@SPIDER.CO.UK



[UB3] Ulf Bilting CHALMERS bilting@PURDUE.EDU



[UW2] Unni Warrier Netlabs unni@NETLABS.COM



[VXS] Vinod Singh Unify ---none---



[VXT] V. Taylor CANADA vktaylor@NCS.DND.CA



[WDW11] William D. Wisner wisner@HAYES.FAI.ALASKA.EDU



[WJC2] Bill Croft STANFORD Croft@SUMEX-AIM.STANFORD.EDU



[WJS1] Weldon J. Showalter DCA Gamma@EDN-UNIX.ARPA



[WLB8] William L. Biagi Advintech
 CSS002.BLBIAGI@ADVINTECH-MVS.ARPA



[WM3] William Melohn SUN Melohn@SUN.COM



[WXS] Wayne Schroeder SDSC schroeder@SDS.SDSC.EDU



[VXW] Val Wilson Spider cvax!spider.co.uk!val@uunet.UU.NET



[YXK] Yoav Kluger Spartacus ykluger@HAWK.ULOWELL.EDU



[YXW] Y.C. Wang Network Application Technology ---none---



[XEROX] Fonda Pallone Xerox ---none---



[ZSU] Zaw-Sing Su SRI ZSu@TSCA.ISTC.SRI.COM





RFC-1073 Telnet Window Size Option
D. Waitzman; BBN STC

October 1988

This RFC describes a proposed Telnet option to allow a client to convey window size to a 
Telnet server.    Distribution of this memo is unlimited. 
Command Name and Option Code

NAWS (Negotiate About Window Size) 31
Default Specification

WON'T NAWS
DON'T NAWS
This option does not assume any default window size information. Often the terminal 
type, passed with the TERMINAL TYPE Telnet option, may imply a window size, but 
that is not necessary for this option. 

Command Meanings
Motivation
Description and Implementation Notes
Examples
Acknowledgements



RFC-1073 Telnet Window Size Option

Command Meanings

IAC WILL NAWS
Sent by the Telnet client to suggest that NAWS be used.

IAC WON'T NAWS
Sent by the Telnet client to refuse to use NAWS.

IAC DO NAWS
Sent by the Telnet server to suggest that NAWS be used.

IAC DON'T NAWS
Sent by the Telnet server to refuse to use NAWS.

IAC SB NAWS <16-bit value> <16-bit value> IAC SE
Sent by the Telnet client to inform the Telnet server of the window width and 
height. 

The window size information is conveyed via this option from the Telnet client to the Telnet 
server.    The information is advisory. The server may accept the option, but not use the 
information that is sent. 
The client and server negotiate sending the window size information using the standard 
Telnet WILL/DO/DON'T/WON'T mechanism.    If the client and server agree, the client may 
then send a subnegotiation to convey the window size.    If the client's window size is later 
changed (for instance, the window size is altered by the user), the client may again send the
subnegotiation.    Because certain operating systems, on which a server may be executing, 
may not allow the window size information to be updated, the server may send a DON'T 
NAWS to the client to forbid further subnegotiation after it was initially accepted.    A 
negotiation loop will not form following these rules. 
The subnegotiation consists of two values, the width and the height of the window in 
characters.    The values are each sent as two bytes, in the Internet standard byte and bit 
order.    This allows a maximum window width or height of 65535 characters.    A value equal 
to zero is acceptable for the width (or height), and means that no character width (or height)
is being sent.    In this case, the width (or height) that will be assumed by the Telnet server is 
operating system specific (it will probably be based upon the terminal type information that 
may have been sent using the TERMINAL TYPE Telnet option). 
The syntax for the subnegotiation is:

IAC SB NAWS WIDTH[1] WIDTH[0] HEIGHT[1] HEIGHT[0] IAC SE
As required by the Telnet protocol, any occurrence of 255 in the subnegotiation must be 
doubled to distinguish it from the IAC character (which has a value of 255). 



RFC-1073 Telnet Window Size Option

Motivation

With the increasing popularity of windowing systems, a Telnet client is often run inside a 
variable-sized window, and the Telnet server needs to know the window size for proper 
cursor control.    The window may also have its size changed during the Telnet session and 
the updated window size needs to be conveyed to the server.    This memo specifies an 
option to send the window height and width in characters from a client to a server. 
The Telnet options Negotiate Output Line Width (NAOL) and Negotiate Output Page Size 
(NAOP) do not have the correct semantics for this purpose, and they are not in common use 
[see RFC-1011 "Official Internet Protocols", and the "Defense Protocol Handbook"].    The 
NAOL and NAOP options are bidirectional (i.e., the server might control the client's line width
or page size), and are limited to 253 characters in each axis. 
This option is a better model of the normal window negotiation process.    The client has total
control over the size of its window and simply tells the server what the current window size 
is. Furthermore, the 253 character height and width limitation is too low so the new option 
has a limit of 65535 characters.    Finally, this option sends the window height and width 
concurrently because they are typically changed simultaneously and many operating 
systems and windowing applications prefer to think in terms of simultaneous changes in 
height and width. 



RFC-1073 Telnet Window Size Option

Description and Implementation Notes

A typical user of this option might be a Telnet client running under X.    After a user resizes 
the client's window, this must be communicated to the Telnet client.    In 4.3 BSD Unix, the 
signal SIGWINCH (window changed) might be caught by the Telnet process and a new NAWS 
subnegotiation sent to the server.    Upon receipt of a NAWS subnegotiation, the server might
do the appropriate ioctl to handle the new information, and then could send a SIGWINCH to 
its child, probably a shell. 



RFC-1073 Telnet Window Size Option

Examples

In the following examples all numbers in the data stream are in decimal. 
1. Server suggest and client agrees to use NAWS.

(server sends)    IAC DO NAWS
(client sends)    IAC WILL NAWS
(client sends)    IAC SB NAWS 0 80 0 24 IAC SE

[A window 80 characters wide, 24 characters high]
[some time occurs and the user changes the window size]

(client sends)    IAC SB NAWS 0 80 0 64 IAC SE
[A window 80 characters wide, 64 characters high]
In all numeric form:

(server sends)    255 253 31
(client sends)    255 251 31
(client sends)    255 250 31 0 80 0 24 255 240
(client sends)    255 250 31 0 80 0 64 255 240

2. Client suggests and server agrees to used NAWS.
(client sends)    IAC WILL NAWS
(server sends)    IAC DO NAWS
(client sends)    IAC SB NAWS 1 44 0 24 IAC SE

[A window 300 characters wide, 24 characters high]
3. Client suggest and server refuses to use NAWS.

(client sends)    IAC WILL NAWS
(server sends)    IAC DON'T NAWS

4.    Server suggests and client refuses to use NAWS.
(server sends)    IAC DO NAWS
(client sends)    IAC WON'T NAWS



RFC-1073 Telnet Window Size Option

Acknowledgments

A more elaborate, X window system specific, version of this option has been implemented at
Carnegie-Mellon University by Glenn Marcy and the author.    It is widely used in the 
Carnegie-Mellon University Computer Science Department.    Mr. Marcy helped write an early 
draft of this memo documenting the more elaborate option. 



RFC-1079 Telnet Terminal Speed Option
Charles Hedrick; Rutgers University

December 1988

This RFC specifies a standard for the Internet community.    Hosts on the Internet that 
exchange terminal speed information within the Telnet protocol are expected to adopt and 
implement this standard. Distribution of this memo is unlimited. 
This standard is modelled on the "Telnet Terminal Type Option" [RFC-930].    Much of the text 
of this document is copied from that RFC. 
Command Name and Code

TERMINAL-SPEED 32
Default

WON'T TERMINAL-SPEED
DON'T TERMINAL-SPEED
Terminal speed information will not be exchanged.

Command Meanings
Motivation
Description of the Option
Implementation Suggestions



RFC-1079 Telnet Terminal Speed Option

Command Meanings

IAC WILL TERMINAL-SPEED
Sender is willing to send terminal speed information in a subsequent sub-
negotiation. 

IAC WON'T TERMINAL-SPEED
Sender refuses to send terminal speed information.

IAC DO TERMINAL-SPEED
Sender is willing to receive terminal speed information in a subsequent sub-
negotiation. 

IAC DON'T TERMINAL-SPEED
Sender refuses to accept terminal speed information.

IAC SB TERMINAL-SPEED SEND IAC SE
Sender requests receiver to transmit his (the receiver's) terminal speed. The 
code for SEND is 1. (See below.) 

IAC SB TERMINAL-SPEED IS ... IAC SE
Sender is stating his terminal speed. The code for IS is 0. (See below.) 



RFC-1079 Telnet Terminal Speed Option

Motivation

Most operating systems have provisions to keep track of the speed (bit rate) of directly 
attached terminals and modems.    This information is used to control various timing-
dependent display processes, e.g., the number of padding characters used for delay. Some 
software also has user interfaces that are tuned differently for fast and slow terminals.    The 
purpose of this option is to provide similar information for telnet connections. 



RFC-1079 Telnet Terminal Speed Option

Description of the Option

WILL and DO are used only to obtain and grant permission for future discussion. The actual 
exchange of status information occurs within option subcommands (IAC SB TERMINAL-
SPEED...). 
Once the two hosts have exchanged a WILL and a DO, the sender of the DO TERMINAL-
SPEED is free to request speed information.    Only the sender of the DO may send requests 
(IAC SB TERMINAL-SPEED SEND IAC SE) and only the sender of the WILL may transmit actual 
speed information (within an IAC SB TERMINAL-SPEED IS ... IAC SE command). Terminal 
speed information may not be sent spontaneously, but only in response to a request. 
The terminal speed information is an NVT ASCII string.    This string contains the decimal 
representation of the transmit and receive speeds of the terminal, separated by a comma, 
e.g., 
                  9600,100
No leading zeros may be included.    No extraneous characters such as spaces may be 
included. 

The following is an example of use of the option:
Host1: IAC DO TERMINAL-SPEED
Host2: IAC WILL TERMINAL-SPEED

(Host1 is now free to request status information at any time.)
Host1: IAC SB TERMINAL-SPEED SEND IAC SE
Host2: IAC SB TERMINAL-SPEED IS "1200,1200" IAC SE

(This command is 15 octets.)



RFC-1079 Telnet Terminal Speed Option

Implementation Suggestions

Many systems allow only certain discrete terminal speeds.    In such cases it is possible that a
speed may be received that does not match one of the allowed values.    We suggest that 
you pick the nearest speed that is allowed, rounding in a "safe" direction.    Safety will 
depend upon the use of the speed information.    If it is being used for padding, it is best to 
round up, since too much padding is better than too little. 



RFC-1080 Telnet Remote Flow Control Option
Charles Hedrick; Rutgers University

November 1988

This RFC specifies a standard for the Internet community.    Hosts on the Internet that do 
remote flow control within the Telnet protocol are expected to adopt and implement this 
standard.    Distribution of this memo is unlimited. 
Command Name and Code

TOGGLE-FLOW-CONTROL 33
Default

WON'T TOGGLE-FLOW-CONTROL
DON'T TOGGLE-FLOW-CONTROL
Flow control information will not be exchanged.

Command Meanings
Motivation
Description of the Option



RFC-1080 Telnet Remote Flow Control Option

Command Meanings

IAC WILL TOGGLE-FLOW-CONTROL
Sender is willing to enable and disable flow control upon command. 

IAC WON'T TOGGLE-FLOW-CONTROL
Sender refuses to enable and disable flow control.    Nothing is implied about 
whether sender does or does not use flow control. It is simply unwilling to 
enable and disable it using this protocol. 

IAC DO TOGGLE-FLOW-CONTROL
Sender is willing to send commands to enable and disable flow control. 

IAC DON'T TOGGLE-FLOW-CONTROL
Sender refuses to send command to enable and disable flow control. 

IAC SB TOGGLE-FLOW-CONTROL OFF IAC SE
Sender requests receiver to disable flow control.    The code for OFF is 0. 

IAC SB TOGGLE-FLOW-CONTROL ON IAC SE
Sender requests receiver to enable flow control.    The code for ON is 1. 



RFC-1080 Telnet Remote Flow Control Option

Motivation

This memo describes a method of remotely toggling flow control between a user telnet 
process and the attached terminal.    Only flow control of data being transmitted from the 
telnet process to the terminal is considered.    Many systems will also allow flow control of 
data from the terminal to the telnet process.    However there is seldom need to change this 
behavior repeatedly during the session. 
There are two common ways of doing flow control: hardware and software.    Hardware flow 
control uses signals on wires dedicated for this purpose.    Software flow control uses one or 
two specific characters sent along the same path as normal input data.    Most commonly, 
XOFF (control-S) and XON (control-Q) are used to stop and start output, respectively.    The 
option described herein is useful primarily where software flow control is being used.    (Since
hardware flow control does not preempt any characters, there is normally no need to disable
it.) 
The primary difficulty with software flow control is that it preempts one or two characters.    
Host software often requires the user to be able to input every possible ASCII character.    
(Certain editors are notorious for having XOFF and XON as commonly-used commands.)    For
this reason, operating systems often allow programs to disable flow control.    While it is 
disabled, the characters that normally signal flow control may be read as normal input.    In a
telnet environment, flow control is normally done by the user telnet process, not by the host 
computer.    Thus this RFC defines a way to propagate flow control status from the host 
computer to the user telnet process. 



RFC-1080 Telnet Remote Flow Control Option

Description of the Option

Use of the option requires two phases.    In the first phase, the telnet processes agree that 
one of them will TOGGLE-FLOW-CONTROL. WILL and DO are used only in this first phase.    In 
general there will be only one exchange of WILL and DO for a session.    Subnegotiations 
must not be issued until DO and WILL have been exchanged.    It is permissible for either side
to turn off the option by sending a WONT or DONT.    Should this happen, no more 
subnegotiations may be sent, unless the option is reenabled by another exchange of DO and
WILL. 
Once the hosts have exchanged a WILL and a DO, the sender of the DO TOGGLE-FLOW-
CONTROL is free to send subnegotiations to enable and disable flow control in the other 
process.    Normally, the sender of the DO will be a host, and the other end will be a user 
telnet process, which is connected to a terminal.    Thus the protocol is normally asymmetric. 
However it may be used in both directions without confusion should need for this arise. 
As soon as the DO and WILL have been exchanged, the sender of the WILL must enable flow 
control.    This allows flow control to begin in a known state.    Should the option be disabled 
by exchange of DONT and WONT, flow control may revert to an implementation-defined 
default state.    It is not safe to assume that flow control will remain in the state requested by
the most recent subnegotiation. 
Currently, only two command codes are defined for the subnegotiations: flow control off 
(code 0) and flow control on (code 1).    Neither of these codes requires any additional data.   
However it is possible that additional commands may be added.    Thus subnegotiations 
having command codes other than 0 and 1 should be ignored. 
Here is an example of use of this option:

Host1: IAC DO TOGGLE-FLOW-CONTROL
Host2: IAC WILL TOGGLE-FLOW-CONTROL

(Host1 is now free to send commands to change flow control. Note that host2 must now 
have enabled flow control.) 

Host1: IAC SB TOGGLE-FLOW-CONTROL OFF IAC SE
Host1: IAC SB TOGGLE-FLOW-CONTROL ON IAC SE



RFC-1084 BOOTP Vendor Information Extensions
J. Reynolds

USC/Information Sciences Institute
December 1988

This memo describes an addition to the Bootstrap Protocol (BOOTP). Comments and 
suggestions for improvements are sought.    Distribution of this memo is unlimited.    This 
version incorporates all additions through March 1990.

Introduction
Overview of BOOTP
BOOTP Vendor Information Format

Vendor Information "Magic Cookie"
Format of Individual Fields

Fixed Length Data
Variable Length Data

Extensions
Comparison to ALternative Approaches
Acknowledgements



RFC-1084 BOOTP Vendor Information Extensions

Introduction

This RFC is a slight revision and extension of RFC-1048 by Philip Prindeville, who should be 
credited with the original work in this memo.    This memo will be updated as additional tags 
are are defined. This edition introduces Tag 13 for Boot File Size and Tag 14 for Merit Dump 
File.
As workstations and personal computers proliferate on the Internet, the administrative 
complexity of maintaining a network is increased by an order of magnitude.    The 
assignment of local network resources to each client represents one such difficulty.    In most 
environments, delegating such responsibility to the user is not plausible and, indeed, the 
solution is to define the resources in uniform terms, and to automate their assignment. 
The basic Bootstrap Protocol dealt with the issue of assigning an internet address to a client,
as well as a few other resources.    The protocol included provisions for vendor-defined 
resource information. 
This memo defines a (potentially) vendor-independent interpretation of this resource 
information. 



RFC-1084 BOOTP Vendor Information Extensions

Overview of BOOTP
While the Reverse Address Resolution Protocol (RARP) may be used to assign an IP address 
to a local network hardware address, it provides only part of the functionality needed.    
Though this protocol can be used in conjunction with other supplemental protocols (the 
Resource Location Protocol [RFC-887], the Domain Name System), a more integrated 
solution may be desirable. 
Bootstrap Protocol (BOOTP) is a UDP/IP-based protocol that allows a booting host to 
configure itself dynamically, and more significantly, without user supervision.    It provides a 
means to assign a host its IP address, a file from which to download a boot program from 
some server, that server's address, and (if present) the address of an Internet gateway. 
One obvious advantage of this procedure is the centralized management of network 
addresses, which eliminates the need for per-host unique configuration files.    In an 
environment with several hundred hosts, maintaining local configuration information and 
operating system versions specific to each host might otherwise become chaotic.    By 
categorizing hosts into classes and maintaining configuration information and boot programs
for each class, the complexity of this chore may be reduced in magnitude. 



RFC-1084 BOOTP Vendor Information Extensions

BOOTP Vendor Information Format

The full description of the BOOTP request/reply packet format may be found in [RFC-951].    
The rest of this document will concern itself with the last field of the packet, a 64 octet area 
reserved for vendor information, to be used in a hitherto unspecified fashion.    A generalized
use of this area for giving information useful to a wide class of machines, operating systems,
and configurations follows.    In situations where a single BOOTP server is to be used among 
heterogeneous clients in a single site, a generic class of data may be used. 



RFC-1084 BOOTP Vendor Information Extensions

Vendor Information "Magic Cookie"

As suggested in [RFC-951], the first four bytes of the vendor field have been assigned to the 
magic cookie, which identifies the mode in which the succeeding data is to be interpreted.    
The value of the magic cookie is the 4 octet dotted decimal 99.130.83.99 (or        
hexadecimal number 63.82.53.63) in network byte order. 



RFC-1084 BOOTP Vendor Information Extensions

Format of Individual Fields

The vendor information field has been implemented as a free format, with extendable 
tagged sub-fields.    These sub-fields are length tagged (with exceptions; see below), allowing
clients not        implementing certain types to correctly skip fields they cannot interpret.    
Lengths are exclusive of the tag and length octets; all multi-byte quantities are in network 
byte-order. 



RFC-1084 BOOTP Vendor Information Extensions

Fixed Length Data

The fixed length data are comprised of two formats.    Those that have no data consist of a 
single tag octet and are implicitly of one-octet length, while those that contain data consist 
of one tag octet, one length octet, and length octets of data. 

Tag 0: Pad Field
Tag 1: Subnet Mask Field
Tag 2: Time Offset Field
Tag 255: End Field



RFC-1084 BOOTP Vendor Information Extensions - Fixed Length Data

Pad Field (Tag: 0, Data: None)

May be used to align subsequent fields to word boundaries required by the 
target machine (i.e., 32-bit quantities such as IP addresses on 32-bit 
boundaries). 



RFC-1084 BOOTP Vendor Information Extensions - Fixed Length Data

Subnet Mask Field (Tag: 1, Data: 4 subnet mask bytes)

Specifies the net and local subnet mask as per "Internet Standard Subnetting 
Procedure" [RFC-950].    For convenience, this field must precede the GATEWAY
field (below), if present. 



RFC-1084 BOOTP Vendor Information Extensions - Fixed Length Data

Time Offset Field (Tag: 2, Data: 4 time offset bytes)
Specifies the time offset of the local subnet in seconds from Coordinated 
Universal Time (UTC); signed 32-bit integer. 



RFC-1084 BOOTP Vendor Information Extensions - Fixed Length Data

End Field (Tag: 255, Data: None)

Specifies end of usable data in the vendor information area.    The rest of this 
field should be filled with PAD zero) octets. 



RFC-1084 BOOTP Vendor Information Extensions

Variable Length Data

The variable length data has a single format; it consists of one tag octet, one length octet, 
and length octets of data. 

Tag 3: Gateway Field
Tag 4: Time Server Field
Tag 5: IEN-116 Name Server Field
Tag 6: Domain Name Server Field
Tag 7: Log Server Field
Tag 8: Cookie/Quote Server Field
Tag 9: LPR Server Field
Tag 10: Impress Server Field
Tag 11: RLP Server Field
Tag 12: Hostname
Tag 13: Boot File Size
Tag 14: Merit Dump File
Tag 15-127: Unassigned
Tag 128-254: Reserved Fields



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Gateway Field (Tag: 3, Data: N address bytes)

Specifies the IP addresses of N/4 gateways for this subnet.    If one of many 
gateways is preferred, that should be first. 



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Time Server Field (Tag: 4, Data: N address bytes)

Specifies the IP addresses of N/4 time servers [RFC-868].



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

IEN-116 Name Server Field (Tag: 5, Data: N address bytes)

Specifies the IP addresses of N/4 name servers [IEN-116].



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Domain Name Server Field (Tag: 6, Data: N address bytes)

Specifies the IP addresses of N/4 domain name servers. 



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Log Server Field (Tag: 7, Data: N address bytes)

Specifies the IP addresses of N/4 MIT-LCS UDP log server [LOGGING]. 



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Cookie/Quote Server Field (Tag: 8, Data: N address bytes)

Specifies the IP addresses of N/4 Quote of the Day servers [RFC-865]. 



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

LPR Server Field (Tag: 9, Data: N address bytes)

Specifies the IP addresses of N/4 Berkeley 4BSD printer servers [LPD]. 



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Impress Server Field (Tag: 10, Data: N address bytes)

Specifies the IP addresses of N/4 Impress network image servers [IMAGEN]. 



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

RLP Server Field (Tag: 11, Data: N address bytes)
Specifies the IP addresses of N/4 Resource Location Protocol (RLP) servers 
[RFC-887]. 



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Hostname (Tag: 12, Data: N bytes of hostname)
Specifies the name of the client. The name may or may not domain qualified: 
this is a site-specific issue. 



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Boot File Size (Tag: 13, Data: 2)
A two octet value (in network order) specifying the number of 512 octet blocks
in the default boot file.    Informs BOOTP client how large the BOOTP file image 
is. 



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Merit Dump Field (Tag 14: Data: ?)

Client to dump and name of the file to dump it to.



RFC-1084 BOOTP Vendor Information Extensions - Variable Length Data

Reserved Fields (Tag: 128-254, Data: N bytes of undefined content)

Specifies additional site-specific information, to be interpreted on an 
implementation-specific basis.    This should follow all data with the preceding 
generic tags 0-127). 



RFC-1084 BOOTP Vendor Information Extensions

Extensions

Additional generic data fields may be registered by contacting:
Joyce K. Reynolds

USC - Information Sciences Institute
4676 Admiralty Way

Marina del Rey, California    90292-6695
or

by E-mail as: JKREYNOLDS@ISI.EDU
(nic handle JKR1)

Implementation specific use of undefined generic types (those in the range 12-127) may 
conflict with other implementations, and registration is required. 
When selecting information to put into the vendor specific area, care should be taken to not 
exceed the 64 byte length restriction. Nonessential information (such as host name and 
quote of the day server) may be excluded, which may later be located with a more 
appropriate service protocol, such as RLP or the WKS resource-type of the domain name 
system.    Indeed, even RLP servers may be discovered using a broadcast request to locate a 
local RLP server. 



RFC-1084 BOOTP Vendor Information Extensions

Comparison to Alternative Approaches

Extending BOOTP to provide more configuration information than the minimum required by 
boot PROMs may not be necessary.    Rather than having each module in a host (e.g., the 
time module, the print spooler, the domain name resolver) broadcast to the BOOTP server to
obtain the addresses of required servers, it would be better for each of them to multicast 
directly to the particular server group of interest, possibly using "expanding ring" multicasts.
The multicast approach has the following advantages over the BOOTP approach: 

o It eliminates dependency on a third party (the BOOTP server) that    
may be temporarily unavailable or whose database may be incorrect or
incomplete.    Multicasting directly to the desired services will    locate 
those servers that are currently available, and only those. 

o It reduces the administrative chore of keeping the (probably    
replicated) BOOTP database up-to-date and consistent.    This is    
especially important in an environment with a growing number of    
services and an evolving population of servers. 

o In some cases, it reduces the amount of packet traffic and/or the delay 
required to get the desired information.    For example, the    current 
time can be obtained by a single multicast to a time server    group 
which evokes replies from those time servers that are    currently up.    
The BOOTP approach would require a broadcast to the    BOOTP server, 
a reply from the BOOTP server, one or more unicasts to    time servers 
(perhaps waiting for long timeouts if the initially    chosen server(s) are 
down), and finally a reply from a server. 

One apparent advantage of the proposed BOOTP extensions is that they provide a uniform 
way to locate servers.    However, the multicast approach could also be implemented in a 
consistent way across multiple services.    The V System naming protocol is a good example 
of this; character string pathnames are used to name any number of resources (i.e., not just 
files) and a standard subroutine library looks after multicasting to locate the resources, 
caching the discovered locations, and detecting stale cache data. 
Another apparent advantage of the BOOTP approach is that it allows an administrator to 
easily control which hosts use which servers.    The multicast approach favors more 
distributed control over resource allocation, where each server decides which hosts it will 
serve, using whatever level of authentication is appropriate for the particular service.    For 
example, time servers usually don't care who they serve (i.e., administrative control via the 
BOOTP database is unnecessary), whereas file servers usually require strong authentication 
(i.e., administrative control via the BOOTP database is insufficient). 
The main drawback of the multicast approach, of course, is that IP multicasting is not widely 
implemented, and there is a need to locate existing services which do not understand IP 
multicasts. 
The BOOTP approach may be most efficient in the case that all the information needed by 
the client host is returned by a single BOOTP reply and each program module simply reads 
the information it needs from a local table filled in by the BOOTP reply. 



RFC-1084 BOOTP Vendor Information Extensions

Acknowledgments

The following people provided helpful comments on the first edition of this memo: Drew 
Perkins, of Carnagie Mellon University, Bill Croft, of Stanford University, and co-author of 
BOOTP, and Steve Deering, also of Stanford University, for contributing the "Comparison to 
Alternative Approaches" section. 



References
[RFC-951]      Croft, B., and J. Gilmore, "Bootstrap Protocol", Network Information Center, SRI 
International, Menlo Park, California, September 1985. 
[RFC-903]      Finlayson, R., T. Mann, J. Mogul, and M. Theimer, "A Reverse Address Resolution 
Protocol", Network Information Center, SRI International, Menlo Park, California, June                  
1984. 
[RFC-887]      Accetta, M., "Resource Location Protocol", Network Information Center, SRI 
International, Menlo Park, California, December 1983. 
[RFC-1034]    Mockapetris, P., "Domain Names - Concepts and Facilities", Network Information
Center, SRI International, Menlo Park, California, November 1987. 
[RFC-950]      Mogul, J., "Internet Standard Subnetting Procedure", Network Information 
Center, SRI International, Menlo Park, California, August 1985. 
[RFC-868]      Postel, J., "Time Protocol", Network Information Center, SRI International, Menlo 
Park, California, May 1983. 
[IEN-116]      Postel, J., "Internet Name Server", Network Information Center, SRI International,
Menlo Park, California, August 1979. 
[LOGGING]      Clark, D., Logging and Status Protocol", Massachusetts Institute of Technology 
Laboratory for Computer Science Cambridge, Massachusetts, 1981. 
[RFC-865]      Postel, J., "Quote of the Day Protocol", Network Information Center, SRI 
International, Menlo Park, California, May 1983. 
[LPD]              Campbell, R., "4.2BSD Line Printer Spooler Manual", UNIX Programmer's Manual, 
Vol II,    University of California at Berkeley, Computer Science Division, July 1983. 
[IMAGEN]        "Image Server XT Programmer's Guide", Imagen Corporation, Santa Clara, 
California, August 1986. 



RFC-1088 A Standard for the Transmission of IP Datagrams
over

 NetBIOS Networks
Leo J. McLaughlin III

The Wollongong Group
February 1989

Status of this Memo
This document specifies a standard method of encapsulating the Internet Protocol [RFC-791]
(IP) datagrams on NetBIOS [2] networks. Distribution of this memo is unlimited. 

Introduction
Description
Address Mappings
Broadcast and Multicast Addresses
Maximum Transmission Unit
Implementation

Acknowledgements
This document would not have been possible without the efforts of John Bartas, James 
Davidson, and Dan Ladermann in the early design and implementation of IP over NetBIOS. 



RFC-1088 A Standard for the Transmission of IP Datagrams over NetBIOS 
Networks

Introduction

The goal of this specification is to allow compatible and interoperable implementations for 
transmitting IP datagrams over NetBIOS networks. 
NetBIOS is a standard which specifies a means of creating virtual circuits and of transmitting
and receiving point-to-point, multicast, and broadcast datagrams.    This specification uses 
only the datagram services. 
Previous versions of this memo specified the use of the NetBIOS broadcast datagram 
services instead of the NetBIOS group name services to implement IP broadcasting.    These 
versions are now obsolete. 



RFC-1088 A Standard for the Transmission of IP Datagrams over NetBIOS 
Networks

Description

NetBIOS networks may be used to support IP networks and subnets [RFC-950] of any class.    
By means of encapsulating IP datagrams within NetBIOS datagrams and assigning IP 
numbers to the hosts on a NetBIOS network, IP-based applications are supported on these 
hosts.    The addition of a router capable of encapsulating IP packets within ordinary data- 
link protocols (such as 802.3 [RFC-1042]) as well as within NetBIOS datagrams allows these 
NetBIOS hosts to communicate with the Internet at large. 



RFC-1088 A Standard for the Transmission of IP Datagrams over NetBIOS 
Networks

Address Mappings

In general, NetBIOS names may be any series of 16 bytes, however, a few values are 
reserved or used by common networking packages. NetBIOS names for the IP applications 
on each host are chosen on the basis of the internet number of that host.    Since NetBIOS 
names are a mapping of IP addresses, no physical address query mechanism (e.g., ARP 
[RFC-826]) is required. 
For these internet protocol applications, IP.XX.XX.XX.XX is the NetBIOS name for any IP over 
NetBIOS host where XX represents the ascii hexadecimal representation of that byte of the 
internet address. 
This addressing scheme allows for the multiplexing of standard datagram protocols over 
NetBIOS as well as easy visual confirmation of the correctness of a given packet's address. 



RFC-1088 A Standard for the Transmission of IP Datagrams over NetBIOS 
Networks

Broadcast and Multicast Addresses

Broadcast Internet addresses are represented by the NetBIOS group name IP.FF.FF.FF.FF.    
Currently, no attempt is made to provide support of IP multicast addresses using NetBIOS 
group names. 



RFC-1088 A Standard for the Transmission of IP Datagrams over NetBIOS 
Networks

Maximum Transmission Unit

The maximum data size of a NetBIOS datagram, and therefore the Maximum Transmission 
Unit (MTU) for IP over NetBIOS networks, is 512 bytes.    Therefore, any hosts communicating
with a host on a NetBIOS network may be required to reassemble fragmented datagrams. 



RFC-1088 A Standard for the Transmission of IP Datagrams over NetBIOS 
Networks

Implementation

To support IP on a NetBIOS host for any given IP address the initialization code must: 
1) Add IP.XX.XX.XX.XX to the host's NetBIOS name table.
2) Add IP.FF.FF.FF.FF to the host's NetBIOS group name table.
3) Submit a receive datagram request for the reception of NetBIOS 

datagrams destined for IP.XX.XX.XX.XX. 
4) Submit a receive datagram request for the reception of NetBIOS 

datagrams destined for IP.FF.FF.FF.FF. 
When a NetBIOS datagram to either address is received, it is processed by the protocol stack
and another receive datagram request is submitted. 
When an IP datagram is sent, it is considered to be NetBIOS datagram data and sent by a 
send datagram request to either IP.XX.XX.XX.XX or IP.FF.FF.FF.FF. 
Optionally, the IP software may desire to make adapter status queries of the NetBIOS 
network.    As support for SNMP becomes a requirement for IP hosts, these adapter status 
queries may become mandatory. 
Finally, when the IP support for a given NetBIOS host is discontinued, a cancel command 
request should be submitted for every pending receive datagram, and a delete name 
request should be submitted for both the IP.XX.XX.XX.XX and IP.FF.FF.FF.FF address added 
during initialization. 



RFC-1091 Telnet Terminal-Type Option
J. VanBokkelen

FTP Software, Inc.
February 1989

Status of This Memo
This RFC specifies a standard for the Internet community.    Hosts on the Internet that 
exchange terminal type information within the Telnet protocol are expected to adopt and 
implement this standard. 
This standard supersedes RFC-930.    A change is made to permit cycling through a list of 
possible terminal types and selecting the most appropriate.    Distribution of this memo is 
unlimited.

Command Name and Code
TERMINAL-TYPE      24

Default
WON'T TERMINAL-TYPE
DON'T TERMINAL-TYPE
Terminal type information will not be exchanged.

Command Meanings
Motivation
Description
Implementation Issues
User Interfaces
Examples
Acknowledgement



RFC-1091 Telnet Terminal-Type Option

Command Meanings

IAC WILL TERMINAL-TYPE
Sender is willing to send terminal type information in a subsequent sub-
negotiation. 

IAC WON'T TERMINAL-TYPE
Sender refuses to send terminal type information.

IAC DO TERMINAL-TYPE
Sender is willing to receive terminal type information in a subsequent sub-
negotiation. 

IAC DON'T TERMINAL-TYPE
Sender refuses to accept terminal type information.

IAC SB TERMINAL-TYPE SEND IAC SE
Server requests client to transmit his (the client's) next terminal type, and 
switch emulation modes (if more than one terminal type is supported).    The 
code for SEND is 1. (See below.) 

IAC SB TERMINAL-TYPE IS ... IAC SE
Client is stating the name of his current (or only) terminal type.    The code for 
IS is 0.    (See below.) 



RFC-1091 Telnet Terminal-Type Option

Motivation for the Option

On most machines with bit-mapped displays (e.g., PCs and graphics workstations) a client 
terminal emulation program is used to simulate a conventional ASCII terminal.    Most of 
these programs have multiple emulation modes, frequently with widely varying 
characteristics. Likewise, modern host system software and applications can deal with a 
variety of terminal types.    What is needed is a means for the client to present a list of 
available terminal emulation modes to the server, from which the server can select the one 
it prefers (for arbitrary reasons).    There is also need for a mechanism to change emulation 
modes during the course of a session, perhaps according to the needs of applications 
programs. 
Existing terminal-type passing mechanisms within Telnet were not designed with multiple 
emulation modes in mind.    While multiple names are allowed, they are assumed to be 
synonyms.    Emulation mode changes are not defined, and the list of modes can only be 
scanned once. 
This document defines a simple extension to the existing mechanisms, which meets both of 
the above criteria.    It makes one assumption about the behaviour of implementations coded
to the previous standard in order to obtain full backwards-compatibility. 



RFC-1091 Telnet Terminal-Type Option

Description of the Option

Willingness to exchange terminal-type information is agreed upon via conventional Telnet 
option negotiation.    WILL and DO are used only to obtain and grant permission for future 
discussion.    The actual exchange of status information occurs within option subcommands 
(IAC SB TERMINAL-TYPE...). 
Once the two hosts have exchanged a WILL and a DO, the sender of the DO TERMINAL-TYPE 
(the server) is free to request type information. Only the server may send requests (IAC SB 
TERMINAL-TYPE SEND IAC SE) and only the client may transmit actual type information 
(within an IAC SB TERMINAL-TYPE IS ... IAC SE command).    Terminal type information may 
not be sent spontaneously, but only in response to a request. 
The terminal type information is an NVT ASCII string.    Within this string, upper and lower 
case are considered equivalent.    The complete list of valid terminal type names can be 
found in the latest "Assigned Numbers" RFC [RFC-1060]. 
The transmission of terminal type information by the Telnet client in response to a query 
from the Telnet server implies that the client must simultaneously change emulation mode, 
unless the terminal type sent is a synonym of the preceding terminal type, or there are other
prerequisites for entering the new regime (e.g., having agreed upon the Telnet binary 
option).    The receipt of such information by the Telnet server does not imply any immediate 
change of processing. However, the information may be passed to a process, which may 
alter the data it sends to suit the particular characteristics of the terminal.    For example, 
some operating systems have a terminal driver that accepts a code indicating the type of 
terminal being driven. Using the TERMINAL TYPE and BINARY options, a telnet server 
program on such a system could arrange to have terminals driven as if they were directly 
connected, including special functions not available to a standard Network Virtual Terminal. 
Note that this specification is deliberately asymmetric.    It is assumed that server operating 
systems and applications in general cannot change terminal types at arbitrary points in a 
session.    Thus, the client may only send a new type (and potentially change emulation 
modes) when the server requests that it do so. 



RFC-1091 Telnet Terminal-Type Option

Implementation Issues

The "terminal type" information may be any NVT ASCII string meaningful to both ends of the 
negotiation.    The list of terminal type names in "Assigned Numbers" is intended to minimize
confusion caused by alternative "spellings" of the terminal type.    For example, confusion 
would arise if one party were to call a terminal "IBM3278-2" while the other called it "IBM-
3278/2".    There is no negative acknowledgement for a terminal type that is not understood, 
but certain other options (such as switching to BINARY mode) may be refused if a valid 
terminal type name has not been specified. 
In some cases, either a particular terminal may be known by more than one name, for 
example a specific type and a more generic type, or the client may be a workstation with 
integrated display capable of emulating more than one kind of terminal.    In such cases, the 
sender of the TERMINAL-TYPE IS command should reply to successive TERMINAL- TYPE SEND 
commands with the various names.    In this way, a telnet server that does not understand 
the first response can prompt for alternatives.    If different terminal emulations are 
supported by the client, the mode of the emulator must be changed to match the last type 
sent, unless the particular emulation has other Telnet options (e.g., BINARY) as prerequisites 
(in which case, the emulation will switch to the last type sent when the prerequisite is 
fulfilled). When types are synonyms, they should be sent in order from most to least specific.
When the server (the receiver of the TERMINAL-TYPE IS) receives the same response two 
consecutive times, this indicates the end of the list of available types.    Similarly, the client 
should indicate it has sent all available names by repeating the last one sent.    If an 
additional request is received, this indicates that the server (the sender of the IS) wishes to 
return to the top of the list of available types (probably to select the least of N evils). 
Server implementations conforming to the previous standard will cease sending TERMINAL-
TYPE SEND commands after receiving the same response two consecutive times, which will 
work according to the old standard. It is assumed that client implementations conforming to 
the previous standard will send the last type on the list in response to a third query (as well 
as the second).    New-style servers must recognize this and not send more queries. 
The type "UNKNOWN" should be used if the type of the terminal is unknown or unlikely to be
recognized by the other party. 
The complete and up-to-date list of terminal type names will be maintained in the "Assigned 
Numbers".    The maximum length of a terminal type name is 40 characters. 



RFC-1091 Telnet Terminal-Type Option

User Interfaces

Telnet clients and servers conforming to this specification should provide the following 
functions in their user interfaces: 
Clients supporting multiple emulation modes should allow the user to specify which of the 
modes is preferred (which name is sent first), prior to connection establishment.    The order 
of the names sent cannot be changed after the negotiation has begun.    This initial mode will
also become the default with servers which do not support TERMINAL TYPE. 
Servers should store the current terminal type name and the list of available names in a 
manner such that they are accessible to both the user (via a keyboard command) and any 
applications which need the information.    In addition, there should be a corresponding 
mechanism to request a change of terminal types, by initiating a series of SEND/IS sub-
negotiations. 



RFC-1091 Telnet Terminal-Type Option

Examples

In this example, the server finds the first type acceptable.
Server: IAC DO TERMINAL-TYPE
Client: IAC WILL TERMINAL-TYPE
      (Server may now request a terminal type at any time.)
Server: IAC SB TERMINAL-TYPE SEND IAC SE
Client: IAC SB TERMINAL-TYPE IS IBM-3278-2 IAC SE

In this example, the server requests additional terminal types, and accepts the second (and 
last on the client's list) type sent (RFC 930 compatible): 

Server: IAC DO TERMINAL-TYPE
Client: IAC WILL TERMINAL-TYPE
      (Server may now request a terminal type at any time.)
Server: IAC SB TERMINAL-TYPE SEND IAC SE
Client: IAC SB TERMINAL-TYPE IS ZENITH-H19 IAC SE
Server: IAC SB TERMINAL-TYPE SEND IAC SE
Client: IAC SB TERMINAL-TYPE IS UNKNOWN IAC SE
Server: IAC SB TERMINAL-TYPE SEND IAC SE
Client: IAC SB TERMINAL-TYPE IS UNKNOWN IAC SE

In this example, the server requests additional terminal types, and proceeds beyond the 
end-of-list, to select the first type offered by the client (new-type client and server): 

Server: IAC DO TERMINAL-TYPE
Client: IAC WILL TERMINAL-TYPE
      (Server may now request a terminal type at any time.)
Server: IAC SB TERMINAL-TYPE SEND IAC SE
Client: IAC SB TERMINAL-TYPE IS DEC-VT220 IAC SE
Server: IAC SB TERMINAL-TYPE SEND IAC SE
Client: IAC SB TERMINAL-TYPE IS DEC-VT100 IAC SE
Server: IAC SB TERMINAL-TYPE SEND IAC SE
Client: IAC SB TERMINAL-TYPE IS DEC-VT52 IAC SE
Server: IAC SB TERMINAL-TYPE SEND IAC SE
Client: IAC SB TERMINAL-TYPE IS DEC-VT52 IAC SE
Server: IAC SB TERMINAL-TYPE SEND IAC SE
Client: IAC SB TERMINAL-TYPE IS DEC-VT220 IAC SE



RFC-1091 Telnet Terminal-Type Option

Reviser's note:

I owe much of this text to RFC-884 and RFC-930, by Marvin Solomon and Edward Wimmers 
of the University of Wisconsin - Madison, and I owe the idea of the extension to discussions 
on the "tn3270" mailing list in the Summer of 1987. 
Author's Address

James VanBokkelen
FTP Software, Inc.
26 Princess Street
Wakefield, MA 01880-3004
Phone: (617) 246-0900
Email: jbvb@ftp.com



9. References:

          [1]    Postel, J., and J. Reynolds, "Telnet Protocol Specification",
                    RFC 854, USC Information Sciences Institute, May 1983.

          [2]    Postel, J., and J. Reynolds, "Telnet Option Specification",
                    RFC 855, USC Information Sciences Institute, May 1983.

          [3]    Solomon, M., and E. Wimmers, "Telnet Terminal Type Option",
                    RFC 930, University of Wisconsin - Madison, January 1985.

          [4]    Reynolds, J., and J. Postel, "Assigned Numbers", RFC 1010,
                    USC Information Sciences Institute, May 1987.



RFC-1094 NFS: Network File System Protocol Specification
Network Working Group
Sun Microsystems, Inc.

March 1989

This RFC describes a protocol that Sun Microsystems, Inc., and others are using.    A new 
version of the protocol is under development, but others may benefit from the descriptions 
of the current protocol, and discussion of some of the design issues.    Distribution of this 
memo is unlimited.

Introduction
NFS Protocol Definition
NFS Implementation Issues
Appendix: Mount Protocol Definition
Author's Address



RFC-1094 Network File System

Introduction
The Sun Network File System (NFS) protocol provides transparent remote access to shared 
files across networks.    The NFS protocol is designed to be portable across different 
machines, operating systems, network architectures, and transport protocols.    This 
portability is achieved through the use of Remote Procedure Call (RPC) primitives built on top
of an eXternal Data Representation (XDR).    Implementations already exist for a variety of 
machines, from personal computers to supercomputers.

The supporting mount protocol allows the server to hand out remote access privileges to a 
restricted set of clients.    It performs the operating system-specific functions that allow, for 
example, to attach remote directory trees to some local file system.

Remote Procedure Call
External Data Representation
Stateless Servers



RFC-1094 Network File System: Introduction

Remote Procedure Call
Sun's Remote Procedure Call specification provides a procedure- oriented interface to 
remote services.    Each server supplies a "program" that is a set of procedures.    NFS is one 
such program.    The combination of host address, program number, and procedure number 
specifies one remote procedure.    A goal of NFS was to not require any specific level of 
reliability from its lower levels, so it could potentially be used on many underlying transport 
protocols, or even another remote procedure call implementation.    For ease of discussion, 
the rest of this document will assume NFS is implemented on top of Sun RPC, described in    
RFC-1057, "RPC: Remote Procedure Call Protocol Specification".



RFC-1094 Network File System: Introduction

External Data Representation
The eXternal Data Representation (XDR) standard provides a common way of representing a 
set of data types over a network.    The NFS Protocol Specification is written using the RPC 
data description language.    For more information, see RFC-1014, "XDR: External Data 
Representation Standard".    Although automated RPC/XDR compilers exist to generate 
server and client "stubs", NFS does not require their use.    Any software that provides 
equivalent functionality can be used, and if the encoding is exactly the same it can 
interoperate with other implementations of NFS.



RFC-1094 Network File System: Introduction

Stateless Servers
The NFS protocol was intended to be as stateless as possible.    That is, a server should not 
need to maintain any protocol state information about any of its clients in order to function 
correctly.    Stateless servers have a distinct advantage over stateful servers in the event of a
failure.    With stateless servers, a client need only retry a request until the server responds; 
it does not even need to know that the server has crashed, or the network temporarily went 
down.    The client of a stateful server, on the other hand, needs to either detect a server 
failure and rebuild the server's state when it comes back up, or cause client operations to 
fail.

This may not sound like an important issue, but it affects the protocol in some unexpected 
ways.    We feel that it may be worth a bit of extra complexity in the protocol to be able to 
write very simple servers that do not require fancy crash recovery.    Note that even if a so-
called "reliable" transport protocol such as TCP is used, the client must still be able to handle
interruptions of service by re- opening connections when they time out.    Thus, a stateless 
protocol may actually simplify the    implementation.

On the other hand, NFS deals with objects such as files and directories that inherently have 
state -- what good would a file be if it did not keep its contents intact?    The goal was to not 
introduce any extra state in the protocol itself.    Inherently stateful operations such as file or 
record locking, and remote execution,    were implemented as separate services, not 
described in this document.

The basic way to simplify recovery was to make operations as "idempotent" as possible (so 
that they can potentially be repeated).    Some operations in this version of the protocol did 
not attain this goal; luckily most of the operations (such as Read and Write) are idempotent.  
Also, most server failures occur between operations, not between the receipt of an operation
and the response.    Finally, although actual server failures may be rare, in complex 
networks, failures of any network, router, or bridge may be indistinguishable from a server 
failure.



RFC-1094 Network File System

NFS PROTOCOL DEFINITION
Servers change over time, and so can the protocol that they use.    RPC provides a version 
number with each RPC request.    This RFC describes version two of the NFS protocol.    Even 
in the second version, there are a few obsolete procedures and parameters, which will be 
removed in later versions.    An RFC for version three of the NFS protocol is currently under 
preparation.

File System Model
Server Procedures
Basic Data Types



RFC-1094 Network File System: Protocol Definition

File System Model
NFS assumes a file system that is hierarchical, with directories as all but the bottom level of 
files.    Each entry in a directory (file, directory, device, etc.) has a string name.    Different 
operating systems may have restrictions on the depth of the tree or the names used, as well
as using different syntax to represent the "pathname", which is the concatenation of all the 
"components" (directory and file names) in the name.    A "file system" is a tree on a single 
server (usually a single disk or physical partition) with a specified "root".    Some operating 
systems provide a "mount" operation to make all file systems appear as a single tree, while 
others maintain a "forest" of file systems.    Files are unstructured streams of uninterpreted 
bytes.    Version 3 of NFS uses slightly more general file system model.

NFS looks up one component of a pathname at a time.    It may not be obvious why it does 
not just take the whole pathname, traipse down the directories, and return a file handle 
when it is done.    There are several good reasons not to do this.    First, pathnames need 
separators between the directory components, and different operating systems use different
separators.    We could define a Network Standard Pathname Representation, but then every 
pathname would have to be parsed and converted at each end.    Other issues are discussed 
in NFS Implementation Issues.

Although files and directories are similar objects in many ways, different procedures are 
used to read directories and files.    This provides a network standard format for representing 
directories.    The same argument as above could have been used to justify a procedure that 
returns only one directory entry per call.    The problem is efficiency.    Directories can contain
many entries, and a remote call to return each would be just too slow.



RFC-1094 Network File System: Protocol Definition

Server Procedures
The protocol definition is given as a set of procedures with arguments and results defined 
using the RPC language (XDR language extended with program, version, and procedure 
declarations).    A brief description of the function of each procedure should provide enough 
information to allow implementation.    The section on basic data types provides more detail.

All of the procedures in the NFS protocol are assumed to be synchronous.    When a 
procedure returns to the client, the client can assume that the operation has completed and 
any data associated with the request is now on stable storage.    For example, a client WRITE 
request may cause the server to update data blocks, file system information blocks (such as 
indirect blocks), and file attribute information (size and modify times).    When the WRITE 
returns to the client, it can assume that the write is safe, even in case of a server crash, and 
it can discard the data written.    This is a very important part of the statelessness of the 
server.    If the server waited to flush data from remote requests, the client would have to 
save those requests so that it could resend them in case of a server crash.

           /*
           * Remote file service routines
           */
           program NFS_PROGRAM {
                   version NFS_VERSION {
                           void
                           NFSPROC_NULL(void)              = 0;

                           attrstat
                           NFSPROC_GETATTR(fhandle)        = 1;

                           attrstat
                           NFSPROC_SETATTR(sattrargs)      = 2;

                           void
                           NFSPROC_ROOT(void)              = 3;

                           diropres
                           NFSPROC_LOOKUP(diropargs)       = 4;

                           readlinkres
                           NFSPROC_READLINK(fhandle)       = 5;

                           readres
                           NFSPROC_READ(readargs)          = 6;

                           void
                           NFSPROC_WRITECACHE(void)        = 7;

                           attrstat
                           NFSPROC_WRITE(writeargs)        = 8;

                           diropres
                           NFSPROC_CREATE(createargs)            = 9;

                           stat



                           NFSPROC_REMOVE(diropargs)                = 10;

                           stat
                           NFSPROC_RENAME(renameargs)      = 11;

                           stat
                           NFSPROC_LINK(linkargs)          = 12;

                           stat
                           NFSPROC_SYMLINK(symlinkargs)    = 13;

                           diropres
                           NFSPROC_MKDIR(createargs)       = 14;

                           stat
                           NFSPROC_RMDIR(diropargs)         = 15;

                           readdirres
                           NFSPROC_READDIR(readdirargs) = 16;

                           statfsres
                           NFSPROC_STATFS(fhandle)         = 17;
                   } = 2;
           } = 100003;



RFC-1094 Network File System: Server Procedures

Do Nothing
           void
           NFSPROC_NULL(void) = 0;

This procedure does no work.    It is made available in all RPC services to allow server 
response testing and timing.



RFC-1094 Network File System: Server Procedures

Get File Attributes
           attrstat
           NFSPROC_GETATTR (fhandle) = 1;

If the reply status is NFS_OK, then the reply attributes contains the attributes for the file 
given by the input fhandle.



RFC-1094 Network File System: Server Procedures

Set File Attributes
           struct sattrargs {
                   fhandle file;
                   sattr attributes;
           };

           attrstat
           NFSPROC_SETATTR (sattrargs) = 2;

The "attributes" argument contains fields which are either -1 or are the new value for the 
attributes of "file".    If the reply status is NFS_OK, then the reply attributes have the 
attributes of the file after the "SETATTR" operation has completed.

Notes:    The use of -1 to indicate an unused field in "attributes" is changed in the next 
version of the protocol.



RFC-1094 Network File System: Server Procedures

Get Filesystem Root
           void
           NFSPROC_ROOT(void) = 3;

Obsolete.    This procedure is no longer used because finding the root file handle of a 
filesystem requires moving pathnames between client and server.    To do this right, we 
would have to define a network standard representation of pathnames.    Instead, the 
function of looking up the root file handle is done by the MNTPROC_MNT procedure.    (See the 
Appendix "Mount Protocol Definition", for details).



RFC-1094 Network File System: Server Procedures

Look Up File Name
           diropres
           NFSPROC_LOOKUP(diropargs) = 4;

If the reply "status" is NFS_OK, then the reply "file" and reply "attributes" are the file handle 
and attributes for the file "name" in the directory given by "dir" in the argument.



RFC-1094 Network File System: Server Procedures

Read From Symbolic Link
           union readlinkres switch (stat status) {
           case NFS_OK:
               path data;
           default:
               void;
           };

           readlinkres
           NFSPROC_READLINK(fhandle) = 5;

If "status" has the value NFS_OK, then the reply "data" is the data in the symbolic link given 
by the file referred to by the fhandle argument.

Notes:    Since NFS always parses pathnames on the client, the pathname in a symbolic link 
may mean something different (or be meaningless) on a different client or on the server if a 
different pathname syntax is used.



RFC-1094 Network File System: Server Procedures

Read From File
           struct readargs {
                   fhandle file;
                   unsigned offset;
                   unsigned count;
                   unsigned totalcount;
           };

           union readres switch (stat status) {
           case NFS_OK:
                   fattr attributes;
                   nfsdata data;
           default:
                   void;
           };

           readres
           NFSPROC_READ(readargs) = 6;

Returns up to "count" bytes of "data" from the file given by "file", starting at "offset" bytes 
from the beginning of the file.    The first byte of the file is at offset zero.    The file attributes 
after the read takes place are returned in "attributes".

Notes:    The argument "totalcount" is unused, and is removed in the next protocol revision.



RFC-1094 Network File System: Server Procedures

Write to Cache
           void
           NFSPROC_WRITECACHE(void) = 7;

To be used in the next protocol revision.



RFC-1094 Network File System: Server Procedures

Write to File
           struct writeargs {
                   fhandle file;
                   unsigned beginoffset;
                   unsigned offset;
                   unsigned totalcount;
                   nfsdata data;
           };

           attrstat
           NFSPROC_WRITE(writeargs) = 8;

Writes "data" beginning "offset" bytes from the beginning of "file".    The first byte of the file 
is at offset zero.    If the reply "status" is NFS_OK, then the reply "attributes" contains the 
attributes of the file after the write has completed.    The write operation is atomic.    Data 
from this "WRITE" will not be mixed with data from another client's "WRITE".

Notes:    The arguments "beginoffset" and "totalcount" are ignored and are removed in the 
next protocol revision.



RFC-1094 Network File System: Server Procedures

Create File
           struct createargs {
                   diropargs where;
                   sattr attributes;
           };

           diropres
           NFSPROC_CREATE(createargs) = 9;

The file "name" is created in the directory given by "dir".    The initial attributes of the new 
file are given by "attributes".    A reply "status" of NFS_OK indicates that the file was created, 
and reply "file" and reply "attributes" are its file handle and attributes.    Any other reply 
"status" means that the operation failed and no file was created.

Notes:    This routine should pass an exclusive create flag, meaning "create the file only if it 
is not already there".



RFC-1094 Network File System: Server Procedures

Remove File
           stat
           NFSPROC_REMOVE(diropargs) = 10;

The file "name" is removed from the directory given by "dir".    A reply of NFS_OK means the 
directory entry was removed.

Notes:    possibly non-idempotent operation.



RFC-1094 Network File System: Server Procedures

Rename File
           struct renameargs {
                   diropargs from;
                   diropargs to;
           };

           stat
           NFSPROC_RENAME(renameargs) = 11;

The existing file "from.name" in the directory given by "from.dir" is renamed to "to.name" in 
the directory given by "to.dir".    If the reply is NFS_OK, the file was renamed.    The RENAME 
operation is atomic on the server; it cannot be interrupted in the middle.

Notes:    possibly non-idempotent operation.



RFC-1094 Network File System: Server Procedures

Create Link to File
Procedure 12, Version 2.

           struct linkargs {
                   fhandle from;
                   diropargs to;
           };

           stat
           NFSPROC_LINK(linkargs) = 12;

Creates the file "to.name" in the directory given by "to.dir", which is a hard link to the 
existing file given by "from".    If the return value is NFS_OK, a link was created.    Any other 
return value indicates an error, and the link was not created.

A hard link should have the property that changes to either of the linked files are reflected in
both files.    When a hard link is made to a file, the attributes for the file should have a value 
for "nlink" that is one greater than the value before the link.

Notes:    possibly non-idempotent operation.



RFC-1094 Network File System: Server Procedures

Create Symbolic Link
           struct symlinkargs {
                   diropargs from;
                   path to;
                   sattr attributes;
           };

           stat
           NFSPROC_SYMLINK(symlinkargs) = 13;

Creates the file "from.name" with ftype NFLNK in the directory given by "from.dir".    The new 
file contains the pathname "to" and has initial attributes given by "attributes".    If the return 
value is NFS_OK, a link was created.    Any other return value indicates an error, and the link 
was not created.

A symbolic link is a pointer to another file.    The name given in "to" is not interpreted by the 
server, only stored in the newly created file.    When the client references a file that is a 
symbolic link, the contents of the symbolic link are normally transparently reinterpreted as a
pathname to substitute.    A READLINK operation returns the data to the client for 
interpretation.

Notes:    On UNIX servers the attributes are never used, since symbolic links always have 
mode 0777.



RFC-1094 Network File System: Server Procedures

Create Directory
           diropres
           NFSPROC_MKDIR (createargs) = 14;

The new directory "where.name" is created in the directory given by "where.dir".    The initial
attributes of the new directory are given by "attributes".    A reply "status" of NFS_OK 
indicates that the new directory was created, and reply "file" and reply "attributes" are its 
file handle and attributes.    Any other reply "status" means that the operation failed and no 
directory was created.

Notes:    possibly non-idempotent operation.



RFC-1094 Network File System: Server Procedures

Remove Directory
           stat
           NFSPROC_RMDIR(diropargs) = 15;

The existing empty directory "name" in the directory given by "dir" is removed.    If the reply 
is NFS_OK, the directory was removed.

Notes:    possibly non-idempotent operation.



RFC-1094 Network File System: Server Procedures

Read From Directory
           struct readdirargs {
                   fhandle dir;
                   nfscookie cookie;
                   unsigned count;
           };

           struct entry {
                   unsigned fileid;
                   filename name;
                   nfscookie cookie;
                   entry *nextentry;
           };

           union readdirres switch (stat status) {
           case NFS_OK:
                   struct {
                           entry *entries;
                           bool eof;
                   } readdirok;
           default:
                   void;
           };

           readdirres
           NFSPROC_READDIR (readdirargs) = 16;

Returns a variable number of directory entries, with a total size of up to "count" bytes, from 
the directory given by "dir".    If the returned value of "status" is NFS_OK, then it is followed 
by a variable number of "entry"s.    Each "entry" contains a "fileid" which consists of a unique
number to identify the file within a filesystem, the "name" of the file, and a "cookie" which is
an opaque pointer to the next entry in the directory.    The cookie is used in the next READDIR
call to get more entries starting at a given point in the directory.    The special cookie zero (all
bits zero) can be used to get the entries starting at the beginning of the directory.    The 
"fileid" field should be the same number as the "fileid" in the the attributes of the file.    (See 
section "2.3.5. fattr" under "Basic Data Types".)    The "eof" flag has a value of TRUE if there 
are no more entries in the directory.



RFC-1094 Network File System: Server Procedures

Get Filesystem Attributes
           union statfsres (stat status) {
           case NFS_OK:
               struct {
                   unsigned tsize;
                   unsigned bsize;
                   unsigned blocks;
                   unsigned bfree;
                   unsigned bavail;
               } info;
           default:
                   void;
           };

           statfsres
           NFSPROC_STATFS(fhandle) = 17;

If the reply "status" is NFS_OK, then the reply "info" gives the attributes for the filesystem 
that contains file referred to by the input fhandle.    The attribute fields contain the following 
values:

tsize The optimum transfer size of the server in bytes.    This is the number of bytes 
the server would like to have in the data part of READ and WRITE requests.

bsize The block size in bytes of the filesystem.

blocks The total number of "bsize" blocks on the filesystem.

bfree The number of free "bsize" blocks on the filesystem.

bavail The number of "bsize" blocks available to non-privileged users.

Notes:    This call does not work well if a filesystem has variable size blocks.



RFC-1094 Network File System: Protocol Definition

Basic Data Types
The following XDR definitions are basic structures and types used in other structures 
described further on.

stat
ftype
fhandle
timeval
fatr
satr
filename
path
attrstat
diropargs
diropres1094_Type_diropres



RFC-1094 Network File System: Basic Data Types

stat
       enum stat {
           NFS_OK = 0,
           NFSERR_PERM=1,
           NFSERR_NOENT=2,
           NFSERR_IO=5,
           NFSERR_NXIO=6,
           NFSERR_ACCES=13,
           NFSERR_EXIST=17,
           NFSERR_NODEV=19,
           NFSERR_NOTDIR=20,
           NFSERR_ISDIR=21,
           NFSERR_FBIG=27,
           NFSERR_NOSPC=28,
           NFSERR_ROFS=30,
           NFSERR_NAMETOOLONG=63,
           NFSERR_NOTEMPTY=66,
           NFSERR_DQUOT=69,
           NFSERR_STALE=70,
           NFSERR_WFLUSH=99
       };

The "stat" type is returned with every procedure's results.    A value of NFS_OK indicates that 
the call completed successfully and the results are valid.    The other values indicate some 
kind of error occurred on the server side during the servicing of the procedure.    The error 
values are derived from UNIX error numbers.

NFSERR_PERM
Not owner.    The caller does not have correct ownership to perform the requested 
operation.

NFSERR_NOENT
No such file or directory.    The file or directory specified does not exist.

NFSERR_IO
Some sort of hard error occurred when the operation was in progress.    This could be 
a disk error, for example.

NFSERR_NXIO
No such device or address.

NFSERR_ACCES
Permission denied.    The caller does not have the correct permission to perform the 
requested operation.

NFSERR_EXIST
File exists.    The file specified already exists.

NFSERR_NODEV
No such device.

NFSERR_NOTDIR



Not a directory.    The caller specified a non-directory in a directory operation.

NFSERR_ISDIR
Is a directory.    The caller specified a directory in a non- directory operation.

NFSERR_FBIG
File too large.    The operation caused a file to grow beyond the server's limit.

NFSERR_NOSPC
No space left on device.    The operation caused the server's filesystem to reach its 
limit.

NFSERR_ROFS
Read-only filesystem.    Write attempted on a read-only filesystem.

NFSERR_NAMETOOLONG
File name too long.    The file name in an operation was too long.

NFSERR_NOTEMPTY
Directory not empty.    Attempted to remove a directory that was not empty.

NFSERR_DQUOT
Disk quota exceeded.    The client's disk quota on the server has been exceeded.

NFSERR_STALE
The "fhandle" given in the arguments was invalid.    That is, the file referred to by that
file handle no longer exists, or access to it has been revoked.

NFSERR_WFLUSH
The server's write cache used in the "WRITECACHE" call got flushed to disk.



RFC-1094 Network File System: Basic Data Types

ftype
          enum ftype {
              NFNON = 0,
              NFREG = 1,
              NFDIR = 2,
              NFBLK = 3,
              NFCHR = 4,
              NFLNK = 5
          };

The enumeration "ftype" gives the type of a file.    The type NFNON indicates a non-file, NFREG
is a regular file, NFDIR is a directory, NFBLK is a block-special device, NFCHR is a character- 
special device, and NFLNK is a symbolic link.



RFC-1094 Network File System: Basic Data Types

fhandle
          typedef opaque fhandle[FHSIZE];

The "fhandle" is the file handle passed between the server and the client.    All file operations
are done using file handles to refer to a file or directory.    The file handle can contain 
whatever information the server needs to distinguish an individual file.



RFC-1094 Network File System: Basic Data Types

timeval
          struct timeval {
              unsigned int seconds;
              unsigned int useconds;
          };

The "timeval" structure is the number of seconds and microseconds since midnight January 
1, 1970, Greenwich Mean Time.    It is used to pass time and date information.



RFC-1094 Network File System: Basic Data Types

fattr
          struct fattr {
              ftype        type;
              unsigned int mode;
              unsigned int nlink;
              unsigned int uid;
              unsigned int gid;
              unsigned int size;
              unsigned int blocksize;
              unsigned int rdev;
              unsigned int blocks;
              unsigned int fsid;
              unsigned int fileid;
              timeval      atime;
              timeval      mtime;
              timeval      ctime;
          };

The "fattr" structure contains the attributes of a file; "type" is the type of the file; "nlink" is 
the number of hard links to the file (the number of different names for the same file); "uid" is
the user identification number of the owner of the file; "gid" is the group identification 
number of the group of the file; "size" is the size in bytes of the file; "blocksize" is the size in 
bytes of a block of the file; "rdev" is the device number of the file if it is type NFCHR or NFBLK;
"blocks" is the number of blocks the file takes up on disk; "fsid" is the file system identifier 
for the filesystem containing the file; "fileid" is a number that uniquely identifies the file 
within its filesystem; "atime" is the time when the file was last accessed for either read or 
write; "mtime" is the time when the file data was last modified (written); and "ctime" is the 
time when the status of the file was last changed.    Writing to the file also changes "ctime" if
the size of the file changes.

"Mode" is the access mode encoded as a set of bits.    Notice that the file type is 
specified both in the mode bits and in the file type.    This is really a bug in the 
protocol and will be fixed in future versions.    The descriptions given below specify 
the bit positions using octal numbers.

0040000 This is a directory; "type" field should be NFDIR.
0020000 This is a character special file; "type" field should be NFCHR.
0060000 This is a block special file; "type" field should be NFBLK.
0100000 This is a regular file; "type" field should be NFREG.
0120000 This is a symbolic link file;    "type" field should be NFLNK.
0140000 This is a named socket; "type" field should be NFNON.
0004000 Set user id on execution.
0002000 Set group id on execution.
0001000 Save swapped text even after use.
0000400 Read permission for owner.
0000200 Write permission for owner.
0000100 Execute and search permission for owner.
0000040 Read permission for group.
0000020 Write permission for group.
0000010 Execute and search permission for group.
0000004 Read permission for others.



0000002 Write permission for others.
0000001 Execute and search permission for others.

Notes:    The bits are the same as the mode bits returned by the stat(2) system call in UNIX. 
The file type is specified both in the mode bits and in the file type.    This is fixed in future 
versions.

The "rdev" field in the attributes structure is an operating system specific device specifier.    
It will be removed and generalized in the next revision of the protocol.



RFC-1094 Network File System: Basic Data Types

sattr
          struct sattr {
              unsigned int mode;
              unsigned int uid;
              unsigned int gid;
              unsigned int size;
              timeval      atime;
              timeval      mtime;
          };

The "sattr" structure contains the file attributes which can be set from the client.    The fields 
are the same as for "fattr" above.    A "size" of zero means the file should be truncated.    A 
value of -1 indicates a field that should be ignored.



RFC-1094 Network File System: Basic Data Types

filename
          typedef string filename<MAXNAMLEN>;

The type "filename" is used for passing file names or pathname components.



RFC-1094 Network File System: Basic Data Types

path
          typedef string path<MAXPATHLEN>;

The type "path" is a pathname.    The server considers it as a string with no internal 
structure, but to the client it is the name of a node in a filesystem tree.



RFC-1094 Network File System: Basic Data Types

attrstat
          union attrstat switch (stat status) {
          case NFS_OK:
              fattr attributes;
          default:
              void;
          };

The "attrstat" structure is a common procedure result.    It contains a "status" and, if the call 
succeeded, it also contains the attributes of the file on which the operation was done.



RFC-1094 Network File System: Basic Data Types

diropargs
          struct diropargs {
              fhandle  dir;
              filename name;
          };

The "diropargs" structure is used in directory operations.    The "fhandle" "dir" is the directory
in which to find the file "name".    A directory operation is one in which the directory is 
affected.



RFC-1094 Network File System: Basic Data Types

diropres
          union diropres switch (stat status) {
          case NFS_OK:
              struct {
                  fhandle file;
                  fattr   attributes;
              } diropok;
          default:
              void;
          };

The results of a directory operation are returned in a "diropres" structure.    If the call 
succeeded, a new file handle "file" and the "attributes" associated with that file are returned 
along with the "status".



RFC-1094 Network File System

NFS Implementation Issues
The NFS protocol was designed to allow different operating systems to share files.    
However, since it was designed in a UNIX environment, many operations have semantics 
similar to the operations of the UNIX file system.    This section discusses some of the 
implementation- specific details and semantic issues.

Server/Client Relationship
Pathname Interpretation
Permission Issues
RPC Information
Sizes of XDR Structures
Setting RPC Parameters



RFC-1094 Network File System: Implementation Issues

Server/Client Relationship
The NFS protocol is designed to allow servers to be as simple and general as possible.    
Sometimes the simplicity of the server can be a problem, if the client wants to implement 
complicated filesystem semantics.

For example, some operating systems allow removal of open files.    A process can open a file
and, while it is open, remove it from the directory.    The file can be read and written as long 
as the process keeps it open, even though the file has no name in the filesystem.    It is 
impossible for a stateless server to implement these semantics.    The client can do some 
tricks such as renaming the file on remove, and only removing it on close.    We believe that 
the server provides enough functionality to implement most file system semantics on the 
client.

Every NFS client can also potentially be a server, and remote and local mounted filesystems 
can be freely intermixed.    This leads to some interesting problems when a client travels 
down the directory tree of a remote filesystem and reaches the mount point on the server 
for another remote filesystem.    Allowing the server to follow the second remote mount 
would require loop detection, server lookup, and user revalidation.    Instead, we decided not 
to let clients cross a server's mount point.    When a client does a LOOKUP on a directory on 
which the server has mounted a filesystem, the client sees the underlying directory instead 
of the mounted directory.

For example, if a server has a file system called "/usr" and mounts another file system on    
"/usr/src", if a client mounts "/usr", it does NOT see the mounted version of "/usr/src".    
A client could do remote mounts that match the server's mount points to maintain the 
server's view.    In this example, the client would also have to mount "/usr/src" in addition 
to "/usr", even if they are from the same server.



RFC-1094 Network File System: Implementation Issues

Pathname Interpretation
There are a few complications to the rule that pathnames are always parsed on the client.    
For example, symbolic links could have different interpretations on different clients.    
Another common problem for non-UNIX implementations is the special interpretation of the 
pathname ".." to mean the parent of a given directory.    The next revision of the protocol 
uses an explicit flag to indicate the parent instead.



RFC-1094 Network File System: Implementation Issues

Permission Issues
The NFS protocol, strictly speaking, does not define the permission checking used by 
servers.    However, it is expected that a server will do normal operating system permission 
checking using AUTH_UNIX style authentication as the basis of its protection mechanism.    
The server gets the client's effective "uid", effective "gid", and groups on each call and uses 
them to check permission.    There are various problems with this method that can been 
resolved in interesting ways.

Using "uid" and "gid" implies that the client and server share the same "uid" list.    Every 
server and client pair must have the same mapping from user to "uid" and from group to 
"gid".    Since every client can also be a server, this tends to imply that the whole network 
shares the same "uid/gid" space.    AUTH_DES (and the next revision of the NFS protocol) 
uses string names instead of numbers, but there are still complex problems to be solved.

Another problem arises due to the usually stateful open operation.    Most operating systems 
check permission at open time, and then check that the file is open on each read and write 
request.    With stateless servers, the server has no idea that the file is open and must do 
permission checking on each read and write call.    On a local filesystem, a user can open a 
file and then change the permissions so that no one is allowed to touch it, but will still be 
able to write to the file because it is open.    On a remote filesystem, by contrast, the write 
would fail.    To get around this problem, the server's permission checking algorithm should 
allow the owner of a file to access it regardless of the permission setting.

A similar problem has to do with paging in from a file over the network.    The operating 
system usually checks for execute permission before opening a file for demand paging, and 
then reads blocks from the open file.    The file may not have read permission, but after it is 
opened it does not matter.    An NFS server can not tell the difference between a normal file 
read and a demand page-in read.    To make this work, the server allows reading of files if the
"uid" given in the call has either execute or read permission on the file.

In most operating systems, a particular user (on UNIX, the user ID zero) has access to all 
files no matter what permission and ownership they have.    This "super-user" permission 
may not be allowed on the server, since anyone who can become super-user on their 
workstation could gain access to all remote files.    The UNIX server by default maps user id 0
to -2 before doing its access checking.    This works except for NFS root filesystems, where 
super-user access cannot be avoided.



RFC-1094 Network File System: Implementation Issues

RPC Information
Authentication
The NFS service uses AUTH_UNIX,    AUTH_DES, or AUTH_SHORT style authentication, except 
in the NULL procedure where AUTH_NONE is also allowed.

Transport Protocols
NFS is supported normally on UDP.

Port Number
The NFS protocol currently uses the UDP port number 2049.    This is not an officially 
assigned port, so later versions of the protocol use the "Portmapping" facility of RPC.



RFC-1094 Network File System: Implementation Issues

Sizes of XDR Structures
These are the sizes, given in decimal bytes, of various XDR structures used in the protocol:

   /*
    * The maximum number of bytes of data in a READ or WRITE
    * request.
    */
   const MAXDATA = 8192;

   /* The maximum number of bytes in a pathname argument. */
   const MAXPATHLEN = 1024;

   /* The maximum number of bytes in a file name argument. */
   const MAXNAMLEN = 255;

   /* The size in bytes of the opaque "cookie" passed by READDIR. */
   const COOKIESIZE  = 4;

   /* The size in bytes of the opaque file handle. */
   const FHSIZE = 32;



RFC-1094 Network File System: Implementation Issues

Setting RPC Parameters
Various file system parameters and options should be set at mount time.    The mount 
protocol is described in the appendix below.    For example, "Soft" mounts as well as "Hard" 
mounts are usually both provided.    Soft mounted file systems return errors when RPC 
operations fail (after a given number of optional retransmissions), while hard mounted file 
systems continue to retransmit forever.    The maximum transfer sizes are implementation 
dependent.    For efficient operation over a local network, 8192 bytes of data are normally 
used.    This may result in lower-level fragmentation (such as at the IP level).    Since some 
network interfaces may not allow such packets, for operation over slower-speed networks or 
hosts, or through gateways, transfer sizes of 512 or 1024 bytes often provide better results.

Clients and servers may need to keep caches of recent operations to help avoid problems 
with non-idempotent operations.    For example, if the transport protocol drops the response 
for a Remove File operation, upon retransmission the server may return an error code of 
NFSERR_NOENT instead of NFS_OK.    But if the server keeps around the last operation 
requested and its result, it could return the proper success code.    Of course, the server 
could be crashed and rebooted between retransmissions, but a small cache (even a single 
entry) would solve most problems.



RFC-1094 Network File System

Appendix:    Mount Protocol Definition



RFC-1094 Network File System:    Appendix

Mount Protocol: Introduction
The mount protocol is separate from, but related to, the NFS protocol.    It provides operating 
system specific services to get the NFS off the ground -- looking up server path names, 
validating user identity, and checking access permissions.    Clients use the mount protocol 
to get the first file handle, which allows them entry into a remote filesystem.

The mount protocol is kept separate from the NFS protocol to make it easy to plug in new 
access checking and validation methods without changing the NFS server protocol.

Notice that the protocol definition implies stateful servers because the server maintains a 
list of client's mount requests.    The mount list information is not critical for the correct 
functioning of either the client or the server.    It is intended for advisory use only, for 
example, to warn possible clients when a server is going down.

Version one of the mount protocol is used with version two of the NFS protocol.    The only 
information communicated between these two protocols is the "fhandle" structure.

RPC Information
Sizes of XDR Structures
Basic Data Types
Server Procedures



RFC-1094 NFS Appendix: Mount Protocol

RPC Information
Authentication
The mount service uses AUTH_UNIX and AUTH_NONE style authentication only.

Transport Protocols
The mount service is supported on both UDP and TCP.

Port Number
Consult the server's portmapper, described in RFC-1057, "RPC:    Remote Procedure 
Call Protocol Specification", to find the port number on which the mount service is 
registered.



RFC-1094 NFS Appendix: Mount Protocol

Sizes of XDR Structures
These are the sizes, given in decimal bytes, of various XDR structures used in the protocol:

           /* The maximum number of bytes in a pathname argument. */
           const MNTPATHLEN = 1024;

           /* The maximum number of bytes in a name argument. */
           const MNTNAMLEN = 255;

           /* The size in bytes of the opaque file handle. */
           const FHSIZE = 32;



RFC-1094 NFS Appendix: Mount Protocol

Basic Data Types
This section presents the data types used by the mount protocol.    In many cases they are 
similar to the types used in NFS.

fhandle
fhstatus
dirpath
name



RFC-1094 NFS Appendix--Mount Protocol: Basic Data Types

fhandle
       typedef opaque fhandle[FHSIZE];

The type "fhandle" is the file handle that the server passes to the client.    All file operations 
are done using file handles to refer to a file or directory.    The file handle can contain 
whatever information the server needs to distinguish an individual file.

This is the same as the "fhandle" XDR definition in version 2 of the NFS protocol; see section 
"fhandle" under "Basic Data Types".



RFC-1094 NFS Appendix--Mount Protocol: Basic Data Types

fhstatus
       union fhstatus switch (unsigned status) {
       case 0:
           fhandle directory;
       default:
           void;
       }

The type "fhstatus" is a union.    If a "status" of zero is returned, the call completed 
successfully, and a file handle for the "directory" follows.    A non-zero status indicates some 
sort of error.    In this case, the status is a UNIX error number.



RFC-1094 NFS Appendix--Mount Protocol: Basic Data Types

dirpath
       typedef string dirpath<MNTPATHLEN>;

The type "dirpath" is a server pathname of a directory.



RFC-1094 NFS Appendix--Mount Protocol: Basic Data Types

name
       typedef string name<MNTNAMLEN>;

The type "name" is an arbitrary string used for various names.



RFC-1094 NFS Appendix:    Mount Protocol

Server Procedures
The following sections define the RPC procedures supplied by a mount server.

           /*
            * Protocol description for the mount program
            */
           program MOUNTPROG {
                   /*
                    * Version 1 of the mount protocol used with
                    * version 2 of the NFS protocol.
                    */
                   version MOUNTVERS {

                           void
                           MOUNTPROC_NULL(void) = 0;

                           fhstatus
                           MOUNTPROC_MNT(dirpath) = 1;

                           mountlist
                           MOUNTPROC_DUMP(void) = 2;

                           void
                           MOUNTPROC_UMNT(dirpath) = 3;

                           void
                           MOUNTPROC_UMNTALL(void) = 4;

                           exportlist
                           MOUNTPROC_EXPORT(void)  = 5;
                   } = 1;
           } = 100005;



RFC-1094 NFS Appendix--Mount Protocol:    Server Procedures

Do Nothing
           void
           MNTPROC_NULL(void) = 0;

This procedure does no work.    It is made available in all RPC services to allow server 
response testing and timing.



RFC-1094 NFS Appendix--Mount Protocol:    Server Procedures

Add Mount Entry
           fhstatus
           MNTPROC_MNT(dirpath) = 1;

If the reply "status" is 0, then the reply "directory" contains the file handle for the directory 
"dirname".    This file handle may be used in the NFS protocol.    This procedure also adds a 
new entry to the mount list for this client mounting "dirname".



RFC-1094 NFS Appendix--Mount Protocol:    Server Procedures

Return Mount Entries
           struct *mountlist {
                   name      hostname;
                   dirpath   directory;
                   mountlist nextentry;
           };

           mountlist
           MNTPROC_DUMP(void) = 2;

Returns the list of remote mounted filesystems.    The "mountlist" contains one entry for each
"hostname" and "directory" pair.



RFC-1094 NFS Appendix--Mount Protocol:    Server Procedures

Remove Mount Entry
           void
           MNTPROC_UMNT(dirpath) = 3;

Removes the mount list entry for the input "dirpath".



RFC-1094 NFS Appendix--Mount Protocol:    Server Procedures

Remove All Mount Entries
           void
           MNTPROC_UMNTALL(void) = 4;

Removes all of the mount list entries for this client.



RFC-1094 NFS Appendix--Mount Protocol:    Server Procedures

Return Export List
           struct *groups {
                   name grname;
                   groups grnext;
           };

           struct *exportlist {
                   dirpath filesys;
                   groups groups;
                   exportlist next;
           };

           exportlist
           MNTPROC_EXPORT(void) = 5;

Returns a variable number of export list entries.    Each entry contains a filesystem name and
a list of groups that are allowed to import it.    The filesystem name is in "filesys", and the 
group name is in the list "groups".

Notes:    The exportlist should contain more information about the status of the filesystem, 
such as a read-only flag.



Author's Address:

Bill Nowicki
Sun Microsystems, Inc.
Mail Stop 1-40
2550 Garcia Avenue
Mountain View, CA 94043

Phone: (415) 336-7278

Email: nowicki@SUN.COM



RFC-1101 DNS Encoding of Network Names and Other Types
Updates: RFCs 1034, 1035

P. Mockapetris
ISI

April 1989

This RFC proposes two extensions to the Domain Name System:

o A specific method for entering and retrieving RRs which map between network 
names and numbers.

o Ideas for a general method for describing mappings between arbitrary identifiers 
and numbers.

The method for mapping between network names and addresses is a proposed standard, the
ideas for a general method are experimental.

This RFC assumes that the reader is familiar with the DNS and its use.    The data shown is 
for pedagogical use and does not necessarily reflect the real Internet.

Distribution of this memo is unlimited.

Introduction
Network Name Issues and Discussion
Network Name Mappings
YP Issues and Discussion
Specifics for YP Mappings
Acknowledgments
Author's Address



RFC-1101 DNS Encoding of Network Names and Other Types

Introduction
The DNS is extensible and can be used for a virtually unlimited number of data types, name 
spaces, etc.    New type definitions are occasionally necessary as are revisions or deletions of
old types (e.g., MX replacement of MD and MF (RFC-974]), and changes described in RFC-
973.    This RFC describes changes due to the general need to map between identifiers and 
values, and a specific need for network name support.

Users wish to be able to use the DNS to map between network names and numbers.    This 
need is the only capability found in HOSTS.TXT which is not available from the DNS.    In 
designing a method to do this, there were two major areas of concern:

o Several tradeoffs involving control of network names, the syntax of network names,
backward compatibility, etc.

o A desire to create a method which would be sufficiently general to set a good 
precedent for future mappings, for example, between TCP-port names and 
numbers, autonomous system names and numbers, X.500 Relative Distinguished 
Names (RDNs) and their servers, or whatever.

It was impossible to reconcile these two areas of concern for network names because of the 
desire to unify network number support within existing IP address to host name support.    
The existing support is the IN-ADDR.ARPA section of the DNS name space.    As a result this 
RFC describes one structure for network names which builds on the existing support for host 
names, and another family of structures for future yellow pages (YP) functions such as 
conversions between TCP- port numbers and mnemonics.

Both structures are described in following sections.    Each structure has a discussion of 
design issues and specific structure recommendations.

We wish to avoid defining structures and methods which can work but do not because of 
indifference or errors on the part of system administrators when maintaining the database.    
The WKS RR is an example.    Thus, while we favor distribution as a general method, we also 
recognize that centrally maintained tables (such as HOSTS.TXT) are usually more consistent 
though less maintainable and timely.    Hence we recommend both specific methods for 
mapping network names, addresses, and subnets, as well as an instance of the general 
method for mapping between allocated network numbers and network names.    (Allocation 
is centrally performed by the SRI Network Information Center, aka the NIC).



RFC-1101 DNS Encoding of Network Names and Other Types

Network Name Issues and Discussion
The issues involved in the design were the definition of network name syntax, the mappings 
to be provided, and possible support for similar functions at the subnet level.

Network Name Syntax
Mappings
Network Address Section of the Name Space



RFC-1101 DNS Encoding of Network Names and Other Types

Network Name Syntax
The current syntax for network names, as defined by (RFC-952) is an alphanumeric string of 
up to 24 characters, which begins with an alpha, and may include "." and "-" except as first 
and last characters.    This is the format which was also used for host names before the DNS. 
Upward compatibility with existing names might be a goal of any new scheme.

However, the present syntax has been used to define a flat name space, and hence would 
prohibit the same distributed name allocation method used for host names.    There is some 
sentiment for allowing the NIC to continue to allocate and regulate network names, much as 
it allocates numbers, but the majority opinion favors local control of network names.    
Although it would be possible to provide a flat space or a name space in which, for example, 
the last label of a domain name captured the old-style network name, any such approach 
would add complexity to the method and create different rules for network names and host 
names.

For these reasons, we assume that the syntax of network names will be the same as the 
expanded syntax for host names permitted in Requirements for Internet Hosts.    The new 
syntax expands the set of names to allow leading digits, so long as the resulting 
representations do not conflict with IP addresses in decimal octet form.    For example, 
3Com.COM and 3M.COM are now legal, although 26.0.0.73.COM is not.    

The price is that network names will get as complicated as host names.    An administrator 
will be able to create network names in any domain under his control, and also create 
network number to name entries in IN-ADDR.ARPA domains under his control.    Thus, the 
name for the ARPANET might become NET.ARPA, ARPANET.ARPA or Arpa- network.MIL., 
depending on the preferences of the owner.



RFC-1101 DNS Encoding of Network Names and Other Types

Mappings
The desired mappings, ranked by priority with most important first, are:

o Mapping a IP address or network number to a network name.

This mapping is for use in debugging tools and status displays of various sorts.    The 
conversion from IP address to network number is well known for class A, B, and C IP 
addresses, and involves a simple mask operation.    The needs of other classes are not yet 
defined and are ignored for the rest of this RFC.

o Mapping a network name to a network address.

This facility is of less obvious application, but a symmetrical mapping seems desirable.

o Mapping an organization to its network names and numbers.

This facility is useful because it may not always be possible to guess the local choice for 
network names, but the organization name is often well known.

o Similar mappings for subnets, even when nested.

The primary application is to be able to identify all of the subnets involved in a particular IP 
address.    A secondary requirement is to retrieve address mask information.



RFC-1101 DNS Encoding of Network Names and Other Types

Network Address Section of the Name Space
The network name syntax discussed above can provide domain names which will contain 
mappings from network names to various quantities, but we also need a section of the name
space, organized by network and subnet number to hold the inverse mappings.

The choices include:

o The same network number slots already assigned and delegated in the IN-
ADDR.ARPA section of the name space.

For example, 10.IN-ADDR.ARPA for class A net 10, 2.128.IN-ADDR.ARPA for class B net 
128.2, etc.

o Host-zero addresses in the IN-ADDR.ARPA tree.    (A host field of all zero in an IP 
address is prohibited because of confusion related to broadcast addresses, et al.)

For example, 0.0.0.10.IN-ADDR.ARPA for class A net 10, 0.0.2.128.IN-ADDR.arpa for 
class B net 128.2, etc.    Like the first scheme, it uses in-place name space delegations to 
distribute control.

The main advantage of this scheme over the first is that it allows convenient names for 
subnets as well as networks.    A secondary advantage is that it uses names which are not in 
use already, and hence it is possible to test whether an organization has entered this 
information in its domain database.

o Some new section of the name space.

While this option provides the most opportunities, it creates a need to delegate a whole new 
name space.    Since the IP address space is so closely related to the network number space, 
most believe that the overhead of creating such a new space is overwhelming and would 
lead to the WKS syndrome.    (As of February, 1989, approximately 400 sections of the IN-
ADDR.ARPA tree are already delegated, usually at network boundaries.)



RFC-1101 DNS Encoding of Network Names and Other Types

Network Name Mappings
Specifics for Network Name Mappings
A Simple Example
A Complicated, Subnetted Example
Procedure for Using an IP Address to Get Network Name
Procedure for Finding All Subnets Involved With an IP Address



RFC-1101 DNS Encoding of Network Names and Other Types

Specifics for Network Name Mappings
The proposed solution uses information stored at:

o Names in the IN-ADDR.ARPA tree that correspond to host-zero IP addresses.    The 
same method is used for subnets in a nested fashion.    For example, 0.0.0.10.IN-
ADDR.ARPA. for net 10.

Two types of information are stored here: PTR RRs which point to the network name in their 
data sections, and A RRs, which are present if the network (or subnet) is subnetted 
further.    If a type A RR is present, then it has the address mask as its data.    The 
general form is:

        <reversed-host-zero-number>.IN-ADDR.ARPA. PTR <network-name>
        <reversed-host-zero-number>.IN-ADDR.ARPA. A   <subnet-mask>

For example:

        0.0.0.10.IN-ADDR.ARPA.  PTR     ARPANET.ARPA.

or

        0.0.2.128.IN-ADDR.ARPA. PTR     cmu-net.cmu.edu.
                                A       255.255.255.0

In general, this information will be added to an existing master file for some IN-ADDR.ARPA 
domain for each network involved.    Similar RRs can be used at host-zero subnet entries.

o Names which are network names.

The data stored here is PTR RRs pointing at the host-zero entries.    The general form is:

        <network-name> ptr <reversed-host-zero-number>.IN-ADDR.ARPA

For example:

        ARPANET.ARPA.           PTR     0.0.0.10.IN-ADDR.ARPA.

or

        isi-net.isi.edu.        PTR     0.0.9.128.IN-ADDR.ARPA.

In general, this information will be inserted in the master file for the domain name of the 
organization; this is a different file from that which holds the information below IN-
ADDR.ARPA.    Similar PTR RRs can be used at subnet names.

o Names corresponding to organizations.

The data here is one or more PTR RRs pointing at the IN-ADDR.ARPA names corresponding to
host-zero entries for networks.

For example:



        ISI.EDU.        PTR     0.0.9.128.IN-ADDR.ARPA.

        MCC.COM.        PTR     0.167.5.192.IN-ADDR.ARPA.
                        PTR     0.168.5.192.IN-ADDR.ARPA.
                        PTR     0.169.5.192.IN-ADDR.ARPA.
                        PTR     0.0.62.128.IN-ADDR.ARPA.



RFC-1101 DNS Encoding of Network Names and Other Types

Network Name Mappings:    A simple example
The ARPANET is a Class A network without subnets.    The RRs which would be added, 
assuming the ARPANET.ARPA was selected as a network name, would be:

   ARPA.                   PTR     0.0.0.10.IN-ADDR.ARPA.

   ARPANET.ARPA.           PTR     0.0.0.10.IN-ADDR.ARPA.

   0.0.0.10.IN-ADDR.ARPA.  PTR     ARPANET.ARPA.

The first RR states that the organization named ARPA owns net 10 (It might also own more 
network numbers, and these would be represented with an additional RR per net.)    The 
second states that the network name ARPANET.ARPA. maps to net 10.    The last states that 
net 10 is named ARPANET.ARPA.

Note that all of the usual host and corresponding IN-ADDR.ARPA entries would still be 
required.



RFC-1101 DNS Encoding of Network Names and Other Types

Network Name Mappings:    A Complicated, Subnetted Example
The ISI network is 128.9, a class B number.    Suppose the ISI network was organized into two
levels of subnet, with the first level using an additional 8 bits of address, and the second 
level using 4 bits, for address masks of x'FFFFFF00' and X'FFFFFFF0'.

Then the following RRs would be entered in ISI's master file for the ISI.EDU zone:
   ; Define network entry
   isi-net.isi.edu.                PTR  0.0.9.128.IN-ADDR.ARPA.

   ; Define first level subnets
   div1-subnet.isi.edu.            PTR  0.1.9.128.IN-ADDR.ARPA.
   div2-subnet.isi.edu.            PTR  0.2.9.128.IN-ADDR.ARPA.

   ; Define second level subnets
   inc-subsubnet.isi.edu.          PTR  16.2.9.128.IN-ADDR.ARPA.

in the 9.128.IN-ADDR.ARPA zone:

   ; Define network number and address mask
   0.0.9.128.IN-ADDR.ARPA.         PTR  isi-net.isi.edu.
                                   A    255.255.255.0  ;aka X'FFFFFF00'

   ; Define one of the first level subnet numbers and masks
   0.1.9.128.IN-ADDR.ARPA.         PTR  div1-subnet.isi.edu.
                                   A    255.255.255.240 ;aka X'FFFFFFF0'

   ; Define another first level subnet number and mask
   0.2.9.128.IN-ADDR.ARPA.         PTR  div2-subnet.isi.edu.
                                   A    255.255.255.240 ;aka X'FFFFFFF0'

   ; Define second level subnet number
   16.2.9.128.IN-ADDR.ARPA.        PTR  inc-subsubnet.isi.edu.

This assumes that the ISI network is named isi-net.isi.edu., first level subnets are named 
div1-subnet.isi.edu. and div2- subnet.isi.edu., and a second level subnet is called inc- 
subsubnet.isi.edu.    (In a real system as complicated as this there would be more first and 
second level subnets defined, but we have shown enough to illustrate the ideas.)



RFC-1101 DNS Encoding of Network Names and Other Types

Procedure for Using an IP Address to Get Network Name
Depending on whether the IP address is class A, B, or C, mask off the high one, two, or three 
bytes, respectively.    Reverse the octets, suffix IN-ADDR.ARPA, and do a PTR query.

For example, suppose the IP address is 10.0.0.51.

1) Since this is a class A address, use a mask x'FF000000' and get 10.0.0.0.

2) Construct the name 0.0.0.10.IN-ADDR.ARPA.

3) Do a PTR query.    Get back

         0.0.0.10.IN-ADDR.ARPA.  PTR     ARPANET.ARPA.

4) Conclude that the network name is "ARPANET.ARPA."

Suppose that the IP address is 128.9.2.17.

1) Since this is a class B address, use a mask of x'FFFF0000' and get 128.9.0.0.

2) Construct the name 0.0.9.128.IN-ADDR.ARPA.

3) Do a PTR query.    Get back

         0.0.9.128.IN-ADDR.ARPA.       PTR     isi-net.isi.edu

4) Conclude that the network name is "isi-net.isi.edu."



RFC-1101 DNS Encoding of Network Names and Other Types

Procedure for Finding All Subnets Involved With an IP Address
This is a simple extension of the IP address to network name method.    When the network 
entry is located, do a lookup for a possible A RR.    If the A RR is found, look up the next level 
of subnet using the original IP address and the mask in the A RR.    Repeat this procedure 
until no A RR is found.

For example, repeating the use of 128.9.2.17.

1) As before construct a query for 0.0.9.128.IN-ADDR.ARPA.    Retrieve:

         0.0.9.128.IN-ADDR.ARPA.  PTR    isi-net.isi.edu.
                                  A      255.255.255.0

2) Since an A RR was found, repeat using mask from RR (255.255.255.0), 
constructing a query for 0.2.9.128.IN-ADDR.ARPA.    Retrieve:

         0.2.9.128.IN-ADDR.ARPA.  PTR    div2-subnet.isi.edu.
                                  A      255.255.255.240

3) Since another A RR was found, repeat using mask 255.255.255.240 
(x'FFFFFFF0').    constructing a query for 16.2.9.128.IN-ADDR.ARPA.    Retrieve:

         16.2.9.128.IN-ADDR.ARPA. PTR    inc-subsubnet.isi.edu.

4) Since no A RR is present at 16.2.9.128.IN-ADDR.ARPA., there are no more subnet
levels.



RFC-1101 DNS Encoding of Network Names and Other Types

YP Issues and Discussion
The term "Yellow Pages" is used in almost as many ways as the term "domain", so it is useful
to define what is meant herein by YP.    The general problem to be solved is to create a 
method for creating mappings from one kind of identifier to another, often with an inverse 
capability.    The traditional methods are to search or use a precomputed index of some kind.

Searching is impractical when the search is too large, and precomputed indexes are possible
only when it is possible to specify search criteria in advance, and pay for the resources 
necessary to build the index.    For example, it is impractical to search the entire domain tree
to find a particular address RR, so we build the IN- ADDR.ARPA YP.    Similarly, we could never
build an Internet-wide index of "hosts with a load average of less than 2" in less time than it 
would take for the data to change, so indexes are a useless approach for that problem.

Such a precomputed index is what we mean by YP, and we regard the IN-ADDR.ARPA domain
as the first instance of a YP in the DNS.    Although a single, centrally-managed YP for well-
known values such as TCP-port is desirable, we regard organization-specific YPs for, say, 
locally defined TCP ports as a natural extension, as are combinations of YPs using search 
lists to merge the two.

In examining Internet Numbers (RFC-997) and Assigned Numbers (RFC-1010), it is clear that 
there are several mappings which might be of value.    For example:

   <assigned-network-name> <==> <IP-address>
   <autonomous-system-id>  <==> <number>
   <protocol-id>           <==> <number>
   <port-id>               <==> <number>
   <ethernet-type>         <==> <number>
   <public-data-net>       <==> <IP-address>

Following the IN-ADDR example, the YP takes the form of a domain tree organized to 
optimize retrieval by search key and distribution via normal DNS rules.    The name used as a
key must include:

1) A well known origin.    For example, IN-ADDR.ARPA is the current IP-address to host
name YP.

2) A "from" data type.    This identifies the input type of the mapping.    This is 
necessary because we may be mapping something as anonymous as a number to
any number of mnemonics, etc.

3) A "to" data type.    Since we assume several symmetrical mnemonic <==> 
number mappings, this is also necessary.

This ordering reflects the natural scoping of control, and hence the order of the components 
in a domain name.    Thus domain names would be of the form:

   <from-value>.<to-data-type>.<from-data-type>.<YP-origin>

To make this work, we need to define well-know strings for each of these metavariables, as 
well as encoding rules for converting a <from-value> into a domain name.    We might 
define:



   <YP-origin>     :=YP
   <from-data-type>:=TCP-port | IN-ADDR | Number |
                     Assigned-network-number | Name
   <to-data-type>  :=<from-data-type>

Note that "YP" is NOT a valid country code under ISO 3166 (although we may want to worry 
about the future), and the existence of a syntactically valid <to-data-type>.<from-data-
type> pair does not imply that a meaningful mapping exists, or is even possible.

The encoding rules might be:

   TCP-port        Six character alphanumeric

   IN-ADDR         Reversed 4-octet decimal string

   Number          decimal integer

   Assigned-network-number
                   Reversed 4-octet decimal string

   Name            Domain name



RFC-1101 DNS Encoding of Network Names and Other Types

Specifics for YP Mappings
TCP-PORT
Assigned Networks
Operational Improvements



RFC-1101 DNS Encoding of Network Names and Other Types

TCP-PORT
   $origin Number.TCP-port.YP.

   23              PTR     TELNET.TCP-port.Number.YP.
   25              PTR     SMTP.TCP-port.Number.YP.

   $origin TCP-port.Number.YP.

   TELNET          PTR     23.Number.TCP-port.YP.
   SMTP            PTR     25.Number.TCP-port.YP.

Thus the mapping between 23 and TELNET is represented by a pair of PTR RRs, one for each
direction of the mapping.



RFC-1101 DNS Encoding of Network Names and Other Types

Assigned Networks
Network numbers are assigned by the NIC and reported in "Internet Numbers" RFCs.    To 
create a YP, the NIC would set up two domains:

   Name.Assigned-network-number.YP and Assigned-network-number.YP

The first would contain entries of the form:

   $origin Name.Assigned-network-number.YP.

   0.0.0.4         PTR     SATNET.Assigned-network-number.Name.YP.
   0.0.0.10        PTR     ARPANET.Assigned-network-number.Name.YP.

The second would contain entries of the form:

   $origin Assigned-network-number.Name.YP.

   SATNET.         PTR     0.0.0.4.Name.Assigned-network-number.YP.
   ARPANET.        PTR     0.0.0.10.Name.Assigned-network-number.YP.

These YPs are not in conflict with the network name support described in the first half of this
RFC since they map between ASSIGNED network names and numbers, not those allocated 
by the organizations themselves.    That is, they document the NIC's decisions about 
allocating network numbers but do not automatically track any renaming performed by the 
new owners.

As a practical matter, we might want to create both of these domains to enable users on the
Internet to experiment with centrally maintained support as well as the distributed version, 
or might want to implement only the allocated number to name mapping and request 
organizations to convert their allocated network names to the network names described in 
the distributed model.



RFC-1101 DNS Encoding of Network Names and Other Types

Operational Improvements
We could imagine that all conversion routines using these YPs might be instructed to use 
"YP.<local-domain>" followed by "YP."    as a search list.    Thus, if the organization ISI.EDU 
wished to define locally meaningful TCP-PORT, it would define the domains:

   <TCP-port.Number.YP.ISI.EDU> and <Number.TCP-port.YP.ISI.EDU>.

We could add another level of indirection in the YP lookup, defining the <to-data-
type>.<from-data-type>.<YP-origin> nodes to point to the YP tree, rather than being 
the YP tree directly.    This would enable entries of the form:

   IN-ADDR.Netname.YP.   PTR     IN-ADDR.ARPA.

to splice in YPs from other origins or existing spaces.

Another possibility would be to shorten the RDATA section of the RRs which map back and 
forth by deleting the origin.    This could be done either by allowing the domain name in the 
RDATA portion to not identify a real domain name, or by defining a new RR which used a 
simple text string rather than a domain name.

Thus, we might replace

   $origin Assigned-network-number.Name.YP.

   SATNET.         PTR     0.0.0.4.Name.Assigned-network-number.YP.
   ARPANET.        PTR     0.0.0.10.Name.Assigned-network-number.YP.

with

   $origin Assigned-network-number.Name.YP.

   SATNET.         PTR     0.0.0.4.
   ARPANET.        PTR     0.0.0.10.

or

   $origin Assigned-network-number.Name.YP.

   SATNET.         PTT     "0.0.0.4"
   ARPANET.        PTT     "0.0.0.10"

where PTT is a new type whose RDATA section is a text string.



RFC-1101 DNS Encoding of Network Names and Other Types

Acknowledgments
Drew Perkins, Mark Lottor, and Rob Austein contributed several of the ideas in this RFC.    
Numerous contributions, criticisms, and compromises were produced in the IETF Domain 
working group and the NAMEDROPPERS mailing list.



Braden, B., editor, "Requirements for Internet Hosts",
                        RFC in preparation.



ISO-3166,    ISO, "Codes for the Representation of Names of
                        Countries", 1981.



      [RFC 882]      Mockapetris, P., "Domain names - Concepts and
                              Facilities", RFC 882, USC/Information Sciences Institute,
                              November 1983.

                              Superseded by RFC 1034.

      [RFC 883]      Mockapetris, P.,"Domain names - Implementation and
                              Specification", RFC 883, USC/Information Sciences
                              Institute, November 1983.

                              Superceeded by RFC 1035.

      [RFC 920]      Postel, J. and J. Reynolds, "Domain Requirements", RFC
                              920, October 1984.

                              Explains the naming scheme for top level domains.

      [RFC 952]      Harrenstien, K., M. Stahl, and E. Feinler, "DoD Internet
                              Host Table Specification", RFC 952, SRI, October 1985.

                              Specifies the format of HOSTS.TXT, the host/address table
                              replaced by the DNS

      [RFC 973]      Mockapetris, P., "Domain System Changes and
                              Observations", RFC 973, USC/Information Sciences
                              Institute, January 1986.

                              Describes changes to RFCs 882 and 883 and reasons for
                              them.

      [RFC 974]      Partridge, C., "Mail routing and the domain system", RFC
                              974, CSNET CIC BBN Labs, January 1986.

                              Describes the transition from HOSTS.TXT based mail
                              addressing to the more powerful MX system used with the
                              domain system.

      [RFC 997]      Reynolds, J., and J. Postel, "Internet Numbers", RFC 997,
                              USC/Information Sciences Institute, March 1987

                              Contains network numbers, autonomous system numbers, etc.

      [RFC 1010]    Reynolds, J., and J. Postel, "Assigned Numbers", RFC
                              1010, USC/Information Sciences Institute, May 1987

                              Contains socket numbers and mnemonics for host names,
                              operating systems, etc.

      [RFC 1034]    Mockapetris, P., "Domain names - Concepts and
                              Facilities", RFC 1034, USC/Information Sciences
                              Institute, November 1987.

                              Introduction/overview of the DNS.



      [RFC 1035]    Mockapetris, P., "Domain names - Implementation and
                              Specification", RFC 1035, USC/Information Sciences
                              Institute, November 1987.

                              DNS implementation instructions.



RFC-1101 DNS Encoding of Network Names and Other Types

Author's Address:

Paul Mockapetris
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

Phone: (213) 822-1511
Email: PVM@ISI.EDU



RFC-1112 Host Extensions for IP Multicasting

Status of this Memo
This memo specifies the extensions required of a host implementation of the Internet 
Protocol (IP) to support multicasting.    It is the recommended standard for IP multicasting in 
the Internet. Distribution of this memo is unlimited. 

Introduction
Levels of Conformance
Host Group Addresses
Model of a Host IP Implementation
Sending Multicast IP Datagrams

Extensions to the IP Service Interface
Extensions to the IP Module
Extensions to the Local Network Service Interface
Extensions to an Ethernet Local Network Module
Extensions to Local Network Modules other than Ethernet

Receiving Multicast IP Datagrams
Extensions to the IP Service Interface
Extensions to the IP Module
Extensions to the Local Network Service Interface
Extensions to an Ethernet Local Network Module
Extensions to Local Network Modules other than Ethernet

Appendix: Host Group Address Issues



RFC-1112 Host Extensions for IP Multicasting

Introduction

IP multicasting is the transmission of an IP datagram to a "host group", a set of zero or more 
hosts identified by a single IP destination address.    A multicast datagram is delivered to all 
members of its destination host group with the same "best-efforts" reliability as regular 
unicast IP datagrams, i.e., the datagram is not guaranteed to arrive intact at all members of 
the destination group or in the same order relative to other datagrams. 
The membership of a host group is dynamic; that is, hosts may join and leave groups at any 
time.    There is no restriction on the location or number of members in a host group.    A host
may be a member of more than one group at a time.    A host need not be a member of a 
group to send datagrams to it. 
A host group may be permanent or transient.    A permanent group has a well-known, 
administratively assigned IP address.    It is the address, not the membership of the group, 
that is permanent; at any time a permanent group may have any number of members, even 
zero.    Those IP multicast addresses that are not reserved for permanent groups are 
available for dynamic assignment to transient groups which exist only as long as they have 
members. 
Internetwork forwarding of IP multicast datagrams is handled by "multicast routers" which 
may be co-resident with, or separate from, internet gateways.    A host transmits an IP 
multicast datagram as a local network multicast which reaches all immediately-neighboring 
members of the destination host group.    If the datagram has an IP time-to-live greater than 
1, the multicast router(s) attached to the local network take responsibility for forwarding it 
towards all other networks that have members of the destination group.    On those other 
member networks that are reachable within the IP time-to-live, an attached multicast router 
completes delivery by transmitting the datagram as a local multicast.
This memo specifies the extensions required of a host IP implementation to support IP 
multicasting, where a "host" is any internet host or gateway other than those acting as 
multicast routers.    The algorithms and protocols used within and between multicast routers 
are transparent to hosts and will be specified in separate documents.    This memo also does 
not specify how local network multicasting is accomplished for all types of network, although
it does specify the required service interface to an arbitrary local network and gives an 
Ethernet specification as an example.    Specifications for other types of network will be the 
subject of future memos. 



RFC-1112 Host Extensions for IP Multicasting

Levels of Conformance

There are three levels of conformance to this specification:

Level 0: no support for IP multicasting
There is, at this time, no requirement that all IP implementations support IP 
multicasting.    Level 0 hosts will, in general, be unaffected by multicast 
activity.    The only exception arises on some types of local network, where the 
presence of level 1 or 2 hosts may cause misdelivery of multicast IP 
datagrams to level 0 hosts.    Such datagrams can easily be identified by the 
presence of a class D IP address in their destination address field; they should 
be quietly discarded by hosts that do not support IP multicasting.    Class D 
addresses are described in Host Group Address. 

Level 1: support for sending but not receiving multicast IP datagrams
Level 1 allows a host to partake of some multicast-based services, such as 
resource location or status reporting, but it does not allow a host to join any 
host groups.    An IP implementation may be upgraded from level 0 to level 1 
very easily and with little new code.    Host Group Addresses, Model of a Host 
IP Implementation, and Sending Multicast IP Datagrams are relevant for level 
1 implementations. 

Level 2: full support for IP multicasting
Level 2 allows a host to join and leave host groups, as well as send IP 
datagrams to host groups.    It requires implementation of the Internet Group 
Management Protocol (IGMP) and extension of the IP and local network service
interfaces within the host.    All of the following sections of this memo are 
applicable to level 2 implementations. 



RFC-1112 Host Extensions for IP Multicasting

Host Group Addresses

Host groups are identified by class D IP addresses, i.e., those with "1110" as their high-order 
four bits.    Class E IP addresses, i.e., those with "1111" as their high-order four bits, are 
reserved for future addressing modes. 
In Internet standard "dotted decimal" notation, host group addresses range from 224.0.0.0 
to 239.255.255.255.    The address 224.0.0.0 is guaranteed not to be assigned to any group, 
and 224.0.0.1 is assigned to the permanent group of all IP hosts (including gateways).    This 
is used to address all multicast hosts on the directly connected network.    There is no 
multicast address (or any other IP address) for all hosts on the total Internet.    The addresses
of other well-known, permanent groups are to be published in "Assigned Numbers". 
The Appendix contains some background discussion of several issues related to host group 
addresses.



RFC-1112 Host Extensions for IP Multicasting

Model of a Host IP Implementation

The multicast extensions to a host IP implementation are specified in terms of the layered 
model illustrated below.    In this model, ICMP and (for level 2 hosts) IGMP are considered to 
be implemented within the IP module, and the mapping of IP addresses to local network 
addresses is considered to be the responsibility of local network modules.    This model is for 
expository purposes only, and should not be construed as constraining an actual 
implementation. 

To provide level 1 multicasting, a host IP implementation must support the transmission of 
multicast IP datagrams.    To provide level 2 multicasting, a host must also support the 
reception of multicast IP datagrams.    Each of these two new services is described in a 
separate section, below.    For each service, extensions are specified for the IP service 
interface, the IP module, the local network service interface, and an Ethernet local network 
module.    Extensions to local network modules other than Ethernet are mentioned briefly, 
but are not specified in detail. 



RFC-1112 Sending Multicast IP Datagrams

Extensions to the IP Service Interface

Multicast IP datagrams are sent using the same "Send IP" operation used to send unicast IP 
datagrams; an upper-layer protocol module merely specifies an IP host group address, rather
than an individual IP address, as the destination.    However, a number of extensions may be 
necessary or desirable. 
First, the service interface should provide a way for the upper-layer protocol to specify the IP 
time-to-live of an outgoing multicast datagram, if such a capability does not already exist.    
If the upper-layer protocol chooses not to specify a time-to-live, it should default to 1 for all 
multicast IP datagrams, so that an explicit choice is required to multicast beyond a single 
network. 
Second, for hosts that may be attached to more than one network, the service interface 
should provide a way for the upper-layer protocol to identify which network interface is be 
used for the multicast transmission.    Only one interface is used for the initial transmission; 
multicast routers are responsible for forwarding to any other networks, if necessary.    If the 
upper-layer protocol chooses not to identify an outgoing interface, a default interface should 
be used, preferably under the control of system management. 
Third (level 2 implementations only), for the case in which the host is itself a member of a 
group to which a datagram is being sent, the service interface should provide a way for the 
upper-layer protocol to inhibit local delivery of the datagram; by default, a copy of the 
datagram is looped back.    This is a performance optimization for upper-layer protocols that 
restrict the membership of a group to one process per host (such as a routing protocol), or 
that handle loopback of group communication at a higher layer (such as a multicast 
transport protocol). 



RFC-1112 Sending Multicast IP Datagrams

Extensions to the IP Module

To support the sending of multicast IP datagrams, the IP module must be extended to 
recognize IP host group addresses when routing outgoing datagrams.    Most IP 
implementations include the following logic: 

if IP-destination is on the same local network,
send datagram locally to IP-destination

else
send datagram locally to GatewayTo( IP-destination )

To allow multicast transmissions, the routing logic must be changed to: 
if IP-destination is on the same local network
or IP-destination is a host group,

send datagram locally to IP-destination
else

send datagram locally to GatewayTo( IP-destination )
If the sending host is itself a member of the destination group on the outgoing interface, a 
copy of the outgoing datagram must be looped-back for local delivery, unless inhibited by 
the sender. (Level 2 implementations only.) 
The IP source address of the outgoing datagram must be one of the individual addresses 
corresponding to the outgoing interface. 
A host group address must never be placed in the source address field or anywhere in a 
source route or record route option of an outgoing IP datagram. 



RFC-1112 Sending Multicast IP Datagrams

Extensions to the Local Network Service Interface

No change to the local network service interface is required to support the sending of 
multicast IP datagrams.    The IP module merely specifies an IP host group destination, rather
than an individual IP destination, when it invokes the existing "Send Local" operation. 



RFC-1112 Sending Multicast IP Datagrams

Extensions to an Ethernet Local Network Module

The Ethernet directly supports the sending of local multicast packets by allowing multicast 
addresses in the destination field of Ethernet packets.    All that is needed to support the 
sending of multicast IP datagrams is a procedure for mapping IP host group addresses to 
Ethernet multicast addresses. 
An IP host group address is mapped to an Ethernet multicast address by placing the low-
order 23-bits of the IP address into the low-order 23 bits of the Ethernet multicast address 
01-00-5E-00-00-00 (hex). Because there are 28 significant bits in an IP host group address, 
more than one host group address may map to the same Ethernet multicast address. 



RFC-1112 Sending Multicast IP Datagrams

Extensions to Local Network Modules other than Ethernet

Other networks that directly support multicasting, such as rings or buses conforming to the 
IEEE 802.2 standard, may be handled the same way as Ethernet for the purpose of sending 
multicast IP datagrams. For a network that supports broadcast but not multicast, such as the
Experimental Ethernet, all IP host group addresses may be mapped to a single local 
broadcast address (at the cost of increased overhead on all local hosts).    For a point-to-point
link joining two hosts (or a host and a multicast router), multicasts should be transmitted 
exactly like unicasts.    For a store-and-forward network like the ARPANET or a public X.25 
network, all IP host group addresses might be mapped to the well-known local address of an 
IP multicast router; a router on such a network would take responsibility for completing 
multicast delivery within the network as well as among networks. 



RFC-1112 Receiving Multicast IP Datagrams

Extensions to the IP Service Interface

Incoming multicast IP datagrams are received by upper-layer protocol modules using the 
same "Receive IP" operation as normal, unicast datagrams.    Selection of a destination 
upper-layer protocol is based on the protocol field in the IP header, regardless of the 
destination IP address.    However, before any datagrams destined to a particular group can 
be received, an upper-layer protocol must ask the IP module to join that group.    Thus, the IP
service interface must be extended to provide two new operations: 

JoinHostGroup    ( group-address, interface )
LeaveHostGroup ( group-address, interface )

The JoinHostGroup operation requests that this host become a member of the host group 
identified by "group-address" on the given network interface.    The LeaveGroup operation 
requests that this host give up its membership in the host group identified by "group-
address" on the given network interface.    The interface argument may be omitted on hosts 
that support only one interface.    For hosts that may be attached to more than one network, 
the upper-layer protocol may choose to leave the interface unspecified, in which case the 
request will apply to the default interface for sending multicast datagrams (see section 6.1). 
It is permissible to join the same group on more than one interface, in which case duplicate 
multicast datagrams may be received.    It is also permissible for more than one upper-layer 
protocol to request membership in the same group. 
Both operations should return immediately (i.e., they are non- blocking operations), 
indicating success or failure.    Either operation may fail due to an invalid group address or 
interface identifier.    JoinHostGroup may fail due to lack of local resources.
LeaveHostGroup may fail because the host does not belong to the given group on the given 
interface.    LeaveHostGroup may succeed, but the membership persist, if more than one 
upper-layer protocol has requested membership in the same group. 



RFC-1112 Receiving Multicast IP Datagrams

Extensions to the IP Module

To support the reception of multicast IP datagrams, the IP module must be extended to 
maintain a list of host group memberships associated with each network interface.    An 
incoming datagram destined to one of those groups is processed exactly the same way as 
datagrams destined to one of the host's individual addresses. 
Incoming datagrams destined to groups to which the host does not belong are discarded 
without generating any error report or log entry.    On hosts with more than one network 
interface, if a datagram arrives via one interface, destined for a group to which the host 
belongs only on a different interface, the datagram is quietly discarded.    (These cases 
should occur only as a result of inadequate multicast address filtering in a local network 
module.) 
An incoming datagram is not rejected for having an IP time-to-live of 1 (i.e., the time-to-live 
should not automatically be decremented on arriving datagrams that are not being 
forwarded).    An incoming datagram with an IP host group address in its source address field 
is quietly discarded.    An ICMP error message (Destination Unreachable, Time Exceeded, 
Parameter Problem, Source Quench, or Redirect) is never generated in response to a 
datagram destined to an IP host group. 
The list of host group memberships is updated in response to JoinHostGroup and 
LeaveHostGroup requests from upper-layer protocols. Each membership should have an 
associated reference count or similar mechanism to handle multiple requests to join and 
leave the same group.    On the first request to join and the last request to leave a group on 
a given interface, the local network module for that interface is notified, so that it may 
update its multicast reception filter. 
The IP module must also be extended to implement the IGMP protocol. IGMP is used to keep 
neighboring multicast routers informed of the host group memberships present on a 
particular local network.    To support IGMP, every level 2 host must join the "all-hosts" group 
(address 224.0.0.1) on each network interface at initialization time and must remain a 
member for as long as the host is active. 
(Datagrams addressed to the all-hosts group are recognized as a special case by the 
multicast routers and are never forwarded beyond a single network, regardless of their time-
to-live.    Thus, the all- hosts address may not be used as an internet-wide broadcast address.
For the purpose of IGMP, membership in the all-hosts group is really necessary only while 
the host belongs to at least one other group. However, it is specified that the host shall 
remain a member of the all-hosts group at all times because (1) it is simpler, (2) the 
frequency of reception of unnecessary IGMP queries should be low enough that overhead is 
negligible, and (3) the all-hosts address may serve other routing-oriented purposes, such as 
advertising the presence of gateways or resolving local addresses.) 



RFC-1112 Receiving Multicast IP Datagrams

Extensions to the Local Network Service Interface

Incoming local network multicast packets are delivered to the IP module using the same 
"Receive Local" operation as local network unicast packets.    To allow the IP module to tell 
the local network module which multicast packets to accept, the local network service 
interface is extended to provide two new operations: 
                                      JoinLocalGroup    ( group-address )
                                      LeaveLocalGroup ( group-address )
where "group-address" is an IP host group address.    The JoinLocalGroup operation requests 
the local network module to accept and deliver up subsequently arriving packets destined to
the given IP host group address.    The LeaveLocalGroup operation requests the local network
module to stop delivering up packets destined to the given IP host group address.    The local
network module is expected to map the IP host group addresses to local network addresses 
as required to update its multicast reception filter.    Any local network module is free to 
ignore LeaveLocalGroup requests, and may deliver up packets destined to more addresses 
than just those specified in JoinLocalGroup requests, if it is unable to filter incoming packets 
adequately. 
The local network module must not deliver up any multicast packets that were transmitted 
from that module; loopback of multicasts is handled at the IP layer or higher. 



RFC-1112 Receiving Multicast IP Datagrams

Extensions to an Ethernet Local Network Module

To support the reception of multicast IP datagrams, an Ethernet module must be able to 
receive packets addressed to the Ethernet multicast addresses that correspond to the host's 
IP host group addresses.    It is highly desirable to take advantage of any address filtering 
capabilities that the Ethernet hardware interface may have, so that the host receives only 
those packets that are destined to it. 
Unfortunately, many current Ethernet interfaces have a small limit on the number of 
addresses that the hardware can be configured to recognize.    Nevertheless, an 
implementation must be capable of listening on an arbitrary number of Ethernet multicast 
addresses, which may mean "opening up" the address filter to accept all multicast packets 
during those periods when the number of addresses exceeds the limit of the filter. 
For interfaces with inadequate hardware address filtering, it may be desirable (for 
performance reasons) to perform Ethernet address filtering within the software of the 
Ethernet module.    This is not mandatory, however, because the IP module performs its own 
filtering based on IP destination addresses. 



RFC-1112 Receiving Multicast IP Datagrams

Extensions to Local Network Modules other than Ethernet

Other multicast networks, such as IEEE 802.2 networks, can be handled the same way as 
Ethernet for the purpose of receiving multicast IP datagrams.    For pure broadcast networks, 
such as the Experimental Ethernet, all incoming broadcast packets can be accepted and 
passed to the IP module for IP-level filtering.    On point-to-point or store-and-forward 
networks, multicast IP datagrams will arrive as local network unicasts, so no change to the 
local network module should be necessary. 



RFC-1112 Host Extensions for IP Multicasting
Appendix

Host Group Address Issues

This appendix is not part of the IP multicasting specification, but provides background 
discussion of several issues related to IP host group addresses. 

Group Address Binding
The binding of IP host group addresses to physical hosts may be considered a generalization 
of the binding of IP unicast addresses. An IP unicast address is statically bound to a single 
local network interface on a single IP network.    An IP host group address is dynamically 
bound to a set of local network interfaces on a set of IP networks. 
It is important to understand that an IP host group address is NOT bound to a set of IP 
unicast addresses.    The multicast routers do not need to maintain a list of individual 
members of each host group. For example, a multicast router attached to an Ethernet need 
associate only a single Ethernet multicast address with each host group having local 
members, rather than a list of the members' individual IP or Ethernet addresses. 

Allocation of Transient Host Group Addresses
This memo does not specify how transient group address are allocated. It is anticipated that 
different portions of the IP transient host group address space will be allocated using 
different techniques. For example, there may be a number of servers that can be contacted 
to acquire a new transient group address.    Some higher-level protocols (such as VMTP, 
specified in RFC-1045) may generate higher- level transient "process group" or "entity 
group" addresses which are then algorithmically mapped to a subset of the IP transient host 
group addresses, similarly to the way that IP host group addresses are mapped to Ethernet 
multicast addresses.    A portion of the IP group address space may be set aside for random 
allocation by applications that can tolerate occasional collisions with other multicast users, 
perhaps generating new addresses until a suitably "quiet" one is found. 
In general, a host cannot assume that datagrams sent to any host group address will reach 
only the intended hosts, or that datagrams received as a member of a transient host group 
are intended for the recipient.    Misdelivery must be detected at a level above IP, using 
higher-level identifiers or authentication tokens.    Information transmitted to a host group 
address should be encrypted or governed by administrative routing controls if the sender is 
concerned about unwanted listeners. 



RFC-1147 (FYI 2)
FYI on a 

Network Management Tool Catalog:
Tools for Monitoring and Debugging TCP/IP Internets

and
Interconnected Devices

R. Stine Editor
April 1990

Introduction
Purpose
Scope
Overview
Acknowledgements

Keywords
Keyword Definitions

Tools Indexed by Keyword
Tool Descriptions
Network Management Tutorial
Author's Address

Status of this Memo
The goal of this FYI memo is to provide practical information to site administrators and 
network managers.    This memo provides information for the Internet community.    It does 
not specify any standard.    It is not a statement of IAB policy or recommendations.    
Comments, critiques, and new or updated tool descriptions are welcome, and should be sent
to Robert Stine, at stine@sparta.com, or to the NOCTools working group, at 
noctools@merit.edu. 
Distribution of this memo is unlimited.    Security issues are discussed in the seciton on 
Internet Security.



RFC-1147 Network Tools Directory

Introduction

This catalog contains descriptions of several tools available to assist network managers in 
debugging and maintaining TCP/IP internets and interconnected communications resources.   
Entries in the catalog tell what a tool does, how it works, and how it can be obtained. 
The NOCTools Working Group of the Internet Engineering Task Force (IETF) compiled this 
catalog in 1989.    Future editions will be produced as IETF members become aware of tools 
that should be included, and of deficiencies or inaccuracies. Developing an edition oriented 
to the OSI protocol suite is also contemplated. 
The tools described in this catalog are in no way endorsed by the IETF.    For the most part, 
we have neither evaluated the tools in this catalog, nor validated their descriptions.    Most of
the descriptions of commercial tools have been provided by vendors.    Caveat Emptor. 



RFC-1147 Network Tools Directory

Purpose

The practice of re-inventing the wheel seems endemic to the field of data communications.    
The primary goal of this document is to fight that tendency in a small but useful way.    By 
listing the capabilities of some of the available network management tools, we hope to pool 
and share knowledge and experience.    Another goal of this catalog is to show those new in 
the field what can be done to manage internet sites.    A network management tutorial at the
end of the document is of further assistance in this area. Finally, by omission, this catalog 
points out the network management tools that are needed, but do not yet exist. 
There are other sources of information on available network management tools.    Both the 
DDN Protocol Implementation and Vendors Guide and the DATAPRO series on data 
communications and LANs are particularly comprehensive and informative.    The DDN 
Protocol Implementation and Vendors Guide addresses a wide range of internet 
management topics, including evaluations of protocol implementations and network 
analyzers.(Instructions for obtaining the DDN Protocol Guide are given in Section 7 of the 
appendix.)    The DATAPRO volumes, though expensive (check your local university or 
technical libraries!), are good surveys of available commercial products for network manage-
ment.    DATAPRO also includes tutorials, market analyses, product evaluations, and 
predictions on technology trends. 



RFC-1147 Network Tools Directory

Scope

The tools described in this document are used for managing the network resources, LANs, 
and devices that are commonly interconnected by TCP/IP internets.    This document is not, 
however, a "how to" manual on network management.    While it includes a tutorial, the 
coverage is much too brief and general to serve as a sole source: a great deal of further 
study is required of aspiring network managers. Neither is this catalog is an operations 
manual for particular tools. Each individual tool entry is brief, and emphasizes the uses to 
which a tool can be put.    A tool's documentation, which in some cases runs to hundreds of 
pages, should be consulted for assistance in its installation and operation. 



RFC-1147 Network Tools Directory

Overview

Section 1 describes the purpose, scope, and organization of this catalog. 
Section 2 lists and explains the standard keywords used in the tool descriptions.    The 
keywords can be used as a subject index into the catalog. 
Section 3, the main body of the catalog, contains the entries describing network 
management tools.    The tool entries in Section 3 are presented in alphabetical order, by 
tool name.    The tool descriptions all follow a standard format, described in the introduction 
to Section 3. 
Following the catalog, there is an appendix that contains a tutorial on the goals and practice 
of network management. 



RFC-1147 Network Tools Directory

Acknowledgements

The compilation and editing of this catalog was sponsored by the Defense Communications 
Engineering Center (DCEC), contract DCA100-89-C-0001.    The effort grew out of an initial 
task to survey current internet management tools.    The cata- log is largely, however, the 
result of volunteer labor on the part of the NOCTools Working Group, the User Services 
Working Group, and many others. Without these volunteer contributions, the catalog would 
not exist. The support from the Internet community for this endeavor has been extremely 
gratifying. 
Several individuals made especially notable contributions.    Mike Patton, Paul Holbrook, Mark
Fedor and Gary Malkin were particularly helpful in composition and editorial review, while 
Dave Crocker provided essential guidance and encouragement.    Bob Enger was active from 
the first with the gut work of chairing the Working Group and building the catalog.    Phill 
Gross helped to christen the NOCTools Working Group, to define its scope and goals, and to 
establish its role in the IETF.    Mike Little contributed the formative idea of enhancing and 
publicizing the management tool survey through IETF participation. 
Responsibility for any deficiencies and errors remains, of course, with the editor. 



RFC-1147 Network Tools Directory

Keywords

This catalog uses "keywords" for terse characterizations of the tools.    Keywords are 
abbreviated attributes of a tool or its use.    To allow cross-comparison of tools, uniform 
keyword definitions have been developed, and are given below.    Following the definitions, 
there is an index of catalog entries by keyword. 



RFC-1147 Network Tools Directory

Keyword Definitions

The keywords are always listed in a prefined order, sorted first by the general category into 
which they fall, and then alphabetically.    The categories that have been defined for 
management tool keywords are: 

o the general management area to which a tool relates or a tool's functional 
role; 

o the network resources or components that are managed; 
o the mechanisms or methods a tool uses to perform its functions; 
o the operating system and hardware environment of a tool; and 
o the characteristics of a tool as a hardware product or software release. 

General Management Area or Functional Role Keywords
Network Resources or Managed Components Keywords
Mechanism Keywords
Operating Environment Keywords
Acquistion Status Keywords



RFC-1147 Network Tools Directory - Keywords

General Management Area or Functional Role Keywords

Alarm
a reporting/logging tool that can trigger    on    specific events within a network.

Analyzer
a traffic monitor that reconstructs and interprets protocol messages that span 
several packets.

Benchmark
a tool used to evaluate the performance of network com ponents. 

Control
a tool that can change the state or status of a    remote network resource. 

Debugger
a tool that by generating arbitrary packets and moni toring traffic, can drive a 
remote network component to various states and record its responses. 

Generator
a traffic generation tool.

Manager
a distributed network management system or system com ponent. 

Map
a tool that can discover and report a system's topology or configuration. 

Reference
a tool for documenting MIB structure or system configuration.

Routing
a packet route discovery tool.

Security
a tool for analyzing or reducing threats to security.

Status
a tool that remotely tracks the status of network components.

Traffic
a tool that monitors packet flow.



RFC-1147 Network Tools Directory - Keywords

Network Resources or Managed Components Keywords

Bridge
a tool for controlling or monitoring LAN bridges.

CHAOS
a tool for controlling or monitoring implementations of the CHAOS protocol 
suite or network components that use it. 

DECnet
a tool for controlling or monitoring implementations of the    DECnet    protocol   
suite or network components that use it. 

DNS
a Domain Name System debugging tool.

Ethernet
a tool for controlling or monitoring network components on ethernet LANs. 

FDDI
a tool for controlling or monitoring network components on FDDI LANs or 
WANs. 

IP
a tool for controlling or monitoring implementations of the    TCP/IP    protocol    
suite or network components that use it. 

OSI
a tool for controlling or monitoring implementations of the    OSI    protocol 
suite or network components that use it. 

NFS
a Network File System debugging tool.

Ring
a tool for controlling or monitoring network components on Token Ring LANs. 

SMTP
an SMTP debugging tool.

Star
a tool for controlling or monitoring network components on StarLANs. 



RFC-1147 Network Tools Directory - Keywords

Mechanism Keywords

Curses
a tool that uses the "curses" tty interface package.

Eavesdrop
a tool    that    silently    monitors    communications    media (e.g., by putting an 
ethernet interface into "promiscuous" mode). 

NMS
the tool is a component of or queries a Network Manage ment System. 

Ping
a tool that sends packet probes such as ICMP echo messages; to help 
distinguish tools, we do not consider
NMS queries or protocol spoofing (see below) as probes.

Proprietary
a distributed tool that uses proprietary communications techniques to link its 
components. 

SNMP
a network management system or component based on SNMP, the Simple 
Network Management Protocol. 

Spoof
a tool that tests operation of remote protocol    modules by peer-level message
exchange. 

X
a tool that uses X-Windows.



RFC-1147 Network Tools Directory - Keywords

Operating Environment Keywords

DOS
a tool that runs under MS-DOS.

HP
a tool that runs on Hewlett-Packard systems.

Macintosh
a tool that runs on Macintosh personal computers.

Standalone
an integrated hardware/software tool that requires only a network interface for
operation. 

UNIX
a tool that runs under 4.xBSD UNIX or related OS.

VMS
a tool that runs under DEC's VMS operating system.



RFC-1147 Network Tools Directory - Keywords

Acquisition Keywords

Free
a tool is available at no charge, though other restrictions may apply (tools that
are part of an OS distribution but not otherwise available are not listed as 
"free"). 

Library
a tool packaged with either an Application    Programming Interface (API) or 
object-level subroutines that may be loaded with programs. 

Sourcelib
a collection of source code    (subroutines)    upon    which developers may 
construct other tools. 



RFC-1147 Network Tools Directory

Tools Indexed by Keywords

Following is an index of catalog entries sorted by keyword.    This index can be used to locate
the tools with a particular attribute: tools are listed under each keyword that characterizes 
them.    The keywords and the subordinate lists of tools under them are in alphabetical order.
In the interest of brevity, some liberties have been taken with tool names.    Capitalization of 
the names is as specified by the tool developers or distributers.    Note that parenthetical 
roman numerals following a tool's name are not actually part of the name.    The use of 
roman numerals to differentiate tools with the same name is explained in the introduction of 
Section 3. 



RFC-1147 Network Tools Directory - Groups

alarm

CMIP Library osilog snmptrapd
EtherMeter SERAG Unisys NCC
LanProbe SpiderMonitor WIN/MGT Station
LANWatch sma xnetmon (I)
NETMON (III) Snmp Libraries XNETMON (II)



RFC-1147 Network Tools Directory - Groups

 analyzer

LANWatch Sniffer SpiderMonitor



RFC-1147 Network Tools Directory - Groups

 benchmark

hammer SPIMS TTCP
nhfsstone spray Unisys NCC



RFC-1147 Network Tools Directory - Groups

bridge

ConnectVIEW NMC snmpd (I)
decaddrs proxyd Snmp Libraries



RFC-1147 Network Tools Directory - Groups

CHAOS

LANWatch map



RFC-1147 Network Tools Directory - Groups

control

CMIP Library proxyd Unisys NCC
ConnectVIEW snmpset WIN/MGT Station
NETMON (III) Snmp Libraries XNETMON (II)
NMC TokenVIEW



RFC-1147 Network Tools Directory - Groups

curses

Internet Rover nfswatch snmpperfmon
net_monitor osimon



RFC-1147 Network Tools Directory - Groups

debugger

SPIMS



RFC-1147 Network Tools Directory - Groups

DECnet

decaddrs NMC XNETMON (II)
LANWatch Sniffer xnetperfmon
NETMON (III) Snmp Libraries
net_monitor SpiderMonitor



RFC-1147 Network Tools Directory - Groups

DNS

DiG netmon (I)
LANWatch nslookup



RFC-1147 Network Tools Directory - Groups

DOS
Comp. Security Checklist netmon (I) snmpd (II)
ConnectVIEW NETMON (III) TokenVIEW
hammer netwatch XNETMON (II)
hopcheck OverVIEW xnetperfmon
LAN Patrol ping
LANWatch Snmp Libraries



RFC-1147 Network Tools Directory - Groups

eavesdrop

ENTM LANWatch OSITRACE
etherfind NETMON (II) Sniffer
EtherView netwatch SpiderMonitor
LAN Patrol nfswatch Tcplogger
LanProbe NNStat TRPT



RFC-1147 Network Tools Directory - Groups

ethernet

arp map snmpd (II)
ConnectVIEW NETMON (III) SpiderMonitor
ENTM netwatch tcpdump
etherfind Network Integrator Unisys NCC
etherhostprobe NMC WIN/MGT Station
EtherMeter NNStat XNETMON (II)
EtherView proxyd xnetperfmon
LAN Patrol SERAG
LanProbe Sniffer
LANWatch Snmp Libraries



RFC-1147 Network Tools Directory - Groups

FDDI

Unisys NCC



RFC-1147 Network Tools Directory - Groups

free

arp NETMON (II) OSITRACE
CMIP Library netstat ping
CMU SNMP netwatch query
DiG net_monitor sma
ENTM nfswatch SNMP Kit
etherhostprobe nhfsstone tcpdump
hammer NNStat tcplogger
hopcheck NPRV traceroute
HyperMIB nslookup TRPT
Internet Rover osilog TTCP
map osimic
netmon (I) osimon



RFC-1147 Network Tools Directory - Groups

generator

hammer Sniffer TTCP
nhfsstone SpiderMonitor Unisys NCC
ping spray



RFC-1147 Network Tools Directory - Groups

HP
xup



RFC-1147 Network Tools Directory - Groups

IP

arp NMC snmptrapd
CMU SNMP NNStat snmpwatch
Dual Manager NPRV snmpxbar
ENTM OverVIEW snmpxconn
etherfind ping snmpxmon
etherhostprobe proxyd snmpxperf
EtherView query snmpxperfmon
getone SERAG snmpxrtmetric
hammer Sniffer SpiderMonitor
hopcheck SNMP Kit SPIMS
Internet Rover Snmp Libraries spray
LANWatch snmpack Tcpdump
map snmpd (I) Tcplogger
Netlabs CMOT Agent snmpd (II) Traceroute
Netlabs SNMP Agent snmplookup TRPT
netmon (I) snmpperfmon TTCP
NETMON (II) snmppoll Unisys NCC
NETMON (III) snmpquery WIN/MGT Station
netstat snmproute xnetmon (I)
netwatch snmpset XNETMON (II)
net_monitor snmpsrc xnetperfmon
nfswatch snmpstat



RFC-1147 Network Tools Directory - Groups

library

CMIP Library LANWatch WIN/MGT Station
Dual Manager proxyd



RFC-1147 Network Tools Directory - Groups

Macintosh

HyperMIB



RFC-1147 Network Tools Directory - Groups

manager

CMIP Library osimon snmpstat
CMU SNMP OverVIEW snmptrapd
ConnectVIEW sma snmpwatch
decaddrs SNMP Kit snmpxbar
Dual Manager Snmp Libraries snmpxconn
getone snmpask snmpxmon
LanProbe snmpd (I) snmpxperf
map snmpd (II) snmpxperfmon
Netlabs CMOT Agent snmplookup snmpxrtmetric
Netlabs SNMP Agent snmpperfmon TokenVIEW
NETMON (III) snmppoll Unisys NCC
NMC snmpquery WIN/MGT Station
NNStat snmproute xnetmon (I)
osilog snmpsrc XNETMON (II)
osimic snmpset xnetperfmon



RFC-1147 Network Tools Directory - Groups

map

decaddrs NETMON (III) snmpxmon
etherhostprobe Network Integrator Unisys NCC
EtherMeter NPRV xnetmon (I)
LanProbe Snmp Libraries XNETMON (II)
map snmpxconn



RFC-1147 Network Tools Directory - Groups

NFS

etherfind nfswatch Sniffer
EtherView nhfsstone tcpdump



RFC-1147 Network Tools Directory - Groups

NMS

CMU SNMP SERAG snmpwatch
ConnectVIEW SNMP Kit snmpxbar
decaddrs Snmp Libraries snmpxconn
Dual Manager snmpask snmpxmon
EtherMeter snmpd (I) snmpxperf
getone snmpd (II) snmpxperfmon
LanProbe snmplookup snmpxrtmetric
map snmpperfmon TokenVIEW
Netlabs CMOT Agent snmppoll Unisys NCC
Netlabs SNMP Agent snmpquery WIN/MGT Station
NETMON (III) snmproute xnetmon (I)
NMC snmpset XNETMON (II)
NNStat snmpsrc xnetperfmon
OverVIEW snmpstat
proxyd snmptrapd



RFC-1147 Network Tools Directory - Groups

OSI

CMIP Library osimic SpiderMonitor
Dual Manager osimon SPIMS
LANWatch OSITRACE XNETMON (II)
Netlabs CMOT Agent sma xnetperfmon
NETMON (III) Sniffer
osilog Snmp Libraries



RFC-1147 Network Tools Directory - Groups

ping

etherhostprobe net_monitor TTCP
hopcheck NPRV Unisys NCC
Internet Rover ping xup
map spray
netmon (I) traceroute



RFC-1147 Network Tools Directory - Groups

proprietary

ConnectVIEW LanProbe TokenVIEW
EtherMeter SERAG



RFC-1147 Network Tools Directory - Groups

reference

HyperMIB Unisys NCC



RFC-1147 Network Tools Directory - Groups

ring

ConnectVIEW netwatch snmpd (II)
LANWatch proxyd TokenVIEW
map Sniffer XNETMON (II)
NETMON (III) Snmp Libraries xnetperfmon



RFC-1147 Network Tools Directory - Groups

routing

arp netstat snmproute
ConnectVIEW net_monitor snmpsrc
decaddrs NMC snmpxrtmetric
etherhostprobe NPRV traceroute
getone query WIN/MGT Station
hopcheck Snmp Libraries XNETMON (II)
NETMON (III)



RFC-1147 Network Tools Directory - Groups

security

Comp. Security Checklist Dual Manager SERAG
ConnectVIEW LAN Patrol XNETMON (II)



RFC-1147 Network Tools Directory - Groups

SMTP

Internet Rover mconnect
LANWatch Sniffer



RFC-1147 Network Tools Directory - Groups

SNMP

CMU SNMP snmpask snmpwatch
decaddrs snmpd (I) snmpxbar
Dual Manager snmpd (II) snmpxconn
getone snmplookup snmpxmon
map snmpperfmon snmpxperf
Netlabs SNMP Agent snmppoll snmpxperfmon
NETMON (III) snmpquery snmpxrtmetric
NMC snmproute Unisys NCC
OverVIEW snmpset WIN/MGT Station
proxyd snmpsrc xnetmon (I)
SNMP Kit snmpstat XNETMON (II)
Snmp Libraries snmptrapd xnetperfmon



RFC-1147 Network Tools Directory - Groups

sourcelib

CMIP Library map Snmp Libraries
CMU SNMP NETMON (III) Snmpd (II)
HyperMIB net_monitor SpiderMonitor
Internet Rover proxyd XNETMON (II)
LANWatch SNMP Kit xnetperfmon



RFC-1147 Network Tools Directory - Groups

spoof

DiG nhfsstone query
Internet Rover nslookup SPIMS
mconnect



RFC-1147 Network Tools Directory - Groups

standalone

EtherMeter Sniffer SpiderMonitor



RFC-1147 Network Tools Directory - Groups

star

LAN Patrol proxyd snmpd (II)
LANWatch Sniffer XNETMON (II)
map Snmp Libraries xnetperfmon
NETMON (III)



RFC-1147 Network Tools Directory - Groups

status

CMIP Library nslookup snmpquery
CMU SNMP osimic snmpstat
ConnectVIEW osimon snmpwatch
DiG OverVIEW snmpxbar
Dual Manager ping snmpxconn
getone proxyd snmpxmon
Internet Rover sma snmpxperf
LanProbe SNMP Kit snmpxperfmon
mconnect Snmp Libraries TokenVIEW
Netlabs CMOT Agent snmpask Unisys NCC
Netlabs SNMP Agent snmpd (I) WIN/MGT Station
netmon (I) snmpd (II) xnetmon (I)
net_monitor snmplookup XNETMON (II)
NMC snmpperfmon xnetperfmon
NNStat snmppoll xup
NPRV



RFC-1147 Network Tools Directory - Groups

traffic

ENTM netwatch snmpxperfmon
etherfind Network Integrator SpiderMonitor
EtherMeter nfswatch tcpdump
EtherView NMC tcplogger
LAN Patrol NNStat TRPT
LanProbe osimon Unisys NCC
LANWatch OSITRACE WIN/MGT Station
NETMON (II) Sniffer



RFC-1147 Network Tools Directory - Groups

UNIX

arp nslookup snmpsrc
CMIP Library osilog snmpstat
CMU SNMP osimic snmptrapd
decaddrs osimon snmpwatch
DiG OSITRACE snmpxconn
Dual Manager ping snmpxmon
etherfind proxyd snmpxperf
etherhostprobe query snmpxperfmon
EtherView SERAG snmpxrtmetric
getone sma SPIMS
Internet Rover SNMP Kit spray
map Snmp Libraries tcpdump
mconnect snmpask tcplogger
NETMON (II) snmpd (I) traceroute
netstat snmpd (II) TRPT
Network Integrator snmplookup TTCP
net_monitor snmpperfmon Unisys NCC
nfswatch snmppoll WIN/MGT Station
nhfsstone snmpquery xnetmon (I)
NMC snmproute XNETMON (II)
NNStat snmpset xnetperfmon



RFC-1147 Network Tools Directory - Groups

VMS

arp nslookup traceroute
ENTM ping TTCP
netstat Snmp Libraries XNETMON (II)
net_monitor tcpdump xnetperfmon
NPRV



RFC-1147 Network Tools Directory - Groups

X

Dual Manager snmpxmon WIN/MGT Station
map snmpxperf XNETMON (II)
snmpxbar snmpxperfmon xnetperfmon
snmpxconn snmpxrtmetric xup



RFC-1147 Network Tools Directory

Tool Descriptions

This section is a collection of brief descriptions of tools for managing TCP/IP internets.    
These entries are in alphabetical order, by tool name. 
The entries all follow a standard format.    Immediately after the NAME of a tool are its 
associated KEYWORDS.    Keywords are terse descriptions of the purposes or attributes of a 
tool.    A more detailed description of a tool's purpose and characteristics is given in the 
ABSTRACT section.    The MECHANISM section describes how a tool works.    In CAVEATS, 
warnings about tool use are given.    In BUGS, known bugs or bug-report procedures are 
given.    LIMITATIONS describes the boundaries of a tool's capabilities.    HARDWARE 
REQUIRED and SOFTWARE REQUIRED relate the operational environment a tool needs.    
Finally, in AVAILABILITY, pointers to vendors, online repositories, or other sources for a tool 
are given. 
We deal with the problem of tool-name clashes -- different tools that have the same name -- 
by appending parenthetical roman numerals to the names.    For example, BYU, MITRE, and 
SNMP Research each submitted a description of a tool called "NETMON." These tools were 
independently developed, are functionally different, run in different environments, and are 
no more related than Richard Burton the 19th century explorer and Richard Burton the 20th 
century actor.    BYU's tool "NETMON" is listed as "NETMON (I)," MITRE's as "NETMON (II)," 
and the tool from SNMP Research as "NETMON (III)." 
The parenthetical roman numerals reveal only the order in which the catalog editor received 
the tool descriptions.    They should not be construed to indicate any sort of preference, 
priority, or rights to a tool name. 



RFC-1147 Network Tools Directory

arp

Keywords
routing; ethernet, IP; UNIX, VMS; free. 

Abstract
Arp displays and can modify the internet-to-ethernet address translations tables used by 
ARP, the address resolution protocol. 

Mechanism
The arp program accesses operating system memory to read the ARP data structures. 

Caveats
None.

Bugs
None known.

Limitations
Only the super user can modify ARP entries.

Hardware Required
No restrictions.

Software Required
BSD UNIX or related OS, or VMS.

Availability
Available via anonymous FTP from uunet.uu.net, in directory bsd-sources/src/etc.    
Available with 4.xBSD UNIX and related operating systems.    For VMS, available as part of
TGV MultiNet IP software package, as well as Wollongong's WIN/TCP. 



RFC-1147 Network Tools Directory

CMIP Library

Keywords
alarm, control, manager, status; OSI; UNIX; free, library, sourcelib. 

Abstract
The CMIP Library implements the functionality of the Common Management Information 
Service/Protocol as in the documents ISO DP 9595-2/9596-2 of March 1988.    It can act as
a building block for the construction of CMIP-based agent and manager applications. 

Mechanism
The CMIP library uses ISO ROS, ACSE and ASN.1 presenta tion, as implemented in ISODE,
to provide its service. 

Caveats
None.

Bugs
None known.

Limitations
The M-CREATE, M-DELETE and M-ACTION protocol primitives are not implemented in this 
version. 

Hardware Required
Developed on Sun3, tested on Sun3 and VAXStation.

Software Required
The ISODE protocol suite, BSD UNIX.

Availability
The CMIP library and related management tools built upon it, known as OSIMIS (OSI 
Management Information Service), are publicly available from University Col lege 
London, England via FTP and FTAM.    To obtain information regarding a copy send email 
to gknight@ac.ucl.cs.uk or call +44 1 380 7366. 



RFC-1147 Network Tools Directory

The CMU SNMP Distribution

Keywords
manager, status; IP; NMS, SNMP; UNIX; free, sourcelib.

Abstract
The CMU SNMP Distribution includes source code for an SNMP agent, several SNMP client
applications, an ASN.1 library, and supporting documentation. 
The agent compiles into about 10 KB of 68000 code.    The distribution includes a full 
agent that runs on a Kinetics FastPath2/3/4, and is built into the KIP appletalk/ethernet 
gateway.    The machine independent portions of this agent also run on CMU's IBM PC/AT 
based router. 
The applications are designed to be useful in the real world.    Information is collected and
presented in a useful format and is suitable for everyday status moni toring.    Input and 
output are interpreted symbolically. The tools can be used without referencing the RFCs. 

Mechanism
SNMP. 

Caveats
None.

Bugs
None reported.    Send bug reports to sw0l+snmp@andrew.cmu.edu.    ("sw0l" is "ess 
double-you zero ell.") 

Limitations
None reported.

Hardware Required
The KIP gateway agent runs on a Kinetics FastPath2/3/4. Otherwise, no restrictions. 

Software Required
The code was written with efficiency and portability in mind.    The applications compile 
and run on the following systems: IBM PC/RT running ACIS Release 3, Sun3/50 running 
SUNOS 3.5, and the DEC microVax running Ultrix 2.2.    They are expected to run on any 
system with a Berkeley socket interface. 

Availability
This distribution is copyrighted by CMU, but may be used and sold without permission.    
Consult the copyright notices for further information.    The distribution is available by 
anonymous FTP from the host lancaster.andrew.cmu.edu (128.2.13.21) as the files 
pub/cmu-snmp.9.tar, and pub/kip-snmp.9.tar.    The former includes the libraries and the 
applications, and the latter is the KIP SNMP agent. 
Please direct questions, comments, and bug reports to sw0l+snmp@andrew.cmu.edu.    
("sw0l" is "ess double-you zero ell.")    If you pick up this package, please send a note to 
the above address, so that you may be notified of future enhancements/changes and 
additions to the set of applications (several are planned). 





RFC-1147 Network Tools Directory

Computer Security Checklist

Keywords
security; DOS.

Abstract
This program consists of 858 computer security questions divided up in thirteen sections.
The program presents the questions to the user and records their responses.    After 
answering the questions in one of the thirteen sections, the user can generate a report 
from the questions and the user's answers.    The thirteen sections are: 
telecommunications security, physical access security, personnel security, systems 
development security, security awareness and training prac tices, organizational and 
management security, data and program security, processing and operations security, 
ergonomics and error prevention, environmental secu rity, and backup and recovery 
security. 
The questions are weighted as to their importance, and the report generator can sort the
questions by weight. This way the most important issues can be tackled first. 

Mechanism
The questions are displayed on the screen and the user is prompted for a single 
keystroke reply.    When the end of one of the thirteen sections is reached, the answers 
are written to a disk file.    The question file and the answer file are merged to create the 
report file. 

Caveats
None.

Bugs
None known.

Limitations
None reported.

Hardware Required
No restrictions.

Software Required
DOS operating system.

Availability
A commercial product available from:

C.D., Ltd.
P.O. Box 58363
Seattle, WA 98138
(206) 243-8700



RFC-1147 Network Tools Directory

ConnectVIEW

Keywords
control, manager, routing, security, status; bridge, ethernet, ring; NMS, proprietary; DOS.

Abstract
The ConnectVIEW Network Management System consists of various software managers 
that control and manage Halley System's internets made of of ConnectLAN 100 ether net
and ConnectLAN 200 Token Ring Brouters.    The management software provides an icon-
based graphical network display with real-time monitoring and reporting, along with 
configuration, fault, performance and security management functions for managing 
ConnectLAN brouters.    A Planning function is also provided that allows users to draw 
their networks. 

Mechanism
Proprietary.

Caveats
The ConnectVIEW software must be running under Microsoft Windows, preferably on a 
dedicated management sta tion.    There is, however, no degradation of LAN throughput.

Bugs
None known.

Limitations
Currently works only with Halley System's products.]

Hardware Required
Requires a PC/AT compatible, with 640KB RAM, EGA adapter and monitor, keyboard, 
mouse, and ethernet adapter.

Software Required
MSDOS 3.3 or higher.    Microsoft Windows/286 version 2.1.

Availability
Commercially available from:

Halley Systems, Inc.
2730 Orchard Parkway
San Jose, CA    95134



RFC-1147 Network Tools Directory

decaddrs, decaroute, decnroute, xnsroutes, bridgetab

Keywords
manager, map, routing; bridge, DECnet; NMS, SNMP; UNIX

Abstract
These commands display private MIB information from Wellfleet systems.    They retrieve 
and format for display values of one or several MIB variables from the Wellfleet 
Communications private enterprise MIB, using the SNMP (RFC1098).    In particular these 
tools are used to examine the non-IP modules (DECnet, XNS, and Bridg ing) of a Wellfleet
system.    Decaddrs displays the DECnet configuration of a Wellfleet system acting as a 
DECnet router, showing the static parameters associated with each DECnet interface. 
Decaroute and decnroute display the DECnet inter-area and intra-area routing tables 
(that is area routes and node routes).    Xnsroutes displays routes known to a Wellfleet 
system acting as an XNS router. Bridgetab displays the bridge forwarding table with the 
disposition of traffic arriving from or directed to each station known to the Wellfleet 
bridge module.    All these commands take an IP address as the argument and can specify
an SNMP community for the retrieval.    One SNMP query is performed for each row of the 
table. Note that the Wellfleet system must be operating as an IP router for the SNMP to 
be accessible.

Mechanism
Management information is exchanged by use of SNMP.

Caveats
None.

Bugs
None known.

Limitations
None reported.

Hardware Required
Distributed and supported for Sun 3 systems.

Software Required
Distributed and supported for SunOS 3.5 and 4.x.

Availability
Commercial product of:

Wellfleet Communications, Inc.
12 DeAngelo Drive
Bedford, MA 01730-2204
(617) 275-2400                                                          



RFC-1147 Network Tools Directory

DiG

Keywords
status; DNS; spoof; UNIX; free.

Abstract
DiG (domain information groper), is a command line tool which queries DNS servers in 
either an interactive or a batch mode.    It was developed to be more convenient/flexible 
than nslookup for gathering performance data and testing DNS servers. 

Mechanism
Dig is built on a slightly modified version of the bind resolver (release 4.8). 

Caveats
none.

Bugs
None known.

Limitations
None reported.

Hardware Required
No restrictions.

Software Required
BSD UNIX.

Availability
DiG is available via anonymous FTP from venera.isi.edu in pub/dig.1.0.tar.Z. 



RFC-1147 Network Tools Directory

Dual Manager

Keywords
alarm, control, manager, map, security, status; IP, OSI; NMS, SNMP, X; UNIX; library. 

Abstract
Netlabs' Dual Manager provides management of TCP/IP networks using both SNMP and 
CMOT protocols.    Such management can be initiated either through the X Windows user 
interface (both Motif and Openlook), or through OSI Network Management (CMIP) 
commands.    The Dual Manager provides for configuration, fault, security and 
performance management.    It provides extensive map management features, including 
scanned maps in the background.    It provides simple mechanisms to extend the MIB and
assign specific lists of objects to specific network elements, thereby providing for the 
management of all vendors' specific MIB extensions.    It provides an optional relational 
DBMS for storing and retrieving MIB and alarm information.    Finally, the Dual Manager is 
an open platform, in that it provides several Application Programming Interfaces (APIs) 
for users to extend the functionality of the Dual Manager. 
The Dual Manager is expected to work as a TCP/IP "branch manager" under DEC's EMA, 
AT&T's UNMA and other OSI-conformant enterprise management architectures. 

Mechanism
The Netlabs Dual Manager supports the control and monitoring of network resources by 
use of both CMOT and SNMP message exchanges. 

Caveats
None.

Bugs
None known.

Limitations
None reported.

Hardware Required
Runs on Sun/3 and Sun/4s.

Software Required
Available on System V or SCO Open Desktop environments. Uses X-Windows for the user 
interface. 

Availability
Commercially available from:

Netlabs Inc
11693 Chenault Street Ste 348
Los Angeles CA 90049
(213) 476-4070
lam@netlabs.com (Anne Lam)



RFC-1147 Network Tools Directory

ENTM -- Ethernet Traffic Monitor

Keywords
traffic; ethernet, IP; eavesdrop; VMS; free.

Abstract
ENTM is a screen-oriented utility that runs under VAX/VMS.    It monitors local ethernet 
traffic and displays either a real time or cumulative, histogram showing a percent 
breakdown of traffic by ethernet protocol type.    The information in the display can be 
reported based on packet count or byte count.    The percent of broadcast, multicast and 
approximate lost pack ets is reported as well.    The screen display is updated every three
seconds.    Additionally, a real time, sliding history window may be displayed showing 
ethernet traffic patterns for the last five minutes. 
ENTM can also report IP traffic statistics by packet count or byte count.    The IP 
histograms reflect information collected at the TCP and UDP port level, includ ing ICMP 
type/code combinations.    Both the ethernet and IP histograms may be sorted by ASCII 
protocol/port name or by percent-value.    All screen displays can be saved in a file for 
printing later. 

Mechanism
This utility simply places the ethernet controller in promiscuous mode and monitors the 
local area network traffic.    It preallocates 10 receive buffers and attempts to keep 22 
reads pending on the ethernet dev ice. 

Caveats
Placing the ethernet controller in promiscuous mode may severly slow down a VAX 
system.    Depending on the speed of the VAX system and the amount of traffic on the 
local ethernet, a large amount of CPU time may be spent on the Interrupt Stack.    
Running this code on any production system during operational hours is discouraged. 

Bugs
Due to a bug in the VAX/VMS ethernet/802 device driver, IEEE    802 format packets may 
not always be detected.    A simple test is performed to "guess" which    packets    are in    
IEEE    802    format (DSAP equal to SSAP).    Thus, some DSAP/SSAP pairs may be reported
as    an    ethernet    type, while    valid ethernet types may be reported as IEEE 802 
packets. 
In some hardware configurations, placing an ethernet controller in promiscuous mode 
with automatic-restart enabled will hang the controller.    Our VAX 8650 hangs running 
this code, while our uVAX IIs and uVAX IIIs do not. 
Please report any additional bugs to the author at:

Allen Sturtevant
National Magnetic Fusion Energy Computer Center
Lawrence Livermore National Laboratory
P.O. Box 808; L-561
Livermore, CA    94550
Phone : (415) 422-8266
E-Mail: sturtevant@ccc.nmfecc.gov

Limitations



The user is required to have PHY_IO, TMPMBX and NETMBX privileges.    When activated, 
the program first checks that the user process as enough quotas remaining (BYTLM, 
BIOLM, ASTLM and PAGFLQUO) to successfully run the program without entering into an 
involuntary wait state.    Some quotas require a fairly generous setting. 
The contents of IEEE 802 packets are not examined. Only the presence of IEEE 802 
packets on the wire is reported. 
The count of lost packets is approximated.    If, after each read completes on the ethernet
device, the utility detects that it has no reads pending on that device, the lost packet 
counter is incremented by one. 
When the total number of bytes processed exceeds 7fffffff hex, all counters are 
automatically reset to zero. 

Hardware Required
A DEC ethernet controller.

Software Required
VAX/VMS version V5.1+.

Availability
For executables only,    FTP    to    the    ANONYMOUS    account (password GUEST) on 
CCC.NMFECC.GOV and GET the following files: 

[ANONYMOUS.PROGRAMS.ENTM]ENTM.DOC          (ASCII text)
[ANONYMOUS.PROGRAMS.ENTM]ENTM.EXE          (binary)
[ANONYMOUS.PROGRAMS.ENTM]EN_TYPES.DAT (ASCII text)
[ANONYMOUS.PROGRAMS.ENTM]IP_TYPES.DAT (ASCII text)



RFC-1147 Network Tools Directory

etherfind

Keywords
traffic; ethernet, IP, NFS; eavesdrop; UNIX.

Abstract
Etherfind examines the packets that traverse a network interface, and outputs a text file 
describing the traffic.    In the file, a single line of text describes a single packet: it 
contains values such as protocol type, length, source, and destination.    Etherfind can 
print out all packet traffic on the ethernet, or traffic for the local host.    Further packet 
filtering can be done on the basis of protocol: IP, ARP, RARP, ICMP, UDP, ND, TCP, and 
filtering can also be done based on the source, destination addresses as well as TCP and 
UDP port numbers. 

Mechanism
In usual operations, and by default, etherfind puts the interface in promiscuous mode.    
In 4.3BSD UNIX and related OSs, it uses a Network Interface Tap (NIT) to obtain a copy of 
traffic on an ethernet interface. 

Caveats
None.

Bugs
None known.

Limitations
Minimal protocol information is printed.    Can    only    be run by the super user.    The 
syntax is painful. 

Hardware Required
Ethernet.

Software Required
SunOS.

Availability
Executable included in Sun    OS    "Networking    Tools    and Programs" software 
installation option. 



RFC-1147 Network Tools Directory

etherhostprobe

Keywords
map, routing; ethernet, IP; ping; UNIX; free.

Abstract
Output list of hosts on an ethernet that respond to IP ARP.    Produces a list in the 
following format: 

08:00:20:01:96:62      128.18.4.114        apptek4
08:00:20:00:02:fe      128.18.4.115        apptek5
08:00:20:00:57:6a      128.18.4.116        apptek6
08:00:20:00:65:34      128.18.4.117        apptek7
08:00:20:06:58:6f      128.18.4.118        apptek8
08:00:20:00:03:4f      128.18.4.119        apptek9

The first column is the ethernet address, the second the IP address, and the third is the 
hostname (which is omitted if the name could not be found via gethost byaddr). A 
starting and ending IP address may be specified on the command line, which will limit 
the search. 

Mechanism
Etherhostprobe sends a UDP packet to the ``echo'' port, then looks in the kernel's ARP 
cache for the corresponding address entry.    Explicit response (or lack of same) to the 
UDP packet is ignored.    The cache will be checked up to four times at one-quarter-
second intervals.    Note that this allows the program to be run by a user with no special 
privileges. 

Caveats
Etherhostprobe will fill the kernel's ARP cache with possibly useless entries, possibly 
causing delays to programs foolishly attempting to accomplish real work. 
Etherhostprobe causes -lots- of ARPs to be generated, possibly fooling network 
monitoring software (or people) into concluding that something is horribly broken. 
Etherhostprobe spends up to one second looking for each possible address.    Thus, 
exhaustively searching a class-C network will take about four minutes, and exhaustively 
searching a class-B network will take about 18 hours.    Exhaustively searching a class-A 
network will take the better part of a year, so don't even think about it. 
Etherhostprobe will be fooled by gateways that implement proxy ARP; every possible 
address on the proxy ARPed subnet will be listed with the gateway's ethernet address. 

Bugs
None known.

Limitations
If a given machine is not running IP ARP at the time that it is probed, it will be considered
nonexistent. In particular, if a given machine is down at the time that it is probed . . . 
All hosts being probed must be on the same (possibly bridged) ethernet. 

Hardware Required
No restrictions, but see below.



Software Required
Runs on SunOS 3.5, and possibly elsewhere.    The major non-standard portion of code is 
``tx_arp.c'', which reads the kernel's ARP cache. 

Availability
Copyrighted, but    freely    distributed.      Available    via anonymous    FTP    from    
spam.itstd.sri.com (128.18.10.1). From pub directory, file EHP.1 for etherhostprobe,    and 
files IPF.1 and IPF.2 for ipForwarding. 



RFC-1147 Network Tools Directory

EtherMeter (tm), model LANB/150

Keywords
alarm, map, traffic; ethernet; NMS, proprietary; stan dalone.

Abstract
The Network Applications Technology (NAT) EtherMeter product is a dedicated ethernet 
traffic monitor that provides statistics on the ethernet segment to which it is attached.    
The EtherMeter reports three major kinds of statistics.    For good packets, it reports the 
total number of good packets seen on the segment, the number of multicast and 
broadcast packets, and the total number of bytes in all packets seen.    For packets with 
errors, it reports the number of CRC errors, short packets, oversize packets, and 
alignment errors.    It also reports the distribution of packet by type, and the number of 
protocols seen on the segment.    A count of transmit collisions is reported.    Peak and 
current ethernet utilization rates are also reported, etc. Alarms can be set for utilization 
rate, packet rate, total error count, and delta error. 
The EtherMeter reports the statistics to a Network Management Station (NMS), also 
available from NAT, via IP/UDP datagrams, so that the meters can be monitored through 
routers.    The NMS displays graphical and/or textual information, and EtherMeter icons 
turn colors to indicate status.    Alarms can be set, and if the levels are exceeded an 
audible alarm is generated on the NMS, and the EtherMeter icon changes from green to 
yellow on the network map. 

Mechanism
The EtherMeter is a self-contained board that can either be plugged into a PC/AT bus for 
power or installed in a small stand-alone enclosure.    The board can be obtained with 
either a 10BASE5 thick ethernet transceiver cable connector, or a 10BASE2 thin ethernet 
BNC connector. 

Caveats
The EtherMeter is primarily a passive device whose only impact    on    the    network    will 
come from the monitoring packets sent to the NMS.    The EtherMeter is assigned an IP 
address for communication with the NMS. 

Bugs
None known.

Limitations
Proprietary protocol currently in use.    The company has stated its intention to develop 
SNMP for the EtherMeter product in the first half of 1990.    Currently the NMS does not 
keep log files.    This limitation is acknowledged, and plans are underway to add ASCII log 
file capability to the NMS. 

Hardware Required
An EtherMeter board and a PC/AT bus to plug it into, or a stand-alone enclosure with 
power supply (available from NAT).    A Network Management Station and its software is 
required as well, to fully interact with the EtherMeter devices. 

Software Required
The EtherMeter software is included in ROM on the dev ice. The NMS software is bundled 
in with the NMS hardware. 



Availability
The EtherMeter device, stand-alone enclosure, and Net work Management Station, are 
available commercially from: 

Network Application Technology, Inc.
21040 Homestead Road
Cupertino, California 95014
Phone: (408) 733-4530
Fax: (408) 733-6478



RFC-1147 Network Tools Directory

EtherView(tm)

Keywords
traffic; ethernet, IP, NFS; eavesdrop; UNIX.

Abstract
EtherView is a network monitoring tool which runs on Sun workstations and allows you to
monitor your hetero- geneous internet network.    It monitors all systems on the ethernet. 
It has three primary functions: 
Load Profile:    It allows users to monitor the load on the ethernet over extended periods 
of time.    The network administrator can use it to characterize load generated by a node 
on the network, determine which systems and applications generate how much of the 
load and how that load fluctuates over long periods of time. 
NFS Profile:    It allows the network administrator to determine the load on NFS servers, 
the average response time NFS servers and the mix of NFS load on each of the servers.    
Users can use the data to benchmark different NFS servers, determine which servers are 
overloaded, deduce the number of clients that each server can support and evaluate the 
effectiveness of NFS accelerators. 
Protocol Analyzer:    Users can capture packets based on source, destination, application, 
protocol, bit pattern, packet size or a boolean filtering expression. It provides all standard
features such as configurable buffer size, packet slicing and bit pattern based triggering 
criterion.    It does automatic disassembly of NFS, TCP, UDP, IP, ICMP, ARP and RARP 
packets.    Packets can be examined in any combination of summary, hex or detail format.

Mechanism
EtherView uses the Sun's NIT interface to turn the ethernet interface into promiscuous 
mode to capture pack ets.    A high level process manages the interface and a low level 
process does the actual capturing and filtering. Shared memory is used to communicate 
between the two processes. 

Bugs
None known.

Limitations
Because of limitations in Sun's NIT interface, EtherView will not capture packets 
originating from the system where it is run. 
EtherView requires super-user privileges on the system where it is run. 

Hardware Required
EtherView runs on all models of Sun-3, Sun-4 and Sun 386i.

Software Required
Sun-3            - SunOS 4.0.3. (SunOS 4.0 with NIT fixes).
Sun-4            - SunOS 4.0.
Sun-386i      - SunOS 4.0.

Runs under SunView.
Will run under X Windows in future.



Availability
EtherView is copyrighted, commercial product of:

Matrix Computer Systems, Inc.
7 1/2 Harris Road
Nashua, NH 03062

Tel: (603) 888-7790
email: ...uunet!matrix!eview



RFC-1147 Network Tools Directory

getone, getmany, getroute, getarp, getaddr, getif, getid. 

Keywords
manager, routing, status; IP; NMS, SNMP; UNIX.

Abstract
These commands retrieve and format for display values of one or several MIB variables 
(RFC1066) using the SNMP (RFC1098).    Getone and getmany retrieve arbitrary MIB 
variables; getroute, getarp, getaddr, and getif retrieve and display tabular information 
(routing tables, ARP table, interface configuration, etc.), and getid retrieves and displays 
system name, identification and boot time. 
Getone <target> <mibvariable> retrieves and displays the value of the designated MIB 
variable from the specified target system.    The SNMP community name to be used for 
the retrieval can also be specified.    Getmany works similarly for groups of MIB variables 
rather than individual values.    The name of each variable, its value and its data type is 
displayed.    Getroute returns information from the ipRoutingTable MIB structure, 
displaying the retrieved information in an accessible format.    Getarp behaves similarly 
for the address translation table; getaddr for the ipAddressTable; and getif displays 
information from the interfaces table, supplemented with information from the 
ipAddressTable. Getid displays the system name, identification, ipForwarding state, and 
the boot time and date.    All take a system name or IP address as an argument and can 
specify an SNMP community for the retrieval.    One SNMP query is performed for each 
row of the table. 

Mechanism
Queries SNMP agent(s). 

Caveats
None.

Bugs
None known.

Limitations
None reported.

Hardware Required
Distributed and supported for Sun 3 systems.

Software Required
Distributed and supported for SunOS 3.5 and 4.x.

Availability
Commercial product of:

Wellfleet Communications, Inc.
12 DeAngelo Drive
Bedford, MA 01730-2204
(617) 275-2400



RFC-1147 Network Tools Directory

hammer & anvil

Keywords
benchmark, generator; IP; DOS; free.

Abstract
Hammer and anvil are the benchmarking programs for IP routers.    Using these tools, 
gateways have been tested for per-packet delay, router-generated traffic overhead, 
maximum sustained throughput, etc. 

Mechanism
Tests are performed on a gateway in an isolated testbed.    Hammer generates packets at
controlled rates. It can set the length and interpacket interval of a packet stream.    Anvil 
counts packet arrivals. 

Caveats
Hammer should not be run on a live network.

Bugs
None reported.

Limitations
Early versions of hammer could not produce inter-packet intervals shorter than 55 usec. 

Hardware Required
Hammer runs on a PC/AT or compatible, and anvil requires a PC or clone.    Both use a 
Micom Interlan NI5210 for LAN interface. 

Software Required
MS-DOS.

Availability
Hammer and anvil are copyrighted, though free.    Copies are available from pub/eutil on 
husc6.harvard.edu. 



RFC-1147 Network Tools Directory

hopcheck

Keywords
routing; IP; ping; DOS; free.

Abstract
Hopcheck is a tool that lists the gateways traversed by packets sent from the hopcheck-
resident PC to a desti nation. Hopcheck uses the same mechanism as traceroute but is 
for use on IBM PC compatibles that have ethernet connections.    Hopcheck is part of a 
larger TCP/IP package that is known as ka9q that is for use with packet radio.    Ka9q can 
coexist on a PC with other TCP/IP packages such as FTP Inc's PC/TCP, but must be used 
independently of other packages.    Ka9q was written by Phil Karn.    Hopcheck was added 
by Katie Stevens, dkstevens@ucdavis.edu.    Unlike traceroute, which requires a UNIX 
kernel mod, hopcheck will run on the standard, unmodified ka9q release. 

Mechanism
See the description in traceroute. 

Caveats
See the description in traceroute.

Bugs
None known.

Limitations
Host table required.    Does not work with domain name server or with IP address as the 
argument.    This is mainly an inconvenience. 

Hardware Required
IBM PC compatible with ethernet network interface card, though does not work with 
3Com 505 board. 

Software Required
DOS.

Availability
Free.    On deposit at the National Center for Atmospher ic Research.    For access from 
UNIX, available via anonymous FTP from windom.ucar.edu, in directory "etc," as    
hopcheck.tar.Z.      For    access    directly    from a PC, fetch nethop.exe and readme.hop; 
nethop.exe is execut able. Also available via anonymous FTP at ucdavis.edu, in the 
nethopexe or nethopsrc suite of files in direc tory "dist." 



RFC-1147 Network Tools Directory

HyperMIB

Keywords
reference; Macintosh; free, sourcelib.

Abstract
HyperMIB is a hypertext presentation of the MIB (RFC1066).    The tree structure of the 
MIB is presented graphically, and the user traverses the tree by selecting branches of the
tree.    When the MIB variables are displayed, selecting them causes a text window to 
appear and show the definition of that variable (using the actual text of the MIB 
document). 

Mechanism
The Apple Macintosh HyperCard utility is used.    The actual text of the MIB document is 
read into scrollable text windows, and a string search is done on the variable selected.    
A person familiar with HyperCard programming could modify the program to suit their 
needs (such as to add the definitions for their company's private space). 

Caveats
None.

Bugs
None known.

Limitations
This program only gives the definition of the MIB variables. It cannot poll a node to find 
the value of the variables. 

Hardware Required
Apple Macintosh computer with at least 1MByte of RAM.

Software Required
Apple Macintosh operating system and HyperCard.

Availability
This software may be copied and given away without charge.    The files are available by 
anonymous FTP on CCC.NMFECC.GOV.    The files are: 

[Anonymous.programs.HyperMIB]Hyper_MIB.help (ASCII text)
[Anonymous.programs.HyperMIB]Hyper.MIB (binary)
[Anonymous.programs.HyperMIB]MIB.tree (binary)

The software is also available for a nominal fee from:
National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
(312) 972-7250



RFC-1147 Network Tools Directory

Internet Rover
Keywords

status; IP, SMTP; curses, ping, spoof; UNIX; free, sourcelib. 
Abstract

Internet Rover is a prototype network monitor that uses multiple protocol "modules" to 
test network functional ity. This package consists of two primary pieces of code: the data 
collector and the problem display. 
There is one data collector that performs a series of network tests, and maintains a list of
problems with the network.    There can be many display processes all displaying the 
current list of problems which is useful in a multi-operator NOC. 
The display task uses curses, allowing many terminal types to display the problem file 
either locally or from a remote site.    Full source is provided.    The data collector is easily 
configured and extensible.    Contributions such as additional protocol modules, and shell 
script extensions are welcome. 

Mechanism
A configuration file contains a list of nodes, addresses, NodeUp? protocol test (ping in 
most cases), and a list of further tests to be performed if the node is in fact up.    Modules
are included to test TELNET, FTP, and SMTP.    If the configuration contains a test that isn't
recognized, a generic test is assumed, and a filename is checked for existence.    This 
way users can create scripts that create a file if there is a problem, and the data collector
simply checks the existence of that file to determine if there is problem. 

Caveats
None.

Bugs
None known.

Limitations
This tools does not yet have the capability to    perform actions based on the result of the 
test.    Rather, it is intended for a multi-operator environment,    and    simply displays a 
list of what is wrong with the net. 

Hardware Required
This software is known to run on Suns and IBM RTs.

Software Required
Curses, 4.xBSD UNIX socket programming    libraries,    BSD ping. 

Availability
Full source available via anonymous FTP from    merit.edu (35.1.1.42)      in      the      
~ftp/pub/inetrover    directory. Source and executables are public    domain    and    can    be
freely distributed for non-commercial use.    This package is unsupported, but bug reports
and fixes may be sent to: wbn@merit.edu. 



RFC-1147 Network Tools Directory

LAN Patrol

Keywords
security, traffic; ethernet, star; eavesdrop; DOS.

Abstract
LAN Patrol is a full-featured network analyzer that provides essential information for 
effective fault and performance management.    It allows network managers to easily 
monitor user activity, find traffic overloads, plan for growth, test cable, uncover 
intruders, balance network services, and so on.    LAN Patrol uses state of the art data 
collection techniques to monitor all activity on a network, giving an accurate picture of 
how it is performing. 
LAN Patrol's reports can be saved as ASCII files to disk, and imported into spreadsheet or 
database programs for further analysis. 

Mechanism
The LAN Patrol interface driver programs a standard interface card to capture all traffic 
on a network seg ment. The driver operates from the background of a standard PC, 
maintaining statistics for each station on the network.    The information can be viewed 
on the PC's screen, or as a user-defined report output either to file or printer. 

Caveats
None.    Normal operation is completely passive, making LAN Patrol transparent to the 
network. 

Bugs
None known.

Limitations
LAN Patrol can monitor up to 10,000 packets/sec on an AT class PC, and is limited to 
monitoring a maximum of 1024 stations for intervals of up to 30 days. 
Because LAN Patrol operates at the physical level, it will only see traffic for the segment 
on which it is installed; it cannot see traffic across bridges. 

Hardware Required
Computer: IBM PC/XT/AT, PS/2 Model 30,    or    compatible. Requires    512K    memory and 
a hard drive or double-sided disk drive. 
Display: Color or monochrome text.    Color display allows color-coding of traffic 
information. 
Ethernet, StarLAN, LattisNet, or StarLAN 10 network interface card. 

Software Required
PC DOS, MS-DOS version 3.1 or greater.

Availability
LAN Patrol many be purchased through    network    dealers, or directly from: 

Legend Software, Inc.
Phone:    (201) 227-8771
FAX:        (201) 906-1151





RFC-1147 Network Tools Directory

LanProbe -- the HP 4990S LanProbe Distributed Analysis System. 

Keywords
alarm, manager, map, status, traffic; ethernet; eaves drop, NMS; proprietary. 

Abstract
The LanProbe distributed monitoring system performs remote and local monitoring of 
ethernet LANs in a protocol and vendor independent manner. 
LanProbe discovers each active node on a segment and displays it on a map with its 
adapter card vendor name, ethernet address, and IP address.    Additional information 
about the nodes, such as equipment type and physical location can be entered in to the 
data base by the user. 
When the NodeLocator option is used, data on the actual location of nodes is 
automatically entered and the map becomes an accurate representation of the physical 
layout of the segment.    Thereafter when a new node is installed and becomes active, or 
when a node is moved or becomes inactive, the change is detected and shown on the 
map in real time.    The system also provides the network manager with precise cable 
fault information displayed on the map. 
Traffic statistics are gathered and displayed and can be exported in (comma delimited) 
CSV format for further analysis.    Alerts can be set on user defined thres holds. 
Trace provides a remote protocol analyzer capability with decodes for common protocols.
Significant events (like power failure, cable breaks, new node on network, broadcast IP 
source address seen, etc.) are tracked in a log that is uploaded to ProbeView periodically.
ProbeView generates reports that can be manipulated by MSDOS based word processors,
spreadsheets, and DBMS. 

Mechanism
The system consists of one or more LanProbe segment monitors and ProbeView software 
running under Microsoft Windows.    The LanProbe segment monitor attaches to the end 
of an ethernet segment and monitors all traffic. Attachment can be direct to a thin or 
thick coax cable, or via an external transceiver to fiber optic or twisted pair cabling.    
Network data relating to the segment is transferred to a workstation running ProbeView 
via RS-232, ethernet, or a modem connection. 
ProbeView software, which runs on a PC/AT class workstation, presents network 
information in graphical displays. 
The HP4992A NodeLocator option attaches to the opposite end of the cable from the 
HP4991A LanProbe segment mon itor. It automatically locates the position of nodes on 
the ethernet networks using coaxial cabling schemes. 

Caveats
None.

Bugs
None known.

Limitations
None reported.



Hardware Required
HP 4991A LanProbe segment monitor
HP 4992A NodeLocator (for optional capabilities)
80386 based PC capable of running MS-Windows

Software Required
HP 4990A ProbeView
MSDOS 3.0 or higher and Microsoft Windows/286 2.1.

Availability
A commercial product available from:

Hewlett-Packard Company
P.O. Box 10301,
Palo Alto, CA    94303-0890



RFC-1147 Network Tools Directory

LANWatch

Keywords
alarm, analyzer, traffic; CHAOS, DECnet, DNS, ethernet, IP, OSI, ring, SMTP, star; 
eavesdrop; DOS; library, sourcelib. 

Abstract
LANWatch 2.0 is an inexpensive, powerful and flexible network analyzer that runs under 
DOS on personal computers and requires no hardware modifications to either the host or 
the network.    LANWatch is an invaluable tool for installing, troubleshooting, and 
monitoring local area networks, and for developing and debugging new protocols.    
Network managers using LANWatch can inspect network traffic patterns and packet 
errors to isolate performance problems and bottlenecks.    Protocol developers can use 
LANWatch to inspect and verify proper protocol handling.    Since LANWatch is a software-
only package which installs easily in existing PCs, network technicians and field service 
engineers can carry LANWatch in their briefcase for convenient network analysis at 
remote sites. 
LANWatch has two operating modes: Display and Examine. In Display Mode, LANWatch 
traces network traffic by displaying captured packets in real time.    Examine Mode allows
you to scroll back through stored packets to inspect them in detail.    To select a subset of
packets for display, storage or retrieval, there is an extensive set of built-in filters.    Using
filters, LANWatch collects only packets of interest, saving the user from having to sort 
through all network traffic to isolate specific packets.    The built-in filters include alarm, 
trigger, capture, load, save and search.    They can be controlled separately to match on 
source or destination address, protocol, or packet contents at the hardware and transport
layers.    LANWatch also includes sufficient source code so users can modify the existing 
filters and parsers or add new ones. 
The LANWatch distribution includes executables and source for several post-processors: 
a TCP protocol analyzer, a node-by-node traffic analyzer and a dump file listing tool. 

Mechanism
Uses many common PC network interfaces by placing them in promiscuous mode and 
capturing traffic. 

Caveats
Most PC network interfaces will not capture 100% of the traffic on a fully-loaded network 
(primarily missing back-to-back packets). 

Bugs
None known.

Limitations
LANWatch can't analyze what it doesn't see (see Caveats). 

Hardware Required
LANWatch requires a PC or PS/2 with a supported network interface card. 

Software Required
LANWatch runs in DOS.    Modification of the supplied source code or creation of 
additional filters and parsers requires Microsoft C 5.1 



Availability
LANWatch is commercially available from:

FTP Software, Incorporated
26 Princess Street
Wakefield, MA, 01880
(617 246-0900). 



RFC-1147 Network Tools Directory

map -- Interactive Network Map

Keywords
manager, map; CHAOS, ethernet, IP, ring, star; NMS, ping, SNMP, X; UNIX; free, sourcelib.

Abstract
Map draws a map of network connectivity and allows interactive examination of 
information about various components including whether hosts can be reached over the 
network. 
The program is supplied with complete source and is written in a modular fashion to 
make addition of different protocols stacks, displays, or hardcopy devices relatively easy. 
This is one of the reasons why the initial version supports at least two of each.    
Contributions of additional drivers in any of these areas will be welcome as well as 
porting to additional platforms. 

Mechanism
Net components are pinged by use of ICMP echo and, optionally, CHAOS status requests 
and SNMP "gets."    The program initializes itself from static data stored in the file system 
and therefore does not need to access the network in order to get running (unless the 
static files are network mounted). 

Caveats
As of publication, the tool is in beta release.

Bugs
Several minor nits, documented in distribution files. Bug discoveries should be reported 
by email to Bug Map@LCS.MIT.Edu. 

Limitations
See distribution file for an indepth discussion of system capabilities and potential. 

Hardware Required
An X display is needed for interactive display of the map, non-graphical interaction is 
available in nondisplay mode.    For hardcopy output a PostScript or Tek tronix 4692 
printer is required. 

Software Required
BSD UNIX or related OS.    IP/ICMP is required; CHAOS/STATUS and SNMP can be used but 
are optional. X-Windows is required for interactive display of the map. 

Availability
As of publication, map is in beta release.    To be added to the email forum that discusses 
the software, or to obtain individual files or instructions on getting the full current 
release, send a request to: 

MAP-Request@LCS.MIT.Edu.
The program is Copyright MIT.    It is available via anonymous FTP with a license making it
free to use and distribute for non-commercial purposes. 



RFC-1147 Network Tools Directory

mconnect

Keywords
status; SMTP; spoof; UNIX.

Abstract
Mconnect allows an interactive session with a remote mailer.    Mail delivery problems can
be diagnosed by connecting to the remote mailer and issuing SMTP commands directly. 

Mechanism
Opens a TCP connection to remote SMTP on port 25.    Provides local line buffering and 
editing, which is the distinction between mconnect and a TELNET to port 25. 

Caveats
None.

Bugs
None known.

Limitations
Mconnect is not a large improvement over using a TELNET connection to port 25. 

Hardware Required
No restrictions.

Software Required
BSD UNIX or related OS.

Availability
Available with 4.xBSD UNIX and related operating sys tems.



RFC-1147 Network Tools Directory

Netlabs CMOT Agent

Keywords
manager, status; IP, OSI; NMS.

Abstract
Netlabs' CMOT code debuted in Interop 89.    The CMOT code comes with an Extensible 
MIB, which allows users to add new MIB variables.    The code currently supports all the 
MIB variables in RFC 1095 via the data types in RFC 1065, as well as the emerging MIB-II,
which is currently in experimental stage.    The CMOT has been benchmarked at 100 
Management Operations per Second (MOPS) for a 1-MIPS machine. 

Mechanism
The Netlabs CMOT agent supports the control and monitoring of network resources by 
use of CMOT message exchanges. 

Caveats
None.

Bugs
None known.

Limitations
None reported.

Hardware Required
Portable to most hardware.

Software Required
Portable to most operating systems.

Availability
Commercially available from:

Netlabs Inc
11693 Chenault Street Ste 348
Los Angeles CA 90049
(213) 476-4070
lam@netlabs.com (Anne Lam)



RFC-1147 Network Tools Directory

Netlabs SNMP Agent.

Keywords
manager, status; IP; NMS, SNMP.

Abstract
Netlabs' SNMP code debuted in Interop 89, where it showed interoperation of the code 
with several implementations on the show floor.    The SNMP code comes with an 
Extensible MIB, which allows users to add new MIB variables.    The code currently 
supports all the MIB variables in RFC 1066 via the data types in RFC 1065, as well as the 
emerging MIB-II, which is currently in experimental stage.    The SNMP has been 
benchmarked at 200 Management Operations per Second (MOPS) for a 1 MIPS machine. 

Mechanism
The Netlabs SNMP agent supports the control and monitoring of network resources by 
use of SNMP message exchanges. 

Caveats
None.

Bugs
None known.

Limitations
None reported.

Hardware Required
Portable to most hardware.

Software Required
Portable to most operating systems.

Availability
Commercially available from:

Netlabs Inc
11693 Chenault Street Ste 348
Los Angeles CA 90049
(213) 476-4070
lam@netlabs.com (Anne Lam)



RFC-1147 Network Tools Directory

netmon (I)

Keywords
status; DNS, IP; ping; DOS; free.

Abstract
Netmon is a DOS-based program that pings hosts on a monitored list at user-specified 
intervals.    In addition, a user may optionally ping hosts not on the list. 
Netmon also performs domain lookups.    Furthermore, a user may build and send a 
domain query to any desired DNS server. 

Mechanism
The tool works by using the echo service feature of ICMP.    It reports if it receives an 
incorrect response or no response. 

Caveats
Depending on the frequency of pinging and the number of hosts pinged, netmon could 
create a high volume of traffic. 

Bugs
None known.

Limitations
None reported.

Hardware Required
A PC, and a Western Digital WD8003 interface card (or any other card for which there is a
packet driver for FTP Software Inc.'s PC/TCP kernel).    Both monochrome and color 
displays are supported, though color is recommended. 

Software Required
DOS operating system, and the PC/TCP Kernel by FTP Software, Inc. 

Availability
The BYU modified version is available for anonymous FTP from Dcsprod.byu.edu, in 
directory "programs."    It can be freely distributed for non-commercial use. 



RFC-1147 Network Tools Directory

NETMON (II)
and iptrace

Keywords
traffic; IP; eavesdrop; UNIX; free.

Abstract
NETMON is a facility to enable communication of networking events from the BSD UNIX 
operating system to a user-level network monitoring or management program. Iptrace is 
a program interfacing to NETMON which logs TCP-IP traffic for performance measurement
and gateway monitoring. It is easy to build other NETMON-based tools using iptrace as a 
model. 
NETMON resides in the 4.3BSD UNIX kernel.    It is independent of hardware-specific code 
in UNIX.    It is transparent to protocol and network type, having no internal assumptions 
about the network protocols being recorded.    It is installed in BSD-like kernels by adding 
a standard function call (probe) to a few points in the input and output routines of the 
protocols to be logged. 
NETMON is analogous to Sun Microsystems' NIT, but the interface tap function is 
extended by recording more context information.    Aside from the timestamp, the choice 
of information recorded is up to the installer of the probes.    The NETMON probes added 
to the BSD IP code supplied with the distribution include as context: input and output 
queue lengths, identification of the network interface, and event codes labeling packet 
dis cards. (The NETMON distribution is geared towards measuring the performance of 
BSD networking protocols in an IP gateway). 
NETMON is designed so that it can reside within the monitored system with minimal 
interference to the network processing.    The estimated and measured overhead is 
around five percent of packet processing. 
The user-level tool "iptrace" is provided with NETMON. This program logs IP traffic, either 
at IP-level only, or as it passes through the network interface drivers as well.    As a 
separate function, iptrace produces a host traffic matrix output.    Its third type of output 
is abbreviated sampling, in which only a pre-set number of packets from each new host 
pair is logged.    The three output types are configured dynamically, in any combination. 
OSITRACE, another logging tool with a NETMON interface, is available separately (and 
documented in a separate entry in this catalog). 

Mechanism
Access to the information logged by NETMON is through a UNIX special file, /dev/netmon. 
User reads are blocked until the buffer reaches a configurable level of full ness. 
Several other parameters of NETMON can be tuned at compile time.    A diagnostic 
program, netmonstat, is included in the distribution. 

Caveats
None.

Bugs
Bug reports and questions should be addressed to:

ie-tools@gateway.mitre.org



Requests to join this mailing list:
ie-tools-request@gateway.mitre.org

Questions and suggestions can also be directed to:
Allison Mankin (703)883-7907
mankin@gateway.mitre.org

Limitations
A NETMON interface for tcpdump and other UNIX protocol analyzers is not included, but 
it is simple to write. NETMON probes for a promiscuous ethernet interface are similarly 
not included. 

Hardware Required
No restrictions.

Software Required
BSD UNIX-like network protocols or the ability to install the BSD publicly available 
network protocols in the system to be monitored. 

Availability
The NETMON distribution is available by anonymous FTP in pub/netmon.tar or 
pub/netmon.tar.Z from aelred 3.ie.org. A short user's and installation guide, 
NETMON.doc, is available in the same location.    The NETMON distribution is provided "as
is" and requires retention of a copyright text in code derived from it. It is copyrighted by 
the MITRE-Washington Networking Center. 



RFC-1147 Network Tools Directory

NETMON (III)
SNMP-based network management tool

from SNMP Research. 

Keywords
alarm, control, manager, map, routing; DECnet, ether net, IP, OSI, ring, star; NMS, SNMP; 
DOS; sourcelib. 

Abstract
The NETMON application implements a network management station based on a low-cost
DOS-based platform.    It can be successfully used with many types of networks, including
both wide area networks and those based on various LAN media.    NETMON has been 
used with multiprotocol devices including those which support TCP/IP, DECnet, and OSI 
protocols.    The fault management tool displays the map of the network configuration 
with current node and link state indicated in one of several colors.    Alarms may be 
enabled to alert the operator of events occurring in the network.    Events are logged to 
disk.    The NETMON application comes complete with source code including a powerful 
set of portable libraries for generating and parsing SNMP messages. Output data from 
NETMON may be transferred via flat files for additional report generation by a variety of 
statistical packages. 

Mechanism
The NETMON application is based on the Simple Network Management Protocol (SNMP).   
Polling is performed via the powerful SNMP get-next operator and the SNMP get operator. 
Trap directed polling is used to regulate the focus and intensity of the polling. 

Caveats
None.

Bugs
None known.

Limitations
The monitored and managed nodes must implement the SNMP over UDP per RFC 1098 or
must be reachable via a proxy agent. 

Hardware Required
The minimum system is a IBM Personal Computer (4.77 MHz) with DOS 3.0 or later, an 
Enhanced Graphics Adapter, Enhanced Graphics Monitor, a single 360 Kbyte floppy drive,
and an ethernet adapter.    However, most users will find a hard disk to be helpful for 
storing network history and will be less impatient with a fas ter CPU. 

Software Required
DOS 3.0 or later and TCP/IP software from one of several sources. 

Availability
This is a commercial product available under license from: 

SNMP Research



P.O. Box 8593
Knoxville, TN 37996-4800
(615) 573-1434 (Voice)
(615) 573-9197 (FAX)
Attn:    Dr. Jeff Case



RFC-1147 Network Tools Directory

netstat

Keywords
routing; IP; UNIX, VMS; free.

Abstract
Netstat is a program that accesses network related data structures within the kernel, 
then provides an ASCII format at the terminal.    Netstat can provide reports on the 
routing table, TCP connections, TCP and UDP "listens", and protocol memory 
management. 

Mechanism
Netstat accesses operating system memory to read the kernel routing tables. 

Caveats
Kernel data structures can change while netstat is running.

Bugs
None known.

Limitations
None reported.

Hardware Required
No restrictions.

Software Required
BSD UNIX or related OS, or VMS.

Availability
Available via anonymous FTP from uunet.uu.net, in directory bsd-sources/src/ucb.    
Available with 4.xBSD UNIX and related operating systems.    For VMS, available as part of
TGV MultiNet IP software package, as well as Wollongong's WIN/TCP. 



RFC-1147 Network Tools Directory

netwatch

Keywords
traffic; ethernet, IP, ring; eavesdrop; DOS; free.

Abstract
PC/netwatch listens to an attached local broadcast network and displays one line of 
information for every packet that goes by.    This information consists of the "to" and 
"from" local network addresses, the packet length, the value of the protocol type field, 
and 8 selected contiguous bytes of the packet contents. While netwatch is running it will 
respond to commands to display collected information, change its operating mode, or to 
filter for specific types of packets. 

Mechanism
Puts controller in promiscuous mode. 

Caveats
None.

Bugs
None known.

Limitations
The monitor can handle a burst rate of about 200 packets per second.    Packets arriving 
faster than that are missed (but counted in the statistics of the network driver).    The 
display rate is about 25 packets per second and there is a buffer that can hold 512 
undisplayed packets.    The monitor discards overflow packets. 

Hardware Required
IBM PC compatible with CGA and network interface (3com 3C501, Interlan NI5010, or 
proNet p1300). 

Software Required
DOS 2.0 or higher, MicroSoft C (to generate custom executables)

Availability
Available as a utility program in the pcip distribution from host husc6.harvard.edu, in 
directory pub/pcip. Available in a standalone package via anonymous FTP from 
windom.ucar.edu, in file pc/network/netwatch.arc; a binary "dearc" program is also 
available from windom.ucar.edu. 



RFC-1147 Network Tools Directory

Network Integrator I

Keywords
map, traffic; ethernet; UNIX.

Abstract
This tool monitors traffic on network segments.    All information is dumped to either a log
file or, for real-time viewing, to a command tool window.    Data is time-stamped 
according to date and time.    Logging can continue for up to 24 hours. 
The tool is flexible in data collection and presenta tion. Traffic filters can be specified 
according to header values of numerous protocols, including those used by Apple, DEC, 
Sun, HP, and Apollo.    Bandwidth utilization can be monitored, as well as actual load and 
peak throughput.    Additionally, the Network Integrator can analyze a network's 
topology, and record the location of all operational nodes on a network. 
Data can be displayed in six separate formats of bar graphs.    In addition, there are 
several routines for producing statistical summaries of the data collected. 

Mechanism
The tools work through RPC and XDR calls. 

Caveats
Although the tool adds only little traffic to a network, generation of statistics from 
captured files requires a significant portion of a workstation's CPU. 

Bugs
None known.

Limitations
Must be root to run monitor.    There does not seem to be a limit to the number of nodes, 
since it monitors by segments.    The only major limitation is the amount of disk space 
that a user can commit to the log files. The size of the log files, however, can be 
controlled through the tool's parameters. 

Hardware Required
Sun3 or Sun4.

Software Required
4.0BSD UNIX or greater, or related OS.

Availability
Copyrighted, commercially available from

Network Integrators,
(408) 927-0412.



RFC-1147 Network Tools Directory

net_monitor

Keywords
routing, status; DECnet, IP; curses, ping; UNIX, VMS; free, sourcelib. 

Abstract
Net_monitor uses ICMP echo (and DECnet reachability information on VAX/VMS) to 
monitor a network.    The monitoring is very simplistic, but has proved useful.    It 
periodically tests whether hosts are reachable and reports the results in a full-screen 
display.    It groups hosts together in common sets.    If all hosts in a set become 
unreachable, it makes a lot of racket with bells, since it assumes that this means that 
some common piece of hardware that supports that set has failed.    The periodicity of 
the tests, hosts to test, and groupings of hosts are controlled with a single configuration 
file. 
The idea for this program came from the PC/IP monitor facility, but is an entirely different
program with different functionality. 

Mechanism
Reachability is tested using ICMP echo facilities for TCP/IP hosts (and DECnet reachability 
information on VAX/VMS).    A DECnet node is considered reachable if it appears in the list
of hosts in a "show network" command issued on a routing node. 

Caveats
This facility has been found to be most useful when run in a window on a workstation 
rather than on a terminal connected to a host.    It could be useful if ported to a PC (looks 
easy using FTP Software's programming libraries), but this has not been done.    Curses is
very slow and cpu intensive on VMS, but the tool has been run in a window on a 
VAXstation 2000.    Just don't try to run it on a terminal connected to a 11/750. 

Bugs
None known.

Limitations
This tool is not meant to be a replacement for a more comprehensive network 
management facility such as is provided with SNMP. 

Hardware Required
A host with a network connection.

Software Required
Curses, 4.xBSD UNIX socket programming libraries (limited set) and some flavor of TCP/IP
that supports ICMP echo request (ping).    It has been run on VAX/VMS running WIN/TCP 
and several flavors of 4BSD UNIX (including SunOS 3.2, 4.0, and 4.3BSD).    It could be 
ported to any platform that provides a BSD-style programming library with an ICMP echo 
request facility and curses. 

Availability
Requests should be sent to the author:

Dale Smith
Asst Dir of Network Services



University of Oregon
Computing Center
Eugene, OR    97403-1211

Internet: dsmith@oregon.uoregon.edu.
BITNET: dsmith@oregon.bitnet
UUCP: ...hp-pcd!uoregon!dsmith
Voice: (503)686-4394

With the source code, a makefile is provided for most any UNIX box and a VMS makefile 
compatible with the make distributed with PMDF.    A VMS DCL command file is also 
provided, for use by those VMS sites without "make." 
The author will attempt to fix bugs, but no support is promised.    The tool is copyrighted, 
but free (for now). 



RFC-1147 Network Tools Directory

nfswatch

Keywords
traffic; ethernet, IP, NFS; curses, eavesdrop; UNIX; free. 

Abstract
Nfswatch monitors all incoming ethernet traffic to an NFS file server and divides it into 
several categories. The number and percentage of packets received in each category is 
displayed on the screen in a continuously updated display. 
All exported file systems are monitored by default. Other files may optionally be 
monitored.    Options also allow monitoring of traffic destined for a remote host instead of
the local host, or monitoring traffic sent by a single host.    Items such as the sample 
interval length can be adjusted either on the command line or interactively.    Facilities for
taking screen "snapshots," saving all data to a log file, and summarizing the log file are 
included.    Nfslogsum, a program that summarizes the log file, is included in the 
distribution. 

Mechanism
Nfswatch uses the Network Interface Tap in promiscuous mode to monitor the ethernet.    
It filters out NFS packets destined for the local (or remote) host, and then decodes the 
file handles in order to determine which file or file system a request pertains to. 

Caveats
Because the NFS file handle is a non-standard (server private) piece of data, the file 
system monitoring part of the program will break whenever the format of a file handle is 
not what it expects to see.    This is easily fixed in the code, however.    The code 
presently under stands SunOS 4.0 file handles. 

Bugs
None known.

Limitations
Up to 256 exported file systems and 256 individual files can be monitored, but only (2 * 
(DisplayLines 16)) will be displayed on the screen (all data will be written to the log file). 
Only NFS requests made by client machines are counted; the NFS traffic generated by 
the server in response to these requests is not counted. 

Hardware Required
Has been tested on Sun-3 and Sun-4 systems.    No hardware dependencies, but see 
below. 

Software Required
SunOS 4.0 or higher.    The STREAMS NIT device is used. Fairly easy code modifications 
should be able to make it run under older SunOS releases, or other versions of BSD UNIX 
with a NIT-like device. 

Availability
Copyrighted, but freely distributable.    Available via anonymous FTP from hosts 
icarus.riacs.edu and spam.itstd.sri.com in pub/nfswatch.tar.Z.    There should also be a 
copy on the 1989 Sun User's Group tape. 





RFC-1147 Network Tools Directory

nhfsstone

Keywords
benchmark, generator; NFS; spoof; UNIX; free.

Abstract
Nhfsstone (pronounced n-f-s-stone, the "h" is silent) is an NFS benchmarking program.    It
is used on an NFS client to generate an artificial load with a particular mix of NFS 
operations.    It reports the average response time of the server in milliseconds per call 
and the load in calls per second.    The nhfsstone distribution includes a script, 
"nhfsnums" that converts test results into plot(5) format so that they can be graphed 
using graph(1) and other tools. 

Mechanism
Nhfsstone is an NFS traffic generator.    It adjusts its calling patterns based on the client's 
kernel NFS statistics and the elapsed time.    Load can be generated over a given time or 
number of NFS calls. 

Caveats
Nhfsstone will compete for system resources with other applications. 

Bugs
None known.

Limitations
None reported.

Hardware Required
No restrictions.

Software Required
4.xBSD-based UNIX

Availability
Available via anonymous FTP from bugs.cs.wisc.edu. Alternatively, Legato Systems will 
provide the program free of charge, if certain conditions are met.    Send name and both 
email and U.S. mail addresses to:

Legato Systems, Inc.
Nhfsstone
260 Sheridan Avenue
Palo Alto, California    94306 

A mailing list is maintained for regular information and bug fixes: nhfsstone@legato.com 
or uunet!legato.com!nhfsstone.    To join the list: nhfsstone-request@legato.com or 
uunet!legato.com!nhfsstone-request. 



RFC-1147 Network Tools Directory

NMC -- the Hughes LAN Systems 9100
Network Management Center 

Keywords
control, manager, routing, status, traffic; bridge, DECnet, ethernet, IP; NMS, SNMP; UNIX. 

Abstract
The 9100 Network Management Center provides the capability to manage and control 
standards-based networking products from Hughes LAN Systems' and other vendors. 
This management extends to all network products that are equipped with the industry 
standard SNMP (Simple Network Management Protocol).    A comprehensive relational 
database manages the data and ensures easy access and control of resources 
throughout the network. 
9100 NMC software provides the following functions:
Database Management

Stores and retrieves the information required to administer and configure the 
network.    It can be used to: 

Store and recall configuration data for all
devices.
Provide availability history for devices.
Provides full-function SQL interface.
Assign new internet addresses.
Provide administrative information such as physical location of devices,
person responsible, maintenance history, asset data, 
hardware/software versions, etc.

Configuration Management
 A comprehensive configuration model that enables    you to: 

Retrieve configuration information from SNMP devices.
Configure HLS devices using SNMP.
Configures attributes relating to TCP/IP, DECnet and other protocols in 
HLS devices
using SNMP.
Poll devices to compare their current attribute values with those in the 
database and produce reports of the discrepancies.
Collect data about the state of the network.

Performance Management
Displays local network traffic graphically, by packet size, protocol, 
network utilization, sources and destinations of packets, etc. 

Fault Management
Provides availability monitoring and indicates potential problems.

Scheduled availability monitoring of devices.



SNMP traps (alarms) are recorded in an alarm log.
New alarms are indicated by a flashing icon and optional audio 
alert.
Possible causes and suggested actions for the alarms are listed.
Cumulative reports can be produced.

Utilities Function
Allows you to view and/or stop existing NMC processes, and to define 
schedules for invoking
NMC applications and database maintenance utilities.

Mechanism
SNMP.

Caveats
None reported.

Bugs
None known.

Limitations
Maximum number of nodes that can be monitored is 18,000.    This can include Hosts, 
Terminal Servers, PCs, and Bridges.

Hardware Required
The host for the NMC software is a Sun 3 desktop workstation. Recommended minimum 
hardware is the Sun 3/80 Color with a 1/4" SCSI tape drive.

Software Required
The NMC, which is provided on 1/4" tape format, runs on the Sun 4.0 Operating System.

Availability
A commercial product of:

Hughes LAN Systems Inc.
1225 Charleston Road
Mountain View, CA 94043
Phone: (415) 966-7300
Fax: (415) 960-3738
RCA Telex: 276572



RFC-1147 Network Tools Directory

NNStat

Keywords
manager, status, traffic; ethernet, IP; eavesdrop, NMS; UNIX; free.

Abstract
NNStat is a collection of programs that provides an internet statistic collecting capability. 
The NNStat strategy for statistic collection is to collect traffic statistics via a promiscuous
ethernet tap on the local networks, versus instrumenting the gateways.    If all traffic 
entering or leaving a network or set of networks traverses a local ethernet, then by 
stationing a statistic gathering agent on each local network a profile of network traffic 
can be gathered.    Statistical data is retrieved from the local agents by a global manager. 
A program called "statspy" performs the data gathering function.    Essentially, statspy 
reads all packets on an ethernet interface and records all information of interest.    
Information of interest is gathered by examining each packet and determining if the 
source or destination IP address is one that is being monitored, typically a gateway 
address.    If so then the contents of the packet are examined to see if they match further
criteria.    A program called "collect" performs global data collection. It periodically polls 
various statspy processes in the domain of interest to retrieve locally logged statistical 
data.    The NNSTAT distribution comes with several sample awk programs which process 
the logged output of the collect program.

Mechanism
Local agents (statspy processes) collect raw traffic data via a promiscuous ethernet tap.   
Statistical, filtered or otherwise reduced data is retrieved from the local agents by a 
global manager (the "collect" process).

Caveats
None.

Bugs
Bug fixes, extensions, and other pointers are discussed in the electronic mail forum, 
bytecounters.    To join, send a request to bytecounters-request@venera.isi.edu. Forum 
exchanges are archived in the file bytecounters/bytecounters.mail, available via 
anonymous FTP from venera.isi.edu.

Limitations
NNStat presumes a topology of one or more long haul networks gatewayed to local 
ethernets.    A kernel mod required to run with SunOS4.    These mods are described in the
bytecounters archive.    

Hardware Required
Ethernet interface.    Sun 3, Sun 4 (SPARC), or PC RT workstation.

Software Required
Distribution is for BSD UNIX, could easily be adapted to any UNIX with promiscuous 
ethernet support.

Availability
Distribution is available via anonymous FTP from venera.isi.edu, in file pub/NNStat.tar.Z.   
Documentation is in pub/NNStat.userdoc.ms.Z.                                        





RFC-1147 Network Tools Directory

NPRV -- IP Node/Protocol Reachability Verifier

Keywords
map, routing, status; IP; ping; VMS; free.

Abstract
NPRV is a full-screen, keypad-oriented utility that runs under VAX/VMS.    It allows the 
user to quickly scan through a user-defined list of IP addresses (or domain names) and 
verify a node's reachability.    The node's reachability is determined by performing an 
ICMP echo, UDP echo and a TCP echo at alternating three second intervals.    The total 
number of packets sent and received are displayed, as well as the minimum, average 
and maximum round-trip times (in milliseconds) for each type of echo.    Additionally, a 
"trace route" function is performed to determine the path from the local system to the 
remote host.    Once all of the trace route information has filled the screen, a "snapshot" 
of the screen can be written to a text file.    Upon exiting the utility, these text files can be
used to generate a logical network map showing host and gateway interconnectivity. 

Mechanism
The ICMP echo is performed by sending ICMP ECHO REQUEST packets.    The UDP and TCP
echoes are performed by connecting to the UDP/TCP echo ports (port number 7).    The 
trace route information is compiled by sending alternating ICMP ECHO REQUEST packets 
and UDP packets with very large destination UDP port numbers (in two passes).    Each 
packet is initially sent with a TTL (time to live) of 1.    This should cause an ICMP TIME 
EXCEEDED error to be generated by the first routing gateway.    Then each packet is sent 
with a TTL of 2. This should cause an ICMP TIME EXCEEDED error to be generated by the 
second routing gateway.    Then each packet is sent with a TTL of 3, and so on.    This 
process continues until an ICMP ECHO REPLY or UDP PORT UNREACHABLE is received.    
This indicates that the remote host has been reached and that the trace route 
information is complete. 

Caveats
This utility sends one echo packet per second (ICMP, UDP or TCP), as well as sending out 
one trace route packet per second.    If a transmitted trace route packet is returned in 
less than one second, another trace route packet is sent in 100 milliseconds.    This could 
cause a significant amount of contention on the local network. 

Bugs
None known.    Please report any discovered bugs to the author at: 

Allen Sturtevant
National Magnetic Fusion Energy Computer Center
Lawrence Livermore National Laboratory
P.O. Box 808; L-561
Livermore, CA    94550
Phone : (415) 422-8266
E-Mail: sturtevant@ccc.nmfecc.gov

Limitations
The user is required to have SYSPRV privilege to per form the ICMP Echo and trace route 
functions.    The utility will still run with this privilege disabled, but only the UDP Echo and
TCP Echo information will be displayed.    This utility is written in C, but unfortunately it 



cannot be easily ported over to UNIX since many VMS system calls are used and all 
screen I/O is done using the VMS Screen Management Routines. 

Hardware Required
Any network interface supported by TGV Incorporated's MultiNet software. 

Software Required
VAX/VMS V5.1+ and TGV Incorporated's MultiNet version 2.0. 

Availability
For executables only, FTP to the ANONYMOUS account (password GUEST) on 
CCC.NMFECC.GOV (128.55.128.30) and GET the following files: 

[ANONYMOUS.PROGRAMS.NPRV]NPRV.DOC (ASCII text)
[ANONYMOUS.PROGRAMS.NPRV]NPRV.EXE (binary)
[ANONYMOUS.PROGRAMS.NPRV]SAMPLE.IPA (ASCII text)



RFC-1147 Network Tools Directory

nslookup

Keywords
status; DNS; spoof; UNIX, VMS; free.

Abstract
Nslookup is a program used for interactive query of ARPA Internet domain servers.    This 
program is useful for diagnosing routing or mail delivery problems, where often a local 
domain server is responding with an incorrect internet address.    It is essentially a 
database front end which converts user queries into domain name queries.    By default 
nslookup queries the local domain name server but you can specify additional servers.    
Additional information beyond the mapping of domain names to internet addresses is 
possible. 

Mechanism
Formats and sends domain name queries. 

Caveats
None.

Bugs
None known.

Limitations
None known.

Hardware Required
No restrictions.

Software Required
BSD UNIX or related OS, or VMS.

Availability
Nslookup is part of the "named" distribution, available via anonymous FTP from 
uunet.uu.net, in directories bsd-sources/src/etc and bsd-sources/src/network, and part of 
the "bind" distribution, available via anonymous FTP from ucbarpa.berkeley.edu, in 
directory 4.3.    Also available with 4.xBSD UNIX and related operating systems.    For 
VMS, available as part of TGV MultiNet IP software package, as well as Wollongong's 
WIN/TCP. 



RFC-1147 Network Tools Directory

osilog -- OSI event Logger

Keywords
alarm, manager; OSI; UNIX; free.

Abstract
The osilog program receives management event reports for the operation of the ISODE 
Transport layer (ISO Transport Protocol class 0) on one or more managed systems, 
formats them suitably to facilitate post processing and records them for future analysis. 

Mechanism
It communicates with the System Management Agents (SMAs) on the selected systems 
via CMIP. 

Caveats
The System Management Agent (SMA) must be running on the hosts selected to provide 
management reports. 

Bugs
None known.

Limitations
ISODE Transport Layer only supported by the SMA at present. 

Hardware Required
Developed and tested on Sun3.

Software Required
The ISODE protocol suite, BSD UNIX.

Availability
The osilog and related tools, known as OSIMIS (OSI Management Information Service), 
are publicly available from University College London, England via FTP and FTAM.    To 
obtain information regarding a copy send email to gknight@ac.ucl.cs.uk or call +44 1 
380 7366. 



RFC-1147 Network Tools Directory

osimic -- OSI Microscope

Keywords
manager, status; OSI; UNIX; free.

Abstract
The osimic program is a human user interface to the management information base on 
the ISODE Transport layer (ISO Transport Protocol class 0).    It allows browsing through 
the management information tree and enables the manipulation of attribute values.    It is
implemented using the SunView package of the SunTools window system. 

Mechanism
It communicates with the System Management Agent (SMA) on the selected system via 
CMIP. 

Caveats
The System Management Agent (SMA) must be running on the host where the mib is 
being examined. 

Bugs
None known.

Limitations
ISODE Transport Layer only supported by the SMA at present. 

Hardware Required
Developed and tested on Sun3.

Software Required
The ISODE protocol suite, BSD UNIX, SunView/SunTools.

Availability
The osimic and related tools, known as OSIMIS (OSI Management Information Service), 
are publicly available from University College London, England via FTP and FTAM.    To 
obtain information regarding a copy send email to gknight@ac.ucl.cs.uk or call +44 1 
380 7366. 



RFC-1147 Network Tools Directory

osimon -- OSI Monitor

Keywords
manager, status, traffic; OSI; curses; UNIX; free.

Abstract
The osimon program monitors activity of the ISODE Transport layer (ISO Transport 
Protocol class 0), displaying entries for the active transport entities and connections.    
The display is dynamically updated in the case of significant events such as connection 
opening and closing and packet traffic, as information is received in the form of event 
reports from a SMA.    It uses the UNIX curses package for screen management. 

Mechanism
It communicates with the System Management Agent (SMA) on the selected system via 
CMIP. 

Caveats
The System Management Agent (SMA) must be running on the host being monitored. 

Bugs
For the terminal type Sun, there are some transient problems with the display. 

Limitations
ISODE Transport Layer only supported at present. 

Hardware Required
Developed and tested on Sun3 for various terminal types. 

Software Required
The ISODE protocol suite, BSD UNIX. 

Availability
The osimon and related tools, known as OSIMIS (OSI Management Information Service), 
are publicly available from University College London, England via FTP and FTAM.    To 
obtain information regarding a copy send email to gknight@ac.ucl.cs.uk or call +44 1 
380 7366. 



RFC-1147 Network Tools Directory

OSITRACE

Keywords
traffic; OSI; eavesdrop; UNIX; free.

Abstract
OSITRACE is a network performance tool that displays information about ISO TP4 
connections.    One line of output is displayed for each packet indicating the time, source,
destination, length, packet type, sequence number, credit, and any optional parameters 
contained in the packet.    Numerous options are available to control the output of 
OSITRACE. 
To obtain packets to analyze, OSITRACE uses Sun Microsystems' Network Interface Tap 
(NIT) in SunOS 3.4, 3.5, and 4.0.X.    OSITRACE may also obtain data from the NETMON 
utility which is described as another tool entry. 
In Sun systems, OSITRACE may be easily installed: OSI kernel support is not needed, nor 
is any other form of OSI software support. 

Mechanism
This tool has been designed in such a way that code to process different protocol suites 
may be easily added. As such, OSITRACE also has the ability to trace the DOD TCP 
protocols. 

Caveats
None.

Bugs
Bug reports and questions should be addressed to: ie tools@gateway.mitre.org 
Requests to join this mailing list: ie-tools request@gateway.mitre.org 
Questions and suggestions can also be directed to: Greg Hollingsworth, 
gregh@gateway.mitre.org 

Limitations
None reported.

Hardware Required
No restriction.

Software Required
SunOS 3.4, 3.5, or 4.0.X, or BSD UNIX-like network protocols with NETMON installed. 

Availability
OSITRACE is copyrighted by the MITRE-Washington Networking Center, but freely 
distributed "as is."    It requires retention of a copyright text in code derived from it.    The 
distribution is available by anonymous FTP in pub/pdutrace.tar or pub/pdutrace.tar.Z 
from aelred-3.ie.org. 



RFC-1147 Network Tools Directory

OverVIEW

Keywords
manager, status; IP; NMS, SNMP; DOS.

Abstract
Network and internet monitor; Performance monitor; Fully Graphic user interface; Event 
logging; TFTP boot server 

Mechanism
OverVIEW uses SNMP to query routers, gateways and hosts.    Also supports SGMP, PING 
and is committed to CMIP/CMOT.    The SNMP queries allow dynamic determination of 
configuration and state.    Sets of related queries allows monitoring of congestion and 
faults. The hardware and software are sold as an integrated package. 

Caveats
None.

Bugs
None known.

Limitations
256 nodes, 256 nets

Hardware Required
80286, 640K, EGA, mouse.

Software Required
MS-DOS, OverVIEW, Network kernel, Mouse driver, SNMP agents for monitored devices. 

Availability
Fully supported product of Proteon, Inc.    For more information, contact:

Proteon, Inc.
2 Technology Drive
Westborough, MA    01581        Telex: 928124 
Phone: (508) 898-2800
Fax:      (508) 366-8901



 RFC-1147 Network Tools Directory

ping

Keywords
generator, status; IP; ping; DOS, UNIX, VMS; free.

Abstract
Ping is perhaps the most basic tool for internet management.    It verifies that a remote IP
implementation and the intervening networks and interfaces are functional.    It can be 
used to measure round trip delay.    Numerous versions of the ping program exist. 

Mechanism
Ping is based on the ICMP ECHO_REQUEST message. 

Caveats
If run repeatedly, ping could generate high system loads. 

Bugs
None known.

Limitations
PC/TCP's ping is the only implementation known to support both loose and strict source 
routing.    Though some ping implementations support the ICMP "record route" feature, 
the usefulness of this option for debugging routes is limited by the fact that many 
gateways do not correctly implement it. 

Hardware Required
No restrictions.

Software Required
None.

Availability
Ping is widely included in TCP/IP distributions.    Public domain versions of ping are 
available via anonymous FTP from uunet.uu.net, in directory bsd sources/src/etc, and 
from venera.isi.edu, in directory pub. 



RFC-1147 Network Tools Directory

proxyd
SNMP proxy agent daemons from SNMP Research.

Keywords
control, status; bridge, ethernet, IP, ring, star; NMS, SNMP; UNIX; library, sourcelib. 

Abstract
SNMP proxy agents may be used to permit the monitoring and controlling of network 
elements which are otherwise not addressable using the SNMP management protocol 
(e.g., a network bridge that implements a proprietary management protocol).    Similarly, 
SNMP proxy agents may be used to protect SNMP agents from redundant network 
management agents through the use of caches.    Finally, SNMP proxy agents may be 
used to implement elaborate MIB access policies.    The proxy agent daemon listens for 
SNMP queries and commands from logically remote network management stations, 
translates and retransmits those as appropriate network management queries or cache 
lookups, listens for and parses the responses, translates the responses into SNMP 
responses, and returns those responses as SNMP messages to the network management 
station that originated the transaction. The proxy agent daemon also emits SNMP traps 
to identified trap receivers.    The proxy agent daemon is architected to make the addition
of additional vendor specific variables a straight-forward task.    The proxy application 
comes complete with source code including a powerful set of portable libraries for 
generating and parsing SNMP messages and a set of command line utili ties. 

Mechanism
Network management variables are made available for inspection and/or alteration by 
means of the Simple Network Management Protocol (SNMP). 

Caveats
None.

Bugs
None known.

Limitations
This application is a template for proxy application writers. 
Only a few of the many LanBridge 100 variables are supported.

Hardware Required
System from Sun Microsystems, Incorporated.

Software Required
Sun OS 3.5 or 4.x

Availability
This is a commercial product available under license from: 

SNMP Research
P.O. Box 8593
Knoxville, TN 37996-4800
(615) 573-1434 (Voice)
(615) 573-9197 (FAX)



Attn:    Dr. Jeff Case



RFC-1147 Network Tools Directory

query, ripquery

Keywords
routing; IP; spoof; UNIX; free.

Abstract
Query allows remote viewing of a gateway's routing tables. 

Mechanism
Query formats and sends a RIP request or POLL command to a destination gateway. 

Caveats
Query is intended to be used a a tool for debugging gateways, not for network 
management.    SNMP is the preferred protocol for network management. 

Bugs
None known.

Limitations
The polled gateway must run RIP.

Hardware Required
No restriction.

Software Required
4.3BSD UNIX or related OS.

Availability
Available with routed and gated distributions.
Routed may be obtained via anonymous FTP from uunet.uu.net, in file bsd 
sources/src/network/routed.tar.Z. 
Gated may be obtained via anonymous FTP from devvax.tn.cornell.edu.    Distribution 
files are in directory pub/gated. 



RFC-1147 Network Tools Directory

SERAG
Simple Event Reporting and Alarm Generation tool

Keywords
alarm, security; ethernet, IP; NMS, proprietary; UNIX.

Abstract
The Simple Event Reporting and Alarm Generation (SERAG) collects error messages and 
other event reports from servers on a LAN.    Any node with UDP/IP can be the source of 
such messages/reports.    The logging of error messages is integrated with the audit trail 
facility of the Network Control Server (NCS) from 3COM.    Alarms are generated on the 
NCS based on predefined conditions. Alarms may be sent to the console of the NCS, 
logged in a file, or routed via WAN to a service center. 
SERAG can automatically detect a predefined set of errors in the servers and generate 
alarms.    The breakdown of a server in the LAN may also result in alarm generation. 
SERAG creates an error log that can be used for post testing analysis. 

Mechanism
The tool searches through the audit trail (error log) files for events specified by the user.   
The search may be constrained to specific nodes in the network and to a specific time 
frame.    Events may be combined into conditions which are logical expressions (e.g., look
for eventA and eventB and not eventC within time frame so and so).    This is an 
interactive query facility to analyze the audit trail (error log). 
The user may also ask for such conditions to be checked at regular intervals, and specify 
routing of error messages in case the condition is satisfied.    The checking of such 
conditions is done by a daemon process running in the background. 

Caveats
May impact the performance of the NCS if error logs are big, or if conditions are 
computationally complex. 

Bugs
None known.

Limitations
None reported.

Hardware Required
A workstation running UNIX.

Software Required
Implemented in C (using lex and yacc) on a Sun 3/50.
Also runs under Xenix.    Should work with most versions of UNIX.

Availability
Developed jointly by ELAB-RUNIT and Norsk Data:

Tor Didriksen, Ole-Hjalmar Kristensen, Steinar Haug,
Eldfrid Oefsti Oevstedal, Tor Staalhane



ELAB-RUNIT
N-7034 Trondheim
Norway
phone: +47 7 593000
fax    : +47 7 532586
email: didrik@idt.unit.no
sthaug@idt.unit.no
kristensen@vax.runit.unit.no

Commercially available from:
Norsk Data A/S
P.O. Box 25, Bogerud
N-0621 Oslo 6
Norway
ref: network management/security management/fault management
phone: +47 2 627500
fax    : +47 2 296796



RFC-1147 Network Tools Directory

sma
OSI System Management Agent

Keywords
alarm, manager, status; OSI; UNIX; free.

Abstract
The sma is a CMIP agent which runs on BSD UNIX and provides access to management 
information on the operation of the ISODE transport layer (ISO Transport Protocol class 
0).    It also supports the sending of event reports.    Activity can be recorded in a log file. 

Mechanism
The sma communicates with the active ISODE transport entities using UNIX UDP sockets 
in order to receive the management information which is made available to other 
manager processes via CMIP. 

Caveats
None.

Bugs
None known.

Limitations
ISODE Transport Layer only supported at present.

Hardware Required
Developed on Sun3, tested on Sun3 and VAXStation.

Software Required
The ISODE protocol suite, BSD UNIX.

Availability
The sma and related tools, known as OSIMIS (OSI Manage ment Information Service), are 
publicly available from University College London, England via FTP and FTAM. To obtain 
information regarding a copy send email to gknight@ac.ucl.cs.uk or call +44 1 380 7366.



RFC-1147 Network Tools Directory

Sniffer

Keywords
analyzer, generator, traffic; DECnet, ethernet, IP, NFS, OSI, ring, SMTP, star; eavesdrop; 
standalone. 

Abstract
The Network General Sniffer is a protocol analyzer for performing LAN diagnostics, 
monitoring, traffic generation, and troubleshooting.    The Sniffer protocol analyzer has 
the capability of capturing every packet on a network and of decoding all seven layers of 
the OSI protocol model.    Capture frame selection is based on several different filters: 
protocol content at lower levels; node addresses; pattern matching (up to 8 logically-
related patterns of 32 bytes each); and destination class.    Users may extend the 
protocol interpretation capability of the Sniffer by writing their own customized protocol 
interpreters and linking them to the Sniffer software. 
The Sniffer displays network traffic information and performance statistics in real time, in
user-selectable formats.    Numeric station addresses are translated to symbolic names or
manufacturer ID names.    Network activities measured include frames accepted, Kbytes 
accepted, and buffer use.    Each network version has additional counters for activities 
specific to that network.    Network activity is expressed as frames/second, 
Kbytes/second, or per cent of network bandwidth utilization. 
Data collection by the Sniffer may be output to printer or stored to disk in either print-file
or spread-sheet format. 
Protocol suites understood by the Sniffer include: Banyan Vines, IBM Token-Ring, Novell 
Netware, XNS/MS Net (3Com 3+), DECnet, TCP/IP (including SNMP and applications-layer 
protocols such as FTP, SMTP, and TELNET), X Windows (for X version 11), NFS, and 
several SUN proprietary protocols (including mount, pmap, RPC, and YP).    Supported 
LANs include: ethernet, Token-ring (4Mb and 16Mb versions), ARCNET, StarLAN, IBM PC 
Net work (Broadband), and Apple Localtalk Network. 

Mechanism
The Sniffer is a self-contained, portable protocol analyzer that require only AC line power 
and connection to a network to operate.    Normally passive (except when in Traffic 
Generator mode), it captures images of all or of selected frames in a working buffer, 
ready for immediate analysis and display. 
The Sniffer is a standalone device.    Two platforms are available: one for use with single 
network topologies, the other for use with multi-network topologies.    Both include Sniffer
core software, a modified network interface card (or multiple cards), and optional 
protocol interpreter suites. 
All Sniffer functions may be remotely controlled from a modem-connected PC.    Output 
from the Sniffer can be imported to database or spreadsheet packages. 

Caveats
In normal use, the Sniffer is a passive device, and so will not adversely effect network 
performance.    Performance degradation will be observed, of course, if the Sniffer is set 
to Traffic Generator mode and connected to an active network. 

Bugs
None known.



Limitations
None reported.

Hardware Required
None.    The Sniffer is a self-contained unit, and includes its own interface card.    It installs
into a network as would any normal workstation. 

Software Required
None.

Availability
The Sniffer is available commercially.    For information on your local representative, call 
or write: 

Network General Corporation 4200 Bohannon Drive
Menlo Park, CA    94025 Phone: (415) 688-2700 Fax:
415-321-0855

For acquisition by government agencies, the Sniffer is included on the GSA schedule. 



RFC-1147 Network Tools Directory

The SNMP Development Kit

Keywords
manager, status; IP; NMS, SNMP; UNIX; free, sourcelib.

Abstract
The SNMP Development Kit comprises C Language source code for a programming 
library that facilitates access to the management services of the SNMP (RFC 1098). 
Sources are also included for a few simple client applications whose main purpose is to 
illustrate the use of the library.    Example client applications query remote SNMP agents 
in a variety of modes, and generate or collect SNMP traps.    Code for an example SNMP 
agent that supports a subset of the Internet MIB (RFC 1066) is also included. 

Mechanism
The Development Kit facilitates development of SNMP based management applications --
both clients and agents.    Example applications execute SNMP management operations 
according to the values of command line arguments. 

Caveats
None.

Bugs
Fixed in the next release.

Limitations
None reported.

Hardware Required
The SNMP library source code is highly portable and runs on a wide range of platforms. 

Software Required
The SNMP library source code has almost no operating system dependencies and runs in 
a wide range of environments.    Certain portions of the example SNMP agent code are 
specific to the 4.3BSD implementation of the UNIX system for the DEC MicroVAX. 

Availability
The Development Kit is available via anonymous FTP from host allspice.lcs.mit.edu.    The 
copyright for the Development Kit is held by the Massachusetts Institute of Technology, 
and the Kit is distributed without charge according to the terms set forth in its code and 
documentation.    The distribution takes the form of a UNIX tar file. 
Bug reports, questions, suggestions, or complaints may be mailed electronically to snmp-
dk@ptt.lcs.mit.edu, although no response in any form is guaranteed.    Distribution via 
UUCP mail may be arranged by contacting the same address.    Requests for hard-copy 
documentation or copies of the distribution on magnetic media are never honored. 



RFC-1147 Network Tools Directory

Snmp Libraries and Utilities from SNMP Research.

Keywords
alarm, control, manager, map, routing, status; bridge, DECnet, ethernet, IP, OSI, ring, 
star; NMS, SNMP; DOS, UNIX, VMS; sourcelib. 

Abstract
The SNMP Libraries and Utilities serve two purposes:

1)      to act as building blocks for the construction of SNMP-based agent and 
manager applications; and 
2)      to act as network management tools for network fire fighting and report 
generation. 

The libraries perform ASN.1 parsing and generation tasks for both network management 
station applications and network management agent applications.    These libraries hide 
the details of ASN.1 parsing and generation from application writers and make it 
unnecessary for them to be expert in these areas.    The libraries are very robust with 
considerable error checking designed in.    The several command line utilities include 
applications for retrieving one or many variables, retrieving tables, or effecting 
commands via the setting of remote network management variables. 

Mechanism
The parsing is performed via recursive descent methods. Messages are passed via the 
Simple Network Management Protocol (SNMP). 

Caveats
None.

Bugs
None known.

Limitations
None reported.

Hardware Required
This software has been ported to a wide range of sys tems, too numerous to itemize.    It 
includes worksta tions, general purpose timesharing systems, and embed ded hardware 
in intelligent network devices such as re peaters, bridges, and routers. 

Software Required
C compiler, TCP/IP library from a variety of sources.

Availability
This is a commercial product available under license from: 

SNMP Research
P.O. Box 8593
Knoxville, TN 37996-4800
(615) 573-1434 (Voice)
(615) 573-9197 (FAX)
Attn:    Dr. Jeff Case





RFC-1147 Network Tools Directory

snmpask

Keywords
manager, status; IP; NMS, SNMP; UNIX.

Abstract
Snmpask is a network monitoring application which gathers specific information from a 
single network entity at regular intervals and stores this information into UNIX flat files.    
A report generation package is included in the NYSERNet SNMP Software Distribution to 
produce reports and graphs from the raw data. 

Mechanism
Snmpask uses SNMP to gather its information.    The agent which must be queried and 
the variables to query for are specified in a configuration file. 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmpask to be useful. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
SNMP polling is done synchronously.    Only a single agent can be polled per snmpask 
process.    Only 16 variables can be requested per snmpask process. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCstation I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library. 

Availability
Snmpask is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software.    To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpd (I)

Keywords
manager, status; IP; NMS, SNMP; UNIX.

Abstract
Snmpd is an SNMP agent which runs on UNIX derivatives and answers network 
management queries from network management stations supporting SNMP.    Snmpd also
supports the sending of SNMP traps. 

Mechanism
Snmpd conforms to SNMP as specified in RFC 1098.    Certain user configurable options 
are manipulated through a simple configuration file. 

Caveats
UNIX does not support all of the MIB variables specified in RFC 1066.    Snmpd does the 
best it can to find the answers. 

Bugs
None outstanding.    They are fixed as reports come in. report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
See Caveats.

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant.

Availability
Snmpd is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software.    To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpd (II)
an SNMP host/gateway agent daemon from SNMP Research.

Keywords
manager, status; bridge, ethernet, IP, ring, star; NMS, SNMP; DOS, UNIX; sourcelib. 

Abstract
The snmpd agent daemon listens for and responds to network management queries and 
commands from logically remote network management stations.    The agent daemon 
also emits SNMP traps to identified trap receivers. The agent daemon is architected to 
make the addition of additional vendor-specific variables a straight-forward task.    The 
snmpd application comes complete with source code including a powerful set of portable
libraries for generating and parsing SNMP messages and a set of command line utilities. 

Mechanism
Network management variables are made available for inspection and/or alteration by 
means of the Simple Network Management Protocol (SNMP). 

Caveats
None.

Bugs
None known.

Limitations
Only the operating system variables available without source code modifications to the 
operating system and device device drivers are supported. 

Hardware Required
This software has been ported to a wide range of systems, too numerous to itemize.    It 
includes workstations, general purpose timesharing systems, and embedded hardware in
intelligent network devices such asrepeaters, bridges, and routers. 

Software Required
C compiler, ".h" files for operating system.

Availability
This is a commercial product available under license from: 

SNMP Research
P.O. Box 8593
Knoxville, TN 37996-4800
(615) 573-1434 (Voice)
(615) 573-9197 (FAX)
Attn:    Dr. Jeff Case



RFC-1147 Network Tools Directory

snmplookup

Keywords
manager, status; IP; NMS, SNMP; UNIX.

Abstract
Snmplookup is a network monitoring application that allows the interactive querying of a 
network entity. Snmplookup mimics nslookup, the DNS interactive query tool, in style and
feel. 

Mechanism
Snmplookup uses SNMP to gather its information.    The network entity to be queried and 
the variable to be retrieved can be entered from the command shell after snmplookup is 
invoked. 

Caveats
An SNMP agent must be running on the network entity being monitored. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
See Caveats.

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library. 

Availability
Snmplookup is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpperfmon

Keywords
manager, status; IP; curses, NMS, SNMP; UNIX.

Abstract
Snmpperfmon is a network monitoring application based on the Berkeley curses terminal
graphics package and the Simple Network Management Protocol.    The application 
monitors certain interface statistics from a single agent and displays them in tabular 
form on a standard terminal screen. 

Mechanism
Snmpperfmon uses SNMP to gather its information.    The agent to be queried is specified
on the command line. 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmpperfmon to be useful. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
SNMP polling is done synchronously.    Only the predeter mined (read "hard coded") 
interface statistics can be displayed. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library.    The 
"curses" library. 

Availability
Snmpperfmon is available in the NYSERNet SNMP Software Distribution, which is 
licensed, copyrighted software. To obtain information regarding the package send mail 
to: snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmppoll

Keywords
manager, status; IP; NMS, SNMP; UNIX.

Abstract
Snmppoll is a network monitoring application which gathers specific information from a 
network at regular intervals and stores this information into UNIX flat files.    A report 
generation package is included in the NYSERNet SNMP Software Distribution to produce 
reports and graphs of raw data collected via SNMP. 

Mechanism
Snmppoll uses SNMP to gather its information.    The agents which must be queried and 
the variables to query for are specified in a configuration file. 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmppoll to be useful. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
SNMP polling is done synchronously.

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library. 

Availability
Snmppoll is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpquery

Keywords
manager, status; IP; NMS, SNMP; UNIX.

Abstract
Snmpquery is a network monitoring application which allows the simple query of a single
network entity from the command line. 

Mechanism
Snmpquery uses SNMP to gather its information.    The entity to be monitored and the 
variables to be retrieved must be specified on the command line. 

Caveats
An SNMP agent must be running on the network entity being monitored. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
Only one network entity can be managed per invocation. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library. 

Availability
Snmpquery is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmproute

Keywords
manager, routing; IP; NMS, SNMP; UNIX.

Abstract
Snmproute is a network monitoring application that allows the user to query for the 
entire routing table or a single routing table entry from a network entity. 

Mechanism
Snmproute uses SNMP to gather its information.    The network entity to be queried and 
the destination network to be queried for must be specified on the command line. 

Caveats
An SNMP agent must be running on the network entity being monitored. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
Only one network entity can be queried per invocation.

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library. 

Availability
Snmproute is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpset

Keywords
control, manager; IP; NMS, SNMP; UNIX.

Abstract
Snmpset is a network management application that allows the alteration of a single 
variable in a specific agent. 

Mechanism
Snmpset uses SNMP to alter the agent variables.    The agent to which the set is directed 
and the variable to alter must be specified on the command line.    The user is prompted 
before any changes are made. 

Caveats
An SNMP agent must be running in the network entity being managed in order for 
snmpset to be useful.    In addition, a read-write community must be configured on the 
agent. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
Only one variable can be altered per invocation. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library. 

Availability
Snmpset is available in the NYSERNet SNMP Software Distribtion, which is licensed, 
copyrighted software.    To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpsrc

Keywords
manager, routing; IP; NMS, SNMP; UNIX.

Abstract
Snmpsrc is a network monitoring application that starts at a specified router in the 
network and traces the path of a given destination network from the starting router. 

Mechanism
Snmpsrc uses SNMP to gather its information.    The starting router and destination 
network must be specified on the command line. 

Caveats
An SNMP agent must be running on all of the routers in the path to the destination 
network in order for a complete path to be reported back to the user.    The same SNMP 
community must also be configured in every SNMP agent in the path to the destination 
network. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
See Caveats.

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCstation I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library. 

Availability
Snmpsrc is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software.    To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpstat

Keywords
manager, status; IP; NMS, SNMP; UNIX.

Abstract
Snmpstat is a network monitoring application that gathers specific information from a 
network at regular intervals and stores this information into a commercial database.    A 
report generation package is included in the NYSERNet SNMP Software Distribution to 
produce reports and graphs of raw data collected via SNMP. 

Mechanism
Snmpstat uses SNMP to gather its information.    The agents which must be queried and 
the variables to query for are specified in a configuration file. 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmpstat to be useful. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
SNMP polling is done synchronously.    Currently, Ingres is the only commercial database 
supported.    SQL is the query language being used. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library. 

Availability
Snmpstat is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmptrapd

Keywords
alarm, manager; IP; NMS, SNMP; UNIX.

Abstract
Snmptrapd is an SNMP trap agent that runs on UNIX derivatives.    It receives and logs 
traps which are generated from snmp agents.    A report generation package is included 
in the NYSERNet SNMP Software Distribution to produce reports and graphs of raw data 
collected via SNMP. 

Mechanism
Snmptrapd conforms to SNMP as specified in RFC 1098. Certain user configurable options
are manipulated through a simple configuration file. 

Caveats
None.

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
Snmptrapd only logs traps into a UNIX flat file.

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant.

Availability
Snmptrapd is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpwatch

Keywords
manager, status; IP; NMS, SNMP; UNIX.

Abstract
Snmpwatch is a network monitoring application that monitors variables in a single 
network entity and reports when they have changed value. 

Mechanism
Snmpwatch uses SNMP to gather its information.    The entity to be monitored and the 
variables to be watched must be specified on the command line.    Once a value changes,
snmpwatch prints out the value and the variable to the standard output. 

Caveats
An SNMP agent must be running on the network entity being monitored.    Upon 
invocation, the initial value of each variable will printed out to the standard output. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
Only one network entity can be managed per invocation. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library. 

Availability
Snmpwatch is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpxbar

Keywords
manager, status; IP; NMS, SNMP, X; UNIX.

Abstract
Snmpxbar is a network monitoring application based on X-Windows Version 11 Release 2 
and the Simple Network Management Protocol.    The application monitors a single 
numeric MIB object and displays its value in a bar chart.    Snmpxbar supports color 
graphics. 

Mechanism
Snmpxbar uses SNMP to gather its information.    The MIB object to be graphed must be 
specified on the command line.    The polling interval can be changed dynamically from 
within snmpxbar. 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmpxbar to be useful. 

Bugs
Bugs are fixed as reports come in.    Report bugs to: nysersnmp@nisc.nyser.net 

Limitations
Can only graph one numeric MIB object per invocation. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library.    X-
Windows. 

Availability
Snmpxbar is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpxconn

Keywords
manager, map, status; IP; NMS, SNMP, X; UNIX.

Abstract
Snmpxconn is a network monitoring application based on X-Windows Version 11 Release 
2 and the Simple Network Management Protocol.    The application monitors a number of 
(configurable) network entities and graphically depicts the TCP connections associated 
with the network entities via a TCP topology map. 

Mechanism
Snmpxconn uses SNMP to gather its information.    A configuration file is used to 
determine the network entities to be monitored.    There are certain command line 
arguments which manipulate the X environment and SNMP actions. 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmpxconn to be useful. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
SNMP polling is done synchronously.    The network entities must be configured by 
manually adding information to a configuration file. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library.    X-
Windows. 

Availability
Snmpxconn is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpxmon

Keywords
manager, map, status; IP; NMS, SNMP, X; UNIX.

Abstract
Snmpxmon is a network monitoring application based on X-Windows Version 11 Release 
2 and the Simple Network Management Protocol.    This application will determine the 
status of sites and links it is configured to monitor (via its configuration file) by querying 
the designated sites and then displaying the result in a map form.    Snmpxmon supports 
color graphics. 

Mechanism
Snmpxmon uses SNMP to gather its information.    A configuration file is used to design 
the topology map. There are certain command line arguments which manipulate the X 
environment and SNMP actions. 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmpxmon to be useful. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
SNMP polling is done synchronously.    The topology map must be configured by hand. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library.    X-
Windows. 

Availability
Snmpxmon is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpxperf

Keywords
manager, status; IP; NMS, SNMP, X; UNIX.

Abstract
Snmpxperf is a network monitoring application based on X-Windows Version 11 Release 2
and the Simple Network Management Protocol.    The application monitors a single 
numeric MIB object and displays its value in an EKG style histogram.    Snmpxperf 
supports color graphics. 

Mechanism
Snmpxperf uses SNMP to gather its information.    The MIB object to be graphed must be 
specified on the command line.    The polling interval can be changed dynamically from 
within snmpxperf. 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmpxperf to be useful. 

Bugs
Auto-scaling sometimes doesn't downscale the EKG-graph enough on large spikes.    This 
results in some of the graph running into the button boxes at the top of the window.    
Generally, Bugs are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
Can only graph one numeric MIB object per invocation. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library.    X-
Windows. 

Availability
Snmpxperf is available in the NYSERNet SNMP Software Distribution, which is licensed, 
copyrighted software. To obtain information regarding the package send mail to: 
snmplisc@nisc.nyser.net or call +1 518-283-8860. 



RFC-1147 Network Tools Directory

snmpxperfmon

Keywords
manager, status, traffic; IP; NMS, SNMP, X; UNIX.

Abstract
Snmpxperfmon is a network monitoring application based on X-Windows Version 11 
Release 2 and the Simple Network Management Protocol.    The application monitors a 
single Network Entity and displays graphical information pertaining to the entities 
interface traffic statistics.    Snmpxperfmon supports color graphics. 

Mechanism
Snmpxperfmon uses SNMP to gather its information.    The MIB agent to be polled must 
be specified on the command line.    The agent is then queried about all of its interfaces.   
Four EKG-style graphs are constructed for each interface (input pkts, output pkts, input 
Octets, output Octets). 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmpxperfmon to be useful. 

Bugs
Generally, bugs are fixed as reports come in.    Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
Can only graph one network entity per invocation.    Can only graph the amount of 
interfaces which will fit on a single bitmap display.    Does not auto-scale or resize. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCsta tion I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library.    X-
Windows. 

Availability
Snmpxperfmon is available in the NYSERNet SNMP Software Distribution, which is 
licensed, copyrighted software. To obtain information regarding the package send mail 
to: snmplisc@nisc.nyser.net or call +1 518-283-8860.



RFC-1147 Network Tools Directory

snmpxrtmetric 

Keywords
manager, routing; IP; NMS, SNMP, X; UNIX.

Abstract
Snmpxrtmetric is a network monitoring application based on X-Windows Version 11 
Release 2 and the Simple Net work Management Protocol.    The application monitors the 
routing table of a specific agent and displays the RIP routing metric of certain destination
networks in bar chart format. 

Mechanism
Snmpxrtmetric uses SNMP to gather its information.    A configuration file is used to 
determine which destination networks will be graphed.    The agent to be queried is 
specified on the command line.    Snmpxrtmetrtic supports color graphics. 

Caveats
An SNMP agent must be running in the network entity being monitored in order for 
snmpxrtmetric to be use ful. 

Bugs
None outstanding.    They are fixed as reports come in. Report bugs to:    
nysersnmp@nisc.nyser.net 

Limitations
SNMP polling is done synchronously.    The destination networks must be configured by 
manually adding information to a configuration file. 

Hardware Required
Developed on Sun 3/60, Sun 3/260, tested on a SPARCstation I, DECstation, and a 
Solbourne 4/802. 

Software Required
Some UNIX variant or some other OS with a Berkeley Socket Compatibility Library.    The 
X window system. 

Availability
Snmpxrtmetric is available in the NYSERNet SNMP Software Distribution, which is 
licensed, copyrighted software.    To obtain information regarding the package send mail 
to: snmplisc@nisc.nyser.net or call +1 518 283-8860. 



RFC-1147 Network Tools Directory

SpiderMonitor P220, K220 and
SpiderAnalyzer P320, K320

Keywords
alarm, analyzer, generator, traffic; DECnet, ethernet, IP, OSI; eavesdrop; standalone; 
sourcelib. 

Abstract
The SpiderMonitor and SpiderAnalyzer are protocol analyzers for performing ethernet 
LAN diagnostics, monitoring, traffic generation, and troubleshooting.    The SpiderMonitor 
has the capability of capturing every packet on a network and of decoding the first four 
layers of the OSI protocol model.    The SpiderAnalyzer has additional software for 
decoding higher protocol layers.    Protocol suites understood: TCP/IP (including SNMP and
applications-layer protocols), OSI, XNS, DECnet and IPX.    User-definable decodes can be 
written in 'C' with the Microsoft version 5.0 'C' compiler.    A decode guide is provided. 
The SpiderAnalyzer supports multiple simultaneous filters for capturing packets using 
predefined patterns and error states.    Filter patterns can also trigger on NOT matching 1 
or more filters, an alarm, or a specified time. 
The SpiderAnalyzer can also employ TDR (Time Domain Reflectometry) to find media 
faults, open or short circuits, or transceiver faults.    It can transmit OSI, XNS, and Xerox 
link-level echo packets to user specified stations, performs loop round tests. 
In traffic generation mode, the SpiderAnalyzer has the ability to generate packets at 
random intervals of random lengths or any combination of random or fixed interval or 
length, generation of packets with CRC errors, or packets that are too short, or packets 
that are too long. 
Output from the SpiderMonitor/Analyzer can be imported to database or spreadsheet 
packages. 

Mechanism
The SpiderMonitor and Spider Analyzer are available as stand-alone, IBM PC compatible 
packages based upon a Compaq III portable system, or as a plug-in boards for any IBM 
XT/AT compatible machine.    The model 220 (SpiderMonitor) systems provide a functional
base suited for most network management needs.    The model 320 (SpiderAnalyzer) 
systems provide extended functionality in the development mode and traffic generation 
mode as well more filtering capabilities than the 220 models. 

Caveats
Traffic generation will congest an operational ether net. 

Bugs
None known.

Limitations
Monitoring of up to 1024 stations and buffering of up to 1500 packets.    The model 220 
provides for 3 filters with a filter depth of 46 bytes.    The model 320 pro vides for 4 filters
and a second level of filtering with a filter depth of 64 bytes. 

Hardware Required
PX20s are self contained, the KX20s require an IBM PC/XT-AT compatible machine with 5 



megabytes of hard disk storage and the spare slot into which the board kit is plugged. 
Software Required

None.    The SpiderAnalyzer requires the Microsoft 'C' Compiler, Version 5.0 for writing 
user defined decodes. 

Availability
The SpiderMonitor/Analyzer is available commercially. For information on your local 
representative, call or write: 

Spider Systems, Inc.
12 New England Executive Park
Burlington, MA    01803
Telephone:    617-270-3510
FAX:                617-270-9818



RFC-1147 Network Tools Directory

SPIMS -- the Swedish Institute of Computer Science
(SICS) Protocol Implementation Measurement System tool.

Keywords
benchmark, debugger; IP, OSI; spoof; UNIX.

Abstract
SPIMS is used to measure the performance of protocol and "protocol-like" services 
including response time (two-way delay), throughput and the time to open and close 
connections.    It has been used to: 

o benchmark alternative protocol implementations,
o observe how performance varies when parameters in specific 

implementations have been varied (i.e., to tune parameters). 
SPIMS currently has interfaces to the DoD Internet Protocols: UDP, TCP, FTP, SunRPC, the 
OSI protocols from the ISODE 4.0 distribution package: FTAM, ROSE, ISO TP0 and to 
Sunlink 5.2 ISO TP4 as well as Stanford's VMTP. Also available are a rudimentary set of 
benchmarks, stubs for new protocol interfaces and a user manual. For an example of the 
use of SPIMS to tune protocols, see:

Nordmark & Cheriton, "Experiences from VMTP: How to achieve low response 
time," IFIP WG6.1/6.4:Protocols for High-Speed Networks, May 1989, Zurich.    
To be published. 

Mechanism
 SPIMS runs as user processes and uses a TCP connection for measurement set-up.    
Measurements take place between processes over the measured protocol.    SPIMS 
generates messages and transfers them via the measured protocol service according to 
a user-supplied specification. SPIMS has a unique measurement specification language 
that is used to specify a measurement session. In the language there are constructs for 
different application types (e.g., bulk data transfer), for specifying frequency and 
sequence of messages, for distribution over message sizes and for combining basic 
specifications.    These specifications are independent of both protocols and protocol 
implementations and can be used for benchmarking.    For more details on the internals 
of SPIMS, see: Nordmark & Gunningberg, "SPIMS: A Tool for Protocol Implementation 
Performance Measurements" Proc. of 13:th Conf. on Local Computer Networks, 
Minneapolis 1989, pp 222-229. 

Caveats
None.

Bugs
None known.

Limitations
None reported.

Hardware Required
No restrictions.

Software Required



SPIMS is implemented on UNIX, including SunOS 4., 4.3BSD UNIX, DN (UNIX System V, 
with extensions) and Ultrix 2.0/3.0.    It requires a TCP connection for measurement set-
up.    No kernel modifications or any modifications to measured protocols are required. 

Availability
SPIMS is not in the public domain; the software is covered by licenses.    The Swedish 
Institute of Computer Science has released the research prototype of SPIMS for research 
and non-commercial use.    Commercial organizations may obtain the research prototype,
but it is for internal research only and for no commercial use whatsoever. A commercial, 
supported version of SPIMS is distributed by TeleLOGIC Uppsala AB, Sweden. 
For universities and non-profit organizations, SPIMS source code is distributed free of 
charge.    There are two ways to get the software: 

1.      FTP.    If you have an Internet FTP connection, you can use anonymous FTP
to sics.se [192.16.123.90], and retrieve the file in 
pub/spimsdist/dist890915.tar.Z (this is a .6MB tar image) in BINARY mode.    
Log in as user anonymous and at the password prompt, use your complete 
electronic mail address. 
2.      On a Sun 1/4-inch cartridge tape.    For mailing, a handling fee of 
US$150.00 will be charged.    Submit a bank check with the request.    Do not 
send tapes or envelopes. 

For other organizations, the SPIMS source code for the research prototype is distributed 
for a one-time fee of US$500.00.    Organizations interested in the research prototype 
need to contact SICS via email and briefly motivate why they qualify (non-commercial 
use) for the research prototype.    They will thereafter get a permission to obtain a copy 
from the same distribution source as for universities. 
For more information about the research prototype distribution, contact: 

 Swedish Institute of Computer Science
 Att: Birgitta Klingenberg
 P.O. Box 1263
 S-164 28 Kista
 SWEDEN
e-address: spims@sics.se
Phone: +46-8-7521500, Fax: +46-8-7517230

TeleLOGIC Uppsala AB, a subsidiary of Swedish Telecom, distributes and supports a 
version of SPIMS for commercial use.    It consists of object code for SunOS 4., 4.3BSD 
UNIX, DNIX, and Ultrix 2.0/3.0.    Support for other UNIX-like implementations will be 
considered according to demand.    The same interfaces to the DoD Internet and OSI 
protocols from the ISODE 4.0 are included as well as a user manual. 
For further information about SPIMS for the commercial user please contact: 

Claes Hojenberg
TeleLOGIC Uppsala AB
P.O. Box 1218
S-751 42 UPPSALA
Sweden
e-address: claes@uplog.se
Phone: +46-18-189400, Fax: +46-18-132039



RFC-1147 Network Tools Directory

spray

Keywords
benchmark, generator; IP; ping; UNIX.

Abstract
Spray is a traffic generation tool that generates RPC or UDP packets, or ICMP Echo 
Requests.    The packets are sent to a remote procedure call application at the destination
host.    The count of received packets is retrieved from the remote application after a 
certain number of packets have been transmitted.    The difference in packets received 
versus packets sent represents (on a LAN) the packets that the destination host had to 
drop due to increasing queue length.    A measure of throughput relative to system speed
and network load can thus be obtained. 

Mechanism
See above.

Caveats
Spray can congest a network.

Bugs
None known.

Limitations
None reported.

Hardware Required
No restrictions.    

Software Required 
SunOS    

Availability
Supplied with SunOS.



RFC-1147 Network Tools Directory

tcpdump

Keywords
traffic; ethernet, IP, NFS; UNIX, VMS; free.

Abstract
Tcpdump can interpret and print headers for the following protocols: ethernet, IP, ICMP, 
TCP, UDP, NFS, ND, ARP/RARP, AppleTalk.    Tcpdump has proven useful for examining and
evaluating the retransmission and window management operations of TCP 
implementations.    

Mechanism
Much like etherfind, tcpdump writes a log file of the frames traversing an ethernet 
interface.    Each output line includes the time a packet is received, the type of packet, 
and various values from its header.

Caveats
None.

Bugs
None known.

Limitations
Public domain version requires a kernel patch for SunOS.

Hardware Required
Ethernet.

Software Required
BSD UNIX or related OS, or VMS.    

Availability
Available, though subject to copyright restrictions, via anonymous FTP from 
ftp.ee.lbl.gov.    The source and documentation for the tool is in compressed tar format, in
file tcpdump.tar.Z.    Also available from spam.itstd.sri.com, in directory pub.    For VMS 
hosts with DEC ethernet controllers, available as part of TGV MultiNet IP software 
package.



RFC-1147 Network Tools Directory

tcplogger 

Keywords
traffic; IP; eavesdrop; UNIX; free.

Abstract
Tcplogger consists of modifications to the 4.3BSD UNIX source code, and a large library of
post-processing software.    Tcplogger records timestamped information from TCP and IP 
packets that are sent and received on a specified connection.    For each TCP packet, 
information such as sequence number, acknowledgement sequence number, packet size,
and header flags is recorded.    For an IP packet, header length, packet length and TTL 
values are recorded.    Customized use of the TCP option field allows the detection of lost 
or duplicate pack ets.    

Mechanism
Routines of 4.3BSD UNIX in the netinet directory have been modified to append 
information to a log in memory. The log is read continuously by a user process and 
written to a file.    A TCP option has been added to start the logging of a connection.    Lots
of post processing software has been written to analyze the data.

Caveats
None.

Bugs
None known.

Limitations
To get a log at both ends of the connection, the modified kernel should be run at both the
hosts.    All connections are logged in a single file, but software is provided to filter out 
the record of a single connection.

Hardware Required
No restrictions.

Software Required
4.3BSD UNIX (as modified for this tool). 

Availability
Free, although a 4.3BSD license is required.    Contact Olafur Gudmundsson 
(ogud@cs.umd.edu).                                                                                          



RFC-1147 Network Tools Directory

TokenVIEW

Keywords
control, manager, status; ring; NMS, proprietary; DOS. 

Abstract
Network Management tool for 4/16 Mbit IEEE 802.5 Token Ring Networks.    Monitors 
active nodes and ring errors. Maintains database of nodes, wire centers and their 
connections.    Separate network management ring allows remote configuration of wire 
centers. 

Mechanism
A separate network management ring used with Proteon Intelligent Wire Centers allows 
wire center configuration information to be read and modified from a single remote 
workstation.    A log of network events used with a database contain nodes, wire centers 
and their connections, facilitates tracking and correction of network errors. Requires an 
"E" series PROM, sold with package. 

Caveats
Currently, only ISA bus cards support the required E series PROM. 

Bugs
None known.

Limitations
256 nodes, 1 net.

Hardware Required
512K RAM, CGA or better, hard disk, mouse supported.

Software Required
MS-DOS, optional mouse driver

Availability
Fully supported product of Proteon, Inc.    Previously sold as Advanced Network Manager 
(ANM).    For more infomation, contact: 

Proteon, Inc.
2 Technology Drive
Westborough, MA    01581
Phone: (508) 898-2800
Fax:      (508) 366-8901
Telex: 928124



RFC-1147 Network Tools Directory

traceroute

Keywords
routing; IP; ping; UNIX, VMS; free.

Abstract
Traceroute is a tool that allows the route taken by packets from source to destination to 
be discovered. It can be used for situations where the IP record route option would fail, 
such as intermediate gateways discarding packets, routes that exceed the capacity of an
datagram, or intermediate IP implementations that don't support record route.    Round 
trip delays between the source and intermediate gateways are also reported allowing the
determination of individual gateways contribution to end-to-end delay. 
Enhanced versions of traceroute have been developed that allow specification of loose 
source routes for datagrams.    This allows one to investigate the return path from remote
machines back to the local host. 

Mechanism
Traceroute relies on the ICMP TIME_EXCEEDED error reporting mechanism.    When an IP 
packet is received by an gateway with a time-to-live value of 0, an ICMP packet is sent to
the host which generated the packet. By sending packets to a destination with a TTL of 0,
the next hop can be identified as the source of the ICMP TIME EXCEEDED message.    By 
incrementing the TTL field the subsequent hops can be identified.    Each packet sent out 
is also time stamped.    The time stamp is returned as part of the ICMP packet so a round 
trip delay can be calculated. 

Caveats
Some IP implementations forward packets with a TTL of 0, thus escaping identification.    
Others use the TTL field in the arriving packet as the TTL for the ICMP error reply, which 
delays identification. 
Sending datagrams with the source route option will cause some gateways to crash.    It 
is considered poor form to repeat this behavior. 

Bugs
None known.

Limitations
Most versions of UNIX have errors in the raw IP code that require kernel mods for the 
standard version of traceroute to work.    A version of traceroute exists that runs without 
kernel mods under SunOS 3.5 (see below), but it only operates over an ethernet inter 
face. 

Hardware Required
No restrictions.

Software Required
BSD UNIX or related OS, or VMS.

Availability
Available by anonymous FTP from ftp.ee.lbl.gov, in file traceroute.tar.Z.    It is also 
available from uc.msc.umn.edu. 



A version of traceroute that supports Loose Source Record Route, along with the source 
code of the required kernel modifications and a Makefile for installing them, is available 
via anonymous FTP from zerkalo.harvard.edu, in directory pub, file traceroute_pkg.tar.Z. 
A version of traceroute that runs under SunOS 3.5 and does NOT require kernel mods is 
available via anonymous FTP from dopey.cs.unc.edu, in file ~ftp/pub/traceroute.tar.Z. 
For VMS, traceroute is available as part of TGV MultiNet IP software package. 



RFC-1147 Network Tools Directory

TRPT -- transliterate protocol trace

Keywords
traffic; IP; eavesdrop; UNIX; free.

Abstract
TRPT displays a trace of a TCP socket events.    When no options are supplied, TRPT prints
all the trace records found in a system, grouped according to TCP connection protocol 
control block (PCB). 
An example of TRPT output is:

38241 ESTABLISHED:input
[e0531003..e0531203)@6cc5b402(win=4000)<ACK> -> ESTA BLISHED
38241 ESTABLISHED:user RCVD -> ESTABLISHED
38266 ESTABLISHED:output
6cc5b402@e0531203(win=4000)<ACK> -> ESTABLISHED
38331 ESTABLISHED:input
[e0531203..e0531403)@6cc5b402(win=4000)<ACK,FIN,PUSH>
-> CLOSE_WAIT
38331 CLOSE_WAIT:output
6cc5b402@e0531404(win=3dff)<ACK> -> CLOSE_WAIT
38331 CLOSE_WAIT:user RCVD -> CLOSE_WAIT
38343 LAST_ACK:output
6cc5b402@e0531404(win=4000)<ACK,FIN> -> LAST_ACK
38343 CLOSE_WAIT:user DISCONNECT -> LAST_ACK
38343 LAST_ACK:user DETACH -> LAST_ACK

Mechanism
TRPT interrogates the buffer of TCP trace records that is created when a TCP socket is 
marked for debugging. 

Caveats
Prior to using TRPT, an analyst should take steps to isolate the problem connection and 
find the address of its protocol control blocks. 

Bugs
None reported.

Limitations
A socket must have the debugging option set for TRPT to operate.    Another problem is 
that the output format of TRPT is difficult. 

Hardware Required
No restrictions.

Software Required
BSD UNIX or related OS.

Availability
Included with BSD and SunOS distributions.    Available via anonymous FTP from 



uunet.uu.net, in file bsdsources/src/etc/trpt.tar.Z. 



RFC-1147 Network Tools Directory

TTCP

Keywords
benchmark, generator; IP; ping; UNIX, VMS; free.

Abstract
TTCP is a traffic generator that can be used for testing end-to-end throughput.    It is good
for evaluating TCP/IP implementations. 

Mechanism
Cooperating processes are started on two hosts.    The open a TCP connection and 
transfer a high volume of data.    Delay and throughput are calculated. 

Caveats
Will greatly increase system load.

Bugs
None known.

Limitations
None reported.

Hardware Required
No restrictions.

Software Required
BSD UNIX or related OS, or VMS.

Availability
Source for BSD UNIX is available via anonymous FTP from vgr.brl.mil, in file 
ftp/pub/ttcp.c, and from sgi.com, in file sgi/src/ttcp.c.    A version of TTCP has also been 
submitted to the USENET news group comp.sources.unix.    For VMS, ttcp.c is included in 
the MultiNet Programmer's Kit, a standard feature of TGV MultiNet IP software package.



RFC-1147 Network Tools Directory

Unisys Network Control Center (NCC)
Keywords

alarm, benchmark, control, generator, manager, map, reference, status, traffic; ethernet,
FDDI, IP; NMS, ping, SNMP; UNIX.

Abstract
The Unisys Defense Systems Network Control Center (NCC) provides high-performance 
software to support the management and control of TCP/IP-based networks.    The 
network management system uses the Simple Network Management Protocol (SNMP) to 
exchange management information between the NCC and network devices.    The NCC 
supports the Management Information Base (MIB) [RFC-1066] and the Structure and 
Identification of Management Information for TCP/IP-based Internets [RFC-1065].    In 
addition, Unisys has extended the MIB definitions to support the features of Unisys FDDI 
LAN devices, such as the FDDI Smart Concentrators, the FDDI Host Network Front Ends, 
and the Remote FDDI, FDDI-to-LAN, and FDDI-to-DDN gateways.    The NCC supports 
seven applications.    The network topology map displays the physical and logical maps of
the network.    The configuration management tool supports the modification and 
validation of network device configuration data as well as the modification of MIB 
configuration data.    The performance monitoring tool supports the collection and 
analysis of statistical parameters from network devices.    The status monitoring tool 
reports on the up/down status and responsiveness of network devices using ICMP.    The 
accounting tool is used to collect, store, and display user job activity at the subscriber 
hosts.    The NCC database entry sup ports RFC 1066 object definitions and Unisys-
specific object definitions to support the Unisys FDDI devices. And finally, the trap 
reporting tool reports the arrival of error and event notifications using UDP datagrams.    
The NCC supports all the trap messages defined in RFC 1098.

Mechanism
The NCC is based on the Simple Network Management Pro tocol (SNMP). 

Caveats
None.

Bugs
None known.

Limitations
None reported.

Hardware Required
A minimal platform consists of a Sun 3/60FC-8, with at least 200 MB disk and cartridge 
tape (1/4").    A full sized color monitor, more disk, and a workstation based on a higher 
performance processor is beneficial to NCC activities. 

Software Required
SunOS Version 4.0 running the SunView windowing environment and the SYBASE 
Relational Data Base Manage ment System. 

Availability
Commercially available as a turn-key package or as a software product from: 

Unisys Defense Systems



5151 Camino Ruiz
Camarillo, California 93010
(805) 987-6811
(Dale Russell <dsr@cam.unisys.com>)



RFC-1147 Network Tools Directory

WIN/MGT Station -- Network Management Station for SunOS. 

Keywords
alarm, control, manager, routing, status, traffic; ethernet, IP; NMS, SNMP, X; UNIX; library.

Abstract
WIN/MGT Station for SunOS is a network management software product based on the 
SNMP.    It provides the capability to manage standards-based networking products from 
The Wollongong Group as well as other ven dors.    Fully compliant with RFCs 1065, 1066 
and 1098, WIN/MGT Station uses a menu-driven graphical user interface. 
WIN/MGT capabilities include configuration, performance and fault management for 
SNMP-based agents.    The WIN/MGT station can perform polling to monitor the status of 
all MIB variables defined in RFC 1066, "Management Information Base for network 
management of TCP/IP-based internets."    In addition, the WIN/MGT Station can process 
"trap" messages from SNMP agents. Furthermore, the WIN/MGT Station can support any 
private extension to the Management Information Base with minimal user configuration. 
An icon-driven network interface map allows the user to monitor their network topology 
and status.    Changes in the operational status of any manageable network element is 
displayed visually and audibly. 
The WIN/MGT package includes an Applications Programming Interface (API) for the "C" 
language.    The API is a set of libraries that enable an applications program to perform 
SNMP "set" and "get" operations.    This allows users to integrate site-specific applications
with WIN/MGT. 
SNMP agent software for the Sun 3 host is also provided so that the Network 
Management Station itself can also be monitored and managed. 

Mechanism
The WIN/MGT Station uses SNMP to monitor and control SNMP agents. 

Caveats
None.

Bugs
None known.

Limitations
A theoretical limitation of approximately 18,000 network elements can be managed. 

Hardware Required
Any model of Sun 3 system.    Recommended minimums include 8 MB RAM, 100 MB disk 
space (30 MB to start), and color monitor.    Also tested on DECstation 3100, PS/2 (with 
SCO UNIX) and Macintosh IIcx computer using A/UX. 

Software Required
SunOS 4.x.    MIT X Window System, Release 11, version 3, or OpenWindows (X.11/NeWS)
from Sun Microsystems, Inc. WIN/MGT Station for SunOS is provided on 1/4" tape in cpio 
format. 

Availability



A commercial product of:
The Wollongong Group, Inc.
1129 San Antonio Rd.
Palo Alto, CA    94303
(415) 962-7200 br fax (415) 968-3619
internet    oldera@twg.com



RFC-1147 Network Tools Directory

xnetmon, xpmon

Keywords
alarm, manager, map, status; IP; NMS, SNMP; UNIX.

Abstract
Xnetmon and xpmon provide graphical representation of performance and status of 
SNMP-capable network ele ments. Xnetmon presents a schematic network map 
representing the up/down status of network elements; xpmon draws a pen plot style 
graph of the change over time of any arbitrary MIB object (RFC1066).    Both xnetmon 
and xpmon use the SNMP (RFC1098) for retrieving status and performance data. 

Mechanism
Xnetmon polls network elements for the status of their interfaces on a controllable 
polling interval.    Pop-up windows displaying the values of any MIB variable are 
supported by separate polls.    When SNMP traps are received from a network element, 
that element and all adjacent elements are immediately re-polled to update their status.  
The layout of the network map is statically configured.    Xpmon repeatedly polls (using 
SNMP) the designated network element for the value of the designated MIB variable on 
the user-specified interval. The change in the variable is then plotted on the strip chart.    
The strip chart regularly adjusts its scale to the current maximum value on the graph. 

Caveats
Polling intervals should be chosen with care so as not to affect system performance 
adversely. 

Bugs
None known.

Limitations
None reported.

Hardware Required
Distributed and supported for Sun-3 systems.

Software Required
SunOS 3.5 or 4.x; X11, release 2 or 3.

Availability
Commercial product of:

Wellfleet Communications, Inc.
12 DeAngelo Drive
Bedford, MA 01730-2204
(617) 275-2400



RFC-1147 Network Tools Directory

XNETMON
an X windows based SNMP network management station

from SNMP Research. 

Keywords
alarm, control, manager, map, routing, security, status; DECnet, ethernet, IP, OSI, ring, 
star; NMS, SNMP, X; DOS, UNIX, VMS; sourcelib. 

Abstract
The XNETMON application implements a powerful network management station based on
the X window system.    It provides network managers tools for fault management, 
configuration management, performance management, and security management.    It 
can be successfully used with many types of networks including those based on various 
LAN media, and wide area networks.    XNETMON has been used with multiprotocol 
devices including those which support TCP/IP, DECnet, and OSI protocols.    The fault 
management tool displays the map of the network configuration with node and link state
indicated in one of several colors to indicate current status.    Alarms may be enabled to 
alert the operator of events occurring in the network.    Events are logged to disk.    The 
configuration management tool may be used to edit the network management 
information base stored in the network management station to reflect changes occurring 
in the network.    Other features include graphs and tabular tools for use in fault and 
performance management and mechanisms by which additional variables, such as 
vendor-specific variables, may be added.    The XNETMON application comes complete 
with source code including a powerful set of portable libraries for generating and parsing 
SNMP messages.    Output data from XNETMON may be transferred via flat files for 
additional report generation by a variety of statistical packages. 

Mechanism
The XNETMON application is based on the Simple Network Management Protocol (SNMP). 
Polling is performed via the powerful SNMP get-next operator and the SNMP get operator. 
Trap directed polling is used to regulate the focus and intensity of the polling. 

Caveats
None.

Bugs
None known.

Limitations
The monitored and managed nodes must implement the SNMP over UDP per RFC 1098 or
must be reachable via a proxy agent. 

Hardware Required
X windows workstation with UDP socket library.    Monochrome is acceptable but color is 
far superior. 

Software Required
X windows version 11 release 3 or later.

Availability



This is a commercial product available under license from: 
SNMP Research
P.O. Box 8593
Knoxville, TN 37996-4800
(615) 573-1434 (Voice)
(615) 573-9197 (FAX)
Attn:    Dr. Jeff Case



RFC-1147 Network Tools Directory

xnetperfmon
a graphical network performance and fault management tool

from SNMP Research. 

Keywords
manager, status; DECnet, ethernet, IP, OSI, ring, star; NMS, SNMP, X; DOS, UNIX, VMS; 
sourcelib. 

Abstract
Xnetperfmon may be used to plot SNMP variables as a graphical display.    These graphs 
are often useful for fault and performance management.    Variables may be plotted as 
gauges versus time.    Alternatively, counters may be plotted as delta count/delta time 
(rates).    The user may easily customize the variables to be plotted, labels, step size, 
update interval, and the like.    The scales automatically adjust whenever a point to be 
plotted would go off scale. 

Mechanism
The xnetperfmon application communicates with remote agents or proxy agents via the 
Simple Network Manage ment Protocol (SNMP). 

Caveats
All plots for a single invocation of xnetperfmon must be for variables provided by a single
network management agent.    However, multiple invocations of xnetperfmon may be 
active on a single display simultaneously or proxy agents may be used to summarize 
information at a common point. 

Bugs
None known.

Limitations
None reported.

Hardware Required
Systems supporting X windows.

Software Required
X Version 11 release 2 or later.

Availability
This is a commercial product available under license from: 

SNMP Research
P.O. Box 8593
Knoxville, TN 37996-4800
(615) 573-1434 (Voice)
(615) 573-9197 (FAX)
Attn:    Dr. Jeff Case



RFC-1147 Network Tools Directory

xup

Keywords
status; ping, X; HP.

Abstract
Xup uses the X-Windows to display the status of an "interesting" set of hosts. 

Mechanism
Xup uses ping to determine host status.

Caveats
Polling for status increases network load.

Bugs
None known.

Limitations
None reported.

Hardware Required
Runs only on HP series 300 and 800 workstations.

Software Required
Version 10 of X-Windows.

Availability
A standard command for the HP 300 & 800 Workstations.



RFC-1147 Network Tools Directory

Network Management Tutorial

Introduction
Network Management Goals and Functions
System Monitoring
Fault Detection and Isolation

A Network Model as a Diagnostic Framework
A Simple Procedure for Connectivity Check
Limited Connectivity

Performance Testing
Configuration Management

Required Host Configuration Data
Connecting to THE Internet
YP and DNS: Dualing Name Servers

Internet Security
Basic Internet Security
Security Information Clearing-Houses

Internet Information
Final Words



RFC-1147 Network Tools Directory - Network Management Tutorial

Introduction

This tutorial is an overview of the practice of network management. Reading this section is 
no substitute for knowing your system, and knowing how it is used.    Do not wait until things
break to learn what they ought to do or how they usually work: a crisis is not the time for 
determining how "normal" packet traces should look.    Furthermore, it takes little 
imagination to realize that you do not want to be digging through manuals while your boss is
screaming for network service to be restored. 
We assume an acquaintance with the TCP/IP protocol suite and the Internet architecture.    
There are many available references on these topics, several of which are listed below in 
Section 7. 
Since many of the details of network management are systemspecific, this tutorial is a bit 
superficial.    There is, however, a more fundamental problem in prescribing network 
management practices: network management is not a well- understood endeavor.    At 
present, the cutting edge of network management is the use of distributed systems to 
collect and exchange status information, and then to display the data as histograms or trend
lines.    It is not clear that we know what data should be collected, how to analyze it when we
get it, or how to structure our collection systems.    For now, automated, real-time control of 
internets is an aspiration, rather than a reality.    The communications systems that we field 
are apparently more complex than we can comprehend, which no doubt accounts in part for 
their fre- quently surprising behavior. 
The first section of this tutorial lists the overall goals and functions of network management. 
It presents several aspects of network management, including system monitoring, fault 
detection and isolation, performance testing, configuration management, and security.    
These discussions are followed by a bibliographic section. The tutorial closes with some final 
advice for network managers. 



RFC-1147 Network Tools Directory - Network Management Tutorial

Network Management Goals and Functions

An organization's view of network management goals is shaped by two factors: 
1.      people in the organization depend on the system working,
2.      LANs, routers, lines, and other communications resources have costs.

From the organizational vantage point, the ultimate goal of network management is to 
provide a consistent, predictable, acceptable level of service from the available data 
communications resources.    To achieve this, a network manager must first be able to 
perform fault detection, isolation, and correction.    He must also be able to effect 
configuration changes with a minimum of disruption, and measure the utilization of system 
components. 
People actually managing networks have a different focus.    Network managers are usually 
evaluated by the availability and performance of their communications systems, even 
though many factors of net performance are beyond their control.    To them, the most 
important requirement of a network management tool is that it allows the detection and 
diagnosis of faults before users can call to complain: users (and bosses) can often be 
placated just by knowing that a network problem has been diagnosed.    Another vital 
network management func- tion is the ability to collect data that justify current or future 
expenditures for the data communications plant and staff. 
Following a section on system monitoring, this tutorial addresses fault, performance, 
configuration, and security management.    By fault management, we mean the detection, 
diagnosis, and correction of network malfunctions.    Under the subject of performance 
management, we include support for predictable, efficient service, as well as capacity 
planning and capacity testing.    Configuration management includes support for orderly 
configuration changes (usually, system growth), and local administration of component 
names and addresses.    Security management includes both protecting system components 
from damage and protecting sensitive information from unintentional or malicious disclosure
or corruption. 
Readers familiar with the ISO management standards and drafts will note both that we have 
borrowed heavily from the "OSI Management Framework," except that we have omitted the 
"account management" function.    Account management seems a bit out of place with the 
other network management functions.    The logging required by account management is 
likely to be done by specialized, dedicated subsystems that are distinct from other network 
management components. Hence, this tutorial does not cover account management. Rest 
assured, however, that account management, if required, will be adequately supported and 
staffed. 
For those with a DoD background, security may also seem out of place as a subtopic of 
network management.    Without doubt, communications security is an important issue that 
should be considered in its own right.    Because of the requirements of trust for security 
mechanisms, security components will probably not be integrated subcomponents of a 
larger network management system.    Nevertheless, because a network manager has a 
responsibility to protect his system from undue security risks, this tutorial includes a discus- 
sion on internet security. 



RFC-1147 Network Tools Directory - Network Management Tutorial

System Monitoring

System monitoring is a fundamental aspect of network management.    One can divide 
system monitoring into two rough categories: error detection and baseline monitoring. 
System errors, such as misformatted frames or dropped packets, are not in themselves 
cause for concern.    Spikes in error rates, however, should be investigated.    It is sound 
practice to log error rates over time, so that increases can be recognized.    Furthermore, 
logging error rates as a func- tion of traffic rates can be used to detect congestion.    
Investigate unusual error rates and other anomalies as they are detected, and keep a 
notebook to record your discoveries. 
Day-to-day traffic should be monitored, so that the operational baselines of a system and its 
components can be determined.    As well as being essential for performance management, 
baseline determination and traffic monitoring are the keys to early fault detection. 
A preliminary step to developing baseline measurements is construction of a system map: a 
graphical representation of the system components and their interfaces.    Then, 
measurements of utilization (i.e., use divided by capacity) are needed.    Problems are most 
likely to arise, and system tuning efforts are most likely to be beneficial, at highly utilized 
components. 
It is worthwhile to develop a source/destination traffic matrix, including a breakdown of 
traffic between the local system and other internet sites.    Both volume and type of traffic 
should be logged, along with its evolution over time.    Of particular interest for systems with 
diskless workstations is memory swapping and other disk server access.    For all systems, 
broadcast traffic and routing traffic should be monitored.    Sudden increases in the variance 
of delay or the volume of routing traffic may indicate thrashing or other soft failures. 
In monitoring a system, long-term averages are of little use.    Hourly averages are a better 
indicator of system use. Variance in utilization and delay should also be tracked. Sudden 
spikes in variance are tell-tale signs that a problem is looming or exists.    So, too, are trends 
of increased packet or line errors, broadcasts, routing traffic, or delay. 



RFC-1147 Network Tools Directory - Network Management Tutorial

Fault Detection and Isolation

When a system fails, caution is in order.    A net manager should make an attempt to 
diagnose the cause of a system crash before rebooting. In many cases, however, a quick 
diagnosis will not be possible.    For some high priority applications, restoring at least some 
level of service will have priority over fault repair or even complete fault diagnosis.    This 
necessitates prior planning.    A net manager must know the vital applications at his site.    If 
applications require it, he must also have a fall-back plan for bringing them online. 
Meanwhile, repeated crashes or hardware failures are unambiguous signs of a problem that 
must be corrected. 
A network manager should prepare for fault diagnosis by becoming familiar with how 
diagnostic tools respond to network failure.    In times of relative peace, a net manager 
should occasionally unplug the network connection from an unused workstation and then 
"debug" the problem. 
When diagnosing a fault or anomaly, it is vital to proceed in an orderly manner, especially 
since network faults will usually generate spurious as well as accurate error messages.    
Remember to keep in mind that the network itself is failing.    Do not place too much trust in 
anything obtained remotely.    Furthermore, it is unlikely to be significant that remote 
information such as DNS names or NFS files cannot be obtained.    Even spurious messages 
can be revealing, because they pro- vide clues to the problem.    From the data at hand, 
develop working hypotheses about probable causes of the problems you detect.    Direct your
further data gathering efforts so that the information you get will either refute or support 
your hypotheses. 
An orderly approach to debugging is facilitated if it is guided by a model of network 
behavior.    The following portions of this section present such a model, along with a 
procedure for checking network connectivity.    The section concludes with some hints for 
diagnosing a particularly tricky class of connectivity problem. 



RFC-1147 Network Tools Directory - Network Management Tutorial

A Network Model as a Diagnostic Framework

The point of having a model of how things work is to have a basis for developing educated 
guesses about how things go wrong.    The problem of cascading faults -- faults generating 
other faults -- makes use of a conceptual model a virtual necessity. 
In general, only problems in a component's hardware or operating system will generate 
simultaneous faults in multiple protocol layers. Otherwise, faults will propagate vertically (up
the protocol stack) or horizontally (between peer-level communications components). 
Applying a conceptual model that includes the architectural relations of net- work 
components can help to order an otherwise senseless barrage of error messages and 
symptoms. 
The model does not have to be formal or complex to bring structure to debugging efforts.    A
useful start is something as simple as the following: 

1.  Applications programs use transport services: TCP/UDP.    Before using 
service, applications that accept host names as parameters must translate
the names into IP addresses.    Translation may be based on a static table 
lookup (/etc/hosts file in UNIX hosts), the DNS, or yellow pages.    Nslookup 
and DiG are tools for monitoring the activities of the DNS. 

2. Transport protocol implementations use IP services.    The local IP module 
makes the initial decision on forwarding.    An IP datagram is forwarded 
directly to the destination host if the destination is on the same network as
the source. 
Otherwise, the datagram is forwarded to a gateway attached to the 
network.    On BSD hosts, the contents of a host's routing table are 
visible by use of the "netstat" command.

3. IP implementations translate the IP address of a datagram's next hop 
(either the destination host or a gateway) to a local network address.    For 
ethernets, the Address Resolution Protocol (ARP) is commonly used for this
translation.    On BSD systems, an interface's IP address and other 
configuration options can be viewed by use of the "ifconfig" command, 
while the contents of a host's ARP cache may be viewed by use of "arp" 
command. 

4. IP implementations in hosts and gateways route datagrams based on 
subnet and net identifiers.    Subnetting is a means of allocating and 
preserving IP address space, and of insulating users from the topological 
details of a multi-network campus. Sites that use subnetting reserve 
portions of the IP address's host identifier to indicate particular networks 
at their campus.    Subnetting is highly system-dependent.    The details are
a critical, though local, issue.    As for routing between separate networks, 
a variety of gateway-to-gateway protocols are used.    Traceroute is a 
useful tool for investigating routing problems.    The tool, "query," can be 
used to examine RIP routing tables. 

A neophyte network manager should expand the above description so that it accurately 
describes his particular system, and learn the tools and techniques for monitoring the 
operations at each of the above stages. 





RFC-1147 Network Tools Directory - Network Management Tutorial

A Simple Procedure for Connectivity Check

In this section, we describe a procedure for isolating a TCP/IP connectivity problem. In this 
procedure, a series of tests methodically examine connectivity from a host, starting with 
nearby resources and working outward. The steps in our connectivity-testing procedure are: 

1. As an initial sanity check, ping your own IP address and the loopback 
address. 

2. Next, try to ping other IP hosts on the local subnet. Use numeric addresses
when starting off, since this eliminates the name resolvers and host tables 
as potential sources of problems.    The lack of an answer may indicate 
either that the destination host did not respond to ARP (if it is used on your
LAN), or that a datagram was forwarded (and hence, the destination IP 
address was resolved to a local media address) but that no ICMP Echo 
Reply was received.    This could indicate a length-related problem, or 
misconfigured IP Security. 

3. If an IP router (gateway) is in the system, ping both its near and far-side 
addresses. 

4. Make sure that your local host recognizes the gateway as a relay.    (For 
BSD hosts, use netstat.) 

5. addresses - Still using numeric IP addresses, try to ping hosts beyond the 
gateway.    If you get no response, run hopcheck or traceroute, if available.  
Note whether your packets even go to the gateway on their way to the 
destination,. If not, examine the methods used to instruct your host to use 
this gateway to reach the specified destination net (e.g., is the default 
route in place? Alternatively, are you successfully wire-tapping the IGP 
messages broadcast on the net you are attached to?) 
If traceroute is not available, ping, netstat, arp, and a knowledge of the
IP addresses of all the gateway's interfaces can be used to isolate the 
cause of the problem.    Use netstat to determine your next hop to the 
destination.    Ping that IP address to ensure the router is up.    Next, 
ping the router interface on the far subnet. If the router returns 
"network unreachable" or other errors, investigate the router's routing 
tables and interface status.    If the pings succeed, ping the close 
interface of the succeeding next hop gateway, and so on.    Remember 
the routing along the outbound and return paths may be different. 

6. Once ping is working with numeric addresses, use ping to try to reach a 
few remote hosts by name.    If ping fails when host names are used, check
the operation of the local name-mapping system (i.e., with nslookup or 
DiG).    If you want to use "shorthand" forms ("myhost" instead of 
"myhost.mydomain.com"), be sure that the alias tables are correctly 
configured. 

7. Once basic reachability has been established with ping, try some TCP-
based applications: FTP and TELNET are supported on almost all IP hosts, 
but FINGER is a simpler protocol.    The Berkeley-specific protocols (RSH, 
RCP, REXEC and LPR) require extra configuration on the server host before 
they can work, and so are poor choices for connectivity testing. 

If problems arise in steps 2-7 above, rerunning the tests while executing a line monitor (e.g.,



etherfind, netwatch, or tcpdump) can help to pinpoint the problem. 
The above procedure is sound and useful, especially if little is known about the cause of the 
connectivity problem.    It is not, however, guaranteed to be the shortest path to diagnosis.    
In some cases, a binary search on the problem might be more effective (i.e., try a test "in 
the middle," in a spot where the failure modes are well defined).    In other cases, available 
information might so strongly suggest a particular failure that immediately testing for it is in 
order.    This last "approach," which might be called "hunting and pecking," should be used 
with caution: chasing one will o' the wisp after another can waste much time and effort. 
Note that line problems are still among the most common causes of connectivity loss.    
Problems in transmission across local media are outside the scope of this tutorial.    But, if a 
host or workstation loses or cannot establish connectivity, check its physical connection. 



RFC-1147 Network Tools Directory - Network Management Tutorial

Limited Connectivity

An interesting class of problems can result in a particularly mysterious failure: TELNET or 
other low-volume TCP connections work, but large file transfers fail.    FTP transfers may 
start, but then hang.    There are several possible culprits in this problem.    The most likely 
suspects are IP implementations that cannot fragment or reassemble datagrams, and TCP 
implementations that do not perform dynamic window sizing (a.k.a. Van Jacobson's "Slow 
Start" algorithm). Another possibility is mixing incompatible frame formats on an ethernet. 
Even today, some IP implementations in the Internet cannot correctly handle fragmentation 
or reassembly.    They will work fine for small packets, but drop all large packets. 
The problem can also be caused by buffer exhaustion at gateways that connect interfaces of
widely differing bandwidth.    Datagrams from a TCP connection that traverses a bottleneck 
will experience queue delays, and will be dropped if buffer resources are depleted.    The 
congestion can be made worse if the TCP implementation at the traffic source does not use 
the recommended algorithms for computing retransmission times, since spuriously 
retransmitted datagrams will only add to the congestion.    Fragmentation, even if correctly 
implemented, will compound this problem, since processing delays and congestion will be 
increased at the bottleneck. 
Serial Line Internet Protocol (SLIP) links are especially vulnerable to this and other 
congestion problems.    SLIP lines are typically an order of magnitude slower than other 
gateway interfaces.    Also, the SLIP lines are at times configured with MTUs (Maximum 
Transfer Unit, the maximum length of an IP datagram for a particular subnet) as small as 256
bytes, which virtually guarantees fragmentation. 
To alleviate this problem, TCP implementations behind slow lines should advertise small 
windows.    Also, if possible, SLIP lines should be configured with an MTU no less than 576 
bytes.    The tradeoff to weigh is whether interactive traffic will be penalized too severly by 
transmission delays of lengthy datagrams from concurrent file transfers. 
Misuse of ethernet trailers can also cause the problem of hanging file transfers.    "Trailers" 
refers to an ethernet frame format optionally employed by BSD systems to minimize buffer 
copying by system software.    BSD systems with ethernet interfaces can be configured to 
send large frames so that their address and control data are at the end of a frame (hence, a 
"trailer" instead of a "header").    After a memory page is allocated and loaded with a 
received ethernet frame, the ethernet data will begin at the start of the memory page 
boundary.    Hence, the ethernet control informa- tion can be logically stripped from the end 
merely by adjusting the page's length field.    By manipulating virtual memory mapping, this 
same page (sans ethernet control infor- mation), can then be passed to the local IP module 
without additional allocation and loading of memory. The disadvan- tage in using trailers is 
that it is non-standard. Many implementations cannot parse trailers. 
The hanging FTP problem will appear if a gateway is not configured to recognize trailers, but 
a host or gateway immediately "upstream" on an ethernet uses them.    Short datagrams will
not be formatted with trailers, and so will be processed correctly.    When the bulk data 
transfer starts, how- ever, full-sized frames will be sent, and will use the trailer format.    To 
the gateway that receives them, they appear simply as misformatted frames, and are 
quietly dropped.    The solution, obviously, is to insure that all hosts and gateways on an 
ethernet are consistent in their use of trailers.    Note that RFC 1122, "Internet Host 
Requirements," places very strict restrictions on the use of trailers. 



RFC-1147 Network Tools Directory - Network Management Tutorial

Performance Testing

Performance management encompasses two rather different activities. One is passive 
system monitoring to detect problems and determine operational baselines.    The goal is to 
measure system and component utilization and so locate bottlenecks, since bottlenecks 
should receive the focus of performance tuning efforts.    Also, performance data is usually 
required by upper level management to justify the costs of communications systems.    This 
is essentially identical to system monitoring, and is addressed at greater length in Section 2,
above. 
Another aspect of performance management is active performance testing and capacity 
planning.    Some work in this area can be based on analysis.    For example, a rough estimate
of gateway capacity can be deduced from a simple model given by Charles Hedrick in his 
"Introduction to Administration of an Internet-based Local Network," which is 

per-packet processing time = switching time + (packet size) * (transmission bps).
Another guideline for capacity planning is that in order to avoid excessive queuing delays, a 
system should be sized at about double its expected load.    In other words, system capacity 
should be so high that utilization is no greater than 50%. 
Although there are more sophisticated analytic models of communications systems than 
those above, their added complexity does not usually gain a corresponding accuracy.    Most 
analytic models of communications nets require assumptions about traffic load distributions 
and service rates that are not merely problematic, but are patently false.    These errors tend
to result in underestimating queuing delays.    Hence, it is often necessary to actually load 
and measure the performance of a real communications system if one is to get accurate 
performance predictions.    Obviously, this type of testing is performed on isolated systems 
or during off hours.    The results can be used to evaluate parameter settings or predict 
performance during normal operations. 
Simulations can be used to supplement the testing of real systems. To be believable, 
however, simulations require validation, which, in turn, requires measurements from a real 
system.    Whether testing or simulating a system's performance, actual traffic traces should 
be incorporated as input to traffic generators.    The performance of a communi- cations 
system will be greatly influenced by its load characteristics (burstiness, volume, etc.), which 
are them- selves highly dependent on the applications that are run. 
When tuning a net, in addition to the usual configuration parameters, consider the impact of 
the location of gateways and print and file servers.    A few rules of thumb can guide the 
location of shared system resources.    First, there is the principle of locality: a system will 
perform better if most traffic is between nearby destinations.    The second rule is to avoid 
creating bottlenecks.    For example, multiple diskservers may be called for to support a large
number of workstations.    Furthermore, to avoid LAN and diskserver congestion, 
workstations should be configured with enough memory to avoid frequent swapping. 
As a final note on performance management, proceed cautiously if your ethernet interface 
allows you to customize its collision recovery algorithm.    This is almost always a bad idea.    
The best that it can accomplish is to give a few favored hosts a disproportionate share of the
ethernet bandwidth, perhaps at the cost of a reduction in total sys- tem throughput.    Worse,
it is possible that differing collision recovery algorithms may exhibit a self-synchronizing 
behavior, so that excess collisions are generated. 



RFC-1147 Network Tools Directory - Network Management Tutorial

Configuration Management

Configuration management is the setting, collecting, and storing of the state and 
parameters of network resources. It overlaps all other network management functions.    
Hence, some aspects of configuration management have already been addressed (e.g., 
tuning for performance).    In this section, we will focus on configuration management 
activities needed to "hook up" a net or campus to a larger internet.    We will not, of course, 
include specific details on installing or maintaining internetted communications systems.    
We will, however, skim over some of the TCP/IP configuration highlights. 
Configuration management includes "name management" -- the control and allocation of 
system names and addresses, and the translation between names and addresses.    Name-
toaddress translation is performed by "name servers." We con- clude this section with a few 
strictures on the simultaneous use of two automated name-servers, the Domain Name 
System (DNS), and Yellow Pages (YP). 



RFC-1147 Network Tools Directory - Network Management Tutorial

Required Host Configuration Data for TCP/IP internets

In a TCP/IP internet, each host needs several items of information for internet 
communications.    Some will be host-specific, while other information will be common for all 
hosts on a subnet.    In a soon to be published RFC document, R. Droms identifies the 
following configuration data required by internet hosts: 

o An IP address, a host specific value that can be hard-coded or obtained via
BOOTP, the Reverse Address Resolution Protocol (RARP) or Dynamic RARP 
(DRARP). 

o Subnet properties, such as the subnet mask and the Maximum 
Transmission Unit (MTU); obviously, these values are not host-specific. 

o Addresses of "entry" gateways to the internet; addresses of default 
gateways are usually hard coded; though the ICMP "redirect" message can 
be used to refine a host's routing tables, there is currently no dynamic 
TCP/IP mechanism or protocol for a host to locate a gateway; an IETF 
working group is busy on this problem. 

o For hosts in internets using the Domain Name System (DNS) for name-to-
address translation, the location of a local DNS server is needed; this 
information is not host-specific, and usually hard-coded; 

o Host name (domain name, for hosts using DNS); obviously host-specific; 
either hard-coded or obtained in a boot procedure. 

o For diskless hosts, various boot services.    BOOTP is the standard Internet 
protocol for downloading boot configuration information.    The Trivial File 
Transfer Protocol (TFTP) is typically used for downloading boot images.    
Sun computers use the "bootparams" RPC mechanism for downloading 
initial configuration data to a host. 

There are ongoing developments, most notably the work of the Dynamic Host Configuration 
Working Group of the IETF, to support dynamic, automatic gathering of the above data.    In 
the meantime, most systems will rely on hand-crafted configuration files. 



RFC-1147 Network Tools Directory - Network Management Tutorial

Connecting to THE Internet

The original TCP/IP Internet (spelled with an upper-case "I") is still active, and still growing.    
An interesting aspect of the Internet is that it spans many independently administered 
systems. 
Connection to the Internet requires: a registered network number, for use in IP addresses; a 
registered autonomous system number (ASN), for use in internet routing; and, a registered 
domain name.    Fielding a primary and backup DNS server is a condition for registering a 
domain name. 
The Defense Data Network (DDN) Network Information Center (NIC) is responsible for 
registering network numbers, autonomous system numbers, and domain names.    Regional 
nets will have their own policies and requirements for Internet connections, but all use the 
NIC for this registration service.    Contact the NIC for further information, at: 

DDN Network Information Center
SRI International, Room EJ291
333 Ravenswood Avenue
Menlo Park, CA    94025

Email:      HOSTMASTER@NIC.DDN.MIL
Phone:      1-415-859-3695                                              1-800-235-3155 (toll-free hotline)



RFC-1147 Network Tools Directory - Network Management Tutorial

YP and DNS: Dueling name servers.

The Domain Name System (DNS) provides name service: it translates host names into IP 
addresses (this mapping is also called "resolution").    Two widespread DNS implementations 
are "bind" and "named."    The Sun Yellow Pages (YP) system can be configured to provide an
identical service, by providing remote, keyed access to the "hosts.byname" map.    
Unfortunately, if both DNS and the YP hosts.byname map are installed, they can interact in 
disruptive ways. 
The problem has been noted in systems in which DNS is used as a fallback, to resolve 
hostnames that YP cannot.    If DNS is slow in responding, the timeout in program ypserv 
may expire, which triggers a repeated request.    This can result in disaster if DNS was 
initially slow because of congestion: the slower things get, the more requests are generated,
which slows things even more.    A symptom of this problem is that failures by the DNS 
server or network will trigger numerous requests to DNS. 
Reportedly, the bug in YP that results in the avalanche of DNS requests has been repaired in 
SunOS 4.1.    The problem, however, is more fundamental than an implementation error. The 
YP map hosts.byname and the DNS contain the same class of information.    One can get an 
answer to the same query from each system.    These answers may well be different: there is
not a mechanism to maintain consistency between the systems.    More critical, however, is 
the lack of a mechanism or procedure to establish which system is authoritative. Hence, 
running the DNS and YP name services in parallel is pointless.    If the systems stay 
consistent, then only one is needed.    If they differ, there is no way to choose which is 
correct. 
The YP hosts.byname service and DNS are comparable, but incompatible. If possible, a site 
should not run both services.    Because of Internet policy, sites with Internet con- nections 
MUST use the DNS. If YP is also used, then it should be configured with YP-to-DNS disabled. 
Hacking a system so that it uses DNS rather than the YP hosts.byname map is not trivial, 
and should not be attempted by novices.    The approach is to rebuild the shared C 
linklibrary, so that system calls to gethostbyname() and gethostbyaddr() will use DNS rather 
than YP. To complete the change, programs that do not dynamically link the shared C library 
(rcp, arp, etc.)    must also be rebuilt. 
Modified shared C libraries for Sun 3s and Sun 4s are available via anonymous FTP from host
uunet.uu.net, in the sun- fixes directory. Note that use of DNS routines rather than YP for 
general name resolution is not a supported SunOS feature at this time. 



RFC-1147 Network Tools Directory - Network Management Tutorial

Internet Security

The guidelines and advice in this section pertain to enhancing the protection of data that are
merely "sensitive."    By themselves, these measures are insufficient for protecting 
"classified" data. Implementing the policies required to protect classified data is subject to 
stringent, formal review procedures, and is regulated by agencies such as the Defense 
Investigative Service (DIS) and the National Secu- rity Agency (NSA). 
A network manager must realize that he is responsible for protecting his system and its 
users.    Furthermore, though the Internet may appear to be a grand example of a 
cooperative joint enterprise, recent incidents have made it clear that not all Internet 
denizens are benign. 
A network manager should be aware that the network services he runs have a large impact 
on the security risks to which his system is exposed.    The prudent network manager will be 
very careful as to what services his site provides to the rest of the Internet, and what access 
restrictions are enforced.    For example, the protocol "finger" may provide more information 
about a user than should be given to the world at large.    Worse, most implementations of 
the protocol TFTP give access to all world-readable files. 
This section highlights several basic security considerations for Internet sites.    It then lists 
several sources of information and advice on improving the security of systems connected to
the Internet. 



RFC-1147 Network Tools Directory - Network Management Tutorial

Basic Internet Security

Two major Internet security threats are denial of service and unauthorized access. 
Denial of service threats often take the form of protocol spoofers or other malicious traffic 
generators.    These problems can be detected through system monitoring logs.    If an attack 
is suspected, immediately contact your regional net office (e.g., SURANET, MILNET). In 
addition, DDN users should contact SCC, while other Internet users should con- tact CERT 
(see below).    A cogent description of your system's symptoms will be needed. 
At your own site, be prepared to isolate the problems (e.g., by limiting disk space available 
to the message queue of a mail system under attack).    As a last resort, coping with an 
attack may require taking down an Internet connection.    It is better, however, not to be too 
quick to quarantine your site, since information for coping with the attack may come via the 
Internet. 
Unauthorized access is a potentially more ominous security threat.    The main avenues are 
attacks against passwords and attacks against privileged system processes. 
An appallingly common means of gaining entry to systems is by use of the initial passwords 
to root, sysdiag, and other management accounts that systems are shipped with.    Only 
slightly less vulnerable are common or trivial passwords, since these are readily subverted 
by dictionary attacks. Obvious steps can reduce the risk of password attacks: passwords 
should be short-lived, at least eight characters long, with a mix of upper and lower case, and
preferably random.    The distasteful aspect of memorizing a random string can be alleviated 
if the password is pronounceable. 
Improving passwords does not remove all risks.    Passwords transmitted over an ethernet 
are visible to all attached systems.    Furthermore, gateways have the potential to intercept 
passwords used by any FTP or TELNET connections that traverse them.    It is a bad idea for 
the root account to be accessed by FTP or TELNET if the connections must cross untrusted 
elements. 
Attacks against system processes are another avenue of unauthorized access.    The 
principle is that by subverting a sys- tem process, the attacker can then gain its access 
privileges. 
One approach to reducing this risk is to make system programs harder to subvert.    For 
example, the widespread attack in November 1988 by a self-replicating computer program 
("worm," analogous to a tapeworm) subverted the "fingerd" process, by loading an intrusive 
bootstrap program (known variously as a "grappling hook" or "vector" program), and then 
corrupting the stack space so that a subroutine's return address was overwritten with the 
address of the bootstrap program.    The security hole in fingerd consisted of an input routine
that did not have a length check.    Security fixes to "fingerd" include the use of a revised 
input routine. 
A more general protection is to apply the principle of "least privilege."    Where possible, 
system routines should run under separate user IDs, and should have no more privilege than
is necessary for them to function. 
To further protect against attacks on system processes, system managers should regularly 
check their system programs to ensure that they have not been tampered with or modified 
in any way.    Checksums should be used for this purpose.    Using the operating system to 
check a file's last date of modifi- cation is insufficient, since the date itself can be 
compromised. 
Finally, to avoid the unauthorized replacement of system code, care should be exercised in 



assigning protection to its directory paths. 
Some system programs actually have "trap doors" that facilitate subversion.    A trap door is 
the epitome of an undocu- mented feature: it is a hidden capability of a system pro- gram 
that allows a knowledgeable person to gain access to a system.    The Internet Worm 
exploited what was essentially a trap door in the BSD sendmail program. 
Ensuring against trap doors in software as complex as sendmail may be infeasible.    In an 
ideal world, the BSD sendmail program would be replaced by an entire mail subsystem (i.e., 
perhaps including mail user agents, mail transfer agents, and text preparation and filing 
programs).    Any site using sendmail should at least obtain the less vulnerable, toughened 
distribution from ucbarpa.berkeley.edu, in file ~ftp/4.3/sendmail.tar.Z.    Sites running SunOS 
should note that the 4.0.3 release closed the security holes exploited by the Internet Worm.   
Fixes for a more obscure security hole in SunOS are available from host uunet.uu.net in 
~ftp/sun-fixes; these improvements have been incorporated in SunOS 4.1. 
Sendmail has problems other than size and complexity.    Its use of root privileges, its 
approach to alias expansion, and several other design characteristics present potential 
avenues of attack.    For UNIX sites, an alternative mail server to consider is MMDF, which is 
now at version 2.    MMDF is distributed as part of the SCO UNIX distribution, and is also 
available in the user contributed portion of 4.3BSD.    Though free, MMDF is licensed, and 
resale is restricted. Sites running MMDF should be on the mmdf email list; requests to join 
this list should be sent to: mmdf2-request@relay.cs.net. 
Programs that masquerade as legitimate system code but which contain trap doors or other 
aides to unauthorized access are known as trojan horses.    Computer "viruses," intrusive 
software that infects seemingly innocent programs and propagates when the infected 
programs are executed or copied, are a special case of trojan horse programs.* 
To guard against trojan horse attacks, be wary of programs downloaded from remote 
sources.    At minimum, do not download executables from any but the most trusted sources. 
Also, as noted above, to avoid proliferation of "infected" software, checksums should be 
computed, recorded, and periodically verified. 



RFC-1147 Network Tools Directory - Network Management Tutorial

Security Information Clearing-Houses

The Internet community can get security assistance from the Computer Emergency 
Response Team (CERT), established by DARPA in November 1988.    The Coordination Center 
for the CERT (CERT/CC) is located at the Software Engineering Institute at Carnegie Mellon 
University. The CERT is intended to respond to computer security threats such as the 
November '88 worm attack that invaded many defense and research com- puters.    Consult 
RFC 1135 (Reynolds, J., "The Helminthiasis of the Internet", USC/ISI, December 1989), for 
further information. 
CERT assists Internet sites in response to security attacks or other emergency situations.    It 
can immediately tap experts to diagnose and solve the problems, as well as establish and 
maintain communications with the affected computer users and with government authorities
as appropriate.    Specific responses will be taken in accordance with the nature of the 
problem and the magnitude of the threat. 
CERT is also an information clearing-house for the identification and repair of security 
vulnerabilities, informal assessments of existing systems in the research community, 
improvement to emergency response capability, and both vendor and user security 
awareness.    This security information is distributed by periodic bulletins, and is posted to 
the USENET news group comp.security.announce.    In addition, the security advisories issued
by CERT, as well as other useful security-related information, are available via anonymous 
FTP from cert.sei.cmu.edu. 
For immediate response to attacks or incidents, CERT mans a 24-hour hotline at (412) 268-
7090.    To subscribe to CERT's security announcement bulletin, or for further information, 
contact: 

CERT
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA    15213-3890
(412) 268-7080
cert@cert.sei.cmu.edu.

For DDN users, the Security Coordination Center (SCC) serves a function similar to CERT.    
The SCC is the DDN's clearinghouse for host/user security problems and fixes, and works 
with the DDN Network Security Officer.    The SCC also distributes the DDN Security Bulletin, 
which communicates information on network and host security exposures, fixes, and con- 
cerns to security and management personnel at DDN facili- ties.    It is available online, via 
kermit or anonymous FTP, from nic.ddn.mil, in SCC:DDN-SECURITY-yy-nn.TXT (where "yy" is 
the year and "nn" is the bulletin number).    The SCC provides immediate assistance with 
DDN-related host security problems; call (800) 235-3155 (6:00 a.m. to 5:00 p.m.    Pacific 
Time) or send e-Mail to SCC@NIC.DDN.MIL.    For 24 hour coverage, call the MILNET Trouble 
Desk (800) 451-7413 or AUTOVON 231-1713. 
The CERT/CC and the SCC communicate on a regular basis and support each other when 
problems occur.    These two organizations are examples of the incident response centers 
that are forming; each serving their own constituency or focusing on a particular area of 
technology. 
Other network groups that discuss security issues are: comp.protocols.tcp-ip, comp.virus 
(mostly PC-related, but occasionally covers Internet topics), misc.security, and the BITNET 
Listserv list called VIRUS-L. 





RFC-1147 Network Tools Directory - Network Management Tutorial

Internet Information

There are many available references on the TCP/IP protocol suite, the internet architecture, 
and the DDN Internet.    A soon to be published FYI RFC document, "Where to Start: A 
Bibliography of General Internetworking Information." provides a bibliography of online and 
hard copy documents, reference materials, and multimedia training tools that address 
general networking information and "how to use the Internet."    It presents a representative 
collection of materials that will help the reader become familiar with the concepts of 
internetworking.    Inquires on the current status of this document can be sent to user-
doc@nnsc.nsf.net or by postal mail to: 

Corporation for National Research Initiatives
1895 Preston White, Suite 100
Reston, VA    22091
Attn: IAB Secretariat.

Two texts on networking are especially noteworthy.    Internetworking With TCP/IP, by Douglas
Comer, is an informative description of the TCP/IP protocol suite and its underlying 
architecture.    The UNIX System Administration Handbook, by Nemeth, Snyder, and Seebass,
is a "must have" for system administrators who are responsible for UNIX hosts.    In addi- tion
to covering UNIX, it provides a wealth of tutorial material on networking, the Internet, and 
network management. 
A great deal of information on the Internet is available online.    An automated, online 
reference service is available from CSNET.    To obtain a bibliography of their online offerings, 
send the email message 

request: info
topic: help
request: end

to info-server@sh.cs.net.
The DDN NIC also offers automated access to many NIC documents, online files, and WHOIS 
information via electronic mail.    To use the service, send an email message with your 
request specified in the SUBJECT field of the message.    For a sampling of the type of 
offerings available through this service, send the following message 

To: SERVICE@NIC.DDN.MIL
Subject: help
Msg: <none>

The DDN Protocol Implementations and Vendors Guide, published by the DDN Network 
Information Center (DDN NIC), is an online reference to products and implementations 
associated with the DoD Defense Data Network (DDN) group of com- munication protocols, 
with emphasis on TCP/IP and OSI proto- cols.    It contains information on protocol policy and 
evaluation procedures, a discussion of software and hardware implementations, and analysis
tools with a focus on protocol and network analyzers.    To obtain the guide, invoke FTP at 
your local host and connect to host NIC.DDN.MIL (internet address 26.0.0.73 or 10.0.0.51).    
Log in using username 'anonymous' with password 'guest' and get the file 
NETINFO:VENDORS-GUIDE.DOC. 
The DDN Protocol Guide is also available in hardcopy form. To obtain a hardcopy version of 
the guide, contact the DDN Network Information Center: 

By U.S. mail:



SRI International
DDN Network Information Center
333 Ravenswood Avenue, Room EJ291
Menlo Park, CA 94025

By e-mail:
NIC@NIC.DDN.MIL

By phone:
1-415-859-3695
1-800-235-3155 (toll-free hotline)

For further information about the guide, or for information on how to list a product in a 
subsequent edition of the guide, contact the DDN NIC. 
There are many additional online sources on Internet Management.    RFC 1118, "A 
Hitchhiker's Guide to the Internet," by Ed Krol, is a useful introduction to the Internet routing 
algorithms.    For more of the nitty-gritty on laying out and configuring a campus net, see 
Charles Hedrick's "Introduction to Administration of an Internet-based Local Network," 
available via anonymous FTP from cs.rutgers.edu (sometimes listed in host tables as 
aramis.rutgers.edu), in subdirectory runet, file tcp-ip-admin.    Finally, anyone responsible for 
systems connected to the Internet must be thoroughly versed in the Host Requirements 
RFCs (RFC 1122 and RFC 1123) and "Requirements for Internet Gateways," RFC 1009. 



RFC-1147 Network Tools Directory - Network Management Tutorial

The Final Words on Internet Management

Keep smiling, no matter how bad things may seem.    You are the expert.    They need you. 



RFC-1147 Network Tools Directory

Author's Address

Robert H. Stine
SPARTA, Inc.
7926 Jones Branch Drive
Suite 1070
McLean, VA 22102

EMail: STINE@SPARTA.COM



Initial forwarding may actually be complex and vulnerable to multiple points of failure.    For 
example, when sending an IP datagram, 4.3BSD hosts first look for a route to the particular 
host.    If none has been specified for the destination, then a search is made for a route to the
network of the destination. If this search also fails, then as a last resort, a search is made for
a route to a "default" gateway.    Routes to hosts, networks, and the "default" gateway may 
be static, loaded at boot time and perhaps updated by operator commands.    Alternatively, 
they may be dynamic, loaded from redirects and routing protocol updates. 



Thanks to James VanBokkelen, president of FTP Software, for sharing with us a portion of a 
PC/TCP support document, the basis for the above connectivity procedure. 



To avoid this problem, TCP implementations on the In- ternet must use "exponential backoff" 
between succes- sive retransmissions, Karn's algorithm for filtering samples used to 
estimate round-trip delay between TCP peers, and Jacobson's algorithm for incorporating 
vari- ance into the "retransmission time-out" computation for TCP segments.    See Section 
4.2.3.1 of RFC 1122, "Requirements for Internet Hosts Communication Layers." 



Draft "Dynamic Configuration of Internet Hosts."



Exotic fantasy creatures and women's names are well represented in most password 
dictionaries.



An early account of the Internet Worm incident of November 1988 is given by Eugene 
Spafford in the January 89 issue of "Computer Communications Review."    Several other 
articles on the worm incident are in the June 89 issue of the "Communications of the ACM." 



Virus attacks have been seen against PCs, but as yet have rarely been directed agains UNIX 
systems. 



Products mentioned in the guide are not specifically endorsed or recommended by the 
Defense Communications Agency (DCA). 



RFC-1155 Structure and Identification
of

Management Information
for

TCP/IP Based Internets
Marshall Rose & Keith McCloghrie

May 1990

Status of this Memo
Introduction
Structure and Identification of Management Information

Names
Syntax
Encodings

Managed Objects
Guidelines for Object Names
Object Types and Instances
Macros for Managed Objects

Extensions to the MIB
Definitions
Acknowledgements
Authors' Addresses



RFC-1155 Structure and Identification of Management Information

Status of this Memo

This RFC is a re-release of RFC 1065, with a changed "Status of this Memo", plus a few minor
typographical corrections.    The technical content of the document is unchanged from RFC 
1065. 
This memo provides the common definitions for the structure and identification of 
management information for TCP/IP-based internets. In particular, together with its 
companion memos which describe the management information base along with the 
network management protocol, these documents provide a simple, workable architecture 
and system for managing TCP/IP-based internets and in particular, the Internet. 
This memo specifies a Standard Protocol for the Internet community. Its status is 
"Recommended".    TCP/IP implementations in the Internet which are network manageable 
are expected to adopt and implement this specification. 
The Internet Activities Board recommends that all IP and TCP implementations be network 
manageable.    This implies implementation of the Internet MIB (RFC-1156) and at least one 
of the two recommended management protocols SNMP (RFC-1157) or CMOT (RFC-1189). It 
should be noted that, at this time, SNMP is a full Internet standard and CMOT is a draft 
standard.    See also the Host and Gateway Requirements RFCs for more specific information 
on the applicability of this standard. 
Please refer to the latest edition of the "IAB Official Protocol Standards" RFC for current 
information on the state and status of standard Internet protocols. 
Distribution of this memo is unlimited.



RFC-1155 Structure and Identification of Management Information

Introduction

This memo describes the common structures and identification scheme for the definition of 
management information used in managing TCP/IP-based internets.    Included are 
descriptions of an object information model for network management along with a set of 
generic types used to describe management information.    Formal descriptions of the 
structure are given using Abstract Syntax Notation One (ASN.1) [1]. 
This memo is largely concerned with organizational concerns and administrative policy:    it 
neither specifies the objects which are managed, nor the protocols used to manage those 
objects.    These concerns are addressed by two companion memos:    one describing the 
Management Information Base (MIB) [RFC-1156], and the other describing the Simple 
Network Management Protocol (SNMP) [RFC-1157]. 
This memo is based in part on the work of the Internet Engineering Task Force, particularly 
the working note titled "Structure and Identification of Management Information for the 
Internet" [4].    This memo uses a skeletal structure derived from that note, but differs in one 
very significant way:    that note focuses entirely on the use of OSI-style network 
management.    As such, it is not suitable for use with SNMP. 
This memo attempts to achieve two goals:    simplicity and extensibility.    Both are motivated
by a common concern:    although the management of TCP/IP-based internets has been a 
topic of study for some time, the authors do not feel that the depth and breadth of such 
understanding is complete.    More bluntly, we feel that previous experiences, while giving 
the community insight, are hardly conclusive.    By fostering a simple SMI, the minimal 
number of constraints are imposed on future potential approaches; further, by fostering an 
extensible SMI, the maximal number of potential approaches are available for 
experimentation. 
It is believed that this memo and its two companions comply with the guidelines set forth in 
RFC 1052, "IAB Recommendations for the Development of Internet Network Management 
Standards" [5] and RFC 1109, "Report of the Second Ad Hoc Network Management Review 
Group" [6].    In particular, we feel that this memo, along with the memo describing the 
management information base, provide a solid basis for network management of the 
Internet. 



RFC-1155 Structure and Identification of Management Information

Structure and Identification of Management Information

Managed objects are accessed via a virtual information store, termed the Management 
Information Base or MIB.    Objects in the MIB are defined using Abstract Syntax Notation One
(ASN.1) [1]. 
Each type of object (termed an object type) has a name, a syntax, and an encoding.    The 
name is represented uniquely as an OBJECT IDENTIFIER.    An OBJECT IDENTIFIER is an 
administratively assigned name.    The administrative policies used for assigning names are 
discussed later in this memo. 
The syntax for an object type defines the abstract data structure corresponding to that 
object type.    For example, the structure of a given object type might be an INTEGER or 
OCTET STRING.    Although in general, we should permit any ASN.1 construct to be available 
for use in defining the syntax of an object type, this memo purposely restricts the ASN.1 
constructs which may be used.    These restrictions are made solely for the sake of simplicity.
The encoding of an object type is simply how instances of that object type are represented 
using the object's type syntax.    Implicitly tied to the notion of an object's syntax and 
encoding is how the object is represented when being transmitted on the network.    This 
memo specifies the use of the basic encoding rules of ASN.1 [7]. 
It is beyond the scope of this memo to define either the MIB used for network management 
or the network management protocol.    As mentioned earlier, these tasks are left to 
companion memos.    This memo attempts to minimize the restrictions placed upon its 
companions so as to maximize generality.    However, in some cases, restrictions have been 
made (e.g., the syntax which may be used when defining object types in the MIB) in order to
encourage a particular style of management. Future editions of this memo may remove 
these restrictions. 



RFC-1155 Structure and Identification of Management Information - Structure

Names

Names are used to identify managed objects.    This memo specifies names which are 
hierarchical in nature.    The OBJECT IDENTIFIER concept is used to model this notion.    An 
OBJECT IDENTIFIER can be used for purposes other than naming managed object types; for 
example, each international standard has an OBJECT IDENTIFIER assigned to it for the 
purposes of identification.    In short, OBJECT IDENTIFIERs are a means for identifying some 
object, regardless of the semantics associated with the object (e.g., a network object, a 
standards document, etc.) 
An OBJECT IDENTIFIER is a sequence of integers which traverse a global tree.    The tree 
consists of a root connected to a number of labeled nodes via edges.    Each node may, in 
turn, have children of its own which are labeled.    In this case, we may term the node a 
subtree.    This process may continue to an arbitrary level of depth. Central to the notion of 
the OBJECT IDENTIFIER is the understanding that administrative control of the meanings 
assigned to the nodes may be delegated as one traverses the tree.    A label is a pairing of a 
brief textual description and an integer. 
The root node itself is unlabeled, but has at least three children directly under it:    one node 
is administered by the International Organization for Standardization, with label iso(1); 
another is administrated by the International Telegraph and Telephone Consultative 
Committee, with label ccitt(0); and the third is jointly administered by the ISO and the CCITT,
joint-iso-ccitt(2). 
Under the iso(1) node, the ISO has designated one subtree for use by other (inter)national 
organizations, org(3).    Of the children nodes present, two have been assigned to the U.S. 
National Institutes of Standards and Technology.    One of these subtrees has been 
transferred by the NIST to the U.S. Department of Defense, dod(6). 
As of this writing, the DoD has not indicated how it will manage its subtree of OBJECT 
IDENTIFIERs.    This memo assumes that DoD will allocate a node to the Internet community, 
to be administered by the Internet Activities Board (IAB) as follows: 

internet        OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }
That is, the Internet subtree of OBJECT IDENTIFIERs starts with the prefix: 

1.3.6.1.
This memo, as a standard approved by the IAB, now specifies the policy under which this 
subtree of OBJECT IDENTIFIERs is administered.    Initially, four nodes are present: 

directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
experimentalOBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }

Directory
Mgmt
Experimental
Private



RFC-1155 Structure and Identification of Management Information - Names

Directory

The directory(1) subtree is reserved for use with a future memo that discusses how the OSI 
Directory may be used in the Internet. 



RFC-1155 Structure and Identification of Management Information - Names

Mgmt

The mgmt(2) subtree is used to identify objects which are defined in IAB-approved 
documents.    Administration of the mgmt(2) subtree is delegated by the IAB to the Internet 
Assigned Numbers Authority for the Internet.    As RFCs which define new versions of the 
Internet- standard Management Information Base are approved, they are assigned an 
OBJECT IDENTIFIER by the Internet Assigned Numbers Authority for identifying the objects 
defined by that memo. 
For example, the RFC which defines the initial Internet standard MIB would be assigned 
management document number 1.    This RFC would use the OBJECT IDENTIFIER 

{ mgmt 1 }
or

1.3.6.1.2.1
in defining the Internet-standard MIB.
The generation of new versions of the Internet-standard MIB is a rigorous process.    Section 
5 of this memo describes the rules used when a new version is defined. 



RFC-1155 Structure and Identification of Management Information - Names

Experimental

The experimental(3) subtree is used to identify objects used in Internet experiments.    
Administration of the experimental(3) subtree is delegated by the IAB to the Internet 
Assigned Numbers Authority of the Internet. 
For example, an experimenter might received number 17, and would have available the 
OBJECT IDENTIFIER 

{ experimental 17 }
or

1.3.6.1.3.17
for use.
As a part of the assignment process, the Internet Assigned Numbers Authority may make 
requirements as to how that subtree is used. 



RFC-1155 Structure and Identification of Management Information - Names

Private

The private(4) subtree is used to identify objects defined unilaterally.    Administration of the 
private(4) subtree is delegated by the IAB to the Internet Assigned Numbers Authority for 
the Internet.    Initially, this subtree has at least one child: 

enterprises      OBJECT IDENTIFIER ::= { private 1 }
The enterprises(1) subtree is used, among other thigs, to permit parties providing 
networking subsystems to register models of their products. 
Upon receiving a subtree, the enterprise may, for example, define new MIB objects in this 
subtree.    In addition, it is strongly recommended that the enterprise will also register its 
networking subsystems under this subtree, in order to provide an unambiguous 
identification mechanism for use in management protocols.    For example, if the 
"Flintstones, Inc."    enterprise produced networking subsystems, then they could request a 
node under the enterprises subtree from the Internet Assigned Numbers Authority.    Such a 
node might be numbered: 

1.3.6.1.4.1.42
The "Flintstones, Inc." enterprise might then register their "Fred Router" under the name of: 

1.3.6.1.4.1.42.1.1



RFC-1155 Structure and Identification of Management Information - Structure

Syntax

Syntax is used to define the structure corresponding to object types. ASN.1 constructs are 
used to define this structure, although the full generality of ASN.1 is not permitted. 
The ASN.1 type ObjectSyntax defines the different syntaxes which may be used in defining 
an object type. 

3.2.1 Primitive Types
3.2.1.1 Guidelines for Enumerated INTEGERs

3.2.2 Constructor Types
3.2.3 Defined Types



RFC-1155 Structure and Identification of Management Information - Syntax

Primitive Types

Only the ASN.1 primitive types INTEGER, OCTET STRING, OBJECT IDENTIFIER, and NULL are 
permitted.    These are sometimes referred to as non-aggregate types. 



RFC-1155 Structure and Identification of Management Information - Syntax

Guidelines for Enumerated INTEGERs

If an enumerated INTEGER is listed as an object type, then a named- number having the 
value 0 shall not be present in the list of enumerations.    Use of this value is prohibited. 



RFC-1155 Structure and Identification of Management Information - Syntax

Constructor Types

The ASN.1 constructor type SEQUENCE is permitted, providing that it is used to generate 
either lists or tables. 
For lists, the syntax takes the form:

SEQUENCE { <type1>, ..., <typeN> }
where each <type> resolves to one of the ASN.1 primitive types listed above.    Further, 
these ASN.1 types are always present (the DEFAULT and OPTIONAL clauses do not appear in 
the SEQUENCE definition). 
For tables, the syntax takes the form:

SEQUENCE OF <entry>
where <entry> resolves to a list constructor.
Lists and tables are sometimes referred to as aggregate types.



RFC-1155 Structure and Identification of Management Information - Syntax

Defined Types

In addition, new application-wide types may be defined, so long as they resolve into an 
IMPLICITly defined ASN.1 primitive type, list, table, or some other application-wide type.    
Initially, few application-wide types are defined.    Future memos will no doubt define others 
once a consensus is reached. 

3.2.3.1 NetworkAddress
3.2.3.2 IpAddress
3.2.3.3 Counter
3.2.3.4 Gauge
3.2.3.5 TimeTicks
3.2.3.6 Opaque



RFC-1155 Structure and Identification of Management Information - Defined Types

NetworkAddress

This CHOICE represents an address from one of possibly several protocol families.    
Currently, only one protocol family, the Internet family, is present in this CHOICE. 



RFC-1155 Structure and Identification of Management Information - Defined Types

IpAddress

This application-wide type represents a 32-bit internet address.    It is represented as an 
OCTET STRING of length 4, in network byte-order. 
When this ASN.1 type is encoded using the ASN.1 basic encoding rules, only the primitive 
encoding form shall be used. 



RFC-1155 Structure and Identification of Management Information - Defined Types

Counter

This application-wide type represents a non-negative integer which monotonically increases 
until it reaches a maximum value, when it wraps around and starts increasing again from 
zero.    This memo specifies a maximum value of 2^32-1 (4294967295 decimal) for counters.



RFC-1155 Structure and Identification of Management Information - Defined Types

Gauge

This application-wide type represents a non-negative integer, which may increase or 
decrease, but which latches at a maximum value.    This memo specifies a maximum value of
2^32-1 (4294967295 decimal) for gauges. 



RFC-1155 Structure and Identification of Management Information - Defined Types

TimeTicks

This application-wide type represents a non-negative integer which counts the time in 
hundredths of a second since some epoch.    When object types are defined in the MIB which 
use this ASN.1 type, the description of the object type identifies the reference epoch. 



RFC-1155 Structure and Identification of Management Information - Defined Types

Opaque

This application-wide type supports the capability to pass arbitrary ASN.1 syntax.    A value is
encoded using the ASN.1 basic rules into a string of octets.    This, in turn, is encoded as an 
OCTET STRING, in effect "double-wrapping" the original ASN.1 value. 
Note that a conforming implementation need only be able to accept and recognize opaquely-
encoded data.    It need not be able to unwrap the data and then interpret its contents. 
Further note that by use of the ASN.1 EXTERNAL type, encodings other than ASN.1 may be 
used in opaquely-encoded data. 



RFC-1155 Structure and Identification of Management Information - Structure

Encodings

Once an instance of an object type has been identified, its value may be transmitted by 
applying the basic encoding rules of ASN.1 to the syntax for the object type. 



RFC-1155 Structure and Identification of Management Information

Managed Objects

Although it is not the purpose of this memo to define objects in the MIB, this memo specifies
a format to be used by other memos which define these objects. 
An object type definition consists of five fields:
OBJECT:

A textual name, termed the OBJECT DESCRIPTOR, for the object type, along with its 
corresponding OBJECT IDENTIFIER. 

Syntax:
The abstract syntax for the object type.    This must resolve to an instance of the ASN.1 
type ObjectSyntax (defined below). 

Definition:
A textual description of the semantics of the object type. Implementations should ensure 
that their instance of the object fulfills this definition since this MIB is intended for use in 
multi-vendor environments.    As such it is vital that objects have consistent meaning 
across all machines. 

Access:
One of read-only, read-write, write-only, or not-accessible.

Status:
One of mandatory, optional, or obsolete.

Future memos may also specify other fields for the objects which they define. 



RFC-1155 Structure and Identification of Management Information - Managed 
Objects

Guidelines for Object Names

No object type in the Internet-Standard MIB shall use a sub- identifier of 0 in its name.    This 
value is reserved for use with future extensions. 
Each OBJECT DESCRIPTOR corresponding to an object type in the internet-standard MIB shall
be a unique, but mnemonic, printable string.    This promotes a common language for 
humans to use when discussing the MIB and also facilitates simple table mappings for user 
interfaces. 



RFC-1155 Structure and Identification of Management Information - Managed 
Objects

Object Types and Instances

An object type is a definition of a kind of managed object; it is declarative in nature.    In 
contrast, an object instance is an instantiation of an object type which has been bound to a 
value.    For example, the notion of an entry in a routing table might be defined in the MIB.    
Such a notion corresponds to an object type; individual entries in a particular routing table 
which exist at some time are object instances of that object type. 
A collection of object types is defined in the MIB.    Each such subject type is uniquely named
by its OBJECT IDENTIFIER and also has a textual name, which is its OBJECT DESCRIPTOR.    
The means whereby object instances are referenced is not defined in the MIB.    Reference to 
object instances is achieved by a protocol-specific mechanism:    it is the responsibility of 
each management protocol adhering to the SMI to define this mechanism. 
An object type may be defined in the MIB such that an instance of that object type 
represents an aggregation of information also represented by instances of some number of 
"subordinate" object types.    For example, suppose the following object types are defined in 
the MIB: 
OBJECT:

atIndex { atEntry 1 }
Syntax:

INTEGER
Definition:

The interface number for the physical address.
Access:

read-write.
Status:

mandatory.

OBJECT:
atPhysAddress { atEntry 2 }

Syntax:
OCTET STRING

Definition:
The media-dependent physical address.

Access:
read-write.

Status:
mandatory.

OBJECT:



atNetAddress { atEntry 3 }
Syntax:

NetworkAddress
Definition:

The network address corresponding to the media-dependent physical address. 
Access:

read-write.
Status:

mandatory.

Then, a fourth object type might also be defined in the MIB:
OBJECT:

atEntry { atTable 1 }
Syntax:

AtEntry ::= SEQUENCE {
atIndex
INTEGER,
atPhysAddress
OCTET STRING,
atNetAddress
NetworkAddress
}

Definition:
An entry in the address translation table.

Access:
read-write.

Status:
mandatory.

Each instance of this object type comprises information represented by instances of the 
former three object types.    An object type defined in this way is called a list. 
Similarly, tables can be formed by aggregations of a list type.    For example, a fifth object 
type might also be defined in the MIB: 
OBJECT:

atTable { at 1 }
Syntax:

SEQUENCE OF AtEntry
Definition:

The address translation table.
Access:



read-write.
Status:

mandatory.

such that each instance of the atTable object comprises information represented by the set 
of atEntry object types that collectively constitute a given atTable object instance, that is, a 
given address translation table. 
Consider how one might refer to a simple object within a table.
Continuing with the previous example, one might name the object type

{ atPhysAddress }
and specify, using a protocol-specific mechanism, the object instance

{ atNetAddress } = { internet "10.0.0.52" }
This pairing of object type and object instance would refer to all instances of atPhysAddress 
which are part of any entry in some address translation table for which the associated 
atNetAddress value is { internet "10.0.0.52" }. 
To continue with this example, consider how one might refer to an aggregate object (list) 
within a table.    Naming the object type 

{ atEntry }
and specifying, using a protocol-specific mechanism, the object instance 

{ atNetAddress } = { internet "10.0.0.52" }
refers to all instances of entries in the table for which the associated atNetAddress value is {
internet "10.0.0.52" }. 
Each management protocol must provide a mechanism for accessing simple (non-
aggregate) object types.    Each management protocol specifies whether or not it supports 
access to aggregate object types.    Further, the protocol must specify which instances are 
"returned" when an object type/instance pairing refers to more than one instance of a type. 
To afford support for a variety of management protocols, all information by which instances 
of a given object type may be usefully distinguished, one from another, is represented by 
instances of object types defined in the MIB. 



RFC-1155 Structure and Identification of Management Information - Managed 
Objects

Macros for Managed Objects

In order to facilitate the use of tools for processing the definition of the MIB, the OBJECT-TYPE
macro may be used.    This macro permits the key aspects of an object type to be 
represented in a formal way. 

OBJECT-TYPE MACRO ::=
BEGIN

TYPE NOTATION ::= "SYNTAX" type (TYPE ObjectSyntax)
"ACCESS" Access
"STATUS" Status

VALUE NOTATION ::= value (VALUE ObjectName)

Access ::= "read-only"
| "read-write"
| "write-only"
| "not-accessible"

Status ::= "mandatory"
| "optional"
| "obsolete"

END
Given the object types defined earlier, we might imagine the following definitions being 
present in the MIB: 

atIndex OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
::= { atEntry 1 }

atPhysAddress OBJECT-TYPE
SYNTAX    OCTET STRING
ACCESS    read-write
STATUS    mandatory
::= { atEntry 2 }

atNetAddress OBJECT-TYPE
SYNTAX    NetworkAddress
ACCESS    read-write
STATUS    mandatory
::= { atEntry 3 }

atEntry OBJECT-TYPE
SYNTAX    AtEntry
ACCESS    read-write
STATUS    mandatory
::= { atTable 1 }

atTable OBJECT-TYPE



SYNTAX    SEQUENCE OF AtEntry
ACCESS    read-write
STATUS    mandatory
::= { at 1 }

AtEntry ::= SEQUENCE {
atIndex

INTEGER,
atPhysAddress

OCTET STRING,
atNetAddress

NetworkAddress
}

The first five definitions describe object types, relating, for example, the OBJECT 
DESCRIPTOR atIndex to the OBJECT IDENTIFIER { atEntry 1 }.    In addition, the syntax of this 
object is defined (INTEGER) along with the access permitted (read-write) and status 
(mandatory).    The sixth definition describes an ASN.1 type called AtEntry. 



RFC-1155 Structure and Identification of Management Information

Extensions to the MIB

Every Internet-standard MIB document obsoletes all previous such documents.    The portion 
of a name, termed the tail, following the OBJECT IDENTIFIER 

{ mgmt version-number }
used to name objects shall remain unchanged between versions.    New versions may: 

(1) declare old object types obsolete (if necessary), but not delete their 
names; 

(2) augment the definition of an object type corresponding to a list by 
appending non-aggregate object types to the object types in the list; or, 

(3) define entirely new object types.
New versions may not:

(1) change the semantics of any previously defined object without        
changing the name of that object. 

These rules are important because they admit easier support for multiple versions of the 
Internet-standard MIB.    In particular, the semantics associated with the tail of a name 
remain constant throughout different versions of the MIB.    Because multiple versions of the 
MIB may thus coincide in "tail-space," implementations supporting multiple versions of the 
MIB can be vastly simplified. 
However, as a consequence, a management agent might return an instance corresponding 
to a superset of the expected object type. Following the principle of robustness, in this 
exceptional case, a manager should ignore any additional information beyond the definition 
of the expected object type.    However, the robustness principle requires that one exercise 
care with respect to control actions:    if an instance does not have the same syntax as its 
expected object type, then those control actions must fail.    In both the monitoring and 
control cases, the name of an object returned by an operation must be identical to the name
requested by an operation. 



RFC-1155 Structure and Identification of Management Information

Definitions

RFC1155-SMI DEFINITIONS ::= BEGIN
EXPORTS -- EVERYTHING
internet, directory, mgmt,
experimental, private, enterprises,
OBJECT-TYPE, ObjectName, ObjectSyntax, SimpleSyntax,
ApplicationSyntax, NetworkAddress, IpAddress,
Counter, Gauge, TimeTicks, Opaque;

-- the path to the root
internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }
directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
experimental OBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }
enterprises OBJECT IDENTIFIER ::= { private 1 }

 -- definition of object types
OBJECT-TYPE MACRO ::=
BEGIN

TYPE NOTATION ::= "SYNTAX" type (TYPE ObjectSyntax)
"ACCESS" Access
"STATUS" Status

VALUE NOTATION ::= value (VALUE ObjectName)

Access ::= "read-only"
| "read-write"
| "write-only"
| "not-accessible"

Status ::= "mandatory"
| "optional"
| "obsolete"

END
-- names of objects in the MIB

ObjectName ::=
OBJECT IDENTIFIER

                -- syntax of objects in the MIB
ObjectSyntax ::=

CHOICE {
simple

SimpleSyntax,

-- note that simple SEQUENCEs are not directly
-- mentioned here to keep things simple (i.e.,
-- prevent mis-use).    However, application-wide
-- types which are IMPLICITly encoded simple
-- SEQUENCEs may appear in the following CHOICE



application-wide
ApplicationSyntax

}

SimpleSyntax ::=
CHOICE {

number
INTEGER,

string
OCTET STRING,

object
OBJECT IDENTIFIER,

empty
NULL

}

ApplicationSyntax ::=
CHOICE {

address
NetworkAddress,

counter
Counter,

gauge
Gauge,

ticks
TimeTicks,

arbitrary
Opaque

-- other application-wide types, as they are
-- defined, will be added here

}

-- application-wide types

NetworkAddress ::=
CHOICE {

internet
IpAddress

}

IpAddress ::=
[APPLICATION 0]                    -- in network-byte order

IMPLICIT OCTET STRING (SIZE (4))

Counter ::=
[APPLICATION 1]

IMPLICIT INTEGER (0..4294967295)

Gauge ::=
[APPLICATION 2]

IMPLICIT INTEGER (0..4294967295)

TimeTicks ::=
[APPLICATION 3]

IMPLICIT INTEGER (0..4294967295)



Opaque ::=
[APPLICATION 4]                    -- arbitrary ASN.1 value,

IMPLICIT OCTET STRING      --      "double-wrapped"

END



RFC-1155 Structure and Identification of Management Information

Acknowledgements

This memo was influenced by three sets of contributors to earlier drafts: 
First, Lee Labarre of the MITRE Corporation, who as author of the NETMAN SMI [4], presented
the basic roadmap for the SMI. 
Second, several individuals who provided valuable comments on this memo prior to its initial
distribution: 

James R. Davin, Proteon
Mark S. Fedor, NYSERNet
Craig Partridge, BBN Laboratories
Martin Lee Schoffstall, Rensselaer Polytechnic Institute
Wengyik Yeong, NYSERNet

Third, the IETF MIB working group:
Karl Auerbach, Epilogue Technology
K. Ramesh Babu, Excelan
Lawrence Besaw, Hewlett-Packard
Jeffrey D. Case, University of Tennessee at Knoxville
James R. Davin, Proteon
Mark S. Fedor, NYSERNet
Robb Foster, BBN
Phill Gross, The MITRE Corporation
Bent Torp Jensen, Convergent Technology
Lee Labarre, The MITRE Corporation
Dan Lynch, Advanced Computing Environments
Keith McCloghrie, The Wollongong Group
Dave Mackie, 3Com/Bridge
Craig Partridge, BBN (chair)
Jim Robertson, 3Com/Bridge
Marshall T. Rose, The Wollongong Group
Greg Satz, cisco
Martin Lee Schoffstall, Rensselaer Polytechnic Institute
Lou Steinberg, IBM
Dean Throop, Data General
Unni Warrier, Unisys



RFC-1155 Structure and Identification of Management Information

Authors' Addresses

Marshall T. Rose
PSI, Inc.
PSI California Office
P.O. Box 391776
Mountain View, CA 94039
Phone: (415) 961-3380
EMail: mrose@PSI.COM

Keith McCloghrie
The Wollongong Group
1129 San Antonio Road
Palo Alto, CA 04303
Phone: (415) 962-7160
EMail: sytek!kzm@HPLABS.HP.COM



8.    References

[1] Information processing systems - Open Systems Interconnection, "Specification of 
Abstract Syntax Notation One (ASN.1)", International Organization for Standardization, 
International Standard 8824, December 1987. 
[2] McCloghrie K., and M. Rose, "Management Information Base for Network 
Management of TCP/IP-based Internets", RFC 1156, Performance Systems International and 
Hughes LAN Systems, May 1990. 
[3] Case, J., M. Fedor, M. Schoffstall, and J. Davin, The Simple Network Management 
Protocol", RFC 1157, University of Tennessee at Knoxville, Performance Systems 
International, Performance Systems International, and the MIT Laboratory for Computer 
Science, May 1990. 
[4] LaBarre, L., "Structure and Identification of Management Information for the 
Internet", Internet Engineering Task Force working note, Network Information Center, SRI 
International, Menlo Park, California, April 1988. 
[5] Cerf, V., "IAB Recommendations for the Development of Internet Network 
Management Standards", RFC 1052, IAB, April 1988. 
[6] Cerf, V., "Report of the Second Ad Hoc Network Management Review Group", RFC 
1109, IAB, August 1989. 
[7] Information processing systems - Open Systems Interconnection, "Specification of 
Basic Encoding Rules for Abstract Notation One (ASN.1)", International Organization for 
Standardization, International Standard 8825, December 1987. 

Security Considerations

Security issues are not discussed in this memo.



RFC-1156 Management Information Base
for

Network Management
of

TCP/IP-based Internets
Keith McCloghrie & Marshall Rose

May 1990

Status of this Memo
IAB Policy Statement
Introduction
Objects
Object Definitions
Definitions
Acknowledgements
Authors' Addresses



RFC-1156 Management Information Base for Network Management

Status of this Memo

This RFC is a re-release of RFC 1066, with a changed "Status of this Memo", "IAB Policy 
Statement", and "Introduction" sections plus a few minor typographical corrections.    The 
technical content of the document is unchanged from RFC 1066. 
This memo provides the initial version of the Management Information Base (MIB) for use 
with network management protocols in TCP/IP-based internets in the short-term.    In 
particular, together with its companion memos which describe the structure of management
information along with the initial network management protocol, these documents provide a 
simple, workable architecture and system for managing TCP/IP-based internets and in 
particular the Internet. 
This memo specifies a Standard Protocol for the Internet community. TCP/IP implementations
in the Internet which are network manageable are expected to adopt and implement this 
specification. 
The Internet Activities Board recommends that all IP and TCP implementations be network 
manageable.    This implies implementation of the Internet MIB (RFC-1156) and at least one 
of the two recommended management protocols SNMP (RFC-1157) or CMOT (RFC-1095). It 
should be noted that, at this time, SNMP is a full Internet standard and CMOT is a draft 
standard.    See also the Host and Gateway Requirements RFCs for more specific information 
on the applicability of this standard. 
Please refer to the latest edition of the "IAB Official Protocol Standards" RFC for current 
information on the state and status of standard Internet protocols. 
Distribution of this memo is unlimited.



RFC-1156 Management Information Base for Network Management

IAB Policy Statement

This MIB specification is the first edition of an evolving document defining variables needed 
for monitoring and control of various components of the Internet.    Not all groups of defined 
variables are mandatory for all Internet components. 
For example, the EGP group is mandatory for gateways using EGP but not for hosts which 
should not be running EGP.    Similarly, the TCP group is mandatory for hosts running TCP but 
not for gateways which aren't running it.    What IS mandatory, however, is that all variables 
of a group be supported if any element of the group is supported. 
It is expected that additional MIB groups and variables will be defined over time to 
accommodate the monitoring and control needs of new or changing components of the 
Internet.    The responsible working group(s) will continue to refine this specification. 



RFC-1156 Management Information Base for Network Management

Introduction

As reported in RFC 1052, IAB Recommendations for the Development of Internet Network 
Management Standards [1], the Internet Activities Board has directed the Internet 
Engineering Task Force (IETF) to create two new working groups in the area of network 
management.    One group was charged with the further specification and definition of 
elements to be included in the Management Information Base.    The other was charged with 
defining the modifications to the Simple Network Management Protocol (SNMP) to 
accommodate the short-term needs of the network vendor and operator communities.    In 
the long- term, the use of the OSI network management framework was to be examined 
using the ISO CMIS/CMIP [2,3] framework as a basis.    Two documents were produced to 
define the management information:    RFC-1065, which defined the Structure of 
Management Information (SMI), and RFC-1066, which defined the Management Information 
Base (MIB).    Both of these documents were designed so as to be compatible with both the 
SNMP and the OSI network management framework. 
This strategy was quite successful in the short-term: Internet-based network management 
technology was fielded, by both the research and commercial communities, within a few 
months.    As a result of this, portions of the Internet community became network 
manageable in a timely fashion. 
As reported in RFC 1109, Report of the Second Ad Hoc Network Management Review Group 
[6], the requirements of the SNMP and the OSI network management frameworks were more
different than anticipated. As such, the requirement for compatibility between the SMI/MIB 
and both frameworks was suspended. 
The IAB has designated the SNMP, SMI, and the initial Internet MIB to be full "Standard 
Protocols" with "Recommended" status.    By this action, the IAB recommends that all IP and 
TCP implementations be network manageable and that the implementations that are 
network manageable are expected to adopt and implement the SMI, MIB, and SNMP. 
As such, the current network management framework for TCP/IP- based internets consists of:
Structure and Identification of Management Information for TCP/IP-based Internets, which 
describes how managed objects contained in the MIB are defined as set forth in RFC-1155; 
Management Information Base for Network Management of TCP/IP- based Internets, which 
describes the managed objects contained in the MIB as set forth in this memo; and, the 
Simple Network Management Protocol, which defines the protocol used to manage these 
objects, as set forth in RFC-1157. 
The IAB also urged the working groups to be "extremely sensitive to the need to keep SNMP 
simple," and recommends that the MIB working group take as its starting inputs the MIB 
definitions found in the High-Level Entity Management Systems (HEMS) RFC 1024 [9], the 
initial SNMP specification [10], and the CMIS/CMIP memos [11,12]. 
Thus, the list of managed objects defined here, has been derived by taking only those 
elements which are considered essential.    Since such elements are essential, there is no 
need to allow the implementation of individual objects, to be optional.    Rather, all compliant
implementations will contain all applicable (see below) objects defined in this memo. 
This approach of taking only the essential objects is NOT restrictive, since the SMI defined in 
the companion memo provides three extensibility mechanisms:    one, the addition of new 
standard objects through the definitions of new versions of the MIB; two, the addition of 
widely-available but non-standard objects through the multilateral subtree; and three, the 
addition of private objects through the enterprises subtree. Such additional objects can not 
only be used for vendor-specific elements, but also for experimentation as required to 



further the knowledge of which other objects are essential. 
The primary criterion for being considered essential was for an object to be contained in all 
of the above referenced MIB definitions.    A few other objects have been included, but only if
the MIB working group believed they are truly essential.    The detailed list of criteria against 
which potential inclusions in this (initial) MIB were considered, was: 

1) An object needed to be essential for either fault or configuration 
management. 

2) Only weak control objects were permitted (by weak, it is meant that 
tampering with them can do only limited damage).    This criterion reflects 
the fact that the current management protocols are not sufficiently secure 
to do more powerful control operations. 

3) Evidence of current use and utility was required.
4) An attempt was made to limit the number of objects to about 100 to make 

it easier for vendors to fully instrument their software. 
5) To avoid redundant variables, it was required that no object be included 

that can be derived from others in the MIB. 
6) Implementation specific objects (e.g., for BSD UNIX)
were excluded.
7) It was agreed to avoid heavily instrumenting critical sections of code.    The

general guideline was one counter per critical section per layer. 



RFC-1156 Management Information Base for Network Management

Objects

Managed objects are accessed via a virtual information store, termed the Management 
Information Base or MIB.    Objects in the MIB are defined using Abstract Syntax Notation One
(ASN.1) [13]. 
The mechanisms used for describing these objects are specified in the companion memo.    
In particular, each object has a name, a syntax, and an encoding.    The name is an object 
identifier, an administratively assigned name, which specifies an object type.    The object 
type together with an object instance serves to uniquely identify a specific instantiation of 
the object.    For human convenience, we often use a textual string, termed the OBJECT 
DESCRIPTOR, to also refer to the object type. 
The syntax of an object type defines the abstract data structure corresponding to that object
type.    The ASN.1 language is used for this purpose.    However, the companion memo 
purposely restricts the ASN.1 constructs which may be used.    These restrictions are 
explicitly made for simplicity. 
The encoding of an object type is simply how that object type is represented using the 
object type's syntax.    Implicitly tied to the notion of an object type's syntax and encoding is 
how the object type is represented when being transmitted on the network.    This memo 
specifies the use of the basic encoding rules of ASN.1 [14]. 

Object Groups
Format of Definitions



RFC-1156 Management Information Base for Network Management - Objects

Object Groups

Since this list of managed objects contains only the essential elements, there is no need to 
allow individual objects to be optional.    Rather, the objects are arranged into the following 
groups: 

System
Interfaces
Address Translation
IP
ICMP
TCP
UDP
EGP

There are two reasons for defining these groups:    one, to provide a means of assigning 
object identifiers; two, to provide a method for implementations of managed agents to know
which objects they must implement.    This method is as follows: if the semantics of a group 
is applicable to an implementation, then it must implement all objects    in that group.    For 
example, an implementation must implement the EGP group if and only if it implements the 
EGP protocol. 



RFC-1156 Management Information Base for Network Management - Object

Format of Definitions

The next section contains the specification of all object types contained in the MIB. Following
the conventions of the companion memo, the object types are defined using the following 
fields: 

OBJECT:
A textual name, termed the OBJECT DESCRIPTOR, for the object type, along with its 
corresponding OBJECT IDENTIFIER. 

Syntax:
The abstract syntax for the object type, presented using ASN.1.    This must resolve to
an instance of the ASN.1 type ObjectSyntax defined in the SMI. 

Definition:
A textual description of the semantics of the object type.    Implementations should 
ensure that their interpretation of the object type fulfills this definition since this MIB 
is intended for use in multi- vendor environments.    As such it is vital that object 
types have consistent meaning across all machines. 

Access:
One of read-only, read-write, write-only, or not-accessible. 

Status:
One of mandatory, optional, or obsolete.



RFC-1156 Management Information Base for Network Management

Object Definitions

The System Group
The Interfaces Group

The Interfaces Table
The Address Translation Group
The IP Group

The IP Address Table
The IP Routing Table

The ICMP Group
The TCP Group
The UDP Group
The EGP Group

The EGP Neighbor Table

RFC1156-MIB
DEFINITIONS ::= BEGIN

IMPORTS
mgmt, OBJECT-TYPE, NetworkAddress, IpAddress,
Counter, Gauge, TimeTicks

FROM RFC1155-SMI;
mib OBJECT IDENTIFIER ::= { mgmt 1 }
system OBJECT IDENTIFIER ::= { mib 1 }
interfaces OBJECT IDENTIFIER ::= { mib 2 }
at OBJECT IDENTIFIER ::= { mib 3 }
ip OBJECT IDENTIFIER ::= { mib 4 }
icmp OBJECT IDENTIFIER ::= { mib 5 }
tcp OBJECT IDENTIFIER ::= { mib 6 }
udp OBJECT IDENTIFIER ::= { mib 7 }
egp OBJECT IDENTIFIER ::= { mib 8 }

END



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The System Group

Implementation of the System group is mandatory for all systems. 
sysDescr
sysObjectID
sysUpTime



RFC-1156 Management Information Base for Network Management - System 
Group

OBJECT: sysDescr { system 1 }

Syntax:
OCTET STRING

Definition:
A textual description of the entity.    This value should include the full name 
and version identification of the system's hardware type, software operating-
system, and networking software.    It is mandatory that this only contain 
printable ASCII characters. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - System 
Group

OBJECT: sysObjectID { system 2 }

Syntax:
OBJECT IDENTIFIER

Definition:
The vendor's authoritative identification of the network management 
subsystem contained in the entity.    This value is allocated within the SMI 
enterprises subtree (1.3.6.1.4.1) and provides an easy and unambiguous 
means for determining "what kind of box" is being managed.    For example, if 
vendor "Flintstones, Inc." was assigned the subtree 1.3.6.1.4.1.42, it could 
assign the identifier 1.3.6.1.4.1.42.1.1 to its "Fred Router". 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - System 
Group

OBJECT: sysUpTime { system 3 }

Syntax:
TimeTicks

Definition:
The time (in hundredths of a second) since the network management portion 
of the system was last re-initialized. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The Interfaces Group

Implementation of the Interfaces group is mandatory for all systems.    See also Interfaces 
Table.

OBJECT:
ifNumber { interfaces 1 }

Syntax:
INTEGER

Definition:
The number of network interfaces (regardless of their current state) on which 
this system can send/receive IP datagrams. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The Interfaces Table

Administrative Objects:
ifTable ifSpeed
ifEntry ifPhysAddress
ifIndex ifAdminStatus
ifDescr ifOperStatus
ifType ifLastChange
ifMTU

Input                     Output  
ifInOctets ifOutOctets
ifInNUcastPkts ifOutUcastPkts
ifInDiscards ifOutNUcastPkts
ifInErrors ifOutDiscards
ifInUnknownProtosifOutQLen



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifTable { interfaces 2 }

Syntax:
SEQUENCE OF IfEntry

Definition:
A list of interface entries.    The number of entries is given by the value of 
ifNumber. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifEntry { ifTable 1 }

Syntax:
IfEntry ::= SEQUENCE {

ifIndex
INTEGER,

ifDescr
OCTET STRING,

ifType
INTEGER,

ifMtu
INTEGER,

ifSpeed
Gauge,

ifPhysAddress
OCTET STRING,

ifAdminStatus
INTEGER,

ifOperStatus
INTEGER,

ifLastChange
TimeTicks,

ifInOctets
Counter,

ifInUcastPkts
Counter,

ifInNUcastPkts
Counter,

ifInDiscards
Counter,

ifInErrors
Counter,

ifInUnknownProtos
Counter,

ifOutOctets
Counter,

ifOutUcastPkts
Counter,

ifOutNUcastPkts
Counter,

ifOutDiscards
Counter,

ifOutErrors
Counter,

ifOutQLen
Gauge

}
Definition:

An interface entry containing objects at the subnetwork layer and below for a 
particular interface. 

Access:



read-write.
Status:

mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifIndex { ifEntry 1 }

Syntax:
INTEGER

Definition:
A unique value for each interface.    Its value ranges between 1 and the value 
of ifNumber.    The value for each interface must remain constant at least from 
one re- initialization of the entity's network management system to the next 
re-initialization. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifDescr { ifEntry 2 }

Syntax:
 OCTET STRING

Definition:
A text string containing information about the interface. This string should 
include the name of the manufacturer, the product name and the version of 
the hardware interface.    The string is intended for presentation to a human; it
must not contain anything but printable ASCII characters. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifType { ifEntry 3 }

Syntax:
INTEGER {

other(1), -- none of the following
regular1822(2),
hdh1822(3),
ddn-x25(4),
rfc877-x25(5),
ethernet-csmacd(6),
iso88023-csmacd(7),
iso88024-tokenBus(8),
iso88025-tokenRing(9),
iso88026-man(10),
starLan(11),
proteon-10MBit(12),
proteon-80MBit(13),
hyperchannel(14),
fddi(15),
lapb(16),
sdlc(17),
t1-carrier(18),
cept(19), -- european equivalent of T-1
basicIsdn(20),
primaryIsdn(21),

-- proprietary serial
propPointToPointSerial(22)

}
Definition:

The type of interface, distinguished according to the physical/link/network 
protocol(s) immediately "below" IP in the protocol stack. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifMtu { ifEntry 4 }

Syntax:
INTEGER

Definition:
The size of the largest IP datagram which can be sent/received on the 
interface, specified in octets. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifSpeed { ifEntry 5 }

Syntax:
Gauge

Definition:
An estimate of the interface's current bandwidth in bits per second.    For 
interfaces which do not vary in bandwidth or for those where no accurate 
estimation can be made, this object should contain the nominal bandwidth. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifPhysAddress { ifEntry 6 }

Syntax:
OCTET STRING

Definition:
The interface's address at the protocol layer immediately "below" IP in the 
protocol stack.    For interfaces which do not have such an address (e.g., a 
serial line), this object should contain an octet string of zero length. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifAdminStatus { ifEntry 7 }

Syntax:
INTEGER {

up(1), -- ready to pass packets
down(2),
testing(3) -- in some test mode

}
Definition:

The desired state of the interface.    The testing(3) state indicates that no 
operational packets can be passed. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOperStatus { ifEntry 8 }

Syntax:
INTEGER {

up(1),              -- ready to pass packets
down(2),
testing(3)      -- in some test mode

}
Definition:

The current operational state of the interface.    The testing(3) state indicates 
that no operational packets can be passed. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifLastChange { ifEntry 9 }

Syntax:
TimeTicks

Definition:
The value of sysUpTime at the time the interface entered its current 
operational state.    If the current state was entered prior to the last re-
initialization of the local network management subsystem, then this object 
contains a zero value. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInOctets { ifEntry 10 }

Syntax:
Counter

Definition:
The total number of octets received on the interface, including framing 
characters. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInUcastPkts    { ifEntry 11 }

Syntax:
Counter

Definition:
The number of (subnet) unicast packets delivered to a higher-layer protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInNUcastPkts { ifEntry 12 }

Syntax:
Counter

Definition:
The number of non-unicast (i.e., subnet broadcast or subnet multicast) 
packets delivered to a higher-layer protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInDiscards { ifEntry 13 }

Syntax:
Counter

Definition:
The number of inbound packets which were chosen to be discarded even 
though no errors had been detected to prevent their being deliverable to a 
higher-layer protocol.    One possible reason for discarding such a packet could 
be to free up buffer space. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInErrors { ifEntry 14 }

Syntax:
Counter

Definition:
The number of inbound packets that contained errors preventing them from 
being deliverable to a higher-layer protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInUnknownProtos { ifEntry 15 }

Syntax:
Counter

Definition:
The number of packets received via the interface which were discarded 
because of an unknown or unsupported protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutOctets { ifEntry 16 }

Syntax:
Counter

Definition:
The total number of octets transmitted out of the interface, including framing 
characters. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutUcastPkts { ifEntry 17 }

Syntax:
Counter

Definition:
The total number of packets that higher-level protocols requested be 
transmitted to a subnet-unicast address, including those that were discarded 
or not sent. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutNUcastPkts { ifEntry 18 }

Syntax:
Counter

Definition:
The total number of packets that higher-level protocols requested be 
transmitted to a non-unicast (i.e., a subnet broadcast or subnet multicast) 
address, including those that were discarded or not sent. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutDiscards { ifEntry 19 }

Syntax:
Counter

Definition:
The number of outbound packets which were chosen to be discarded even 
though no errors had been detected to prevent their being transmitted.    One 
possible reason for discarding such a packet could be to free up buffer space. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutErrors { ifEntry 20 }

Syntax:
Counter

Definition:
The number of outbound packets that could not be transmitted because of 
errors. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutQLen { ifEntry 21 }

Syntax:
Gauge

Definition:
The length of the output packet queue (in packets).

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The Address Translation Group

Implementation of the Address Translation group is mandatory for all systems. 
The Address Translation group contains one table which is the union across all interfaces of 
the translation tables for converting a NetworkAddress (e.g., an IP address) into a 
subnetwork-specific address.    For lack of a better term, this document refers to such a 
subnetwork-specific address as a "physical" address. 
Examples of such translation tables are:    for broadcast media where ARP is in use, the 
translation table is equivalent to the ARP cache; or, on an X.25 network where non-
algorithmic translation to X.121 addresses is required, the translation table contains the 
NetworkAddress to X.121 address equivalences. 

atTable
atEntry
atIfIndex
atPhysAddress
atNetAddress



RFC-1156 Management Information Base - Address Translation Group

OBJECT: atTable { at 1 }

Syntax:
SEQUENCE OF AtEntry

Definition:
The Address Translation tables contain the NetworkAddress to "physical" 
address equivalences.    Some interfaces do not use translation tables for 
determining address equivalences (e.g., DDN-X.25 has an algorithmic 
method); if all interfaces are of this type, then the Address Translation table is 
empty, i.e., has zero entries. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - Address Translation Group

OBJECT: atEntry { atTable 1 }

Syntax:
AtEntry ::= SEQUENCE {

atIfIndex
INTEGER,

atPhysAddress
OCTET STRING,

atNetAddress
NetworkAddress

}
Definition:

Each entry contains one NetworkAddress to "physical" address equivalence. 
Access:

read-write.
Status:

mandatory.



RFC-1156 Management Information Base - Address Translation Group

OBJECT: atIfIndex { atEntry 1 }

Syntax:
INTEGER

Definition:
The interface on which this entry's equivalence is effective.    The interface 
identified by a particular value of this index is the same interface as identified 
by the same value of ifIndex. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - Address Translation Group

OBJECT: atPhysAddress { atEntry 2 }

Syntax:
OCTET STRING

Definition:
The media-dependent "physical" address.

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - Address Translation Group

OBJECT: atNetAddress { atEntry 3 }

Syntax:
NetworkAddress

Definition:
The NetworkAddress (e.g., the IP address) corresponding to the media-
dependent "physical" address. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The IP Group

Implementation of the IP group is mandatory for all systems.
ipForwarding ipOutDiscards
ipDefaultTTL ipOutNoRoutes
ipInReceives ipReasmTimeout
ipInHdrErrors ipReasmReqds
ipInAddrErrors ipReasmOKs
ipForwDatagrams ipReasmFails
ipInUnknownProtos ipFragOKs
ipInDiscards ipFragFails
ipInDelivers ipFragCreates
ipOutRequests



RFC-1156 Management Information Base - IP Group

OBJECT: ipForwarding { ip 1 }

Syntax:
INTEGER {

gateway(1),      -- entity forwards datagrams
host(2)              -- entity does NOT forward datagrams

}
Definition:

The indication of whether this entity is acting as an IP gateway in respect to 
the forwarding of datagrams received by, but not addressed to, this entity.    IP 
gateways forward datagrams; Hosts do not (except those Source-Routed via 
the host). 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipDefaultTTL { ip 2 }

Syntax:
 INTEGER

Definition:
The default value inserted into the Time-To-Live field of the IP header of 
datagrams originated at this entity, whenever a TTL value is not supplied by 
the transport layer protocol. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipInReceives { ip 3 }

Syntax:
Counter

Definition:
The total number of input datagrams received from interfaces, including those
received in error. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipInHdrErrors { ip 4 }

Syntax:
Counter

Definition:
The number of input datagrams discarded due to errors in their IP headers, 
including bad checksums, version number mismatch, other format errors, 
time-to-live exceeded, errors discovered in processing their IP options, etc. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipInAddrErrors { ip 5 }

Syntax:
Counter

Definition:
The number of input datagrams discarded because the IP address in their IP 
header's destination field was not a valid address to be received at this entity. 
This count includes invalid addresses (e.g., 0.0.0.0) and addresses of 
unsupported Classes (e.g., Class E).    For entities which are not IP Gateways 
and therefore do not forward datagrams, this counter includes datagrams 
discarded because the destination address was not a local address. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipForwDatagrams { ip 6 }

Syntax:
Counter

Definition:
The number of input datagrams for which this entity was not their final IP 
destination, as a result of which an attempt was made to find a route to 
forward them to that final destination.    In entities which do not act as IP 
Gateways, this counter will include only those packets which were Source-
Routed via this entity, and the Source-Route option processing was successful.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipInUnknownProtos { ip 7 }

Syntax:
Counter

Definition:
The number of locally-addressed datagrams received successfully but 
discarded because of an unknown or unsupported protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipInDiscards { ip 8 }

Syntax:
Counter

Definition:
The number of input IP datagrams for which no problems were encountered to
prevent their continued processing, but which were discarded (e.g. for lack of 
buffer space). Note that this counter does not include any datagrams 
discarded while awaiting re-assembly. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipInDelivers { ip 9 }

Syntax:
Counter

Definition:
The total number of input datagrams successfully delivered to IP user-
protocols (including ICMP). 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipOutRequests { ip 10 }

Syntax:
Counter

Definition:
The total number of IP datagrams which local IP user- protocols (including 
ICMP) supplied to IP in requests for transmission.    Note that this counter does 
not include any datagrams counted in ipForwDatagrams. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipOutDiscards { ip 11 }

Syntax:
Counter

Definition:
The number of output IP datagrams for which no problem was encountered to 
prevent their transmission to their destination, but which were discarded (e.g.,
for lack of buffer space).    Note that this counter would include datagrams 
counted in ipForwDatagrams if any such packets met this (discretionary) 
discard criterion. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipOutNoRoutes { ip 12 }

Syntax:
Counter

Definition:
The number of IP datagrams discarded because no route could be found to 
transmit them to their destination. Note that this counter includes any packets
counted in ipForwDatagrams which meet this "no-route" criterion. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipReasmTimeout { ip 13 }

Syntax:
INTEGER

Definition:
The maximum number of seconds which received fragments are held while 
they are awaiting reassembly at this entity. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipReasmReqds { ip 14 }

Syntax:
Counter

Definition:
The number of IP fragments received which needed to be reassembled at this 
entity. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipReasmOKs { ip 15 }

Syntax:
Counter

Definition:
The number of IP datagrams successfully re-assembled.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipReasmFails { ip 16 }

Syntax:
Counter

Definition:
The number of failures detected by the IP re-assembly algorithm (for whatever
reason:    timed out, errors, etc). 
Note that this is not necessarily a count of discarded IP fragments since some 
algorithms (notably RFC 815's) can lose track of the number of fragments by 
combining them as they are received. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipFragOKs { ip 17 }

Syntax:
Counter

Definition:
The number of IP datagrams that have been successfully fragmented at this 
entity. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipFragFails { ip 18 }

Syntax:
Counter

Definition:
The number of IP datagrams that have been discarded because they needed 
to be fragmented at this entity but could not be, e.g., because their "Don't 
Fragment" flag was set. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Group

OBJECT: ipFragCreates { ip 19 }

Syntax:
Counter

Definition:
The number of IP datagram fragments that have been generated as a result of
fragmentation at this entity. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The IP Address Table

The Ip Address table contains this entity's IP addressing information. 
ipAddrTable
ipAddrEntry
ipAdEntAddr
ipAdEntIfIndex
ipAdEntNetMask
ipAdEntBcastAddr



RFC-1156 Management Information Base - IP Address Table

OBJECT: ipAddrTable { ip 20 }

Syntax:
SEQUENCE OF IpAddrEntry

Definition:
The table of addressing information relevant to this entity's IP addresses. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Address Table

OBJECT: ipAddrEntry { ipAddrTable 1 }

Syntax:
IpAddrEntry ::= SEQUENCE {

ipAdEntAddr
IpAddress,

ipAdEntIfIndex
INTEGER,

ipAdEntNetMask
IpAddress,

ipAdEntBcastAddr
INTEGER

}
Definition:

The addressing information for one of this entity's IP addresses. 
Access:

read-only.
Status:

mandatory.



RFC-1156 Management Information Base - IP Address Table

OBJECT: ipAdEntAddr    { ipAddrEntry 1 }

Syntax:
IpAddress

Definition:
The IP address to which this entry's addressing information pertains. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Address Table

OBJECT: ipAdEntIfIndex    { ipAddrEntry 2 }

Syntax:
INTEGER

Definition:
The index value which uniquely identifies the interface to which this entry is 
applicable.    The interface identified by a particular value of this index is the    
same interface as identified by the same value of    ifIndex. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Address Table

OBJECT: ipAdEntNetMask    { ipAddrEntry 3 }

Syntax:
IpAddress

Definition:
The subnet mask associated with the IP address of this entry.    The value of 
the mask is an IP address with all the network bits set to 1 and all the hosts 
bits set to 0. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Address Table

OBJECT: ipAdEntBcastAddr { ipAddrEntry 4 }

Syntax:
INTEGER

Definition:
The value of the least-significant bit in the IP broadcast address used for 
sending datagrams on the (logical) interface associated with the IP address of 
this entry.    For example, when the Internet standard all-ones broadcast 
address is used, the value will be 1. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The IP Routing Table

The IP Routing Table contains an entry for each route presently known to this entity.    Note 
that the action to be taken in response to a request to read a non-existent entry, is specific 
to the network management protocol being used. 

ipRoutingTable
ipRouteEntry
ipRouteDest
ipRouteIfIndex
ipRouteMetric1
ipRouteMetric2
ipRouteMetric3
ipRouteMetric4
ipRouteNextHop
ipRouteType
ipRouteProto
ipRouteAge



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRoutingTable { ip 21 }

Syntax:
SEQUENCE OF IpRouteEntry

Definition:
This entity's IP Routing table.

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteEntry { ipRoutingTable 1 }

Syntax:
IpRouteEntry ::= SEQUENCE {

ipRouteDest
IpAddress,

ipRouteIfIndex
INTEGER,

ipRouteMetric1
INTEGER,

ipRouteMetric2
INTEGER,

ipRouteMetric3
INTEGER,

ipRouteMetric4
INTEGER,

ipRouteNextHop
IpAddress,

ipRouteType
INTEGER,

ipRouteProto
INTEGER,

ipRouteAge
INTEGER

}
Definition:

A route to a particular destination.
Access:

read-write.
Status:

mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteDest { ipRouteEntry 1 }

Syntax:
IpAddress

Definition:
The destination IP address of this route.    An entry with a value of 0.0.0.0 is 
considered a default route. Multiple such default routes can appear in the 
table, but access to such multiple entries is dependent on the table-access 
mechanisms defined by the network management protocol in use. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteIfIndex    { ipRouteEntry 2 }

Syntax:
INTEGER

Definition:
The index value which uniquely identifies the local interface through which the
next hop of this route should be reached.    The interface identified by a 
particular value of this index is the same interface as identified by the same 
value of ifIndex. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteMetric1 { ipRouteEntry 3 }

Syntax:
INTEGER

Definition:
The primary routing metric for this route.    The semantics of this metric are 
determined by the routing-protocol specified in the route's ipRouteProto value. 
If this metric is not used, its value should be set to -1. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteMetric2 { ipRouteEntry 4 }

Syntax:
INTEGER

Definition:
An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing- protocol specified in the route's ipRouteProto 
value.    If this metric is not used, its value should be set to -1. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteMetric3 { ipRouteEntry 5 }

Syntax:
INTEGER

Definition:
An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing- protocol specified in the route's ipRouteProto 
value.    If this metric is not used, its value should be set to -1. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteMetric4 { ipRouteEntry 6 }

Syntax:
INTEGER

Definition:
An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing- protocol specified in the route's ipRouteProto 
value.    If this metric is not used, its value should be set to -1. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteNextHop { ipRouteEntry 7 }

Syntax:
IpAddress

Definition:
The IP address of the next hop of this route.

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteType { ipRouteEntry 8 }

Syntax:
INTEGER {

other(1), -- none of the following
invalid(2), -- an invalidated route
direct(3), -- route to directly connected (sub-)network
remote(4),-- route to a non-local host/network/sub-network

}
Definition:

The type of route.
Access:

read-write.
Status:

mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteProto { ipRouteEntry 9 }

Syntax:
INTEGER {

other(1), -- none of the following
-- non-protocol information,
-- e.g., manually configured

local(2), -- entries
-- set via a network management

netmgmt(3), -- protocol
-- obtained via ICMP,

icmp(4), -- e.g., Redirect
-- the remaining values are
-- all gateway routing protocols

egp(5),
ggp(6),
hello(7),
rip(8),
is-is(9),
es-is(10),
ciscoIgrp(11),
bbnSpfIgp(12),
oigp(13)

}
Definition:

The routing mechanism via which this route was learned. Inclusion of values 
for gateway routing protocols is not intended to imply that hosts should 
support those protocols. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - IP Routing Table

OBJECT: ipRouteAge { ipRouteEntry 10 }

Syntax:
INTEGER

Definition:
The number of seconds since this route was last updated or otherwise 
determined to be correct.      Note that no semantics of "too old" can be implied
except through knowledge of the routing protocol by which the route was 
learned. 

Access:
read-write.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The ICMP Group

Implementation of the ICMP group is mandatory for all systems.
The ICMP group contains the ICMP input and output statistics.
Note that individual counters for ICMP message (sub-)codes have been omitted from this 
(version of the) MIB for simplicity. 

icmpInMsgs icmpOutMsgs
icmpInErrors icmpOutErrors
icmpInDestUnreachs icmpOutDestUnreachs
icmpInTimeExcds icmpOutTimeExcds
icmpInParmProbs icmpOutParmProbs
icmpInSrcQuenchs icmpOutSrcQuenchs
icmpInRedirects icmpOutRedirects
icmpInEchos icmpOutEchos
icmpInEchoReps icmpOutEchoReps
icmpInTimestamps icmpOutTimestamps
icmpInTimestampReps icmpOutTimestampReps
icmpInAddrMasks icmpOutAddrMasks
icmpInAddrMaskReps icmpOutAddrMaskReps



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInMsgs { icmp 1 }

Syntax:
Counter

Definition:
The total number of ICMP messages which the entity received.    Note that this 
counter includes all those counted by icmpInErrors. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInErrors { icmp 2 }

Syntax:
Counter

Definition:
The number of ICMP messages which the entity received but determined as 
having errors (bad ICMP checksums, bad length, etc.). 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInDestUnreachs { icmp 3 }

Syntax:
Counter

Definition:
The number of ICMP Destination Unreachable messages received. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInTimeExcds { icmp 4 }

Syntax:
Counter

Definition:
The number of ICMP Time Exceeded messages received.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInParmProbs { icmp 5 }

Syntax:
Counter

Definition:
The number of ICMP Parameter Problem messages received.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInSrcQuenchs { icmp 6 }

Syntax:
Counter

Definition:
The number of ICMP Source Quench messages received.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInRedirects { icmp 7 }

Syntax:
Counter

Definition:
The number of ICMP Redirect messages received.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInEchos { icmp 8 }

Syntax:
Counter

Definition:
The number of ICMP Echo (request) messages received.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInEchoReps { icmp 9 }

Syntax:
Counter

Definition:
The number of ICMP Echo Reply messages received.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInTimestamps { icmp 10 }

Syntax:
Counter

Definition:
The number of ICMP Timestamp (request) messages received.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInTimestampReps { icmp 11 }

Syntax:
Counter

Definition:
The number of ICMP Timestamp Reply messages received.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInAddrMasks { icmp 12 }

Syntax:
Counter

Definition:
The number of ICMP Address Mask Request messages received. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpInAddrMaskReps { icmp 13 }

Syntax:
Counter

Definition:
The number of ICMP Address Mask Reply messages received.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutMsgs { icmp 14 }

Syntax:
Counter

Definition:
The total number of ICMP messages which this entity attempted to send.    
Note that this counter includes all those counted by icmpOutErrors. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutErrors { icmp 15 }

Syntax:
Counter

Definition:
The number of ICMP messages which this entity did not send due to problems 
discovered within ICMP such as a lack of buffers.    This value should not 
include errors discovered outside the ICMP layer such as the inability of IP to 
route the resultant datagram.    In some implementations there may be no 
types of error which contribute to this counter's value. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutDestUnreachs { icmp 16 }

Syntax:
Counter

Definition:
The number of ICMP Destination Unreachable messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutTimeExcds { icmp 17 }

Syntax:
Counter

Definition:
The number of ICMP Time Exceeded messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutParmProbs { icmp 18 }

Syntax:
Counter

Definition:
The number of ICMP Parameter Problem messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutSrcQuenchs { icmp 19 }

Syntax:
Counter

Definition:
The number of ICMP Source Quench messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutRedirects { icmp 20 }

Syntax:
Counter

Definition:
The number of ICMP Redirect messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutEchos { icmp 21 }

Syntax:
Counter

Definition:
The number of ICMP Echo (request) messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutEchoReps { icmp 22 }

Syntax:
Counter

Definition:
The number of ICMP Echo Reply messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutTimestamps { icmp 23 }

Syntax:
Counter

Definition:
The number of ICMP Timestamp (request) messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutTimestampReps { icmp 24 }

Syntax:
Counter

Definition:
The number of ICMP Timestamp Reply messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutAddrMasks { icmp 25 }

Syntax:
Counter

Definition:
The number of ICMP Address Mask Request messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - ICMP Group

OBJECT: icmpOutAddrMaskReps { icmp 26 }

Syntax:
Counter

Definition:
The number of ICMP Address Mask Reply messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The TCP Group

Implementation of the TCP group is mandatory for all systems that implement the TCP 
protocol. 
Note that instances of object types that represent information about a particular TCP 
connection are transient; they persist only as long as the connection in question. 

tcpRtoAlgorithm tcpConnTable
tcpRtoMin tcpConnEntry
tcpRtoMax tcpConnState
tcpMaxConn tcpConnLocalAddress
tcpActiveOpens tcpConnLocalPort
tcpPassiveOpens tcpConnRemAddress
tcpAttemptFails tcpConnRemPort
tcpEstabResets
tcpCurrEstab
tcpInSegs
tcpOutSegs
tcpRetransSegs



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpRtoAlgorithm { tcp 1 }

Syntax:
INTEGER {

other(1), -- none of the following
constant(2), -- a constant rto
rsre(3), -- MIL-STD-1778, Appendix B
vanj(4) -- Van Jacobson's algorithm [15]

}
Definition:

The algorithm used to determine the timeout value used for retransmitting 
unacknowledged octets. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpRtoMin { tcp 2 }

Syntax:
INTEGER

Definition:
The minimum value permitted by a TCP implementation for the retransmission
timeout, measured in milliseconds.    More refined semantics for objects of this 
type depend upon the algorithm used to determine the retransmission 
timeout.    In particular, when the timeout algorithm is rsre(3), an object of this
type has the semantics of the LBOUND quantity described in RFC 793. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpRtoMax { tcp 3 }

Syntax:
INTEGER

Definition:
The maximum value permitted by a TCP implementation for the 
retransmission timeout, measured in milliseconds.    More refined semantics 
for objects of this type depend upon the algorithm used to determine the 
retransmission timeout.    In particular, when the timeout algorithm is rsre(3), 
an object of this type has the semantics of the UBOUND quantity described in 
RFC 793. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpMaxConn { tcp 4 }

Syntax:
INTEGER

Definition:
The limit on the total number of TCP connections the entity can support.    In 
entities where the maximum number of connections is dynamic, this object 
should contain the value "-1". 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpActiveOpens { tcp 5 }

Syntax:
Counter

Definition:
The number of times TCP connections have made a direct transition to the 
SYN-SENT state from the CLOSED state. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpPassiveOpens { tcp 6 }

Syntax:
Counter

Definition:
The number of times TCP connections have made a direct transition to the 
SYN-RCVD state from the LISTEN state. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpAttemptFails { tcp 7 }

Syntax:
Counter

Definition:
The number of times TCP connections have made a direct transition to the 
CLOSED state from either the SYN-SENT state or the SYN-RCVD state, plus the 
number of times TCP connections have made a direct transition to the LISTEN 
state from the SYN-RCVD state. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpEstabResets { tcp 8 }

Syntax:
Counter

Definition:
The number of times TCP connections have made a direct transition to the 
CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpCurrEstab { tcp 9 }

Syntax:
Gauge

Definition:
The number of TCP connections for which the current state is either 
ESTABLISHED or CLOSE-WAIT. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpInSegs { tcp 10 }

Syntax:
Counter

Definition:
The total number of segments received, including those received in error.    
This count includes segments received on currently established connections. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpOutSegs { tcp 11 }

Syntax:
Counter

Definition:
The total number of segments sent, including those on current connections 
but excluding those containing only retransmitted octets. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpRetransSegs { tcp 12 }

Syntax:
Counter

Definition:
The total number of segments retransmitted - that is, the number of TCP 
segments transmitted containing one or more previously transmitted octets. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpConnTable { tcp 13 }

Syntax:
SEQUENCE OF TcpConnEntry

Definition:
A table containing TCP connection-specific information. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpConnEntry { tcpConnTable 1 }

Syntax:
TcpConnEntry ::= SEQUENCE {

tcpConnState
INTEGER,

tcpConnLocalAddress
IpAddress,

tcpConnLocalPort
INTEGER (0..65535),

tcpConnRemAddress
IpAddress,

tcpConnRemPort
INTEGER (0..65535)

}
Definition:

Information about a particular current TCP connection. An object of this type is
transient, in that it ceases to exist when (or soon after) the connection makes 
the transition to the CLOSED state. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpConnState { tcpConnEntry 1 }

Syntax:
INTEGER {

closed(1),
listen(2),
synSent(3),
synReceived(4),
established(5),
finWait1(6),
finWait2(7),
closeWait(8),
lastAck(9),
closing(10),
timeWait(11)

}
Definition:

The state of this TCP connection.
Access:

read-only.
Status:

mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpConnLocalAddress { tcpConnEntry 2 }

Syntax:
IpAddress

Definition:
The local IP address for this TCP connection.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpConnLocalPort { tcpConnEntry 3 }

Syntax:
INTEGER (0..65535)

Definition:
The local port number for this TCP connection.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpConnRemAddress { tcpConnEntry 4 }

Syntax:
IpAddress

Definition:
The remote IP address for this TCP connection.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - TCP Group

OBJECT: tcpConnRemPort { tcpConnEntry 5 }

Syntax:
INTEGER (0..65535)

Definition:
The remote port number for this TCP connection.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The UDP Group

Implementation of the UDP group is mandatory for all systems which implement the UDP 
protocol. 

udpInDatagrams
udpNoPorts
udpInErrors
udpOutDatagrams



RFC-1156 Management Information Base - UDP Group

OBJECT: udpInDatagrams { udp 1 }

Syntax:
Counter

Definition:
The total number of UDP datagrams delivered to UDP users. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - UDP Group

OBJECT: udpNoPorts { udp 2 }

Syntax:
Counter

Definition:
The total number of received UDP datagrams for which there was no 
application at the destination port. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - UDP Group

OBJECT: udpInErrors { udp 3 }

Syntax:
Counter

Definition:
The number of received UDP datagrams that could not be delivered for 
reasons other than the lack of an application at the destination port. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - UDP Group

OBJECT: udpOutDatagrams { udp 4 }

Syntax:
Counter

Definition:
The total number of UDP datagrams sent from this entity. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The EGP Group

Implementation of the EGP group is mandatory for all systems which implement the EGP 
protocol. 

egpInMsgs
egpInErrors
egpOutMsgs
egpOutErrors



RFC-1156 Management Information Base - EGP Group

OBJECT: egpInMsgs { egp 1 }

Syntax:
Counter

Definition:
The number of EGP messages received without error.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - EGP Group

OBJECT: egpInErrors { egp 2 }

Syntax:
Counter

Definition:
The number of EGP messages received that proved to be

in error.
Access:

read-only.
Status:

mandatory.



RFC-1156 Management Information Base - EGP Group

OBJECT: egpOutMsgs { egp 3 }

Syntax:
Counter

Definition:
The total number of locally generated EGP messages.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - EGP Group

OBJECT: egpOutErrors { egp 4 }

Syntax:
Counter

Definition:
The number of locally generated EGP messages not sent due to resource 
limitations within an EGP entity. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management - Object 
Definitions

The EGP Neighbor Table

The Egp Neighbor table contains information about this entity's EGP neighbors. 
egpNeighTable
egpNeighEntry
egpNeighState
egpNeighAddr



RFC-1156 Management Information Base - EGP Neighbor Table

OBJECT: egpNeighTable { egp 5 }

Syntax:
SEQUENCE OF EgpNeighEntry

Definition:
The EGP neighbor table.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - EGP Neighbor Table

OBJECT: egpNeighEntry { egpNeighTable 1 }

Syntax:
EgpNeighEntry ::= SEQUENCE {

egpNeighState
INTEGER,

egpNeighAddr
IpAddress

}
Definition:

Information about this entity's relationship with a particular EGP neighbor. 
Access:

read-only.
Status:

mandatory.



RFC-1156 Management Information Base - EGP Neighbor Table

OBJECT: egpNeighState { egpNeighEntry 1 }

Syntax:
INTEGER {

idle(1),
acquisition(2),
down(3),
up(4),
cease(5)

}
Definition:

The EGP state of the local system with respect to this entry's EGP neighbor.    
Each EGP state is represented by a value that is one greater than the 
numerical value associated with said state in RFC 904. 

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base - EGP Neighbor Table

OBJECT: egpNeighAddr { egpNeighEntry 2 }

Syntax:
IpAddress

Definition:
The IP address of this entry's EGP neighbor.

Access:
read-only.

Status:
mandatory.



RFC-1156 Management Information Base for Network Management

Definitions

RFC1156-MIB

DEFINITIONS ::= BEGIN

IMPORTS
mgmt, OBJECT-TYPE, NetworkAddress, IpAddress,
Counter, Gauge, TimeTicks

FROM RFC1155-SMI;

mib OBJECT IDENTIFIER ::= { mgmt 1 }

system OBJECT IDENTIFIER ::= { mib 1 }
interfaces OBJECT IDENTIFIER ::= { mib 2 }
at OBJECT IDENTIFIER ::= { mib 3 }
ip OBJECT IDENTIFIER ::= { mib 4 }
icmp OBJECT IDENTIFIER ::= { mib 5 }
tcp OBJECT IDENTIFIER ::= { mib 6 }
udp OBJECT IDENTIFIER ::= { mib 7 }
egp OBJECT IDENTIFIER ::= { mib 8 }



RFC-1156 Management Information Base for Network Management - Definitions

The System Group
sysDescr OBJECT-TYPE
                SYNTAX    OCTET STRING
                ACCESS    read-only
                STATUS    mandatory
                ::= { system 1 }

sysObjectID OBJECT-TYPE
                SYNTAX    OBJECT IDENTIFIER
                ACCESS    read-only
                STATUS    mandatory
                ::= { system 2 }

sysUpTime OBJECT-TYPE
                SYNTAX    TimeTicks
                ACCESS    read-only
                STATUS    mandatory
                ::= { system 3 }



RFC-1156 Management Information Base for Network Management - Definitions

The Interfaces Group
ifNumber OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-only
                STATUS    mandatory
                ::= { interfaces 1 }

-- The Interfaces Table
ifTable OBJECT-TYPE
                SYNTAX    SEQUENCE OF IfEntry
                ACCESS    read-write
                STATUS    mandatory
                ::= { interfaces 2 }

ifEntry OBJECT-TYPE
                SYNTAX    IfEntry
                ACCESS    read-write
                STATUS    mandatory
                ::= { ifTable 1 }

IfEntry ::= SEQUENCE {
        ifIndex
                INTEGER,
        ifDescr
                OCTET STRING,
        ifType
                INTEGER,
        ifMtu
                INTEGER,
        ifSpeed
                Gauge,
        ifPhysAddress
                OCTET STRING,
        ifAdminStatus
                INTEGER,
        ifOperStatus
                INTEGER,
        ifLastChange
                TimeTicks,
        ifInOctets
                Counter,
        ifInUcastPkts
                Counter,
        ifInNUcastPkts
                Counter,
        ifInDiscards
                Counter,
        ifInErrors
                Counter,
        ifInUnknownProtos
                Counter,



        ifOutOctets
                Counter,
        ifOutUcastPkts
                Counter,
        ifOutNUcastPkts
                Counter,
        ifOutDiscards
                Counter,
        ifOutErrors
                Counter,
        ifOutQLen
                Gauge
}

ifIndex OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 1 }

ifDescr OBJECT-TYPE
                SYNTAX    OCTET STRING
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 2 }

ifType OBJECT-TYPE
                SYNTAX    INTEGER {
                                other(1),          -- none of the following
                                regular1822(2),
                                hdh1822(3),
                                ddn-x25(4),
                                rfc877-x25(5),
                                ethernet-csmacd(6),
                                iso88023-csmacd(7),
                                iso88024-tokenBus(8),
                                iso88025-tokenRing(9),
                                iso88026-man(10),
                                starLan(11),
                                proteon-10MBit(12),
                                proteon-80MBit(13),
                                hyperchannel(14),
                                fddi(15),
                                lapb(16),
                                sdlc(17),
                                t1-carrier(18),
                                cept(19),
                                basicIsdn(20),
                                primaryIsdn(21),
                                                                  -- proprietary serial
                                propPointToPointSerial(22)
                        }
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 3 }



ifMtu OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 4 }

ifSpeed OBJECT-TYPE
                SYNTAX    Gauge
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 5 }

ifPhysAddress OBJECT-TYPE
                SYNTAX    OCTET STRING
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 6 }

ifAdminStatus OBJECT-TYPE
                SYNTAX    INTEGER {
                                up(1),                -- ready to pass packets
                                down(2),
                                testing(3)        -- in some test mode
                                }
                ACCESS    read-write
                STATUS    mandatory
                ::= { ifEntry 7 }

ifOperStatus OBJECT-TYPE
                SYNTAX    INTEGER {
                                up(1),                -- ready to pass packets
                                down(2),
                                testing(3)        -- in some test mode
                                }
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 8 }

ifLastChange OBJECT-TYPE
                SYNTAX    TimeTicks
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 9 }

ifInOctets OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 10 }

ifInUcastPkts OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory



                ::=    { ifEntry 11 }

ifInNUcastPkts OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 12 }

ifInDiscards OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 13 }

ifInErrors OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 14 }

ifInUnknownProtos OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 15 }

ifOutOctets OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 16 }

ifOutUcastPkts OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 17 }

ifOutNUcastPkts OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 18 }

ifOutDiscards OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 19 }

ifOutErrors OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 20 }



ifOutQLen OBJECT-TYPE
                SYNTAX    Gauge
                ACCESS    read-only
                STATUS    mandatory
                ::= { ifEntry 21 }



RFC-1156 Management Information Base for Network Management - Definitions

The Address Translation Group
atTable OBJECT-TYPE
                SYNTAX    SEQUENCE OF AtEntry
                ACCESS    read-write
                STATUS    mandatory
                ::= { at 1 }

atEntry OBJECT-TYPE
                SYNTAX    AtEntry
                ACCESS    read-write
                STATUS    mandatory
                ::= { atTable 1 }

AtEntry ::= SEQUENCE {
        atIfIndex
                INTEGER,
        atPhysAddress
                OCTET STRING,
        atNetAddress
                NetworkAddress
}

atIfIndex OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-write
                STATUS    mandatory
                ::= { atEntry 1 }

atPhysAddress OBJECT-TYPE
                SYNTAX    OCTET STRING
                ACCESS    read-write
                STATUS    mandatory
                ::= { atEntry 2 }

atNetAddress OBJECT-TYPE
                SYNTAX    NetworkAddress
                ACCESS    read-write
                STATUS    mandatory
                ::= { atEntry 3 }



RFC-1156 Management Information Base for Network Management - Definitions

The IP Group
ipForwarding OBJECT-TYPE
                SYNTAX    INTEGER {
            gateway(1), -- entity forwards datagrams
            host(2)          -- entity does NOT forward datagrams
                                }
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 1 }

ipDefaultTTL OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-write
                STATUS    mandatory
                ::= { ip 2 }

ipInReceives OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 3 }

ipInHdrErrors OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 4 }

ipInAddrErrors OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 5 }

ipForwDatagrams OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 6 }

ipInUnknownProtos OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 7 }

ipInDiscards OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 8 }



ipInDelivers OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 9 }

ipOutRequests OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 10 }

ipOutDiscards OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 11 }

ipOutNoRoutes OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 12 }

ipReasmTimeout OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 13 }

ipReasmReqds OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 14 }

ipReasmOKs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 15 }

ipReasmFails OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 16 }

ipFragOKs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 17 }

ipFragFails OBJECT-TYPE



                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 18 }

ipFragCreates OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 19 }

-- the IP Interface table
ipAddrTable OBJECT-TYPE
                SYNTAX    SEQUENCE OF IpAddrEntry
                ACCESS    read-only
                STATUS    mandatory
                ::= { ip 20 }

ipAddrEntry OBJECT-TYPE
                SYNTAX    IpAddrEntry
                ACCESS    read-only
                STATUS    mandatory
                ::= { ipAddrTable 1 }

IpAddrEntry ::= SEQUENCE {
        ipAdEntAddr
                IpAddress,
        ipAdEntIfIndex
                INTEGER,
        ipAdEntNetMask
                IpAddress,
        ipAdEntBcastAddr
                INTEGER
}

ipAdEntAddr OBJECT-TYPE
                SYNTAX    IpAddress
                ACCESS    read-only
                STATUS    mandatory
                ::=    { ipAddrEntry 1 }

ipAdEntIfIndex OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-only
                STATUS    mandatory
                ::=    { ipAddrEntry 2 }

ipAdEntNetMask OBJECT-TYPE
                SYNTAX    IpAddress
                ACCESS    read-only
                STATUS    mandatory
                ::=    { ipAddrEntry 3 }

ipAdEntBcastAddr OBJECT-TYPE



                SYNTAX    INTEGER
                ACCESS    read-only
                STATUS    mandatory
                ::= { ipAddrEntry 4 }

-- the IP Routing table
ipRoutingTable OBJECT-TYPE
                SYNTAX    SEQUENCE OF IpRouteEntry
                ACCESS    read-write
                STATUS    mandatory
                ::= { ip 21 }

ipRouteEntry OBJECT-TYPE
                SYNTAX    IpRouteEntry
                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRoutingTable 1 }

IpRouteEntry ::= SEQUENCE {
        ipRouteDest
                IpAddress,
        ipRouteIfIndex
                INTEGER,
        ipRouteMetric1
                INTEGER,
        ipRouteMetric2
                INTEGER,
        ipRouteMetric3
                INTEGER,
        ipRouteMetric4
                INTEGER,
        ipRouteNextHop
                IpAddress,
        ipRouteType
                INTEGER,
        ipRouteProto
                INTEGER,
        ipRouteAge
                INTEGER
}

ipRouteDest OBJECT-TYPE
                SYNTAX    IpAddress
                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRouteEntry 1 }

ipRouteIfIndex    OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRouteEntry 2 }
ipRouteMetric1 OBJECT-TYPE
                SYNTAX    INTEGER



                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRouteEntry 3 }

ipRouteMetric2 OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRouteEntry 4 }

ipRouteMetric3 OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRouteEntry 5 }

ipRouteMetric4 OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRouteEntry 6 }

ipRouteNextHop OBJECT-TYPE
                SYNTAX    IpAddress
                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRouteEntry 7 }

ipRouteType OBJECT-TYPE
                SYNTAX    INTEGER {
                    other(1),            -- none of the following

                    invalid(2),        -- an invalidated route

                                                  -- route to directly
                    direct(3),          -- connected (sub-)network

                                                  -- route to a non-local
                    remote(4),          -- host/network/sub-network
                        }
                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRouteEntry 8 }

ipRouteProto OBJECT-TYPE
                SYNTAX    INTEGER {
                    other(1),          -- none of the following

                                                -- non-protocol information
                                                --      e.g., manually
                    local(2),          --      configured entries

                                                -- set via a network
                    netmgmt(3),      --      management protocol



                                                -- obtained via ICMP,
                    icmp(4),            --      e.g., Redirect

                                                -- the following are
                                                -- gateway routing protocols
                    egp(5),
                    ggp(6),
                    hello(7),
                    rip(8),
                    is-is(9),
                    es-is(10),
                    ciscoIgrp(11),
                    bbnSpfIgp(12),
                    oigp(13)
                        }
                ACCESS    read-only
                STATUS    mandatory
                ::= { ipRouteEntry 9 }

ipRouteAge OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-write
                STATUS    mandatory
                ::= { ipRouteEntry 10 }



RFC-1156 Management Information Base for Network Management - Definitions

The ICMP Group
icmpInMsgs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 1 }

icmpInErrors OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 2 }

icmpInDestUnreachs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 3 }

icmpInTimeExcds OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 4 }

icmpInParmProbs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 5 }

icmpInSrcQuenchs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 6 }

icmpInRedirects OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 7 }

icmpInEchos OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 8 }

icmpInEchoReps OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only



                STATUS    mandatory
                ::= { icmp 9 }

icmpInTimestamps OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 10 }

icmpInTimestampReps OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 11 }

icmpInAddrMasks OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 12 }

icmpInAddrMaskReps OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 13 }

icmpOutMsgs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 14 }

icmpOutErrors OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 15 }

icmpOutDestUnreachs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 16 }

icmpOutTimeExcds OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 17 }

icmpOutParmProbs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory



                ::= { icmp 18 }

icmpOutSrcQuenchs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 19 }

icmpOutRedirects OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 20 }

icmpOutEchos OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 21 }

icmpOutEchoReps OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 22 }

icmpOutTimestamps OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 23 }

icmpOutTimestampReps OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 24 }

icmpOutAddrMasks OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 25 }

icmpOutAddrMaskReps OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { icmp 26 }



RFC-1156 Management Information Base for Network Management - Definitions

The TCP Group
tcpRtoAlgorithm OBJECT-TYPE
                SYNTAX    INTEGER {
                other(1),        -- none of the following
                constant(2), -- a constant rto
                rsre(3),          -- MIL-STD-1778, Appendix B
                vanj(4)            -- Van Jacobson's algorithm [15]
                                }
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 1 }

tcpRtoMin OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 2 }

tcpRtoMax OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 3 }

tcpMaxConn OBJECT-TYPE
                SYNTAX    INTEGER
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 4 }

tcpActiveOpens OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 5 }

tcpPassiveOpens OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 6 }

tcpAttemptFails OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 7 }

tcpEstabResets OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory



                ::= { tcp 8 }

tcpCurrEstab OBJECT-TYPE
                SYNTAX    Gauge
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 9 }

tcpInSegs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 10 }

tcpOutSegs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 11 }

tcpRetransSegs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 12 }

-- the TCP connections table
tcpConnTable OBJECT-TYPE
                SYNTAX    SEQUENCE OF TcpConnEntry
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcp 13 }

tcpConnEntry OBJECT-TYPE
                SYNTAX    TcpConnEntry
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcpConnTable 1 }

TcpConnEntry ::= SEQUENCE {
        tcpConnState
                INTEGER,
        tcpConnLocalAddress
                IpAddress,
        tcpConnLocalPort
                INTEGER (0..65535),
        tcpConnRemAddress
                IpAddress,
        tcpConnRemPort
                INTEGER (0..65535)
}

tcpConnState OBJECT-TYPE
                SYNTAX    INTEGER {



                                        closed(1),
                                        listen(2),
                                        synSent(3),
                                        synReceived(4),
                                        established(5),
                                        finWait1(6),
                                        finWait2(7),
                                        closeWait(8),
                                        lastAck(9),
                                        closing(10),
                                        timeWait(11)
                                }
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcpConnEntry 1 }

tcpConnLocalAddress OBJECT-TYPE
                SYNTAX    IpAddress
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcpConnEntry 2 }

tcpConnLocalPort OBJECT-TYPE
                SYNTAX    INTEGER (0..65535)
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcpConnEntry 3 }

tcpConnRemAddress OBJECT-TYPE
                SYNTAX    IpAddress
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcpConnEntry 4 }

tcpConnRemPort OBJECT-TYPE
                SYNTAX    INTEGER (0..65535)
                ACCESS    read-only
                STATUS    mandatory
                ::= { tcpConnEntry 5 }



RFC-1156 Management Information Base for Network Management - Definitions

The UDP Group
udpInDatagrams OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { udp 1 }

udpNoPorts OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { udp 2 }

udpInErrors OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { udp 3 }

udpOutDatagrams OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { udp 4 }



RFC-1156 Management Information Base for Network Management - Definitions

The EGP Group
egpInMsgs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { egp 1 }

egpInErrors OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { egp 2 }

egpOutMsgs OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { egp 3 }

egpOutErrors OBJECT-TYPE
                SYNTAX    Counter
                ACCESS    read-only
                STATUS    mandatory
                ::= { egp 4 }

-- the EGP Neighbor table
egpNeighTable OBJECT-TYPE
                SYNTAX    SEQUENCE OF EgpNeighEntry
                ACCESS    read-only
                STATUS    mandatory
                ::= { egp 5 }

egpNeighEntry OBJECT-TYPE
                SYNTAX    EgpNeighEntry
                ACCESS    read-only
                STATUS    mandatory
                ::= { egpNeighTable 1 }

EgpNeighEntry ::= SEQUENCE {
        egpNeighState
                INTEGER,
        egpNeighAddr
                IpAddress
}

egpNeighState OBJECT-TYPE
                SYNTAX    INTEGER {
                                        idle(1),
                                        acquisition(2),
                                        down(3),
                                        up(4),



                                        cease(5)
                                }
                ACCESS    read-only
                STATUS    mandatory
                ::= { egpNeighEntry 1 }

egpNeighAddr OBJECT-TYPE
                SYNTAX    IpAddress
                ACCESS    read-only
                STATUS    mandatory
                ::= { egpNeighEntry 2 }

    END



RFC-1156 Management Information Base for Network Management

Acknowledgements

      The initial draft of this memo was heavily influenced by the the HEMS
      [9] and SNMP [10] MIBs.

      Its final form is the result of the suggestions, the dicussions, and
      the compromises reached by the members of the IETF MIB working group:

Karl Auerbach, Epilogue Technology
K. Ramesh Babu, Excelan
Lawrence Besaw, Hewlett-Packard
Jeffrey D. Case, University of Tennessee at Knoxville
James R. Davin, Proteon
Mark S. Fedor, NYSERNet
Robb Foster, BBN
Phill Gross, The MITRE Corporation
Bent Torp Jensen, Convergent Technology
Lee Labarre, The MITRE Corporation
Dan Lynch, Advanced Computing Environments
Keith McCloghrie, The Wollongong Group
Dave Mackie, 3Com/Bridge
Craig Partridge, BBN (chair)
Jim Robertson, 3Com/Bridge
Marshall T. Rose, The Wollongong Group
Greg Satz, cisco
Martin Lee Schoffstall, Rensselaer Polytechnic Institute
Lou Steinberg, IBM
Dean Throop, Data General
Unni Warrier, Unisys



RFC-1156 Management Information Base for Network Management

Authors' Addresses

Keith McCloghrie
The Wollongong Group
1129 San Antonio Road
Palo Alto, CA 04303
Phone: (415) 962-7160
EMail: sytek!kzm@HPLABS.HP.COM

Marshall T. Rose
PSI, Inc.
PSI California Office
P.O. Box 391776
Mountain View, CA 94039
Phone: (415) 961-3380
EMail: mrose@PSI.COM



8.    References

      [1]    Cerf, V., "IAB Recommendations for the Development of Internet
                Network Management Standards", RFC 1052, IAB, April 1988.

      [2]    Information processing systems - Open Systems Interconnection,
                "Management Information Services Definition", International
                Organization for Standardization, Draft Proposal 9595/2,
                December 1987.

      [3]    Information processing systems - Open Systems Interconnection,
                "Management Information Protocol Specification", International
                Organization for Standardization, Draft Proposal 9596/2,
                December 1987.

      [4]    Rose M., and K. McCloghrie, "Structure and Identification of
                Management Information for TCP/IP-based internets", RFC 1065,
                TWG, August 1988.

      [5]    Partridge C., and G. Trewitt, "The High-Level Entity Management
                System (HEMS)", RFCs 1021-1024, BBN and Stanford, October 1987.

      [6]    Cerf, V., "Report of the Second Ad Hoc Network Management Review
                Group", RFC 1109, IAB, August 1989.

      [7]    Rose, M., and K. McCloghrie, "Structure and Identification of
                Management Information for TCP/IP-based Internets", RFC 1155,
                Performance Systems International and Hughes LAN Systems, May
                1990.

      [8]    Case, J., M. Fedor, M. Schoffstall, and J. Davin, The Simple
                Network Management Protocol", RFC 1157, University of Tennessee
                at Knoxville, Performance Systems International, Performance
                Systems International, and the MIT Laboratory for Computer
                Science, May 1990.

      [9]    Partridge C., and G. Trewitt, "HEMS Variable Definitions", RFC



                1024, BBN and Stanford, October 1987.

    [10]    Case, J., M. Fedor, M. Schoffstall, and J. Davin, "A Simple
                Network Management Protocol", RFC 1067, University of Tennessee
                At Knoxville, NYSERNet, Rensselaer Polytechnic, Proteon, August
                1988.

    [11]    LaBarre, L., "Structure and Identification of Management
                Information for the Internet", Internet Engineering Task Force
                working note, Network Information Center, SRI International,
                Menlo Park, California, April 1988.

    [12]    LaBarre, L., "Transport Layer Management Information:    TCP",
                Internet Engineering Task Force working note in preparation.
                Network Information Center, SRI International, Menlo Park,
                California, (unpublished).

    [13]    Information processing systems - Open Systems Interconnection,
                "Specification of Abstract Syntax Notation One (ASN.1)",
                International Organization for Standardization, International
                Standard 8824, December 1987.

    [14]    Information processing systems - Open Systems Interconnection,
                "Specification of Basic Encoding Rules for Abstract Notation One
                (ASN.1)", International Organization for Standardization,
                International Standard 8825, December 1987.

    [15]    Jacobson, V., "Congestion Avoidance and Control", SIGCOMM, 1988,
                Stanford, California.

Security Considerations

      Security issues are not discussed in this memo.



RFC-1157 A Simple Network Management Protocol
J. Case, M. Fedor, and J. Davin

May 1990

Status of this Memo
Introduction
The SNMP Architecture

Goals of the Architecture
Elements of the Architecture

Scope of Management Information
Representation of Management Information
Operations Supported on Management Information
Form and Meaning of Protocol Exchanges
Definition of Administrative Relationships
Form and Meaning of References to Managed Objects

Protocol Specification
Elements of Procedure

Definitions
Acknowledgements
Authors' Addresses



RFC-1157 A Simple Network Management Protocol

Status of this Memo

This RFC is a re-release of RFC-1098, with a changed "Status of this Memo" section plus a 
few minor typographical corrections.    This memo defines a simple protocol by which 
management information for a network element may be inspected or altered by logically 
remote users.    In particular, together with its companion memos which describe the 
structure of management information along with the management information base, these 
documents provide a simple, workable architecture and system for managing TCP/IP-based 
internets and in particular the Internet. 
The Internet Activities Board recommends that all IP and TCP implementations be network 
manageable.    This implies implementation of the Internet MIB (RFC-1156) and at least one 
of the two recommended management protocols SNMP (RFC-1157) or CMOT (RFC-1189). It 
should be noted that, at this time, SNMP is a full Internet standard and CMOT is a draft 
standard.    See also the Host and Gateway Requirements RFCs for more specific information 
on the applicability of this standard. 
Please refer to the latest edition of the "IAB Official Protocol Standards" RFC for current 
information on the state and status of standard Internet protocols. 
Distribution of this memo is unlimited.



RFC-1157 A Simple Network Management Protocol

Introduction

As reported in RFC-1052, IAB Recommendations for the Development of Internet Network 
Management Standards [1], a two-prong strategy for network management of TCP/IP-based 
internets was undertaken.    In the short-term, the Simple Network Management Protocol 
(SNMP) was to be used to manage nodes in the Internet community.    In the long-term, the 
use of the OSI network management framework was to be examined. Two documents were 
produced to define the management information: RFC-1155, which defined the Structure of 
Management Information (SMI), and RFC-1156, which defined the Management Information 
Base (MIB).    Both of these documents were designed so as to be compatible with both the 
SNMP and the OSI network management framework. 
This strategy was quite successful in the short-term: Internet-based network management 
technology was fielded, by both the research and commercial communities, within a few 
months.    As a result of this, portions of the Internet community became network 
manageable in a timely fashion. 
As reported in RFC-1109, Report of the Second Ad Hoc Network Management Review Group 
[4], the requirements of the SNMP and the OSI network management frameworks were more
different than anticipated. As such, the requirement for compatibility between the SMI/MIB 
and both frameworks was suspended.    This action permitted the operational network 
management framework, the SNMP, to respond to new operational needs in the Internet 
community by producing documents defining new MIB items. 
The IAB has designated the SNMP, SMI, and the initial Internet MIB to be full "Standard 
Protocols" with "Recommended" status.    By this action, the IAB recommends that all IP and 
TCP implementations be network manageable and that the implementations that are 
network manageable are expected to adopt and implement the SMI, MIB, and SNMP. 
As such, the current network management framework for TCP/IP- based internets consists of:
Structure and Identification of Management Information for TCP/IP-based Internets, which 
describes how managed objects contained in the MIB are defined as set forth in RFC-1155; 
Management Information Base for Network Management of TCP/IP- based Internets, which 
describes the managed objects contained in the MIB as set forth in RFC-1156; and, the 
Simple Network Management Protocol, which defines the protocol used to manage these 
objects, as set forth in this memo. 
As reported in RFC-1052, IAB Recommendations for the Development of Internet Network 
Management Standards [1], the Internet Activities Board has directed the Internet 
Engineering Task Force (IETF) to create two new working groups in the area of network 
management.    One group was charged with the further specification and definition of 
elements to be included in the Management Information Base (MIB). The other was charged 
with defining the modifications to the Simple Network Management Protocol (SNMP) to 
accommodate the short-term needs of the network vendor and operations communities, and
to align with the output of the MIB working group. 
The MIB working group produced two memos, one which defines a Structure for 
Management Information (SMI) [RFC-1155] for use by the managed objects contained in the 
MIB.    A second memo Management Information Base [RFC-1156] defines the list of 
managed objects. 
The output of the SNMP Extensions working group is this memo, which incorporates changes
to the initial SNMP definition [7] required to attain alignment with the output of the MIB 
working group.    The changes should be minimal in order to be consistent with the IAB's 
directive that the working groups be "extremely sensitive to the need to keep the SNMP 



simple."    Although considerable care and debate has gone into the changes to the SNMP 
which are reflected in this memo, the resulting protocol is not backwardly-compatible with 
its predecessor, the Simple Gateway Monitoring Protocol (SGMP) [8]. Although the syntax of 
the protocol has been altered, the original philosophy, design decisions, and architecture 
remain intact.    In order to avoid confusion, new UDP ports have been allocated for use by 
the protocol described in this memo. 



RFC-1157 A Simple Network Management Protocol

The SNMP Architecture

Implicit in the SNMP architectural model is a collection of network management stations and 
network elements.    Network management stations execute management applications which
monitor and control network elements.    Network elements are devices such as hosts, 
gateways, terminal servers, and the like, which have management agents responsible for 
performing the network management functions requested by the network management 
stations.    The Simple Network Management Protocol (SNMP) is used to communicate 
management information between the network management stations and the agents in the 
network elements. 



RFC-1157 A Simple Network Management Protocol - Architecture

Goals of the Architecture

The SNMP explicitly minimizes the number and complexity of management functions 
realized by the management agent itself.    This goal is attractive in at least four respects: 

(1) The development cost for management agent software necessary to 
support the protocol is accordingly reduced. 

(2) The degree of management function that is remotely supported is 
accordingly increased, thereby admitting fullest use of internet 
resources in the management task. 

(3) The degree of management function that is remotely supported is 
accordingly increased, thereby imposing the fewest possible 
restrictions on the form and sophistication of management tools. 

(4) Simplified sets of management functions are easily understood and 
used by developers of network management tools. 

A second goal of the protocol is that the functional paradigm for monitoring and control be 
sufficiently extensible to accommodate additional, possibly unanticipated aspects of network
operation and management. 
A third goal is that the architecture be, as much as possible, independent of the architecture 
and mechanisms of particular hosts or particular gateways. 



RFC-1157 A Simple Network Management Protocol - Architecture

Elements of the Architecture

The SNMP architecture articulates a solution to the network management problem in terms 
of: 

(1) the scope of the management information communicated by the 
protocol, 

(2) the representation of the management information communicated by 
the protocol, 

(3) operations on management information supported by the protocol, 
(4) the form and meaning of exchanges among management entities, 
(5) the definition of administrative relationships among management 

entities, and 
(6) the form and meaning of references to management information. 



RFC-1157 SNMP - Elements of the Architecture

Scope of Management Information

The scope of the management information communicated by operation of the SNMP is 
exactly that represented by instances of all non- aggregate object types either defined in 
Internet-standard MIB or defined elsewhere according to the conventions set forth in 
Internet-standard SMI [RFC-1155]. 
Support for aggregate object types in the MIB is neither required for conformance with the 
SMI nor realized by the SNMP. 



RFC-1157 SNMP - Elements of the Architecture

Representation of Management Information

Management information communicated by operation of the SNMP is represented according 
to the subset of the ASN.1 language [9] that is specified for the definition of non-aggregate 
types in the SMI. 
The SGMP adopted the convention of using a well-defined subset of the ASN.1 language [9].  
The SNMP continues and extends this tradition by utilizing a moderately more complex 
subset of ASN.1 for describing managed objects and for describing the protocol data units 
used for managing those objects.    In addition, the desire to ease eventual transition to OSI-
based network management protocols led to the definition in the ASN.1 language of an 
Internet-standard Structure of Management Information (SMI) [RFC-1155] and Management 
Information Base (MIB) [RFC-1156].    The use of the ASN.1 language, was, in part, 
encouraged by the successful use of ASN.1 in earlier efforts, in particular, the SGMP.    The 
restrictions on the use of ASN.1 that are part of the SMI contribute to the simplicity espoused
and validated by experience with the SGMP. 
Also for the sake of simplicity, the SNMP uses only a subset of the basic encoding rules of 
ASN.1 [10].    Namely, all encodings use the definite-length form.    Further, whenever 
permissible, non-constructor encodings are used rather than constructor encodings.    This 
restriction applies to all aspects of ASN.1 encoding, both for the top-level protocol data units 
and the data objects they contain. 



RFC-1157 SNMP - Elements of the Architecture

Operations Supported on Management Information

The SNMP models all management agent functions as alterations or inspections of variables. 
Thus, a protocol entity on a logically remote host (possibly the network element itself) 
interacts with the management agent resident on the network element in order to retrieve 
(get) or alter (set) variables.    This strategy has at least two positive consequences: 

(1) It has the effect of limiting the number of essential management 
functions realized by the management agent to two:    one operation to 
assign a value to a specified configuration or other parameter and 
another to retrieve such a value. 

(2) A second effect of this decision is to avoid introducing into the protocol 
definition support for imperative management commands:    the 
number of such commands is in practice ever-increasing, and the 
semantics of such commands are in general arbitrarily complex. 

The strategy implicit in the SNMP is that the monitoring of network state at any significant 
level of detail is accomplished primarily by polling for appropriate information on the part of 
the monitoring center(s).    A limited number of unsolicited messages (traps) guide the 
timing and focus of the polling.    Limiting the number of unsolicited messages is consistent 
with the goal of simplicity and minimizing the amount of traffic generated by the network 
management function. 
The exclusion of imperative commands from the set of explicitly supported management 
functions is unlikely to preclude any desirable management agent operation.    Currently, 
most commands are requests either to set the value of some parameter or to retrieve such a
value, and the function of the few imperative commands currently supported is easily 
accommodated in an asynchronous mode by this management model.    In this scheme, an 
imperative command might be realized as the setting of a parameter value that 
subsequently triggers the desired action.    For example, rather than implementing a "reboot 
command," this action might be invoked by simply setting a parameter indicating the 
number of seconds until system reboot. 



RFC-1157 SNMP - Elements of the Architecture

Form and Meaning of Protocol Exchanges

The communication of management information among management entities is realized in 
the SNMP through the exchange of protocol messages.
Consistent with the goal of minimizing complexity of the management agent, the exchange 
of SNMP messages requires only an unreliable datagram service, and every message is 
entirely and independently represented by a single transport datagram.    While this 
document specifies the exchange of messages via the UDP protocol, the mechanisms of the 
SNMP are generally suitable for use with a wide variety of transport services. 



RFC-1157 SNMP - Elements of the Architecture

Definition of Administrative Relationships

The SNMP architecture admits a variety of administrative relationships among entities that 
participate in the protocol.    The entities residing at management stations and network 
elements which communicate with one another using the SNMP are termed SNMP 
application entities.    The peer processes which implement the SNMP, and thus support the 
SNMP application entities, are termed protocol entities. 
A pairing of an SNMP agent with some arbitrary set of SNMP application entities is called an 
SNMP community.    Each SNMP community is named by a string of octets, that is called the 
community name for said community. 
An SNMP message originated by an SNMP application entity that in fact belongs to the SNMP
community named by the community component of said message is called an authentic 
SNMP message.    The set of rules by which an SNMP message is identified as an authentic 
SNMP message for a particular SNMP community is called an authentication scheme. An 
implementation of a function that identifies authentic SNMP messages according to one or 
more authentication schemes is called an authentication service. 
Clearly, effective management of administrative relationships among SNMP application 
entities requires authentication services that (by the use of encryption or other techniques) 
are able to identify authentic SNMP messages with a high degree of certainty.    Some SNMP 
implementations may wish to support only a trivial authentication service that identifies all 
SNMP messages as authentic SNMP messages. 
For any network element, a subset of objects in the MIB that pertain to that element is called
a SNMP MIB view.    Note that the names of the object types represented in a SNMP MIB view 
need not belong to a single sub-tree of the object type name space. 
An element of the set { READ-ONLY, READ-WRITE } is called an SNMP access mode. 
A pairing of a SNMP access mode with a SNMP MIB view is called an SNMP community 
profile.    A SNMP community profile represents specified access privileges to variables in a 
specified MIB view. For every variable in the MIB view in a given SNMP community profile, 
access to that variable is represented by the profile according to the following conventions: 

(1) if said variable is defined in the MIB with "Access:" of "none," it is 
unavailable as an operand for any operator; 

(2) if said variable is defined in the MIB with "Access:" of "read-write" or 
"write-only" and the access mode of the given profile is READ-WRITE, 
that variable is available as an operand for the get, set, and trap 
operations; 

(3) otherwise, the variable is available as an operand for the get and trap 
operations. 

(4) In those cases where a "write-only" variable is an operand used for the 
get or trap operations, the value given for the variable is 
implementation-specific. 

A pairing of a SNMP community with a SNMP community profile is called a SNMP access 
policy. An access policy represents a specified community profile afforded by the SNMP 
agent of a specified SNMP community to other members of that community.    All 
administrative relationships among SNMP application entities are architecturally defined in 
terms of SNMP access policies. 
For every SNMP access policy, if the network element on which the SNMP agent for the 



specified SNMP community resides is not that to which the MIB view for the specified profile 
pertains, then that policy is called a SNMP proxy access policy. The SNMP agent associated 
with a proxy access policy is called a SNMP proxy agent. While careless definition of proxy 
access policies can result in management loops, prudent definition of proxy policies is useful
in at least two ways: 

(1) It permits the monitoring and control of network elements which are 
otherwise not addressable using the management protocol and the 
transport protocol.    That is, a proxy agent may provide a protocol 
conversion function allowing a management station to apply a 
consistent management framework to all network elements, including 
devices such as modems, multiplexors, and other devices which 
support different management frameworks. 

(2) It potentially shields network elements from elaborate access control 
policies.    For example, a proxy agent may implement sophisticated 
access control whereby diverse subsets of variables within the MIB are 
made accessible to different management stations without increasing 
the complexity of the network element. 

By way of example, Figure 1 illustrates the relationship between management stations, 
proxy agents, and management agents.    In this example, the proxy agent is envisioned to 
be a normal Internet Network Operations Center (INOC) of some administrative domain 
which has a standard managerial relationship with a set of management agents. 

Domain: The administrative domain of the element
PCommunity: the name of a community utilizing a proxy agent
DCommunity: the name of a direct community



RFC-1157 SNMP - Elements of the Architecture

Form and Meaning of References to Managed Objects

The SMI requires that the definition of a conformant management protocol address: 
(1) the resolution of ambiguous MIB references,
(2) the resolution of MIB references in the presence multiple MIB versions, 

and 
(3) the identification of particular instances of object types defined in the 

MIB. 
Resolution of Ambiguous MIB References
Resolution of References across MIB Versions
Identification of Object Instances



RFC-1157 SNMP - Form and Meaning of References to Managed Objects

Resolution of Ambiguous MIB References

Because the scope of any SNMP operation is conceptually confined to objects relevant to a 
single network element, and because all SNMP references to MIB objects are (implicitly or 
explicitly) by unique variable names, there is no possibility that any SNMP reference to any 
object type defined in the MIB could resolve to multiple instances of that type. 



RFC-1157 SNMP - Form and Meaning of References to Managed Objects

Resolution of References across MIB Versions

The object instance referred to by any SNMP operation is exactly that specified as part of the
operation request or (in the case of a get- next operation) its immediate successor in the 
MIB as a whole.    In particular, a reference to an object as part of some version of the 
Internet-standard MIB does not resolve to any object that is not part of said version of the 
Internet-standard MIB, except in the case that the requested operation is get-next and the 
specified object name is lexicographically last among the names of all objects presented as 
part of said version of the Internet-Standard MIB. 



RFC-1157 SNMP - Form and Meaning of References to Managed Objects

Identification of Object Instances

The names for all object types in the MIB are defined explicitly either in the Internet-
standard MIB or in other documents which conform to the naming conventions of the SMI.    
The SMI requires that conformant management protocols define mechanisms for identifying 
individual instances of those object types for a particular network element. 
Each instance of any object type defined in the MIB is identified in SNMP operations by a 
unique name called its "variable name." In general, the name of an SNMP variable is an 
OBJECT IDENTIFIER of the form x.y, where x is the name of a non-aggregate object type 
defined in the MIB and y is an OBJECT IDENTIFIER fragment that, in a way specific to the 
named object type, identifies the desired instance. 
This naming strategy admits the fullest exploitation of the semantics of the GetNextRequest-
PDU, because it assigns names for related variables so as to be contiguous in the 
lexicographical ordering of all variable names known in the MIB. 
The type-specific naming of object instances is defined below for a number of classes of 
object types.    Instances of an object type to which none of the following naming 
conventions are applicable are named by OBJECT IDENTIFIERs of the form x.0, where x is the
name of said object type in the MIB definition. 
For example, suppose one wanted to identify an instance of the variable sysDescr The object
class for sysDescr is: 

iso org dod internetmgmt mib system sysDescr
1 3 6 1 2 1 1 1

Hence, the object type, x, would be 1.3.6.1.2.1.1.1 to which is appended an instance sub-
identifier of 0.    That is, 1.3.6.1.2.1.1.1.0 identifies the one and only instance of sysDescr. 

ifTable Object Type Names
atTable Object Type Names
ipAddrTable Object Type Names
ipRoutingTable Object Type Names
tcpConnTable Object Type Names
egpNeighTable Object Type Names



RFC-1157 SNMP - Objects

ifTable Object Type Names

The name of a subnet interface, s, is the OBJECT IDENTIFIER value of the form i, where i has 
the value of that instance of the ifIndex object type associated with s. 
For each object type, t, for which the defined name, n, has a prefix of ifEntry, an instance, i, 
of t is named by an OBJECT IDENTIFIER of the form n.s, where s is the name of the subnet 
interface about which i represents information. 
For example, suppose one wanted to identify the instance of the variable ifType associated 
with interface 2.    Accordingly, ifType.2 would identify the desired instance. 



RFC-1157 SNMP - Objects

atTable Object Type Names

The name of an AT-cached network address, x, is an OBJECT IDENTIFIER of the form 
1.a.b.c.d, where a.b.c.d is the value (in the familiar "dot" notation) of the atNetAddress 
object type associated with x. 
The name of an address translation equivalence e is an OBJECT IDENTIFIER value of the form
s.w, such that s is the value of that instance of the atIndex object type associated with e and
such that w is the name of the AT-cached network address associated with e. 
For each object type, t, for which the defined name, n, has a prefix of atEntry, an instance, i, 
of t is named by an OBJECT IDENTIFIER of the form n.y, where y is the name of the address 
translation equivalence about which i represents information. 
For example, suppose one wanted to find the physical address of an entry in the address 
translation table (ARP cache) associated with an IP address of 89.1.1.42 and interface 3.    
Accordingly, atPhysAddress.3.1.89.1.1.42 would identify the desired instance. 



RFC-1157 SNMP - Objects

ipAddrTable Object Type Names

The name of an IP-addressable network element, x, is the OBJECT IDENTIFIER of the form 
a.b.c.d such that a.b.c.d is the value (in the familiar "dot" notation) of that instance of the 
ipAdEntAddr object type associated with x. 
For each object type, t, for which the defined name, n, has a prefix of ipAddrEntry, an 
instance, i, of t is named by an OBJECT IDENTIFIER of the form n.y, where y is the name of 
the IP-addressable network element about which i represents information. 
For example, suppose one wanted to find the network mask of an entry in the IP interface 
table associated with an IP address of 89.1.1.42. Accordingly, ipAdEntNetMask.89.1.1.42 
would identify the desired instance. 



RFC-1157 SNMP - Objects

ipRoutingTable Object Type Names

The name of an IP route, x, is the OBJECT IDENTIFIER of the form a.b.c.d such that a.b.c.d is 
the value (in the familiar "dot" notation) of that instance of the ipRouteDest object type 
associated with x. 
For each object type, t, for which the defined name, n, has a prefix of ipRoutingEntry, an 
instance, i, of t is named by an OBJECT IDENTIFIER of the form n.y, where y is the name of 
the IP route about which i represents information. 
For example, suppose one wanted to find the next hop of an entry in the IP routing table 
associated    with the destination of 89.1.1.42. Accordingly, ipRouteNextHop.89.1.1.42 would 
identify the desired instance. 



RFC-1157 SNMP - Objects

tcpConnTable Object Type Names

The name of a TCP connection, x, is the OBJECT IDENTIFIER of the form a.b.c.d.e.f.g.h.i.j such
that a.b.c.d is the value (in the familiar "dot" notation) of that instance of the 
tcpConnLocalAddress object type associated with x and such that f.g.h.i is the value (in the 
familiar "dot" notation) of that instance of the tcpConnRemoteAddress object type 
associated with x and such that e is the value of that instance of the tcpConnLocalPort 
object type associated with x and such that j is the value of that instance of the 
tcpConnRemotePort object type associated with x. 
For each object type, t, for which the defined name, n, has a prefix of    tcpConnEntry, an 
instance, i, of t is named by an OBJECT IDENTIFIER of the form n.y, where y is the name of 
the TCP connection about which i represents information. 
For example, suppose one wanted to find the state of a TCP connection between the local 
address of 89.1.1.42 on TCP port 21 and the remote address of 10.0.0.51 on TCP port 2059.   
Accordingly, tcpConnState.89.1.1.42.21.10.0.0.51.2059 would identify the desired instance. 



RFC-1157 SNMP - Objects

egpNeighTable Object Type Names

The name of an EGP neighbor, x, is the OBJECT IDENTIFIER of the form a.b.c.d such that 
a.b.c.d is the value (in the familiar "dot" notation) of that instance of the egpNeighAddr 
object type associated with x. 
For each object type, t, for which the defined name, n, has a prefix of egpNeighEntry, an 
instance, i, of t is named by an OBJECT IDENTIFIER of the form n.y, where y is the name of 
the EGP neighbor about which i represents information. 
For example, suppose one wanted to find the neighbor state for the IP address of 89.1.1.42.   
Accordingly, egpNeighState.89.1.1.42 would identify the desired instance. 



RFC-1157 A Simple Network Management Protocol

Protocol Specification

The network management protocol is an application protocol by which the variables of an 
agent's MIB may be inspected or altered. 
Communication among protocol entities is accomplished by the exchange of messages, each
of which is entirely and independently represented within a single UDP datagram using the 
basic encoding rules of ASN.1 (as discussed in Section 3.2.2).    A message consists of a 
version identifier, an SNMP community name, and a protocol data unit (PDU). A protocol 
entity receives messages at UDP port 161 on the host with which it is associated for all 
messages except for those which report traps (i.e., all messages except those which contain 
the Trap-PDU). Messages which report traps should be received on UDP port 162 for further 
processing.    An implementation of this protocol need not accept messages whose length 
exceeds 484 octets.    However, it is recommended that implementations support larger 
datagrams whenever feasible. 
It is mandatory that all implementations of the SNMP support the five PDUs:    GetRequest-
PDU, GetNextRequest-PDU, GetResponse-PDU, SetRequest-PDU, and Trap-PDU. 

RFC1157-SNMP DEFINITIONS ::= BEGIN
IMPORTS

ObjectName, ObjectSyntax, NetworkAddress, IpAddress, TimeTicks
FROM RFC1155-SMI;

-- top-level message
Message ::=

SEQUENCE {
version                -- version-1 for this RFC
INTEGER {

version-1(0)
},
community            -- community name
OCTET STRING,

data                      -- e.g., PDUs if trivial
ANY                -- authentication is being used

}
-- protocol data units
PDUs ::=

CHOICE {
get-request

GetRequest-PDU,
get-next-request

 GetNextRequest-PDU,
get-response

GetResponse-PDU,
set-request

SetRequest-PDU,
trap

Trap-PDU
}

-- the individual PDUs and commonly used
-- data types will be defined later
END





RFC-1157 SNMP - Protocol Specification

Elements of Procedure

This section describes the actions of a protocol entity implementing the SNMP. Note, 
however, that it is not intended to constrain the internal architecture of any conformant 
implementation. 
In the text that follows, the term transport address is used.    In the case of the UDP, a 
transport address consists of an IP address along with a UDP port.    Other transport services 
may be used to support the SNMP.    In these cases, the definition of a transport address 
should be made accordingly. 
The top-level actions of a protocol entity which generates a message are as follows: 

(1) It first constructs the appropriate PDU, e.g., the GetRequest-PDU, as an
ASN.1 object. 

(2) It then passes this ASN.1 object along with a community name its 
source transport address and the destination transport address, to the 
service which implements the desired authentication scheme.    This 
authentication service returns another ASN.1 object. 

(3) The protocol entity then constructs an ASN.1 Message object, using the
community name and the resulting ASN.1 object. 

(4) This new ASN.1 object is then serialized, using the basic encoding rules
of ASN.1, and then sent using a transport service to the peer protocol 
entity. 

Similarly, the top-level actions of a protocol entity which receives a message are as follows: 
(1) It performs a rudimentary parse of the incoming datagram to build an 

ASN.1 object corresponding to an ASN.1 Message object. If the parse 
fails, it discards the datagram and performs no further actions. 

(2) It then verifies the version number of the SNMP message. If there is a 
mismatch, it discards the datagram and performs no further actions. 

(3) The protocol entity then passes the community name and user data 
found in the ASN.1 Message object, along with the datagram's source 
and destination transport addresses to the service which implements 
the desired authentication scheme.    This entity returns another ASN.1 
object, or signals an authentication failure.    In the latter case, the 
protocol entity notes this failure, (possibly) generates a trap, and 
discards the datagram and performs no further actions. 

(4) The protocol entity then performs a rudimentary parse on the ASN.1 
object returned from the authentication service to build an ASN.1 
object corresponding to an ASN.1 PDUs object.    If the parse fails, it 
discards the datagram and performs no further actions.    Otherwise, 
using the named SNMP community, the appropriate profile is selected, 
and the PDU is processed accordingly.    If, as a result of this processing,
a message is returned then the source transport address that the 
response message is sent from shall be identical to the destination 
transport address that the original request message was sent to. 

Common Constructs
The GetRequest-PDU
The GetNextRequest-PDU



Example of Table Traversal
The GetResponse-PDU
The SetRequest-PDU
The Trap-PDU



RFC-1157 SNMP - Elements of Procdedure

Common Constructs

Before introducing the six PDU types of the protocol, it is appropriate to consider some of the
ASN.1 constructs used frequently: 

-- request/response information
RequestID ::=

INTEGER
ErrorStatus ::=

INTEGER {
noError(0),
tooBig(1),
noSuchName(2),
badValue(3),
readOnly(4)
genErr(5)

}
ErrorIndex ::=

INTEGER
-- variable bindings
VarBind ::=

SEQUENCE {
name

ObjectName,
value

ObjectSyntax
}

VarBindList ::=
SEQUENCE OF

VarBind

RequestIDs are used to distinguish among outstanding requests.    By use of the RequestID, 
an SNMP application entity can correlate incoming responses with outstanding requests.    In 
cases where an unreliable datagram service is being used, the RequestID also provides a 
simple means of identifying messages duplicated by the network. 
A non-zero instance of ErrorStatus is used to indicate that an exception occurred while 
processing a request.    In these cases, ErrorIndex may provide additional information by 
indicating which variable in a list caused the exception. 
The term variable refers to an instance of a managed object.    A variable binding, or VarBind,
refers to the pairing of the name of a variable to the variable's value.    A VarBindList is a 
simple list of variable names and corresponding values.    Some PDUs are concerned only 
with the name of a variable and not its value (e.g., the GetRequest-PDU).    In this case, the 
value portion of the binding is ignored by the protocol entity.    However, the value portion 
must still have valid ASN.1 syntax and encoding.    It is recommended that the ASN.1 value 
NULL be used for the value portion of such bindings. 



RFC-1157 SNMP - Elements of Procedure

The GetRequest-PDU

The form of the GetRequest-PDU is:
GetRequest-PDU ::=

[0]
IMPLICIT SEQUENCE {

request-id
RequestID,

error-status                -- always 0
ErrorStatus,

error-index                  -- always 0
ErrorIndex,

variable-bindings
        VarBindList

}
The GetRequest-PDU is generated by a protocol entity only at the request of its SNMP 
application entity. 
Upon receipt of the GetRequest-PDU, the receiving protocol entity responds according to any
applicable rule in the list below: 

(1) If, for any object named in the variable-bindings field, the object's 
name does not exactly match the name of some object available for 
get operations in the relevant MIB view, then the receiving entity sends
to the originator of the received message the GetResponse-PDU of 
identical form, except that the value of the error-status field is 
noSuchName, and the value of the error-index field is the index of said 
object name component in the received message. 

(2) If, for any object named in the variable-bindings field, the object is an 
aggregate type (as defined in the SMI), then the receiving entity sends 
to the originator of the received message the GetResponse-PDU of 
identical form, except that the value of the error-status field is 
noSuchName, and the value of the error-index field is the index of said 
object name component in the received message. 

(3) If the size of the GetResponse-PDU generated as described below 
would exceed a local limitation, then the receiving entity sends to the 
originator of the received message the GetResponse-PDU of identical 
form, except that the value of the error-status field is tooBig, and the 
value of the error-index field is zero. 

(4) If, for any object named in the variable-bindings field, the value of the 
object cannot be retrieved for reasons not covered by any of the 
foregoing rules, then the receiving entity sends to the originator of the 
received message the GetResponse-PDU of identical form, except that 
the value of the error-status field is genErr and the value of the error-
index field is the index of said object name component in the received 
message. 

If none of the foregoing rules apply, then the receiving protocol entity sends to the originator
of the received message the GetResponse-PDU such that, for each object named in the 
variable- bindings field of the received message, the corresponding component of the 
GetResponse-PDU represents the name and value of that variable.    The value of the error- 



status field of the GetResponse- PDU is noError and the value of the error-index field is zero.  
The value of the request-id field of the GetResponse-PDU is that of the received message. 



RFC-1157 SNMP - Elements of Procedure

The GetNextRequest-PDU

The form of the GetNextRequest-PDU is identical to that of the GetRequest-PDU except for 
the indication of the PDU type.    In the ASN.1 language: 

GetNextRequest-PDU ::=
[1]

IMPLICIT SEQUENCE {
request-id

RequestID,
error-status                -- always 0

ErrorStatus,
error-index                  -- always 0

ErrorIndex,
variable-bindings

VarBindList
}

The GetNextRequest-PDU is generated by a protocol entity only at the request of its SNMP 
application entity. 
Upon receipt of the GetNextRequest-PDU, the receiving protocol entity responds according 
to any applicable rule in the list below: 

(1) If, for any object name in the variable-bindings field, that name does 
not lexicographically precede the name of some object available for 
get operations in the relevant MIB view, then the receiving entity sends
to the originator of the received message the GetResponse-PDU of 
identical form, except that the value of the error-status field is 
noSuchName, and the value of the error-index field is the index of said 
object name component in the received message. 

(2) If the size of the GetResponse-PDU generated as described below 
would exceed a local limitation, then the receiving entity sends to the 
originator of the received message the GetResponse-PDU of identical 
form, except that the value of the error-status field is tooBig, and the 
value of the error-index field is zero. 

(3) If, for any object named in the variable-bindings field, the value of the 
lexicographical successor to the named object cannot be retrieved for 
reasons not covered by any of the foregoing rules, then the receiving 
entity sends to the originator of the received message the 
GetResponse-PDU of identical form, except that the value of the error-
status field is genErr and the value of the error-index field is the index 
of said object name component in the received message. 

If none of the foregoing rules apply, then the receiving protocol entity sends to the originator
of the received message the GetResponse-PDU such that, for each name in the variable-
bindings field of the received message, the corresponding component of the GetResponse-
PDU represents the name and value of that object whose name is, in the lexicographical 
ordering of the names of all objects available for get operations in the relevant MIB view, 
together with the value of the name field of the given component, the immediate successor 
to that value.    The value of the error-status field of the GetResponse-PDU is noError and the 
value of the errorindex field is zero.    The value of the request-id field of the GetResponse-



PDU is that of the received message. 



RFC-1157 SNMP - Elements of Procedure

Example of Table Traversal

One important use of the GetNextRequest-PDU is the traversal of conceptual tables of 
information within the MIB. The semantics of this type of SNMP message, together with the 
protocol-specific mechanisms for identifying individual instances of object types in the MIB, 
affords    access to related objects in the MIB as if they enjoyed a tabular organization. 
By the SNMP exchange sketched below, an SNMP application entity might extract the 
destination address and next hop gateway for each entry in the routing table of a particular 
network element. Suppose that this routing table has three entries: 

Destination        NextHop            Metric  
10.0.0.99 89.1.1.42 5
9.1.2.3 99.0.0.3 3
10.0.0.51 89.1.1.42 5

The management station sends to the SNMP agent a GetNextRequest-PDU containing the 
indicated OBJECT IDENTIFIER values as the requested variable names: 

GetNextRequest ( ipRouteDest, ipRouteNextHop, ipRouteMetric1 )
The SNMP agent responds with a GetResponse-PDU:

GetResponse (( ipRouteDest.9.1.2.3 =    "9.1.2.3" ),
( ipRouteNextHop.9.1.2.3 = "99.0.0.3" ),
( ipRouteMetric1.9.1.2.3 = 3 ))

The management station continues with:
GetNextRequest ( ipRouteDest.9.1.2.3,

ipRouteNextHop.9.1.2.3,
ipRouteMetric1.9.1.2.3 )

The SNMP agent responds:
GetResponse (( ipRouteDest.10.0.0.51 = "10.0.0.51" ),

( ipRouteNextHop.10.0.0.51 = "89.1.1.42" ),
( ipRouteMetric1.10.0.0.51 = 5 ))

The management station continues with:
GetNextRequest ( ipRouteDest.10.0.0.51,

ipRouteNextHop.10.0.0.51,
ipRouteMetric1.10.0.0.51 )

The SNMP agent responds:
GetResponse (( ipRouteDest.10.0.0.99 = "10.0.0.99" ),

( ipRouteNextHop.10.0.0.99 = "89.1.1.42" ),
( ipRouteMetric1.10.0.0.99 = 5 ))

The management station continues with:
GetNextRequest ( ipRouteDest.10.0.0.99,

ipRouteNextHop.10.0.0.99,
ipRouteMetric1.10.0.0.99 )

As there are no further entries in the table, the SNMP agent returns those objects that are 
next in the lexicographical ordering of the known object names.    This response signals the 
end of the routing table to the management station. 





RFC-1157 SNMP - Elements of Procedure

The GetResponse-PDU

The form of the GetResponse-PDU is identical to that of the GetRequest-PDU except for the 
indication of the PDU type.    In the ASN.1 language: 

GetResponse-PDU ::=
[2]

IMPLICIT SEQUENCE {
request-id

RequestID,
error-status

ErrorStatus,
error-index

ErrorIndex,
variable-bindings

VarBindList
}

The GetResponse-PDU is generated by a protocol entity only upon receipt of the GetRequest-
PDU, GetNextRequest-PDU, or SetRequest-PDU, as described elsewhere in this document. 
Upon receipt of the GetResponse-PDU, the receiving protocol entity presents its contents to 
its SNMP application entity. 



RFC-1157 SNMP - Elements of Procedure

The SetRequest-PDU

The form of the SetRequest-PDU is identical to that of the GetRequest-PDU except for the 
indication of the PDU type.    In the ASN.1 language: 

SetRequest-PDU ::=
 [3]

 IMPLICIT SEQUENCE {
request-id

RequestID,
error-status                -- always 0

ErrorStatus,
error-index                  -- always 0

ErrorIndex,
variable-bindings

VarBindList
 }

The SetRequest-PDU is generated by a protocol entity only at the request of its SNMP 
application entity. 
Upon receipt of the SetRequest-PDU, the receiving entity responds according to any 
applicable rule in the list below: 

(1) If, for any object named in the variable-bindings field, the object is not 
available for set operations in the relevant MIB view, then the receiving
entity sends to the originator of the received message the 
GetResponse-PDU of identical form, except that the value of the error-
status field is noSuchName, and the value of the error-index field is the 
index of said object name component in the received message. 

(2) If, for any object named in the variable-bindings field, the contents of 
the value field does not, according to the ASN.1 language, manifest a 
type, length, and value that is consistent with that required for the 
variable, then the receiving entity sends to the originator of the 
received message the GetResponse-PDU of identical form, except that 
the value of the error-status field is badValue, and the value of the 
error-index field is the index of said object name in the received 
message. 

(3) If the size of the Get Response type message generated as described 
below would exceed a local limitation, then the receiving entity sends 
to the originator of the received message the GetResponse-PDU of 
identical form, except that the value of the error-status field is tooBig, 
and the value of the error-index field is zero. 

(4) If, for any object named in the variable-bindings field, the value of the 
named object cannot be altered for reasons not covered by any of the 
foregoing rules, then the receiving entity sends to the originator of the 
received message the GetResponse-PDU of identical form, except that 
the value of the error-status field is genErr and the value of the error-
index field is the index of said object name component in the received 
message. 

If none of the foregoing rules apply, then for each object named in the variable-bindings field
of the received message, the corresponding value is assigned to the variable.    Each variable



assignment specified by the SetRequest-PDU should be effected as if simultaneously set 
with respect to all other assignments specified in the same message. 
The receiving entity then sends to the originator of the received message the GetResponse-
PDU of identical form except that the value of the error-status field of the generated 
message is noError and the value of the error-index field is zero. 



RFC-1157 SNMP - Elements of Procedure

The Trap-PDU

The form of the Trap-PDU is:
Trap-PDU ::=
[4]

IMPLICIT SEQUENCE {
enterprise -- type of object generating

-- trap, see sysObjectID in [5]
OBJECT IDENTIFIER,

agent-addr                    -- address of object generating
NetworkAddress, -- trap

generic-trap                -- generic trap type
INTEGER {

coldStart(0),
warmStart(1),
linkDown(2),
linkUp(3),
authenticationFailure(4),
egpNeighborLoss(5),
enterpriseSpecific(6)

        },
specific-trap -- specific code, present even

INTEGER, -- if generic-trap is not
-- enterpriseSpecific

time-stamp -- time elapsed between the last
TimeTicks, -- (re)initialization of the network

-- entity and the generation of the
-- trap

variable-bindings -- "interesting" information
VarBindList

}

The Trap-PDU is generated by a protocol entity only at the request of the SNMP application 
entity.    The means by which an SNMP application entity selects the destination addresses of
the SNMP application entities is implementation-specific. 
Upon receipt of the Trap-PDU, the receiving protocol entity presents its contents to its SNMP 
application entity. 
The significance of the variable-bindings component of the Trap-PDU is implementation-
specific. 
Interpretations of the value of the generic-trap field are:



RFC-1157 SNMP - Elements of Procedure: Traps

The coldStart Trap

A coldStart(0) trap signifies that the sending protocol entity is reinitializing itself such that 
the agent's configuration or the protocol entity implementation may be altered. 



RFC-1157 SNMP - Elements of Procedure: Traps

The warmStart Trap

A warmStart(1) trap signifies that the sending protocol entity is reinitializing itself such that 
neither the agent configuration nor the protocol entity implementation is altered. 



RFC-1157 SNMP - Elements of Procedure: Traps

The linkDown Trap

A linkDown(2) trap signifies that the sending protocol entity recognizes a failure in one of the
communication links represented in the agent's configuration. 
The Trap-PDU of type linkDown contains as the first element of its variable-bindings, the 
name and value of the ifIndex instance for the affected interface. 



RFC-1157 SNMP - Elements of Procedure: Traps

The linkUp Trap

A linkUp(3) trap signifies that the sending protocol entity recognizes that one of the 
communication links represented in the agent's configuration has come up. 
The Trap-PDU of type linkUp contains as the first element of its variable-bindings, the name 
and value of the ifIndex instance for the affected interface. 



RFC-1157 SNMP - Elements of Procedure: Traps

The authenticationFailure Trap

An authenticationFailure(4) trap signifies that the sending protocol entity is the addressee of 
a protocol message that is not properly authenticated.    While implementations of the SNMP 
must be capable of generating this trap, they must also be capable of suppressing the 
emission of such traps via an implementation-specific mechanism. 



RFC-1157 SNMP - Elements of Procedure: Traps

The egpNeighborLoss Trap

An egpNeighborLoss(5) trap signifies that an EGP neighbor for whom the sending protocol 
entity was an EGP peer has been marked down and the peer relationship no longer obtains. 
The Trap-PDU of type egpNeighborLoss contains as the first element of its variable-bindings, 
the name and value of the egpNeighAddr instance for the affected neighbor. 



RFC-1157 SNMP - Elements of Procedure: Traps

The enterpriseSpecific Trap

A enterpriseSpecific(6) trap signifies that the sending protocol entity recognizes that some 
enterprise-specific event has occurred. The specific-trap field identifies the particular trap 
which occurred. 



RFC-1157 A Simple Network Management Protocol

Definitions

RFC1157-SNMP DEFINITIONS ::= BEGIN 
IMPORTS

ObjectName, ObjectSyntax, NetworkAddress, IpAddress, TimeTicks
FROM RFC1155-SMI;
-- top-level message
Message ::=

SEQUENCE {
version                    -- version-1 for this RFC

INTEGER {
version-1(0)

},
community                -- community name

OCTET STRING,
data -- e.g., PDUs if trivial
ANY -- authentication is being used

}
-- protocol data units
PDUs ::=

CHOICE {
get-request

GetRequest-PDU,
get-next-request

GetNextRequest-PDU,
get-response

GetResponse-PDU,
set-request

SetRequest-PDU,
trap

Trap-PDU
                                        }
-- PDUs

GetRequest-PDU ::=
[0]

IMPLICIT PDU
GetNextRequest-PDU ::=
[1]

IMPLICIT PDU
GetResponse-PDU ::=
[2]

IMPLICIT PDU
SetRequest-PDU ::=
[3]

IMPLICIT PDU
PDU ::=

SEQUENCE {
request-id

INTEGER,
 error-status            -- sometimes ignored

INTEGER {
noError(0),



tooBig(1),
noSuchName(2),
badValue(3),
readOnly(4),
genErr(5)

},
error-index              -- sometimes ignored

INTEGER,
variable-bindings -- values are sometimes ignored

VarBindList
}

Trap-PDU ::=
[4]

IMPLICIT SEQUENCE {
enterprise -- type of object generating

-- trap, see sysObjectID in [5]
OBJECT IDENTIFIER,
agent-addr                -- address of object generating

NetworkAddress, -- trap
generic-trap            -- generic trap type

INTEGER {
coldStart(0),
warmStart(1),
linkDown(2),
linkUp(3),
authenticationFailure(4),
egpNeighborLoss(5),
enterpriseSpecific(6)

},
specific-trap    -- specific code, present even

INTEGER, -- if generic-trap is not
-- enterpriseSpecific

time-stamp -- time elapsed between the last
TimeTicks, -- (re)initialization of the network

-- entity and the generation of the
-- trap

variable-bindings -- "interesting" information
VarBindList

 }

-- variable bindings
VarBind ::=

SEQUENCE {
name

ObjectName,
value

ObjectSyntax
}

VarBindList ::=
SEQUENCE OF

VarBind
END



RFC-1157 A Simple Network Management Protocol

Acknowledgements

This memo was influenced by the IETF SNMP Extensions working group: 
Karl Auerbach, Epilogue Technology
K. Ramesh Babu, Excelan
Amatzia Ben-Artzi, 3Com/Bridge
Lawrence Besaw, Hewlett-Packard
Jeffrey D. Case, University of Tennessee at Knoxville
Anthony Chung, Sytek
James Davidson, The Wollongong Group
James R. Davin, MIT Laboratory for Computer Science
Mark S. Fedor, NYSERNet
Phill Gross, The MITRE Corporation
Satish Joshi, ACC
Dan Lynch, Advanced Computing Environments
Keith McCloghrie, The Wollongong Group
Marshall T. Rose, The Wollongong Group (chair)
Greg Satz, cisco
Martin Lee Schoffstall, Rensselaer Polytechnic Institute
Wengyik Yeong, NYSERNet



RFC-1157 A Simple Network Management Protocol
Authors' Addresses

Jeffrey D. Case
SNMP Research
P.O. Box 8593
Knoxville, TN 37996-4800

Phone:    (615) 573-1434
Email:    case@CS.UTK.EDU

Mark Fedor
Performance Systems International
Rensselaer Technology Park
125 Jordan Road
Troy, NY 12180

Phone:    (518) 283-8860
Email:    fedor@patton.NYSER.NET

Martin Lee Schoffstall
Performance Systems International
Rensselaer Technology Park
165 Jordan Road
Troy, NY 12180

Phone:    (518) 283-8860
Email:    schoff@NISC.NYSER.NET

James R. Davin
MIT Laboratory for Computer Science, NE43-507
545 Technology Square
Cambridge, MA 02139

Phone:    (617) 253-6020
EMail:    jrd@ptt.lcs.mit.edu



[1] Cerf, V., "IAB Recommendations for the Development of Internet Network 
Management Standards", RFC 1052, IAB, April 1988. 

[2] Rose, M., and K. McCloghrie, "Structure and Identification of Management 
Information for TCP/IP-based internets", RFC 1065, TWG, August 1988. 

[3] McCloghrie, K., and M. Rose, "Management Information Base for Network 
Management of TCP/IP-based internets", RFC 1066, TWG, August 1988. 

[4] Cerf, V., "Report of the Second Ad Hoc Network Management Review Group", 
RFC 1109, IAB, August 1989. 

[5] Rose, M., and K. McCloghrie, "Structure and Identification of Management 
Information for TCP/IP-based Internets", RFC 1155, Performance Systems 
International and Hughes LAN Systems, May 1990. 

[6] McCloghrie, K., and M. Rose, "Management Information Base for Network 
Management of TCP/IP-based Internets", RFC 1156, Hughes LAN Systems and 
Performance Systems International, May 1990. 

[7] Case, J., M. Fedor, M. Schoffstall, and J. Davin, "A Simple Network Management
Protocol", Internet Engineering Task Force working note, Network Information 
Center, SRI International, Menlo Park, California, March 1988. 

[8] Davin, J., J. Case, M. Fedor, and M. Schoffstall, "A Simple Gateway Monitoring 
Protocol", RFC 1028, Proteon, University of Tennessee at Knoxville, Cornell 
University, and Rensselaer Polytechnic Institute, November 1987. 

[9] Information processing systems - Open Systems Interconnection, 
"Specification of Abstract Syntax Notation One (ASN.1)", International 
Organization for Standardization, International Standard 8824, December 
1987. 

[10] Information processing systems - Open Systems Interconnection, 
"Specification of Basic Encoding Rules for Abstract Notation One (ASN.1)", 
International Organization for Standardization, International Standard 8825, 
December 1987. 

[11] Postel, J., "User Datagram Protocol", RFC 768, USC/Information Sciences 
Institute, November 1980. 





RFC-1160 The Internet Activities Board
V. Cerf

NRI
May 1990

Status of this Memo
This RFC provides a history and description of the Internet Activities Board (IAB) and its 
subsidiary organizations.    This memo is for informational use and does not constitute a 
standard.    This is a revision of RFC 1120.    Distribution of this memo is unlimited. 

Introduction
The Internet Activities Board
The Internet Engineering Task Force
The Internet Research Task Force
The Near-term Agenda of the IAB
Author's Address



RFC-1160 The Internet Activities Board

Introduction

In 1968, the U.S. Defense Advanced Research Projects Agency (DARPA) initiated an effort to 
develop a technology which is now known as packet switching.    This technology had its 
roots in message switching methods, but was strongly influenced by the development of 
low-cost minicomputers and digital telecommunications techniques during the mid-1960's 
[BARAN 64, ROBERTS 70, HEART 70, ROBERTS 78].    A very useful survey of this technology 
can be found in [IEEE 78]. 
During the early 1970's, DARPA initiated a number of programs to explore the use of packet 
switching methods in alternative media including mobile radio, satellite and cable [IEEE 78].  
Concurrently, Xerox Palo Alto Research Center (PARC) began an exploration of packet 
switching on coaxial cable which ultimately led to the development of Ethernet local area 
networks [METCALFE 76]. 
The successful implementation of packet radio and packet satellite technology raised the 
question of interconnecting ARPANET with other types of packet nets.    A possible solution to
this problem was proposed by Cerf and Kahn [CERF 74] in the form of an internetwork 
protocol and a set of gateways to connect the different networks. This solution was further 
developed as part of a research program in internetting sponsored by DARPA and resulted in 
a collection of computer communications protocols based on the original Transmission 
Control Protocol (TCP) and its lower level counterpart, Internet Protocol (IP).    Together, these
protocols, along with many others developed during the course of the research, are referred 
to as the TCP/IP Protocol Suite [RFC 1250, LEINER 85, POSTEL 85, CERF 82, CLARK 86]. 
In the early stages of the Internet research program, only a few researchers worked to 
develop and test versions of the internet protocols.    Over time, the size of this activity 
increased until, in 1979, it was necessary to form an informal committee to guide the 
technical evolution of the protocol suite.    This group was called the Internet Configuration 
Control Board (ICCB) and was established by Dr. Vinton Cerf who was then the DARPA 
program manager for the effort. Dr. David C. Clark of the Laboratory for Computer Science at
Massachusetts Institute of Technology was named the chairman of this committee. 
In January, 1983, the Defense Communications Agency, then responsible for the operation of
the ARPANET, declared the TCP/IP protocol suite to be standard for the ARPANET and all 
systems on the network converted from the earlier Network Control Program (NCP) to TCP/IP.
Late that year, the ICCB was reorganized by Dr. Barry Leiner, Cerf's successor at DARPA, 
around a series of task forces considering different technical aspects of internetting.    The 
re-organized group was named the Internet Activities Board. 
As the Internet expanded, it drew support from U.S. Government organizations including 
DARPA, the National Science Foundation (NSF), the Department of Energy (DOE) and the 
National Aeronautics and Space Administration (NASA).    Key managers in these 
organizations, responsible for computer networking research and development, formed an 
informal Federal Research Internet Coordinating Committee (FRICC) to coordinate U.S. 
Government support for and development and use of the Internet system.    The FRICC 
sponsored most of the U.S. research on internetting, including support for the Internet 
Activities Board and its subsidiary organizations. 
In 1990, the FRICC was reorganized as part of a larger initiative sponsored by the networking
subcommittee of the Federal Coordinating Committee on Science, Engineering and 
Technology (FCCSET).    The reorganization created the Federal Networking Council (FNC) and
its Working Groups.    The membership of the FNC included all the former FRICC members 
and many other U.S. Government representatives.    The first chairman of the FNC is Dr. 
Charles Brownstein of the National Science Foundation.    The FNC is the Federal 



Government's body for coordinating the agencies that support the Internet.    It provides 
liaison to the Office of Science and Technology Policy (headed by the President's Science 
Advisor) which is responsible for setting science and technology policy affecting the Internet.
It endorses and employs the existing planning and operational activities of the community-
based bodies that have grown up to manage the Internet in the United States.    The FNC 
plans to involve user and supplier communities through creation of an external advisory 
board and will coordinate Internet activities with other Federal initiatives ranging from the 
Human Genome and Global Change programs to educational applications.    The FNC has 
also participated in planning for the creation of a National Research and Education Network 
in the United States. 
At the international level, a Coordinating Committee for Intercontinental Research Networks 
(CCIRN) has been formed which includes the U.S. FNC and its counterparts in North America 
and Europe.    Co-chaired by the executive directors of the FNC and the European Association
of Research Networks (RARE), the CCIRN provides a forum for cooperative planning among 
the principal North American and European research networking bodies. 



RFC-1160 The Internet Activities Board

Internet Activities Board

The Internet Activities Board (IAB) is the coordinating committee for Internet design, 
engineering and management.    The Internet is a collection of over two thousand of packet 
switched networks located principally in the U.S., but also in many other parts of the world, 
all interlinked and operating using the protocols of the TCP/IP protocol suite.    The IAB is an 
independent committee of researchers and professionals with a technical interest in the 
health and evolution of the Internet system.    Membership changes with time to adjust to the
current realities of the research interests of the participants, the needs of the Internet 
system and the concerns of constituent members of the Internet. 
IAB members are deeply committed to making the Internet function effectively and evolve to
meet a large scale, high speed future.    New members are appointed by the chairman of the 
IAB, with the advice and consent of the remaining members.    The chairman serves a term of
two years and is elected by the members of the IAB.    The IAB focuses on the TCP/IP protocol
suite, and extensions to the Internet system to support multiple protocol suites. 
The IAB has two principal subsidiary task forces:

1) Internet Engineering Task Force (IETF)
2) Internet Research Task Force (IRTF)

Each of these Task Forces is led by a chairman and guided by a Steering Group which reports
to the IAB through its chairman.    Each task force is organized, by the chairman, as required, 
to carry out its charter.    For the most part, a collection of Working Groups carries out the 
work program of each Task Force. 
All decisions of the IAB are made public.    The principal vehicle by which IAB decisions are 
propagated to the parties interested in the Internet and its TCP/IP protocol suite is the 
Request for Comment (RFC) note series.    The archival RFC series was initiated in 1969 by 
Dr. Stephen D. Crocker as a means of documenting the development of the original ARPANET
protocol suite [RFC 1000].    The editor-in-chief of this series, Dr. Jonathan B. Postel, has 
maintained the quality of and managed the archiving of this series since its inception.    A 
small proportion of the RFCs document Internet standards.    Most of them are intended to 
stimulate comment and discussion.    The small number which document standards are 
especially marked in a "status" section to indicate the special status of the document.    An 
RFC summarizing the status of all standard RFCs is published regularly [RFC 1250]. 
RFCs describing experimental protocols, along with other submissions whose intent is 
merely to inform, are typically submitted directly to the RFC editor.    A Standard Protocol 
starts out as a Proposed Standard and may be promoted to Draft Standard and finally 
Standard after suitable review, comment, implementation and testing. 
Prior to publication of a Proposed Standard RFC, it is made available for comment through an
on-line Internet-Draft directory.    Typically, these Internet-Drafts are working documents of 
the IAB or of the working groups of the Internet Engineering and Research Task Forces. 
Internet-Drafts are either submitted to the RFC editor for publication or discarded within 3-6 
months.    Prior to promotion to Draft Standard or Standard, an Internet-Draft publication and 
review cycle may be initiated if significant changes to the RFC are contemplated. 
The IAB performs the following functions:

1) Sets Internet Standards,
2) Manages the RFC publication process,
3) Reviews the operation of the IETF and IRTF,



4) Performs strategic planning for the Internet, identifying long-range 
problems and opportunities, 

5) Acts as an international technical policy liaison and representative for the 
Internet community, and 

6) Resolves technical issues which cannot be treated within the IETF or IRTF 
frameworks. 

To supplement its work via electronic mail, the IAB meets quarterly to review the condition of
the Internet, to review and approve proposed changes or additions to the TCP/IP suite of 
protocols, to set technical development priorities, to discuss policy matters which may need 
the attention of the Internet sponsors, and to agree on the addition or retirement of IAB 
members and on the addition or retirement of task forces reporting to the IAB.    Typically, 
two of the quarterly meetings are by means of video teleconferencing (provided, when 
possible, through the experimental Internet packet video-conferencing system).    The 
minutes of the IAB meetings are published in the Internet Monthly on-line report. 
The IAB membership is currently as follows:

Vinton Cerf/CNRI Chairman
Robert Braden/USC-ISI Executive Director
David Clark/MIT-LCS IRTF Chairman
Phillip Gross/CNRI IETF Chairman
Jonathan Postel/USC-ISI RFC Editor
Hans-Werner Braun/Merit Member
Lyman Chapin/DG Member
Stephen Kent/BBN Member
Anthony Lauck/Digital Member
Barry Leiner/RIACS Member
Daniel Lynch/Interop, Inc. Member



RFC-1160 The Internet Activities Board

The Internet Engineering Task Force

The Internet has grown to encompass a large number of widely geographically dispersed 
networks in academic and research communities.    It now provides an infrastructure for a 
broad community with various interests.    Moreover, the family of Internet protocols and 
system components has moved from experimental to commercial development.    To help 
coordinate the operation, management and evolution of the Internet, the IAB established the
Internet Engineering Task Force (IETF).    The IETF is chaired by Mr. Phillip Gross and managed
by its Internet Engineering Steering Group (IESG). The IAB has delegated to the IESG the 
general responsibility for making the Internet work and for the resolution of all short- and 
mid-range protocol and architectural issues required to make the Internet function 
effectively. 
The charter of the IETF includes:

1) Responsibility for specifying the short and mid-term Internet protocols and 
architecture and recommending standards for IAB approval. 

2) Provision of a forum for the exchange of information within the Internet 
community. 

3) Identification of pressing and relevant short- to mid-range operational and 
technical problem areas and convening of Working Groups to explore 
solutions. 

The Internet Engineering Task Force is a large open community of network designers, 
operators, vendors, and researchers concerned with the Internet and the Internet protocol 
suite.    It is organized around a set of eight technical areas, each managed by a technical 
area director.    In addition to the IETF Chairman, the area directors make up the IESG 
membership.    Each area director has primary responsibility for one area of Internet 
engineering activity, and hence for a subset of the IETF Working Groups.    The area directors
have jobs of critical importance and difficulty and are selected not only for their technical 
expertise but also for their managerial skills and judgment.    At present, the eight technical 
areas and chairs are: 

1) Applications Russ Hobby/UC-Davis
2) Host and User Services Craig Partridge/BBN
3) Internet Services Noel Chiappa/Consultant
4) Routing Robert Hinden/BBN
5) Network Management David Crocker/DEC
6) OSI Integration Ross Callon/DEC and

Robert Hagens/UWisc.
7) Operations Phill Gross/CNRI (Acting)
8) Security Steve Crocker/TIS

The work of the IETF is performed by subcommittees known as Working Groups.    There are 
currently more than 40 of these.    Working Groups tend to have a narrow focus and a lifetime
bounded by completion of a specific task, although there are exceptions.    The IETF is a 
major source of proposed protocol standards, for final approval by the IAB. The IETF meets 
quarterly and extensive minutes of the plenary proceedings as well as reports from each of 
the working groups are issued by the IAB Secretariat at the Corporation for National 
Research Initiatives. 



RFC-1160 The Internet Activities Board

The Internet Research Task Force

To promote research in networking and the development of new technology, the IAB 
established the Internet Research Task Force (IRTF). 
In the area of network protocols, the distinction between research and engineering is not 
always clear, so there will sometimes be overlap between activities of the IETF and the IRTF.  
There is, in fact, considerable overlap in membership between the two groups. This overlap 
is regarded as vital for cross-fertilization and technology transfer.    In general, the distinction
between research and engineering is one of viewpoint and sometimes (but not always) time-
frame.    The IRTF is generally more concerned with understanding than with products or 
standard protocols, although specific experimental protocols may have to be developed, 
implemented and tested in order to gain understanding. 
The IRTF is a community of network researchers, generally with an Internet focus.    The work
of the IRTF is governed by its Internet Research Steering Group (IRSG).    The chairman of the
IRTF and IRSG is David Clark.    The IRTF is organized into a number of Research Groups (RGs)
whose chairs of these are appointed by the chairman of the IRSG. The RG chairs and others 
selected by the IRSG chairman serve on the IRSG.    These groups typically have 10 to 20 
members, and each covers a broad area of research, pursuing specific topics, determined at 
least in part by the interests of the members and by recommendations of the IAB. 
The current members of the IRSG are as follows:

David Clark/MIT LCS Chairman
Robert Braden/USC-ISI End-to-End Services
Douglas Comer/PURDUE Member-at-Large
Deborah Estrin/USC Autonomous Networks
Stephen Kent/BBN Privacy and Security
Keith Lantz/Consultant Collaboration Technology
David Mills/UDEL Member-at-Large



RFC-1160 The Internet Activities Board

The Near-term Agenda of the IAB

There are seven principal foci of IAB attention for the period 1989 - 1990: 
1) Operational Stability
2) User Services
3) OSI Coexistence
4) Testbed Facilities
5) Security
6) Getting Big
7) Getting Fast

Operational stability of the Internet is a critical concern for all of its users.    Better tools are 
needed for gathering operational data, to assist in fault isolation at all levels and to analyze 
the performance of the system.    Opportunities abound for increased cooperation among the
operators of the various Internet components [RFC 1109].    Specific, known problems should 
be dealt with, such as implementation deficiencies in some versions of the BIND domain 
name service resolver software.    To the extent that the existing Exterior Gateway Protocol 
(EGP) is only able to support limited topologies, constraints on topological linkages and 
allowed transit paths should be enforced until a more general Inter-Autonomous System 
routing protocol can be specified.    Flexiblity for Internet implementation would be enhanced
by the adoption of a common internal gateway routing protocol by all vendors of internet 
routers.    A major effort is recommended to achieve conformance to the Host Requirements 
RFCs which were published in the fourth quarter of calendar 1989. 
Among the most needed user services, the White Pages (electronic mailbox directory 
service) seems the most pressing.    Efforts should be focused on widespread deployment of 
these capabilities in the Internet by mid-1990.    The IAB recommends that existing white 
pages facilities and newer ones, such as X.500, be populated with up-to- date user 
information and made accessible to Internet users and users of other systems (e.g., 
commercial email carriers) linked to the Internet. Connectivity with commercial electronic 
mail carriers should be vigorously pursued, as well as links to other network research 
communities in Europe and the rest of the world. 
Development and deployment of privacy-enhanced electronic mail software should be 
accelerated in 1990 after release of public domain software implementing the private 
electronic mail standards [RFC 1113, RFC 1114 and RFC 1115].    Finally, support for new or 
enhanced applications such as computer-based conferencing, multi-media messaging and 
collaboration support systems should be developed. 
The National Network Testbed (NNT) resources planned by the FRICC should be applied to 
support conferencing and collaboration protocol development and application experiments 
and to support multi-vendor router interoperability testing (e.g., interior and exterior routing,
network management, multi-protocol routing and forwarding). 
With respect to growth in the Internet, architectural attention should be focused on scaling 
the system to hundreds of millions of users and hundreds of thousands of networks.    The 
naming, addressing, routing and navigation problems occasioned by such growth should be 
analyzed.    Similarly, research should be carried out on analyzing the limits to the existing 
Internet architecture, including the ability of the present protocol suite to cope with speeds 
in the gigabit range and latencies varying from microseconds to seconds in duration. 
The Internet should be positioned to support the use of OSI protocols by the end of 1990 or 



sooner, if possible.    Provision for multi- protocol routing and forwarding among diverse 
vendor routes is one important goal.    Introduction of X.400 electronic mail services and 
interoperation with RFC 822/SMTP [RFC 822, RFC 821, RFC 987, RFC 1026, and RFC 1148] 
should be targeted for 1990 as well.    These efforts will need to work in conjunction with the 
White Pages services mentioned above.    The IETF, in particular, should establish liaison with
various OSI working groups (e.g., at NIST, RARE, Network Management Forum) to coordinate 
planning for OSI introduction into the Internet and to facilitate registration of information 
pertinent to the Internet with the various authorities responsible for OSI standards in the 
United States. 
Finally, with respect to security, a concerted effort should be made to develop guidance and 
documentation for Internet host managers concerning configuration management, known 
security problems (and their solutions) and software and technologies available to provide 
enhanced security and privacy to the users of the Internet. 



RFC-1160 The Internet Activities Board

Author's Address

Vinton G. Cerf
Corporation for National Research Initiatives
1895 Preston White Drive, Suite 100
Reston, VA 22091
Phone: (703) 620-8990
EMail: VCERF@NRI.RESTON.VA.US



[BARAN 64] Baran, P., et al, "On Distributed Communications", Volumes I-XI, RAND 
Corporation Research Documents, August 1964. 



[CERF 74] Cerf V., and R. Kahn, "A Protocol for Packet Network Interconnection", IEEE 
Trans. on Communications, Vol. COM-22, No. 5, pp. 637-648, May 1974. 



[CERF 82] Cerf V., and E. Cain, "The DoD Internet Protocol Architecture", Proceedings 
of the SHAPE Technology Center Symposium on Interoperability of 
Automated Data Systems, November 1982.    Also in Computer Networks 
and ISDN, Vol. 17, No. 5, October 1983. 



[CLARK 86] Clark, D., "The Design Philosophy of the DARPA Internet protocols", 
Proceedings of the SIGCOMM '88 Symposium, Computer Communications 
Review, Vol. 18, No. 4, pp. 106-114, August 1988. 



[HEART 70] Heart, F., Kahn, R., Ornstein, S., Crowther, W., and D. Walden, "The 
Interface Message Processor for the ARPA Computer Network", AFIPS Conf. 
Proc. 36, pp. 551-567, June 1970. 



[IEEE 78] Kahn, R. (Guest Editor), Uncapher, K. and H. Van Trees (Associate Guest 
Editors), Proceedings of the IEEE, Special Issue on Packet Communication 
Networks, Volume 66, No. 11, pp. 1303-1576, November 1978. 



[IEEE 87] Leiner, B. (Guest Editor), Nielson, D., and F. Tobagi (Associate Guest 
Editors), Proceedings of the IEEE, Special Issue on Packet Radio Networks, 
Volume 75, No. 1, pp. 1-272, January 1987. 



[LEINER 85] Leiner, B., Cole, R., Postel, J., and D. Mills, "The DARPA Protocol Suite", IEEE
INFOCOM 85, Washington, D.C., March 1985.    Also in IEEE 
Communications Magazine, March 1985. 



[METCALFE 76] Metcalfe, R., and D. Boggs, "Ethernet:



[POSTEL85] Postel, J. "Internetwork Applications using the DARPA Protocol Suite", IEEE 
INFOCOM 85, Washington, D.C., March 1985.



[ROBERTS 70] Roberts, L., and B. Wessler, "Computer Network Development to Achieve 
Resource Sharing", pp. 543-549, Proc. SJCC 1970. 



[ROBERTS 78] Roberts, L., "Evolution of Packet Switching", Proc.    IEEE, Vol. 66, No. 11, 
pp. 1307-1313, November 1978. 



RFC-1171 
The Point-to-Point Protocol for the Transmissionof 
Multi-Protocol Datagrams Over Point-to-Point Links

D. Perkins, CMU, July 1990
Obsoletes: RFC 1134

Status of this Memo

This RFC specifies an IAB standards track protocol for the Internet community.    Please refer to the 
current edition of the "IAB Official Protocol Standards" for the standardization state and status of this 
protocol.

This proposal is the product of the Point-to-Point Protocol Working Group of the Internet Engineering Task
Force (IETF). Comments on this memo should be submitted to the IETF Point-to-Point Protocol Working 
Group chair.

Security issues are not discussed in this memo.    Distribution of this memo is unlimited.

Abstract
Introduction
Physical Layer Requirements
The Data Link Layer

Frame Format
The PPP Link Control Protocol (LCP)

The LCP Automaton
Loop Avoidance
Timers and Counters
Packet Format
Configuration Options

Format
A PPP Network Control Protocol (NCP) for IP

Sending IP Datagrams
APPENDICES

A.    Asynchronous HDLC
B.    Fast Frame Check Sequence (FCS) Implementation)

B.1    FCS Computation Method
B.2    Fast FCS table generator

REFERENCES
ADDRESSES



RFC-1171    The Point-to-Point Protocol

Abstract
The Point-to-Point Protocol (PPP) provides a method for transmitting datagrams over serial point-to-point 
links.    PPP is composed of three parts:

1. A method for encapsulating datagrams over serial links.

2. An extensible Link Control Protocol (LCP).

3. A family of Network Control Protocols (NCP) for establishing and configuring different 
network-layer protocols.

This document defines the encapsulation scheme, the basic LCP, and an NCP for establishing and 
configuring the Internet Protocol (IP) (called the IP Control Protocol, IPCP).

The options and facilities used by the LCP and the IPCP are defined in separate documents.    Control 
protocols for configuring and utilizing other network-layer protocols besides IP (e.g., DECNET, OSI) are 
expected to be developed as needed.



RFC-1171    The Point-to-Point Protocol

Introduction
         Motivation  
         Overview of PPP  
         Organization of the document  



RFC-1171    The Point-to-Point Protocol:    Introduction

Motivation
In the last few years, the Internet has seen explosive growth in the number of hosts supporting TCP/IP.    
The vast majority of these hosts are connected to Local Area Networks (LANs) of various types, Ethernet 
being the most common.    Most of the other hosts are connected through Wide Area Networks (WANs) 
such as X.25 style Public Data Networks (PDNs).    Relatively few of these hosts are connected with 
simple point-to-point (i.e., serial) links.    Yet, point-to-point links are among the oldest methods of data 
communications and almost every host supports point-to-point connections.    For example, asynchronous
RS-232-C interfaces are essentially ubiquitous.

One reason for the small number of point-to-point IP links is the lack of a standard encapsulation protocol.
There are plenty of non-standard (and at least one defacto standard) encapsulation protocols available, 
but there is not one which has been agreed upon as an Internet Standard.    By contrast, standard 
encapsulation schemes do exist for the transmission of datagrams over most popular LANs. 

One purpose of this memo is to remedy this problem. But even more importantly, the Point-to-Point 
Protocol proposes more than just an encapsulation scheme.    Point-to-Point links tend to exacerbate 
many problems with the current family of network protocols.    For instance, assignment and management 
of IP addresses, which is a problem even in LAN environments, is especially difficult over circuit switched 
point-to-point circuits (e.g., dialups).

Some additional issues addressed by this specification of PPP include asynchronous (start/stop) and bit-
oriented synchronous encapsulation, network protocol multiplexing, link configuration, link quality testing, 
error detection, and option negotiation for such capabilities as network-layer address negotiation and data
compression negotiation.

PPP addresses these issues by providing an extensible Link Control Protocol (LCP) and a family of 
Network Control Protocols (NCP) to negotiate optional configuration parameters and facilities.



RFC-1171    The Point-to-Point Protocol:    Introduction

Overview of PPP
PPP has three main components:

1. A method for encapsulating datagrams over serial links.    PPP uses HDLC as a basis
for encapsulating datagrams over point-to-point links.    At this time, PPP specifies the
use of asynchronous or synchronous duplex circuits, either dedicated or circuit 
switched.

2. An extensible Link Control Protocol (LCP) to establish, configure, and test the data-
link connection.

3. A family of Network Control Protocols (NCP) for establishing and configuring different 
network-layer protocols.    PPP is designed to allow the simultaneous use of multiple 
network-layer protocols.

In order to establish communications over a point-to-point link, the originating PPP would first send LCP 
packets to configure and test the data link.    After the link has been establish and optional facilities have 
been negotiated as needed by the LCP, the originating PPP would send NCP packets to choose and 
configure one or more network-layer protocols.    Once each of the chosen network-layer protocols has 
been configured, datagrams from each network-layer protocol can be sent over the link.

The link will remain configured for communications until explicit LCP or NCP packets close the link down, 
or until some external event occurs (e.g., inactivity timer expires or user intervention).



RFC-1171    The Point-to-Point Protocol:    Introduction

Organization of the document
This memo is divided into several sections.    Section 2 discusses the physical-layer requirements of PPP. 
Section 3 describes the Data Link Layer including the PPP frame format and data link encapsulation 
scheme.    Section 4 specifies the LCP including the connection establishment and option negotiation 
procedures.    Section 5 specifies the IP Control Protocol (IPCP), which is the NCP for the Internet 
Protocol, and describes the encapsulation of IP datagrams within PPP packets.    Appendix A summarizes 
important features of asynchronous HDLC, and Appendix B describes an efficient table-lookup algorithm 
for fast Frame Check Sequence (FCS) computation.



RFC-1171    The Point-to-Point Protocol

Physical Layer Requirements
The Point-to-Point Protocol is capable of operating across any DTE/DCE interface (e.g., EIA RS-232-C, 
EIA RS-422, EIA RS-423 and CCITT V.35).    The only absolute requirement imposed by PPP is the 
provision of a duplex circuit, either dedicated or circuit switched, which can operate in either an 
asynchronous (start/stop) or synchronous bit-serial mode, transparent to PPP Data Link Layer frames.    
PPP does not impose any restrictions regarding transmission rate, other than those imposed by the 
particular DTE/DCE interface in use.

PPP does not require the use of modem control signals, such as Request To Send (RTS), Clear To Send 
(CTS), Data Carrier Detect (DCD), and Data Terminal Ready (DTR).    However, using such signals when 
available can allow greater functionality and performance.



RFC-1171    The Point-to-Point Protocol

The Data Link Layer
The Point-to-Point Protocol uses the principles, terminology, and frame structure of the International 
Organization For Standardization's (ISO) High-level Data Link Control (HDLC) procedures (ISO 3309-
1979), as modified by ISO 3309:1984/PDAD1 "Addendum 1: Start/stop transmission".    ISO 3309-1979 
specifies the HDLC frame structure for use in synchronous environments. ISO 3309:1984/PDAD1 
specifies proposed modifications to ISO 3309-1979 to allow its use in asynchronous environments.

The PPP control procedures use the definitions and Control field encodings standardized in ISO 4335-
1979 and ISO 4335-1979/Addendum 1-1979.    The PPP frame structure is also consistent with CCITT 
Recommendation X.25 LAPB, since that too is based on HDLC.

Note: ISO 3309:1984/PDAD1 is a Proposed Draft standard.    At present, it seems that ISO 
3309:1984/PDAD1 is stable and likely to become an International Standard.    Therefore, we feel 
comfortable about using it before it becomes an International Standard.    The progress of this proposal 
should be tracked and encouraged by the Internet community.

The purpose of this memo is not to document what is already standardized in ISO 3309. We assume that 
the reader is already familiar with HDLC, or has access to a copy of ISO Standard 3309-1979 or CCITT 
X.25 Instead, this paper attempts to give a concise summary and point out specific options and features 
used by PPP. Since "Addendum 1: Start/stop transmission", is not yet standardized and widely available, 
it is summarized in Appendix A.



RFC-1171    The Point-to-Point Protocol:    Data Link Layer

Frame Format
A summary of the standard PPP frame structure is shown below. The fields are transmitted from left to 
right.
+----------+----------+----------+----------+-------------+---------
+----------+
|   Flag   | Address  | Control  | Protocol | Information |   FCS   |   Flag  
|
| 01111110 | 11111111 | 00000011 | 16 bits  |      *      | 16 bits | 01111110
| 
+----------+----------+----------+----------+-------------+---------
+----------+ 

This figure does not include start/stop bits (for asynchronous links) or any bits or octets inserted for 
transparency.    When asynchronous links are used, all octets are transmitted with one start bit, eight bits 
of data, and one stop bit.    There is no provision in either PPP or ISO 3309:1984/PDAD1 for seven bit 
asynchronous links.

To remain consistent with standard Internet practice, and avoid confusion for people used to reading 
RFCs, all binary numbers in the following descriptions are in Most Significant Bit to Least Significant Bit 
order, reading from left to right, unless otherwise indicated.    Note that this is contrary to standard ISO 
and CCITT practice which orders bits as transmitted (i.e., network bit order).    Keep this in mind when 
comparing this document with the international standards documents.

Flag Sequence
The Flag Sequence is a single octet and indicates the beginning or end of a frame.    The Flag Sequence 
consists of the binary sequence 01111110 (hexadecimal 0x7e).

Address Field
The Address field is a single octet and contains the binary sequence 11111111 (hexadecimal 0xff), the All-
Stations address.    PPP does not assign individual station addresses.    The All-Stations address should 
always be recognized and received.    The use of other address lengths and values may be defined at a 
later time, or by prior agreement.    Frames with unrecognized Addresses should be reported through the 
normal network management facility.

Control Field
The Control field is a single octet and contains the binary sequence 00000011 (hexadecimal 0x03), the 
Unnumbered Information (UI) command with the P/F bit set to zero.    Frames with other Control field 
values should be silently discarded.

Protocol Field
The Protocol field is two octets and its value identifies the protocol encapsulated in the Information field of
the frame.    The most up-to-date values of the Protocol field are specified in the most recent "Assigned 
Numbers" RFC.    Initial values are also listed below.

Protocol field values in the "cxxx" range identify datagrams as belonging to the Link Control Protocol 
(LCP) or associated protocols. Values in the "8xxx" range identify datagrams belonging to the family of 
Network Control Protocols (NCP).    Values in the "0xxx" range identify the network protocol of specific 
datagrams.

This Protocol field is defined by PPP and is not a field defined by HDLC.    However, the Protocol field is 
consistent with the ISO 3309 extension mechanism for Address fields. All Protocols MUST be odd; the 
least significant bit of the least significant octet MUST equal "1".    Also, all Protocols MUST be assigned 



such that the least significant bit of the most significant octet equals "0".    Frames received which don't 
comply with these rules should be considered as having an unrecognized Protocol, and should be 
handled as specified by the LCP.    The Protocol field is transmitted and received most significant octet 
first.

The Protocol field is initially assigned as follows:

Value (in hex) Protocol
0001 to 001f reserved (transparency inefficient)
0021 Internet Protocol
0023 * OSI Network Layer
0025 * Xerox NS IDP
0027 * DECnet Phase IV
0029 * Appletalk
002b * Novell IPX
002d * Van Jacobson Compressed TCP/IP 1
002f * Van Jacobson Compressed TCP/IP 2

8021 Internet Protocol Control Protocol
8023 * OSI Network Layer Control Protocol
8025 * Xerox NS IDP Control Protocol
8027 * DECnet Phase IV Control Protocol
8029 * Appletalk Control Protocol
802b * Novell IPX Control Protocol
802d * Reserved
802f * Reserved

c021 Link Control Protocol
c023 * User/Password Authentication Protocol

* Reserved for future use; not described in this document.

Information Field
The Information field is zero or more octets.    The Information field contains the datagram for the protocol 
specified in the Protocol field.    The end of the Information field is found by locating the closing Flag 
Sequence and allowing two octets for the Frame Check Sequence field.    The default maximum length of 
the Information field is 1500 octets.    By prior agreement, consenting PPP implementations may use other
values for the maximum Information field length.

On transmission, the Information field may be padded with an arbitrary number of octets up to the 
maximum length.    It is the responsibility of each protocol to disambiguate padding octets from real 
information.

Frame Check Sequence (FCS) Field
The Frame Check Sequence field is normally 16 bits (two octets).    By prior agreement, consenting PPP 
implementations may use a 32-bit (four-octet) FCS for improved error detection.

The FCS field is calculated over all bits of the Address, Control, Protocol and Information fields not 
including any start and stop bits (asynchronous) and any bits (synchronous) or octets (asynchronous) 
inserted for transparency.    This does not include the Flag Sequences or FCS field.    The FCS is 
transmitted with the coefficient of the highest term first.

For more information on the specification of the FCS, see ISO 3309 or CCITT X.25.

Note:  A fast, table-driven implementation of the 16-bit FCS algorithm is shown in Appendix B.    This 
implementation is based on work by Perez, Morse, and LeVan.

Modifications to the Basic Frame Format



The Link Control Protocol can negotiate modifications to the standard PPP frame structure.    However, 
modified frames will always be clearly distinguishable from standard frames.



RFC-1171    The Point-to-Point Protocol

The PPP Link Control Protocol (LCP)
The Link Control Protocol (LCP) provides a method of establishing, configuring, maintaining and 
terminating the point-to-point connection.    

LCP goes through four distinct phases:

Phase 1: Link Establishment and Configuration Negotiation
Before any network-layer datagrams (e.g., IP) may be exchanged, LCP must first open the connection 
through an exchange of Configure packets.    This exchange is complete, and the Open state entered, 
once a Configure-Ack packet (described below) has been both sent and received.    Any non-LCP packets
received before this exchange is complete are silently discarded.

It is important to note that LCP handles configuration only of the link; LCP does not handle configuration 
of individual network-layer protocols.    In particular, all Configuration Parameters which are independent 
of particular network-layer protocols are configured by LCP.    All Configuration Options are assumed to be
at default values unless altered by the configuration exchange.

Phase 2: Link Quality Determination
LCP allows an optional Link Quality Determination phase following transition to the LCP Open state.    In 
this phase, the link is tested to determine if the link quality is sufficient to bring up network-layer protocols. 
This phase is completely optional.    LCP may delay transmission of network-layer protocol information 
until this phase is completed.

The procedure for Link Quality Determination is unspecified and may vary from implementation to 
implementation, or because of user-configured parameters, but only so long as the procedure doesn't 
violate other aspects of LCP.    One suggested method is to use LCP Echo-Request and Echo-Reply 
packets.

What is important is that this phase may persist for any length of time.    Therefore, implementations 
should avoid fixed timeouts when waiting for their peers to advance to phase 3.

Phase 3: Network-Layer Protocol Configuration Negotiation
Once LCP has finished the Link Quality Determination phase, network-layer protocols may be separately 
configured by the appropriate Network Control Protocols (NCP), and may be brought up and taken down 
at any time.    If LCP closes the link, it informs the network-layer protocols so that they may take 
appropriate

Phase 4: Link Termination
LCP may terminate the link at any time.    This will usually be done at the request of a human user, but 
may happen because of a physical event such as the loss of carrier, or the expiration of an idle-period 
timer.



RFC-1171    The Point-to-Point Protocol:    Link Control Protocol

The LCP Automaton
Overview
State Diagram
State Transition Table
Events
Actions
States



RFC-1171    The Point-to-Point Protocol:    LCP Automation

Overview
LCP is specified by a number of packet formats and a finite-state automaton.    This section presents an 
overview of the LCP automaton, followed by a representation of it as both a state diagram and a state 
transition table.

There are three classes of LCP packets:

1. Link Establishment packets used to establish and configure a link, (e.g., Configure-
Request, Configure-Ack, Configure-Nak and Configure-Reject)

2. Link Termination packets used to terminate a link, (e.g., Terminate-Request and 
Terminate-Ack)

3. Link Maintenance packets used to manage and debug a link, (e.g., Code-Reject, 
Protocol-Reject, Echo-Request, Echo-Reply and Discard-Request)

The finite-state automaton is defined by events, state transitions and actions.    Events include receipt of 
external commands such as Open and Close, expiration of the Restart timer, and receipt of packets from 
a LCP peer.    Actions include the starting of the Restart timer and transmission of packets.



RFC-1171    The Point-to-Point Protocol:    LCP Automation

State Diagram
The state diagram which follows describes the sequence of events for reaching agreement on 
Configuration Options (opening the PPP connection) and for later closing of the connection.    The state 
machine is initially in the Closed state (1).    Once the Open state (6) has been reached, both ends of the 
link have met the requirement of having both sent and received a Configure-Ack packet.

In the state diagram, events are shown above horizontal lines.    Actions are shown below horizontal lines. 
Two types of LCP packets - Configure-Naks and Configure-Rejects - are not differentiated in the state 
diagram.    As will be described later, these packets do indeed serve different, though similar, functions.    
However, at the level of detail of this state diagram, they always cause the same transition.

Since a more detailed specification of the LCP automaton is given in a state transition table in the 
following section, implementation should be done by consulting it rather than this state diagram.
                                    +------------------------------+
                                    |                              |
                                    V                              |
        +---2---+           PO +---1---+        RTA +---7---+      |
        |       |<-------------|       |<-----------|       |      |
        |Listen |              |Closed |            |Closing|      |
    RCR |       | C            |       | PLD        |       |      |
   +----|       |----->+------>|       |<---Any     |       |<--+  |
   |scr +-------+      ^       +-------+    State   +-------+   |  |
   |                   |     AO  |   ^                    | TO  |  |
   |       +-----------+     --- |   |                    +---->+  |
   |       |                 SCR |   |                      str ^  |
   |   C   |   RCN/TO            |   | C                        |  |
   |   --- | +-------->+<--------+   | ---                      |  |
   |       | | scr     |             |                          |  |
   |    +---3---+      V   TO  +---4---+            +-------+   |  |
   |    |       |<-----+<------|       |<-----------|       |   |  |
   |    | Req-  |          scr | Ack-  |        scn | Good  |   |  |
   |    | Sent  | RCA          | Rcvd  | RCR        | Req?  |   |  |
   |    |       |------------->|       |----------->|       |   |  |
   |    +-------+              +-------+            +-------+   |  |
   |       | ^                                         |        |  |
   |   RCR | +<--------+                               |        |  |
   |   --- | |         |     TO        RCN         --- |        |  |
   |       | | ---     +---------+   +-----+       sca |        |  |
   |       V | scn           scr |   | scr |           V        |  |
   |    +-------+              +---5---+   |        +---6---+ C |  |
   +--->|       |------------->|       |<--+        |       |---+  |
        | Good  | sca          | Ack-  |            | Open  | str  |
        | Req?  |          RCR | Sent  | RCA        |       |      |
        |       |<-------------|       |----------->|       |      |
        +-------+              +-------+            +-------+      |
              ^                                       |   |        |
              |                                   RCR |   | RTR    |
              +---------------------------------------+   +--------+
                                                  scr       sta

Events Actions
RCR - Receive-Configure-Request scr - Send Configure-Request
RCA - Receive-Configure-Ack sca - Send Configure-Ack
RCN - Receive-Configure-Nak or Reject scn - Send Configure-Nak



RTR - Receive-Terminate-Req or Reject
RTA - Receive-Terminate-Ack str - Send Terminate-Req
AO    - Active-Open sta - Sent Terminate-Ack
PO    - Passive-Open
C - Close
TO - Timeout
PLD - Physical-Layer-Down



RFC-1171    The Point-to-Point Protocol:    LCP Automation

State Transition Table
The complete state transition table follows.      States    are    indicated horizontally,    and events are read 
vertically.    State transitions and actions are represented in the form    action/new-state.      Two    actions 
caused by the same event are represented as action1&action2.
         | State
         |   1       2        3        4        5        6        7
   Events| Closed  Listen  Req-Sent Ack-Rcvd Ack-Sent  Open    Closing
   ------+-------------------------------------------------------------
     AO  | scr/3   scr/3      3        4        5        6      scr/3
     PO  |   2       2        2*       4        5        6      sta/3*
     C   |   1       1        1*       1      str/7    str/7      7
     TO  |   1       2      scr/3    scr/3    scr/3      6      str/7*
    PLD  |   1       1        1        1        1        1        1
    RCR+ | sta/1 scr&sca/5  sca/5    sca/6    sca/5  scr&sca/5    7
    RCR- | sta/1 scr&scn/3  scn/3    scn/4    scn/3  scr&scn/3    7
    RCA  | sta/1   sta/2      4      scr/3      6      scr/3      7
    RCN  | sta/1   sta/2    scr/3    scr/3    scr/5    scr/3      7
    RTR  | sta/1   sta/2    sta/3    sta/3    sta/3    sta/1    sta/7
    RTA  |   1       2        3        3        3        1        1
    RCJ  |   1       2        1        1        1        1        1
    RUC  | scj/1   scj/2    scj/1    scj/1    scj/1    scj/1  1 scj/7
    RER  | sta/1   sta/2      3        4        5      ser/6      7

      Notes:
              RCR+ - Receive-Configure-Request (Good)
              RCR- - Receive-Configure-Request (Bad)
              RCJ    - Receive-Code-Reject
              RUC    - Receive-Unknown-Code
              RER    - Receive-Echo-Request
              scj    - Send-Code-Reject
              ser    - Send-Echo-Reply

                *      - Special attention necessary, see detailed text



RFC-1171    The Point-to-Point Protocol:    LCP Automation

Events
Transitions and actions in the LCP state machine are caused by events.    Some events are caused by 
commands executed at the local end (e.g., Active-Open, Passive-Open, and Close), others are caused by
the receipt of packets from the remote end (e.g., Receive-Configure-Request, Receive-Configure-Ack, 
Receive-Configure-Nak, Receive-Terminate-Request and Receive-Terminate-Ack), and still others are 
caused by the expiration of the Restart timer started as the result of other events (e.g., Timeout).

Following is a list of LCP events.

Active-Open (AO)
The Active-Open event indicates the local execution of an Active-Open command by the network 
administrator (human or program).    When this event occurs, LCP should immediately attempt to open the
connection by exchanging configuration packets with the LCP peer.

Passive-Open (PO)
The Passive-Open event is similar to the Active-Open event.    However, instead of immediately 
exchanging configuration packets, LCP should wait for the peer to send the first packet.    This will only 
happen after an Active-Open event in the LCP peer.

Close (C)
The Close event indicates the local execution of a Close command.    When this event occurs, LCP should
immediately attempt to close the connection.

Timeout (TO)
The Timeout event indicates the expiration of the LCP Restart timer.    The LCP Restart timer is started as 
the result of other LCP events.

The Restart timer is used to time out transmissions of Configure-Request and Terminate-Request 
packets.    Expiration of the Restart timer causes a Timeout event, which triggers the corresponding 
Configure-Request or Terminate-Request packet to be retransmitted.    The Restart timer MUST be 
configurable, but should default to three (3) seconds.

Receive-Configure-Request (RCR)
The Receive-Configure-Request event occurs when a Configure-Request packet is received from the 
LCP peer.    The Configure-Request packet indicates the desire to open a LCP connection and may 
specify Configuration Options.    The Configure-Request packet is more fully described in a later section.

Receive-Configure-Ack (RCA)
The Receive-Configure-Ack event occurs when a valid Configure-Ack packet is received from the LCP 
peer.    The Configure-Ack packet is a positive response to a Configure-Request packet.

Receive-Configure-Nak (RCN)
The Receive-Configure-Nak event occurs when a valid Configure-Nak or Configure-Reject packet is 
received from the LCP peer.    The Configure-Nak and Configure-Reject packets are negative responses 
to a Configure-Request packet.

Receive-Terminate-Request (RTR)
The Receive-Terminate-Request event occurs when a Terminate-Request packet is received from the 
LCP peer.    The Terminate-Request packet indicates the desire to close the LCP connection.

Receive-Terminate-Ack (RTA)



The Receive-Terminate-Ack event occurs when a Terminate-Ack packet is received from the LCP peer.    
The Terminate-Ack packet is a response to a Terminate-Request packet.

Receive-Code-Reject (RCJ)
The Receive-Code-Reject event occurs when a Code-Reject packet is received from the LCP peer.    The 
Code-Reject packet communicates an error that immediately closes the connection.

Receive-Unknown-Code (RUC)
The Receive-Unknown-Code event occurs when an un-interpretable packet is received from the LCP 
peer.    The Code-Reject packet is a response to an unknown packet.

Receive-Echo-Request (RER)
The Receive-Echo-Request event occurs when a Echo-Request, Echo-Reply, or Discard-Request packet 
is received from the LCP peer.    The Echo-Reply packet is a response to a Echo-Request packet.    There 
is no reply to a Discard-Request.

Physical-Layer-Down (PLD)
The Physical-Layer-Down event occurs when the Physical Layer indicates that it is down.



RFC-1171    The Point-to-Point Protocol:    LCP Automation

Actions
Actions in the LCP state machine are caused by events and typically indicate the transmission of packets 
and/or the starting or stopping of the Restart timer.    Following is a list of LCP actions.

Send-Configure-Request (scr)
The Send-Configure-Request action transmits a Configure-Request packet.    This indicates the desire to 
open a LCP connection with a specified set of Configuration Options.    The Restart timer is started after 
the Configure-Request packet is transmitted, to guard against packet loss.

Send-Configure-Ack (sca)
The Send-Configure-Ack action transmits a Configure-Ack packet.    This acknowledges the receipt of a 
Configure-Request packet with an acceptable set of Configuration Options.

Send-Configure-Nak (scn)
The Send-Configure-Nak action transmits a Configure-Nak or Configure-Reject packet, as appropriate.    
This negative response reports the receipt of a Configure-Request packet with an unacceptable set of 
Configuration Options.    Configure-Nak packets are used to refuse a Configuration Option value, and to 
suggest a new, acceptable value.    Configure-Reject packets are used to refuse all negotiation about a 
Configuration Option, typically because it is not recognized or implemented.    The use of Configure-Nak 
vs. Configure-Reject is more fully described in the section on LCP Packet Formats.

Send-Terminate-Req (str)
The Send-Terminate-Request action transmits a Terminate-Request packet.    This indicates the desire to 
close a LCP connection.    The Restart timer is started after the Terminate-Request packet is transmitted, 
to guard against packet loss.

Send-Terminate-Ack (sta)
The Send-Terminate-Request action transmits a Terminate-Ack packet.    This acknowledges the receipt 
of a Terminate-Request packet or otherwise confirms the belief that a LCP connection is Closed.

Send-Code-Reject (scj)
The Send-Code-Reject action transmits a Code-Reject packet.    This indicates the receipt of an unknown 
type of packet.    This is an unrecoverable error which causes immediate transitions to the Closed state on
both ends of the link.

Send-Echo-Reply (ser)
The Send-Echo-Reply action transmits an Echo-Reply packet.    This acknowledges the receipt of an 
Echo-Request packet.



RFC-1171    The Point-to-Point Protocol:    LCP Automation

States
Following is a more detailed description of each LCP state.

Closed (1)
The initial and final state is the Closed state.    In the Closed state the connection is down and there is no 
attempt to open it; all connection requests from peers are rejected.    Physical-Layer-Down events always 
cause an immediate transition to the Closed state.

There are two events which cause a transition out of the Closed state, Active-Open and Passive-Open.    
Upon an Active-Open event, a Configure-Request is transmitted, the Restart timer is started, and the 
Request-Sent state is entered.    Upon a Passive-Open event, the Listen state is entered immediately.    
Upon receipt of any packet, with the exception of a Terminate-Ack, a Terminate-Ack is sent.    Terminate-
Acks are silently discarded to avoid creating a loop.

The Restart timer is not running in the Closed state.

The Physical Layer connection may be disconnected at any time when in the LCP Closed state.

Listen (2)
The Listen state is similar to the Closed state in that the connection is down and there is no attempt to 
open it.    However, peer connection requests are no longer rejected.

Upon receipt of a Configure-Request, a Configure-Request is immediately transmitted and the Restart 
timer is started.    The received Configuration Options are examined and the proper response is sent.    If a
Configure-Ack is sent, the Ack-Sent state is entered.    Otherwise, if a Configure-Nak or Configure-Reject 
is sent, the Request-Sent state is entered.    In either case, LCP exits its passive state, and begins to 
actively open the connection.    Terminate-Ack packets are sent in response to either Configure-Ack or 
Configure-Nak packets,

The Restart timer is not running in the Listen state.

Request-Sent (3)
In the Request-Sent state an active attempt is made to open the connection.    A Configure-Request has 
been sent and the Restart timer is running, but a Configure-Ack has not yet been received nor has one 
been sent.

Upon receipt of a Configure-Ack, the Ack-Received state is immediately entered.    Upon receipt of a 
Configure-Nak or Configure-Reject, the Configure-Request Configuration Options are adjusted 
appropriately, a new Configure-Request is transmitted, and the Restart timer is restarted.    Similarly, upon
the expiration of the Restart timer, a new Configure-Request is transmitted and the Restart timer is 
restarted.    Upon receipt of a Configure-Request, the Configuration Options are examined and if 
acceptable, a Configure-Ack is sent and the Ack-Sent state is entered.    If the Configuration Options are 
unacceptable, a Configure-Nak or Configure-Reject is sent as appropriate.

Since there is an outstanding Configure-Request in the Request-Sent state, special care must be taken to
implement the Passive-Open and Close events; otherwise, it is possible for the LCP peer to think the 
connection is open.    Processing of either event should be postponed until there is reasonable assurance 
that the peer is not open.    In particular, the Restart timer should be allowed to expire.

Ack-Received (4)
In the Ack-Received state, a Configure-Request has been sent and a Configure-Ack has been received.    
The Restart timer is still running since a Configure-Ack has not yet been transmitted.

Upon receipt of a Configure-Request with acceptable Configuration Options, a Configure-Ack is 
transmitted, the Restart timer is stopped and the Open state is entered.    If the Configuration Options are 
unacceptable, a Configure-Nak or Configure-Reject is sent as appropriate.    Upon the expiration of the 



Restart timer, a new Configure-Request is transmitted, the Restart timer is restarted, and the state 
machine returns to the Request-Sent state.

Ack-Sent (5)
In the Ack-Sent state, a Configure-Ack and a Configure-Request have been sent but a Configure-Ack has 
not yet been received.    The Restart timer is always running in the Ack-Sent state.

Upon receipt of a Configure-Ack, the Restart timer is stopped and the Open state is entered.    Upon 
receipt of a Configure-Nak or Configure-Reject, the Configure-Request Configuration Options are 
adjusted appropriately, a new Configure-Request is transmitted, and the Restart timer is restarted.    Upon
the expiration of the Restart timer, a new Configure-Request is transmitted, the Restart timer is restarted, 
and the state machine returns to the Request-Sent state.

Open (6)
In the Open state, a connection exists and data may be communicated over the link.    The Restart timer is
not running in the Open state.

In normal operation, only two events cause transitions out of the Open state.    Upon receipt of a Close 
command, a Terminate-Request is transmitted, the Restart timer is started, and the Closing state is 
entered.    Upon receipt of a Terminate-Request, a Terminate-Ack is transmitted and the Closed state is 
entered.    Upon receipt of an Echo-Request, an Echo-Reply is transmitted.    Similarly, Echo-Reply and 
Discard-Request packets are silently discarded or processed as expected.    All other events cause 
immediate transitions out of the Open state and should be handled as if the state machine were in the 
Listen state.

Closing (7)
In the Closing state, an active attempt is made to close the connection.    A Terminate-Request has been 
sent and the Restart timer is running, but a Terminate-Ack has not yet been received.

Upon receipt of a Terminate-Ack, the Closed state is immediately entered.    Upon the expiration of the 
Restart timer, a new Terminate-Request is transmitted and the Restart timer is restarted.    After the 
Restart timer has expired Max-Restart times, this action may be skipped, and the Closed state may be 
entered.    Max-Restart MUST be a configurable parameter.

Since there is an outstanding Terminate-Request in the Closing state, special care must be taken to 
implement the Passive-Open event; otherwise, it is possible for the LCP peer to think the connection is 
open.    Processing of the Passive-Open event should be postponed until there is reasonable assurance 
that the peer is not open.    In particular, the implementation should wait until the state machine would 
normally transition to the Closed state because of a Receive-Terminate-Ack event or Max-Restart Timeout
events.



RFC-1171    The Point-to-Point Protocol:    Link Control Protocol

Loop Avoidance
Note that the protocol makes a reasonable attempt at avoiding Configuration Option negotiation loops.    
However, the protocol does NOT guarantee that loops will not happen.    As with any negotiation, it is 
possible to configure two PPP implementations with conflicting policies that will never converge.    It is 
also possible to configure policies which do converge, but which take significant time to do so.    
Implementors should keep this in mind and should implement loop detection mechanisms or higher level 
timeouts.    If a timeout is implemented, it MUST be configurable.



RFC-1171    The Point-to-Point Protocol:    Link Control Protocol

Timers and Counters
There is one special timer used by LCP, the Restart timer.    The Restart timer is used to time out 
transmissions of Configure-Request and Terminate-Request packets.    Expiration of the Restart timer 
causes a Timeout event, and the corresponding Configure-Request or Terminate-Request packet 
retransmission.    The Restart timer MUST be configurable, but should default to three (3) seconds.

There is one additional restart parameter, Max-Restarts.    Max-Restarts indicates the number of packet 
retransmissions that are required before there is reasonable assurance that the link closed.    Max-
Restarts MUST also be configurable, but should default to ten (10) retransmissions.



RFC-1171    The Point-to-Point Protocol:    Link Control Protocol

Packet Format
Overview
Configure-Request
Configure-Ack
Configure-Nak
Configure-Reject
Terminate-Request and Terminate-Ack
Code-Reject
Protocol-Reject
Echo-Request and Echo-Reply
Discard-Request



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Overview
Exactly one Link Control Protocol packet is encapsulated in the Information field of PPP Data Link Layer 
frames where the Protocol field indicates type hex c021 (Link Control Protocol).

A summary of the Link Control Protocol packet format is shown below.    The fields are transmitted from 
left to right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Data ...
   +-+-+-+-+
Code
The Code field is one octet and identifies the kind of LCP packet.    LCP Codes are assigned as follows:

1 Configure-Request
2 Configure-Ack
3 Configure-Nak
4 Configure-Reject
5 Terminate-Request
6 Terminate-Ack
7 Code-Reject
8 Protocol-Reject
9 Echo-Request
10 Echo-Reply
11 Discard-Request

Identifier
The Identifier field is one octet and aids in matching requests and replies.

Length
The Length field is two octets and indicates the length of the LCP packet including the Code, Identifier, 
Length and Data fields.    Octets outside the range of the Length field should be treated as Data Link 
Layer padding and should be ignored on reception.

Data
The Data field is zero or more octets as indicated by the Length field.    The format of the Data field is 
determined by the Code field.

Regardless of which Configuration Options are enabled, all LCP packets are always sent in the full, 
standard form, as if no Configuration Options were enabled.    This ensures that LCP Configure-Request 
packets are always recognizable even when one end of the link mistakenly believes the link to be Open.

This document describes Version 1 of the Link Control Protocol.    In the interest of simplicity, there is no 
version field in the LCP packet.    If a new version of LCP is necessary in the future, the intention is that a 
new Data Link Layer Protocol field value should be used to differentiate Version 1 LCP from all other 
versions.    A correctly functioning Version 1 LCP implementation will always respond to unknown 
Protocols (including other versions) with an easily recognizable Version 1 packet, thus providing a 
deterministic fallback mechanism for implementations of other versions.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Configure-Request

Description
A LCP implementation wishing to open a connection MUST transmit a LCP packet with the Code field set 
to 1 (Configure-Request) and the Options field filled with any desired changes to the default link 
Configuration Options.

Upon reception of a Configure-Request, an appropriate reply MUST be transmitted.

A summary of the Configure-Request packet format is shown below.    The fields are transmitted from left 
to right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Options ...
   +-+-+-+-+

Code
1 for Configure-Request.

Identifier
The Identifier field should be changed on each transmission.    On reception, the Identifier field should be 
copied into the Identifier field of the appropriate reply packet.

Options

The options field is variable in length and contains the list of zero or more Configuration Options that the 
sender desires to negotiate.    All Configuration Options are always negotiated simultaneously.    The 
format of Configuration Options is further described in a later section.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Configure-Ack

Description
If every Configuration Option received in a Configure-Request is both recognizable and acceptable, then 
a LCP implementation should transmit a LCP packet with the Code field set to 2 (Configure-Ack), the 
Identifier field copied from the received Configure-Request, and the Options field copied from the received
Configure-Request.    The acknowledged Configuration Options MUST NOT be reordered or modified in 
any way.

On reception of a Configure-Ack, the Identifier field must match that of the last transmitted Configure-
Request, or the packet is invalid.    Additionally, the Configuration Options in a Configure-Ack must match 
those of the last transmitted Configure-Request, or the packet is invalid.    Invalid packets should be 
silently discarded.

Reception of a valid Configure-Ack indicates that all Configuration Options sent in the last Configure-
Request are acceptable.

A summary of the Configure-Ack packet format is shown below.    The fields are transmitted from left to 
right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Options ...
   +-+-+-+-+
Code
2 for Configure-Ack.

Identifier
The Identifier field is a copy of the Identifier field of the Configure-Request which caused this Configure-
Ack.

Options
The Options field is variable in length and contains the list of zero or more Configuration Options that the 
sender is acknowledging.    All Configuration Options are always acknowledged simultaneously.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Configure-Nak

Description
If every element of the received Configuration Options is recognizable but some are not acceptable, then 
a LCP implementation should transmit a LCP packet with the Code field set to 3 (Configure-Nak), the 
Identifier field copied from the received Configure-Request and the Options field filled with only the 
unacceptable Configuration Options from the Configure-Request.    All acceptable Configuration Options 
should be filtered out of the Configure-Nak, but otherwise the Configuration Options from the Configure-
Request MUST NOT be reordered.    Each of the nak'd Configuration Options MUST be modified to a 
value acceptable to the Configure-Nak sender.    Finally, an implementation may be configured to require 
the negotiation of a specific option.    If that option is not listed, then that option may be appended to the 
list of nak'd Configuration Options in order to request the remote end to list that option in its next 
Configure-Request packet.    The appended option must include a value acceptable to the Configure-Nak 
sender.

On reception of a Configure-Nak, the Identifier field must match that of the last transmitted Configure-
Request, or the packet is invalid and should be silently discarded.

Reception of a valid Configure-Nak indicates that a new Configure-Request should be sent with the 
Configuration Options modified as specified in the Configure-Nak.

A summary of the Configure-Nak packet format is shown below.    The fields are transmitted from left to 
right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Options ...
   +-+-+-+-+
Code
3 for Configure-Nak.

Identifier
The Identifier field is a copy of the Identifier field of the Configure-Request which caused this Configure-
Nak.

Options
The Options field is variable in length and contains the list of zero or more Configuration Options that the 
sender is nak'ing.    All Configuration Options are always nak'd simultaneously.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Configure-Reject

Description
If some Configuration Options received in a Configure-Request are not recognizable or are not 
acceptable for negotiation (as configured by a network manager), then a LCP implementation should 
transmit a LCP packet with the Code field set to 4 (Configure-Reject), the Identifier field copied from the 
received Configure-Request, and the Options field filled with only the unrecognized Configuration Options
from the Configure-Request.    All recognizable and negotiable Configuration Options must be filtered out 
of the Configure-Reject, but otherwise the Configuration Options MUST not be reordered.

On reception of a Configure-Reject, the Identifier field must match that of the last transmitted Configure-
Request, or the packet is invalid.    Additionally, the Configuration Options in a Configure-Reject must be a
proper subset of those in the last transmitted Configure-Request, or the packet is invalid.    Invalid packets
should be silently discarded.

Reception of a Configure-Reject indicates that a new Configure-Request should be sent which does not 
include any of the Configuration Options listed in the Configure-Reject.

A summary of the Configure-Reject packet format is shown below.    The fields are transmitted from left to 
right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Options ...
   +-+-+-+-+
Code
4 for Configure-Reject.

Identifier
The Identifier field is a copy of the Identifier field of the Configure-Request which caused this Configure-
Reject.

Options
The Options field is variable in length and contains the list of zero or more Configuration Options that the 
sender is rejecting.    All Configuration Options are always rejected simultaneously.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Terminate-Request and Terminate-Ack

Description
LCP includes Terminate-Request and Terminate-Ack Codes in order to provide a mechanism for closing a
connection.

A LCP implementation wishing to close a connection should transmit a LCP packet with the Code field set
to 5 (Terminate-Request) and the Data field filled with any desired data.    Terminate-Request packets 
should continue to be sent until Terminate-Ack is received, the Physical Layer indicates that it has gone 
down, or a sufficiently large number have been transmitted such that the remote end is down with 
reasonable certainty.

Upon reception of a Terminate-Request, a LCP packet MUST be transmitted with the Code field set to 6 
(Terminate-Ack), the Identifier field copied from the Terminate-Request packet, and the Data field filled 
with any desired data.

Reception of an unelicited Terminate-Ack indicates that the connection has been closed.

A summary of the Terminate-Request and Terminate-Ack packet formats is shown below.    The fields are 
transmitted from left to right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Data ...
   +-+-+-+-+
Code
5 for Terminate-Request;
6 for Terminate-Ack.

Identifier
The Identifier field is one octet and aids in matching requests and replies.

Data
The Data field is zero or more octets and contains uninterpreted data for use by the sender.    The data 
may consist of any binary value and may be of any length from zero to the established maximum 
Information field length minus four.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Code-Reject

Description
Reception of a LCP packet with an unknown Code indicates that one of the communicating LCP 
implementations is faulty or incomplete.    This error MUST be reported back to the sender of the unknown
Code by transmitting a LCP packet with the Code field set to 7 (Code-Reject), and the inducing packet 
copied to the Rejected-Packet field.

Upon reception of a Code-Reject, a LCP implementation should make an immediate transition to the 
Closed state, and should report the error, since it is unlikely that the situation can be rectified 
automatically.

A summary of the Code-Reject packet format is shown below.    The fields are transmitted from left to 
right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Rejected-Packet ...
   +-+-+-+-+-+-+-+-+
Code
7 for Code-Reject.

Identifier
The Identifier field is one octet and is for use by the transmitter.

Rejected-Packet
The Rejected-Packet field contains a copy of the LCP packet which is being rejected.    It begins with the 
rejected Code field; it does not include any PPP Data Link Layer headers.    The Rejected-Packet should 
be truncated to comply with the established maximum Information field length.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Protocol-Reject

Description
Reception of a PPP frame with an unknown Data Link Layer Protocol indicates that the remote end is 
attempting to use a protocol which is unsupported at the local end.    This typically occurs when the 
remote end attempts to configure a new, but unsupported protocol.    If the LCP state machine is in the 
Open state, then this error MUST be reported back to the sender of the unknown protocol by transmitting 
a LCP packet with the Code field set to 8 (Protocol-Reject), the Rejected-Protocol field set to the received
Protocol, and the Data field filled with any desired data.

Upon reception of a Protocol-Reject, a LCP implementation should stop transmitting frames of the 
indicated protocol.

Protocol-Reject packets may only be sent in the LCP Open state.    Protocol-Reject packets received in 
any state other than the LCP Open state should be discarded and no further action should be taken.

A summary of the Protocol-Reject packet format is shown below.    The fields are transmitted from left to 
right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Rejected-Protocol       |      Rejected-Information ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Code
8 for Protocol-Reject.

Identifier
The Identifier field is one octet and is for use by the transmitter.

Rejected-Protocol
The Rejected-Protocol field is two octets and contains the Protocol of the Data Link Layer frame which is 
being rejected.

Rejected-Information
The Rejected-Information field contains a copy from the frame which is being rejected.    It begins with the 
Information field, and does not include any PPP Data Link Layer headers or the FCS.    The Rejected-
Information field should be truncated to comply with the established maximum Information field length.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Echo-Request and Echo-Reply

Description
LCP includes Echo-Request and Echo-Reply Codes in order to provide a Data Link Layer loopback 
mechanism for use in exercising both directions of the link.    This is useful as an aid in debugging, link 
quality determination, performance testing, and for numerous other functions.

An Echo-Request sender transmits a LCP packet with the Code field set to 9 (Echo-Request) and the 
Data field filled with any desired data, up to but not exceeding the receiver's established maximum 
Information field length minus eight.

Upon reception of an Echo-Request, a LCP packet MUST be transmitted with the Code field set to 10 
(Echo-Reply), the Identifier field copied from the received Echo-Request, and the Data field copied from 
the Echo-Request, truncating as necessary to avoid exceeding the peer's established maximum 
Information field length.

Echo-Request and Echo-Reply packets may only be sent in the LCP Open state.    Echo-Request and 
Echo-Reply packets received in any state other than the LCP Open state should be discarded and no 
further action should be taken.

A summary of the Echo-Request and Echo-Reply packet formats is shown below.    The fields are 
transmitted from left to right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Magic-Number                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Data ...
   +-+-+-+-+
Code
9 for Echo-Request;
10 for Echo-Reply.

Identifier
The Identifier field is one octet and aids in matching Echo-Requests and Echo-Replies.

Magic-Number
The Magic-Number field is four octets and aids in detecting loopbacked links.    Unless modified by a 
Configuration Option, the Magic-Number MUST always be transmitted as zero and MUST always be 
ignored on reception.    Further use of the Magic-Number is beyond the scope of this discussion.

Data
The Data field is zero or more octets and contains uninterpreted data for use by the sender.    The data 
may consist of any binary value and may be of any length from zero to the established maximum 
Information field length minus eight.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Discard-Request

Description
LCP includes a Discard-Request Code in order to provide a Data Link Layer data sink mechanism for use
in exercising the local to remote direction of the link.    This is useful as an aid in debugging, performance 
testing, and and for numerous other functions.

A discard sender transmits a LCP packet with the Code field set to 11 (Discard-Request) and the Data 
field filled with any desired data, up to but not exceeding the receiver's established maximum Information 
field length minus eight.

A discard receiver MUST simply throw away an Discard-Request that it receives.

Discard-Request packets may only be sent in the LCP Open state.

A summary of the Discard-Request packet formats is shown below.    The fields are transmitted from left to
right.
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Magic-Number                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Data ...
   +-+-+-+-+
Code
11 for Discard-Request.

Identifier
The Identifier field is one octet and is for use by the Discard-Request transmitter.

Magic-Number
The Magic-Number field is four octets and aids in detecting loopbacked links.    Unless modified by a 
configuration option, the Magic-Number MUST always be transmitted as zero and MUST always be 
ignored on reception.    Further use of the Magic-Number is beyond the scope of this discussion.

Data
The Data field is zero or more octets and contains uninterpreted data for use by the sender.    The data 
may consist of any binary value and may be of any length from zero to the established maximum 
Information field length minus four.



RFC-1171    The Point-to-Point Protocol:    LCP Packet Format

Configuration Options
LCP Configuration Options allow modifications to the standard characteristics of a point-to-point link to be 
negotiated.    Negotiable modifications include such things as the maximum receive unit, async control 
character mapping, the link authentication method, etc.    The Configuration Options themselves are 
described in separate documents.    If a Configuration Option is not included in a Configure-Request 
packet, the default value for that Configuration Option is assumed.

The end of the list of Configuration Options is indicated by the end of the LCP packet.

Unless otherwise specified, a specific Configuration Option should be listed no more than once in a 
Configuration Options list.    Specific Configuration Options may override this general rule and may be 
listed more than once.    The effect of this is Configuration Option specific and is specified by each such 
Configuration Option.

Also unless otherwise specified, all Configuration Options apply in a half-duplex fashion.    When 
negotiated, they apply to only one direction of the link, typically in the receive direction when interpreted 
from the point of view of the Configure-Request sender.



RFC-1171    Point-to-Point Protocol:    LCP Configuration Options 

Format
A summary of the Configuration Option format is shown below.    The fields are transmitted from left to 
right.
    0                   1
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |    Length     |    Data ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
The Type field is one octet and indicates the type of Configuration Option.    The most up-to-date values of
the Type field are specified in the most recent "Assigned Numbers" RFC.

Length
The Length field is one octet and indicates the length of this Configuration Option including the Type, 
Length and Data fields.    If a negotiable Configuration Option is received in a Configure-Request but with 
an invalid Length, a Configure-Nak should be transmitted which includes the desired Configuration Option
with an appropriate Length and Data.

Data
The Data field is zero or more octets and indicates the value or other information for this Configuration 
Option.    The format and length of the Data field is determined by the Type and Length fields.



RFC-1171    The Point-to-Point Protocol

A PPP Network Control Protocol (NCP) for IP
The IP Control Protocol (IPCP) is responsible for configuring, enabling, and disabling the IP protocol 
modules on both ends of the point-to-point link.    As with the Link Control Protocol, this is accomplished 
through an exchange of packets.    IPCP packets may not be exchanged until LCP has reached the 
Network-Layer Protocol Configuration Negotiation phase.    IPCP packets received before this phase is 
reached should be silently discarded.    Likewise, IP datagrams may not be exchanged until IPCP has first
opened the connection (reached the Open state).

The IP Control Protocol is exactly the same as the Link Control Protocol with the following exceptions:

Data Link Layer Protocol Field
Exactly one IP Control Protocol packet is encapsulated in the Information field of PPP Data Link Layer 
frames where the Protocol field indicates type hex 8021 (IP Control Protocol).

Code field
Only Codes 1 through 7 (Configure-Request, Configure-Ack, Configure-Nak, Configure-Reject, Terminate-
Request, Terminate-Ack and Code-Reject) are used.    Other Codes should be treated as unrecognized 
and should result in Code-Rejects.

Timeouts
IPCP packets may not be exchanged until the Link Control Protocol has reached the network-layer 
Protocol Configuration Negotiation phase.    An implementation should be prepared to wait for Link Quality
testing to finish before timing out waiting for a Configure-Ack or other response.    It is suggested that an 
implementation give up only after user intervention or a configurable amount of time.

Configuration Option Types
The IPCP has a separate set of Configuration Options.    The most up-to-date values of the type field are 
specified in the most recent "Assigned Numbers" RFC.



RFC-1171    The Point-to-Point Protocol:    Network Control Protocol for IP

Sending IP Datagrams
Before any IP packets may be communicated, both the Link Control Protocol and the IP Control Protocol 
must reach the Open state.

Exactly one IP packet is encapsulated in the Information field of PPP Data Link Layer frames where the 
Protocol field indicates type hex 0021 (Internet Protocol).

The maximum length of an IP packet transmitted over a PPP link is the same as the maximum length of 
the Information field of a PPP data link layer frame.    Larger IP datagrams must be fragmented as 
necessary.    If a system wishes to avoid fragmentation and reassembly, it should use the TCP Maximum 
Segment Size option [RFC-879], or a similar mechanism, to discourage others from sending large 
datagrams.



RFC-1171    The Point-to-Point Protocol:    Appendix A

Asynchronous HDLC
This appendix summarizes the modifications to ISO 3309-1979 proposed in ISO 3309:1984/PDAD1.    
These modifications allow HDLC to be used with 8-bit asynchronous links.

Transmission Considerations
Each octet is delimited by a start and a stop element.

Flag Sequence
The Flag Sequence is a single octet and indicates the beginning or end of a frame.    The Flag Sequence 
consists of the binary sequence 01111110 (hexadecimal 0x7e).

Transparency
On asynchronous links, a character stuffing procedure is used.    The Control Escape octet is defined as 
binary 01111101 (hexadecimal 0x7d) where the bit positions are numbered 87654321 (not 76543210, 
BEWARE).

After FCS computation, the transmitter examines the entire frame between the two Flag Sequences.    
Each Flag Sequence, Control Escape octet and octet with value less than hexadecimal 0x20 is replaced 
by a two octet sequence consisting of the Control Escape octet and the original octet with bit 6 
complemented (i.e., exclusive-or'd with hexadecimal 0x20).

Prior to FCS computation, the receiver examines the entire frame between the two Flag Sequences.    
Each octet with value less than hexadecimal 0x20 is simply removed (it may have been inserted by 
intervening data communications equipment).    For each Control Escape octet, that octet is also removed,
but bit 6 of the following octet is complemented.    A Control Escape octet immediately preceding the 
closing Flag Sequence indicates an invalid frame.

Note: The inclusion of all octets less than hexadecimal 0x20 allows all ASCII control characters excluding
DEL (Delete) to be transparently communicated through almost all known data communications 
equipment.

A few examples may make this more clear.    Packet data is transmitted on the link as follows:
         0x7e is encoded as 0x7d, 0x5e.
         0x7d is encoded as 0x7d, 0x5d.
         0x01 is encoded as 0x7d, 0x21.
Aborting a Transmission
On asynchronous links, frames may be aborted by transmitting a "0" stop bit where a "1" bit is expected 
(framing error) or by transmitting a Control Escape octet followed immediately by a closing Flag 
Sequence.

Inter-frame Time Fill
On asynchronous links, inter-octet and inter-frame time fill should be accomplished by transmitting 
continuous "1" bits (mark-hold state).

Note: On asynchronous links, inter-frame time fill can be viewed as extended inter-octet time fill.    Doing 
so can save one octet for every frame, decreasing delay and increasing bandwidth.    This is possible 
since a Flag Sequence may serve as both a frame close and a frame begin.    After having received any 
frame, an idle receiver will always be in a frame begin state.

Robust transmitters should avoid using this trick over-zealously since the price for decreased delay is 
decreased reliability.    Noisy links may cause the receiver to receive garbage characters and interpret 
them as part of an incoming frame.    If the transmitter does not transmit a new opening Flag Sequence 
before sending the next frame, then that frame will be appended to the noise characters causing an 



invalid frame (with high reliability).    Transmitters should avoid this by transmitting an open Flag Sequence
whenever "appreciable time" has elapsed since the prior closing Flag Sequence.    It is suggested that 
implementations will achieve the best results by always sending an opening Flag Sequence if the new 
frame is not back-to-back with the last.    The maximum value for "appreciable time" is likely to be no 
greater than the typing rate of a slow to average typist, say 1 second.



RFC-1171    The Point-to-Point Protocol:    Appendix B.1

Fast Frame Check Sequence (FCS) Implementation
FCS Computation Method

The following code provides a table lookup computation for calculating the Frame Check Sequence as 
data arrives at the interface.    The table is created by the code in section 2.
   /*
    * u16 represents an unsigned 16-bit number.  Adjust the typedef for
    * your hardware.
    */
   typedef unsigned short u16;

   /*
    * FCS lookup table as calculated by the table generator in section 2.
    */
   static u16 fcstab[256] = {
      0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
      0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
      0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
      0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
      0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
      0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
      0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
      0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
      0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
      0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
      0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
      0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
      0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
      0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
      0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
      0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
      0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
      0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
      0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
      0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
      0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
      0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
      0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
      0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
      0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
      0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
      0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
      0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
      0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
      0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
      0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
      0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
   };

   #define PPPINITFCS      0xffff  /* Initial FCS value */
   #define PPPGOODFCS      0xf0b8  /* Good final FCS value */



   /*
    * Calculate a new fcs given the current fcs and the new data.
    */
   u16 pppfcs(fcs, cp, len)
       register u16 fcs;
       register unsigned char *cp;
       register int len;
   {
       ASSERT(sizeof (u16) == 2);
       ASSERT(((u16) -1) > 0);
       while (len--)
           fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff];

       return (fcs);
   }



RFC-1171    The Point-to-Point Protocol:    Appendix B.2

Fast Frame Check Sequence (FCS) Implementation
Fast FCS table generator

The following code creates the lookup table used to calculate the FCS.
   /*
    * Generate a FCS table for the HDLC FCS.
    *
    * Drew D. Perkins at Carnegie Mellon University.
    *
    * Code liberally borrowed from Mohsen Banan and D. Hugh Redelmeier.
    */

   /*
    * The HDLC polynomial: x**0 + x**5 + x**12 + x**16 (0x8408).
    */
   #define P       0x8408

   main()
   {
       register unsigned int b, v;
       register int i;

       printf("typedef unsigned short u16;\n");
       printf("static u16 fcstab[256] = {");
       for (b = 0; ; ) {
           if (b % 8 == 0)
               printf("\n");

           v = b;
           for (i = 8; i--; )
               v = v & 1 ? (v >> 1) ^ P : v >> 1;

           printf("0x%04x", v & 0xFFFF);
           if (++b == 256)
               break;
           printf(",");
       }
       printf("\n};\n");
      }



RFC-1171    The Point-to-Point Protocol

References
[1] Electronic Industries Association, EIA Standard RS-232-C, "Interface Between Data 

Terminal Equipment and Data Communications Equipment Employing Serial Binary Data 
Interchange", August 1969.

[2] International Organization For Standardization, ISO Standard 3309-1979, "Data 
communication - High-level data link control procedures - Frame structure", 1979.

[3] International Organization For Standardization, ISO Standard 4335-1979, "Data 
communication - High-level data link control procedures - Elements of procedures", 1979.

[4] International Organization For Standardization, ISO Standard 4335-1979/Addendum 1, 
"Data communication - High-level data link control procedures - Elements of procedures - 
Addendum 1", 1979.

[5] International Organization For Standardization, Proposed Draft International Standard ISO 
3309:1983/PDAD1, "Information processing systems - Data communication - High-level 
data link control procedures - Frame structure - Addendum 1: Start/stop transmission", 
1984.

[6] International Telecommunication Union, CCITT Recommendation X.25, "Interface Between 
Data Terminal Equipment (DTE) and Data Circuit Terminating Equipment (DCE) for 
Terminals Operating in the Packet Mode on Public Data Networks", CCITT Red Book, 
Volume VIII, Fascicle VIII.3, Rec. X.25., October 1984.

[7] Perez, "Byte-wise CRC Calculations", IEEE Micro, June, 1983.

[8] Morse, G., "Calculating CRC's by Bits and Bytes", Byte, September 1986.

[9] LeVan, J., "A Fast CRC", Byte, November 1987.

[10] American National Standards Institute, ANSI X3.4-1977, "American National Standard 
Code for Information Interchange", 1977.

[11] Postel, J., "Internet Protocol", RFC 791, USC/Information Sciences Institute, September 
1981.

[12] Reynolds, J., and J. Postel, "Assigned Numbers", RFC 1060, USC/Information Sciences 
Institute, March 1990.

[13] Postel, J., "The TCP Maximum Segment Size Option and Related Topics", RFC 879, 
USC/Information Sciences Institute, November 1983.



Electronic Industries Association, EIA Standard RS-232-C, "Interface Between Data Terminal 
Equipment and Data Communications Equipment Employing Serial Binary Data Interchange",
August 1969.



International Organization For Standardization, ISO Standard 3309-1979, "Data communication - 
High-level data link control procedures - Frame structure", 1979.



International Organization For Standardization, ISO Standard 4335-1979, "Data communication - 
High-level data link control procedures - Elements of procedures", 1979.



International Organization For Standardization, ISO Standard 4335-1979/Addendum 1, "Data 
communication - High-level data link control procedures - Elements of procedures - 
Addendum 1", 1979.



International Organization For Standardization, Proposed Draft International Standard ISO 
3309:1983/PDAD1, "Information processing systems - Data communication - High-level data 
link control procedures - Frame structure - Addendum 1: Start/stop transmission", 1984.



International Telecommunication Union, CCITT Recommendation X.25, "Interface Between Data 
Terminal Equipment (DTE) and Data Circuit Terminating Equipment (DCE) for Terminals 
Operating in the Packet Mode on Public Data Networks", CCITT Red Book, Volume VIII, 
Fascicle VIII.3, Rec. X.25., October 1984.



Perez, "Byte-wise CRC Calculations", IEEE Micro, June, 1983.



Morse, G., "Calculating CRC's by Bits and Bytes", Byte, September 1986.



LeVan, J., "A Fast CRC", Byte, November 1987.



American National Standards Institute, ANSI X3.4-1977, "American National Standard Code for 
Information Interchange", 1977.



RFC-1171    The Point-to-Point Protocol

Chairman's Address
This proposal is the product of the Point-to-Point Protocol Working
Group of the Internet Engineering Task Force (IETF). The working group
can be contacted via the chair:

      Russ Hobby
      UC Davis
      Computing Services
      Davis, CA 95616

      Phone: (916) 752-0236
      EMail: rdhobby@ucdavis.edu

Author's Address
      Questions about this memo can also be directed to the author:

            Drew D. Perkins
            Carnegie Mellon University
            Networking and Communications
            Pittsburgh, PA 15213

            Phone: (412) 268-8576
            EMail: ddp@andrew.cmu.edu

Acknowledgments

Many people spent significant time helping to develop the Point-to-Point Protocol.    The complete list of 
people is too numerous to list, but the following people deserve special thanks: Ken Adelman (TGV), 
Craig Fox (NSC), Phill Gross (NRI), Russ Hobby (UC Davis), David Kaufman (Proteon), John LoVerso 
(Xylogics), Bill Melohn (Sun Microsystems), Mike Patton (MIT), Drew Perkins (CMU), Greg Satz (cisco 
systems) and Asher Waldfogel (Wellfleet).



RFC-1183 New DNS RR Definitions (Updates: RFCs 1034, 1035)
C. Everhart,    Transarc

L. Mamakos, University of Maryland
R. Ullmann,      Prime Computer

P. Mockapetris, Editor    ISI
October 1990

This memo defines five new DNS types for experimental purposes.    This RFC describes an 
Experimental Protocol for the Internet community, and requests discussion and suggestions 
for improvements.    Distribution of this memo is unlimited.

Introduction
AFS Data Base Location
Responsible Person

Identification of the Guilty Party
The Responsible Person RR
Responsible Person Record Examples

X.25 and ISDN Addresses, Route Binding
The X25 RR
The ISDN RR
The Route Through RR

Authors' Addresses

Security issues are not addressed in this memo.



RFC-1183    New DNS RR Definitions

Introduction
This RFC defines the format of new Resource Records (RRs) for the Domain Name System 
(DNS), and reserves corresponding DNS type mnemonics and numerical codes.    The 
definitions are in three independent sections: (1) location of AFS database servers, (2) 
location of responsible persons, and (3) representation of X.25 and ISDN addresses and 
route binding.    All are experimental.

This RFC assumes that the reader is familiar with the DNS. The data shown is for 
pedagogical use and does not necessarily reflect the real Internet.



RFC-1183    New DNS RR Definitions

AFS Data Base Location
This section defines an extension of the DNS to locate servers both for AFS (AFS is a 
registered trademark of Transarc Corporation) and for the Open Software Foundation's (OSF) 
Distributed Computing Environment (DCE) authenticated naming system using HP/Apollo's 
NCA, both to be components of the OSF DCE.    The discussion assumes that the reader is 
familiar with AFS and NCA.

The AFS (originally the Andrew File System) system uses the DNS to map from a domain 
name to the name of an AFS cell database server.    The DCE Naming service uses the DNS 
for a similar function: mapping from the domain name of a cell to authenticated name 
servers for that cell.    The method uses a new RR type with mnemonic AFSDB and type code 
of 18 (decimal).

AFSDB has the following format:

      <owner> <ttl> <class> AFSDB <subtype> <hostname>

Both RDATA fields are required in all AFSDB RRs.    The <subtype> field is a 16 bit integer.    
The <hostname> field is a domain name of a host that has a server for the cell named by 
the owner name of the RR.

The format of the AFSDB RR is class insensitive.    AFSDB records cause type A additional 
section processing for <hostname>.    This, in fact, is the rationale for using a new type 
code, rather than trying to build the same functionality with TXT RRs.

Note that the format of AFSDB in a master file is identical to MX.    For purposes of the DNS 
itself, the subtype is merely an integer.    The present subtype semantics are discussed 
below, but changes are possible and will be announced in subsequent RFCs.

In the case of subtype 1, the host has an AFS version 3.0 Volume Location Server for the 
named AFS cell.    In the case of subtype 2, the host has an authenticated name server 
holding the cell-root directory node for the named DCE/NCA cell.

The use of subtypes is motivated by two considerations.    First, the space of DNS RR types is
limited.    Second, the services provided are sufficiently distinct that it would continue to be 
confusing for a client to attempt to connect to a cell's servers using the protocol for one 
service, if the cell offered only the other service.

As an example of the use of this RR, suppose that the Toaster Corporation has deployed AFS 
3.0 but not (yet) the OSF's DCE.    Their cell, named toaster.com, has three "AFS 3.0 cell 
database server" machines: bigbird.toaster.com, ernie.toaster.com, and henson.toaster.com. 
These three machines would be listed in three AFSDB RRs.    These might appear in a master 
file as:

   toaster.com.   AFSDB   1 bigbird.toaster.com.
   toaster.com.   AFSDB   1 ernie.toaster.com.
   toaster.com.   AFSDB   1 henson.toaster.com.

As another example use of this RR, suppose that Femto College (domain name femto.edu) 
has deployed DCE, and that their DCE cell root directory is served by processes running on 
green.femto.edu and turquoise.femto.edu.    Furthermore, their DCE file servers also run AFS 



3.0-compatible volume location servers, on the hosts turquoise.femto.edu and 
orange.femto.edu.    These machines would be listed in four AFSDB RRs, which might 
appear in a master file as:

   femto.edu.   AFSDB   2 green.femto.edu.
   femto.edu.   AFSDB   2 turquoise.femto.edu.
   femto.edu.   AFSDB   1 turquoise.femto.edu.
   femto.edu.   AFSDB   1 orange.femto.edu.



RFC-1183    New DNS RR Definitions

Responsible Person
The purpose of this section is to provide a standard method for associating responsible 
person identification to any name in the DNS.

The domain name system functions as a distributed database which contains many different
form of information.    For a particular name or host, you can discover it's Internet address, 
mail forwarding information, hardware type and operating system among others.

A key aspect of the DNS is that the tree-structured namespace can be divided into pieces, 
called zones, for purposes of distributing control and responsibility.    The responsible person 
for zone database purposes is named in the SOA RR for that zone.    This section describes an
extension which allows different responsible persons to be specified for different names in a 
zone.



RFC-1183    New DNS RR Definitions: Responsible Person

Identification of The Guilty Party
Often it is desirable to be able to identify the responsible entity for a particular host.    When 
that host is down or malfunctioning, it is difficult to contact those parties which might 
resolve or repair the host.    Mail sent to POSTMASTER may not reach the person in a timely 
fashion.    If the host is one of a multitude of workstations, there may be no responsible 
person which can be contacted on that host.

The POSTMASTER mailbox on that host continues to be a good contact point for mail 
problems, and the zone contact in the SOA record for database problem, but the RP record 
allows us to associate a mailbox to entities that don't receive mail or are not directly 
connected (namespace-wise) to the problem (e.g., GATEWAY.ISI.EDU might want to point at 
HOTLINE@BBN.COM, and GATEWAY doesn't get mail, nor does the ISI zone administrator have a 
clue about fixing gateways).



RFC-1183    New DNS RR Definitions: Responsible Person

The Responsible Person RR
The method uses a new RR type with mnemonic RP and type code of 17 (decimal).

RP has the following format:

   <owner> <ttl> <class> RP <mbox-dname> <txt-dname>

Both RDATA fields are required in all RP RRs.

The first field, <mbox-dname>, is a domain name that specifies the mailbox for the 
responsible person.    Its format in master files uses the DNS convention for mailbox 
encoding, identical to that used for the RNAME mailbox field in the SOA RR.    The root 
domain name (just ".") may be specified for <mbox-dname> to indicate that no mailbox is 
available.

The second field, <txt-dname>, is a domain name for which TXT RR's exist.    A subsequent 
query can be performed to retrieve the associated TXT resource records at <txt-dname>.    
This provides a level of indirection so that the entity can be referred to from multiple places 
in the DNS.    The root domain name (just ".") may be specified for <txt-dname> to indicate 
that the TXT_DNAME is absent, and no associated TXT RR exists.

The format of the RP RR is class insensitive.    RP records cause no additional section 
processing.    (TXT additional section processing for <txt-dname> is allowed as an option, 
but only if it is disabled for the root, i.e., ".").

The Responsible Person RR can be associated with any node in the Domain Name System 
hierarchy, not just at the leaves of the tree.

The TXT RR associated with the TXT_DNAME contain free format text suitable for humans.    

Multiple RP records at a single name may be present in the database.    They should have 
identical TTLs.



RFC-1183    New DNS RR Definitions: Responsible Person

Responsible Person RR EXAMPLES
Some examples of how the RP record might be used.

   sayshell.umd.edu. A     128.8.1.14
                     MX    10 sayshell.umd.edu.
                     HINFO NeXT UNIX
                     WKS   128.8.1.14 tcp ftp telnet smtp
                     RP    louie.trantor.umd.edu.  LAM1.people.umd.edu.

   LAM1.people.umd.edu. TXT (
         "Louis A. Mamakos, (301) 454-2946, don't call me at home!" )

In this example, the responsible person's mailbox for the host SAYSHELL.UMD.EDU is 
louie@trantor.umd.edu.    The TXT RR at LAM1.people.umd.edu provides additional 
information and advice.

   TERP.UMD.EDU.    A     128.8.10.90
                    MX    10 128.8.10.90
                    HINFO MICROVAX-II UNIX
                    WKS   128.8.10.90 udp domain
                    WKS   128.8.10.90 tcp ftp telnet smtp domain
                    RP    louie.trantor.umd.edu. LAM1.people.umd.edu.
                    RP    root.terp.umd.edu. ops.CS.UMD.EDU.

   TRANTOR.UMD.EDU. A     128.8.10.14
                    MX    10 trantor.umd.edu.
                    HINFO MICROVAX-II UNIX
                    WKS   128.8.10.14 udp domain
                    WKS   128.8.10.14 tcp ftp telnet smtp domain
                    RP    louie.trantor.umd.edu. LAM1.people.umd.edu.
                    RP    petry.netwolf.umd.edu. petry.people.UMD.EDU.
                    RP    root.trantor.umd.edu. ops.CS.UMD.EDU.
                    RP    gregh.sunset.umd.edu.  .

   LAM1.people.umd.edu.  TXT   "Louis A. Mamakos (301) 454-2946"
   petry.people.umd.edu. TXT   "Michael G. Petry (301) 454-2946"
   ops.CS.UMD.EDU.       TXT   "CS Operations Staff (301) 454-2943"

This set of resource records has two hosts, TRANTOR.UMD.EDU and TERP.UMD.EDU, as well as 
a number of TXT RRs.    Note that TERP.UMD.EDU and TRANTOR.UMD.EDU both reference the 
same pair of TXT resource records, although the mail box names (root.terp.umd.edu and 
root.trantor.umd.edu) differ.

Here, we obviously care much more if the machine flakes out, as we've specified four 
persons which might want to be notified of problems or other events involving 
TRANTOR.UMD.EDU.    In this example, the last RP RR for TRANTOR.UMD.EDU specifies a mailbox
(gregh.sunset.umd.edu), but no associated TXT RR.



RFC-1183    New DNS RR Definitions

X.25 and ISDN Addresses, Route Binding
This section describes an experimental representation of X.25 and ISDN addresses in the 
DNS, as well as a route binding method, analogous to the MX for mail routing, for very large 
scale networks.

There are several possible uses, all experimental at this time.    First, the RRs provide simple 
documentation of the correct addresses to use in static configurations of IP/X.25 and 
SMTP/X.25.

The RRs could also be used automatically by an internet network-layer router, typically IP.    
The procedure would be to map IP address to domain name, then name to canonical name if
needed, then following RT records, and finally attempting an IP/X.25 call to the address 
found.    Alternately, configured domain names could be resolved to identify IP to X.25/ISDN 
bindings for a static but periodically refreshed routing table.

This provides a function similar to ARP for wide area non-broadcast networks that will scale 
well to a network with hundreds of millions of hosts.

Also, a standard address binding reference will facilitate other experiments in the use of 
X.25 and ISDN, especially in serious inter-operability testing.    The majority of work in such a
test is establishing the n-squared entries in static tables.

Finally, the RRs are intended for use in a proposal by one of the authors for a possible next-
generation internet.



RFC-1183    New DNS RR Definitions

The X25 RR
The X25 RR is defined with mnemonic X25 and type code 19 (decimal).

X25 has the following format:

   <owner> <ttl> <class> X25 <PSDN-address>

<PSDN-address> is required in all X25 RRs.

<PSDN-address> identifies the PSDN (Public Switched Data Network) address in the X.121 
numbering plan associated with <owner>.    Its format in master files is a <character-
string> syntactically identical to that used in TXT and HINFO.

The format of X25 is class insensitive.    X25 RRs cause no additional section processing.

The <PSDN-address> is a string of decimal digits, beginning with the 4 digit DNIC (Data 
Network Identification Code), as specified in X.121. National prefixes (such as a 0) MUST 
NOT be used.

For example:

   Relay.Prime.COM.  X25       311061700956



RFC-1183    New DNS RR Definitions

The ISDN RR
The ISDN RR is defined with mnemonic ISDN and type code 20 (decimal).

An ISDN (Integrated Service Digital Network) number is simply a telephone number.    The 
intent of the members of the CCITT is to upgrade all telephone and data network service to a
common service.

The numbering plan (E.163/E.164) is the same as the familiar international plan for POTS (an
un-official acronym, meaning Plain Old Telephone Service).    In E.166, CCITT says "An 
E.163/E.164 telephony subscriber may become an ISDN subscriber without a number 
change."

ISDN has the following format:

   <owner> <ttl> <class> ISDN <ISDN-address> <sa>

The <ISDN-address> field is required; <sa> is optional.

<ISDN-address> identifies the ISDN number of <owner> and DDI (Direct Dial In) if any, as 
defined by E.164 and E.163, the ISDN and PSTN (Public Switched Telephone Network) 
numbering plan.    E.163 defines the country codes, and E.164 the form of the addresses.    
Its format in master files is a <character-string> syntactically identical to that used in TXT 
and HINFO.

<sa> specifies the subaddress (SA).    The format of <sa> in master files is a <character-
string> syntactically identical to that used in TXT and HINFO.

The format of ISDN is class insensitive.    ISDN RRs cause no additional section processing.

The <ISDN-address> is a string of characters, normally decimal digits, beginning with the 
E.163 country code and ending with the DDI if any.    Note that ISDN, in Q.931, permits any 
IA5 character in the general case.

The <sa> is a string of hexadecimal digits.    For digits 0-9, the concrete encoding in the 
Q.931 call setup information element is identical to BCD.

For example:

   Relay.Prime.COM.   IN   ISDN      150862028003217
   sh.Prime.COM.      IN   ISDN      150862028003217 004

(Note: "1" is the country code for the North American Integrated Numbering Area, i.e., the 
system of "area codes" familiar to people in those countries.)

The RR data is the ASCII representation of the digits.    It is encoded as one or two 
<character-string>s, i.e., count followed by characters.

CCITT recommendation E.166 defines prefix escape codes for the representation of ISDN 
(E.163/E.1641183_REF_9) addresses in X.121, and PSDN (X.121) addresses in E.164.    It 
specifies that the exact codes are a "national matter", i.e., different on different networks.    
A host connected to the ISDN may be able to use both the X25 and ISDN addresses, with the



local prefix added.



RFC-1183    New DNS RR Definitions

The Route Through RR
The Route Through RR is defined with mnemonic RT and type code 21 (decimal).

The RT resource record provides a route-through binding for hosts that do not have their own
direct wide area network addresses.    It is used in much the same way as the MX RR .

RT has the following format:

   <owner> <ttl> <class> RT <preference> <intermediate-host>

Both RDATA fields are required in all RT RRs.

The first field, <preference>, is a 16 bit integer, representing the preference of the route.    
Smaller numbers indicate more preferred routes.

<intermediate-host> is the domain name of a host which will serve as an intermediate in 
reaching the host specified by <owner>.    The DNS RRs associated with <intermediate-
host> are expected to include at least one A, X25 ISDN record.

The format of the RT RR is class insensitive.    RT records cause type X25, ISDN, and A 
additional section processing for <intermediate- host>.

For example,

   sh.prime.com.      IN   RT   2    Relay.Prime.COM.
                      IN   RT   10   NET.Prime.COM.
   *.prime.com.       IN   RT   90   Relay.Prime.COM.

When a host is looking up DNS records to attempt to route a datagram, it first looks for RT 
records for the destination host, which point to hosts with address records (A, X25, ISDN) 
compatible with the wide area networks available to the host.    If it is itself in the set of RT 
records, it discards any RTs with preferences higher or equal to its own.    If there are no 
(remaining) RTs, it can then use address records of the destination itself.

Wild-card RTs are used exactly as are wild-card MXs.    RT's do not "chain"; that is, it is not 
valid to use the RT RRs found for a host referred to by an RT.

The concrete encoding is identical to the MX RR.



Mockapetris, P., "Domain Names - Concepts and Facilities", RFC
              1034, USC/Information Sciences Institute, November 1987.

Mockapetris, P., "Domain Names - Implementation and
              Specification", RFC 1035, USC/Information Sciences Institute,
              November 1987.



Spector A., and M. Kazar, "Uniting File Systems", UNIX Review,
              7(3), pp. 61-69, March 1989.



Zahn, et al., "Network Computing Architecture", Prentice-Hall,
              1989.



International Telegraph and Telephone Consultative Committee,
              "Numbering Plan for the International Telephone Service", CCITT
              Recommendations E.163., IXth Plenary Assembly, Melbourne, 1988,
              Fascicle II.2 ("Blue Book").

International Telegraph and Telephone Consultative Committee,
              "Numbering Plan for the ISDN Era", CCITT Recommendations E.164.,
              IXth Plenary Assembly, Melbourne, 1988, Fascicle II.2 ("Blue
              Book").



International Telegraph and Telephone Consultative Committee.
              "Numbering Plan Interworking in the ISDN Era", CCITT
              Recommendations E.166., IXth Plenary Assembly, Melbourne, 1988,
              Fascicle II.2 ("Blue Book").



International Telegraph and Telephone Consultative Committee,
              "International Numbering Plan for the Public Data Networks",
              CCITT Recommendations X.121., IXth Plenary Assembly, Melbourne,
              1988, Fascicle VIII.3 ("Blue Book"); provisional, Geneva, 1978;
              amended, Geneva, 1980, Malaga-Torremolinos, 1984 and Melborne,
              1988.



Korb, J., "Standard for the Transmission of IP datagrams Over
              Public Data Networks", RFC 877, Purdue University, September
              1983.



Ullmann, R., "SMTP on X.25", RFC 1090, Prime Computer, February
              1989.



Ullmann, R., "TP/IX: The Next Internet", Prime Computer
              (unpublished), July 1990.



Authors' Addresses

      Craig F. Everhart
      Transarc Corporation
      The Gulf Tower
      707 Grant Street
      Pittsburgh, PA    15219

      Phone: +1 412 338 4467

      EMail: Craig_Everhart@transarc.com

      Louis A. Mamakos
      Network Infrastructure Group
      Computer Science Center
      University of Maryland
      College Park, MD 20742-2411

      Phone: +1-301-405-7836

      Email: louie@Sayshell.UMD.EDU

      Robert Ullmann 10-30
      Prime Computer, Inc.
      500 Old Connecticut Path
      Framingham, MA 01701

      Phone: +1 508 620 2800 ext 1736

      Email: Ariel@Relay.Prime.COM

      Paul Mockapetris
      USC Information Sciences Institute
      4676 Admiralty Way
      Marina del Rey, CA 90292

      Phone: 213-822-1511

      EMail: pvm@isi.edu

_



RFC-1189 The Common Management Information
Services and Protocol

for the Internet
(CMOT & CMIT)

U. Warrier, L. Besaw, L. LaBarre, B. Handspicker

Status of this Memo
Overview
Introduction
Protocol Overview

The CMOT Protocol Suite
The CMIP Protocol Suite
Conformance Requirements

Common Management Information Service Element
Association Policies
CMIS Services

General Agreements on Users of CMIS
Specific Agreements on Users of CMIS

CMIP Agreements
Services Required by CMIP
Acknowledgements
Authors' Addresses



RFC-1189 Common Management Information Services

Status of this Memo

This memo defines a network management architecture that uses the International 
Organization for Standardization's (ISO) Common Management Information 
Services/Common Management Information Protocol (CMIS/CMIP) in the Internet.    This RFC 
specifies an IAB standards track protocol for the Internet community, and requests 
discussion and suggestions for improvements.    Please refer to the current edition of the 
"IAB Official Protocol Standards" for the standardization state and status of this protocol. 
Distribution of this memo is unlimited.



RFC-1189 Common Management Information Services

Overview

This memo is a revision of RFC-1095 - "The Common Management Information Services and 
Protocol over TCP/IP".    It defines a network management architecture that uses the 
International Organization for Standardization's (ISO) Common Management Information 
Services/Common Management Information Protocol (CMIS/CMIP) in the Internet.    This 
architecture provides a means by which control and monitoring information can be 
exchanged between a manager and a remote network element.    In particular, this memo 
defines the means for implementing the International Standard (IS) version of CMIS/CMIP on 
top of both IP-based and OSI-based Internet transport protocols for the purpose of carrying 
management information defined in the Internet-standard management information base.    
Together with the relevant ISO standards and the companion RFCs that describe the initial 
structure of management information and management information base, these documents 
provide the basis for a comprehensive architecture and system for managing both IP- based 
and OSI-based internets, and in particular the Internet. 
In creating this revision of RFC-1095, the following technical and editorial changes were 
made: 

1) The tutorial section on OSI Management included in RFC-1095 has been 
removed from this document.    After some revisions, the tutorial material 
may be published as another RFC. 

2) The sections in RFC-1095 which discussed the semantics of how to 
interpret requests in the context of Internet MIBs has been removed from 
this protocol document.    This topic is now discussed in the OIM-MIB-II draft
document.    This protocol should be useable with MIB-I or MIB-II.    But, it 
will also be able to exploit the new features of the OIM-MIB-II. 

3) This document is based on the final International Standards for CMIS/CMIP 
(ISO 9595/9596) rather than the Draft International Standards. 

4) Many of the original agreements defined in RFC-1095 have been accepted 
and included in the OIW NMSIG implementers agreements. Rather than 
duplicating these agreements, they have been removed from this memo.    
This document should be read in conjunction with ISO 9595/9596 
(CMIS/CMIP) and the OIW Stable Agreements document. 

5) The Association Negotiation describe in RFC-1095 has been changed to 
align with current international and national agreements.    But, it has 
retained backwards compatibility with the assignment of an Application 
Context Name which is identical to the Application Context Name specified
in RFC-1095. 



RFC-1189 Common Management Information Services

Introduction

This memo is the output of the OSI Internet Management Working Group of the Internet 
Engineering Task Force (IETF).    As directed by the Internet Activites Board (IAB) in RFC-1052,
it addresses the need for a long-term network management system based on ISO CMIS/CMIP.
This memo contains a set of protocol agreements for implementing a network management 
system based on these ISO Management standards.    Now that CMIS/CMIP has been voted 
an International Standard (IS), it has become a stable basis for product development.    This 
profile specifies how to apply CMIP to management of both IP-based and OSI- based Internet 
networks.    Network management using ISO CMIP to manage IP-based networks will be 
refered to as "CMIP Over TCP/IP" (CMOT). Network management using ISO CMIP to manage 
OSI-based networks will be refered to as "CMIP".    This memo specifies the protocol 
agreements necessary to implement CMIP and accompanying ISO protocols over OSI, TCP 
and UDP transport protocols. 
This memo must be read in conjunction with ISO and Internet documents defining specific 
protocol standards.    Documents defining the following ISO standards are required for the 
implementor: Abstract Syntax Notation One (ASN.1) [5, 6], Association Control (ACSE) [7, 8], 
Remote Operations (ROSE) [9, 10], Common Management Information Services (CMIS) [11] 
and Common Management Information Protocol (CMIP) [12] with their addenda [32-35].    
The specification of a lightweight presentation layer protocol[RFC-1085] is required for use 
with the CMOT section of this profile.    The SMI [RFC-1155]), the MIB-I [RFC-1066), the MIB-II 
[RFC-1156), and the OIM-MIB-II (see [29]) are used with this management system. 
This memo is divided into sections for each of the protocols for which implementors' 
agreements are needed: CMISE, ACSE, ROSE, and, for CMOT, the lightweight presentation 
protocol.    The protocol profile defined in this memo draws on the technical work of the OSI 
Network Management Forum [14] and the Network Management Special Interest Group 
(NMSIG) of the National Institute of Standards and Technology (NIST) (formerly the National 
Bureau of Standards) [30]. Wherever possible, an attempt has been made to either directly 
reference or remain consistent with the protocol agreements reached by these groups. 



RFC-1189 Common Management Information Services

Protocol Overview

This part of the document is a specification of the protocols of the OIM architecture.    
Contained herein are the agreements required to implement interoperable network 
management systems using these protocols.    The protocol suite defined by these 
implementors' agreements will facilitate communication between equipment of different 
vendors, suppliers, and networks.    This will allow the emergence of powerful multivendor 
network management based on ISO models and protocols. 
The choice of a set of protocol standards together with further agreements needed to 
implement those standards is commonly referred to as a "profile."    The selection policy for 
this profile is to use existing standards from the international standards community (ISO and
CCITT) and the Internet community.    Existing ISO standards and draft standards in the area 
of OSI network management form the basis of this profile.    Other ISO application layer 
standards (ROSE and ACSE) are used to support the ISO management protocol (CMIP).    To 
ensure interoperability, certain choices and restrictions are made here concerning various 
options and parameters provided by these standards.      Internet standards are used to 
provide the underlying network transport.    These agreements provide a precise statement 
of the implementation choices made for implementing ISO network management standards 
in IP-based and OSI-based internets. 
In addition to the OIM working group, there are at least two other bodies actively engaged in
defining profiles for interoperable OSI network management: the OSI Implementors 
Workshop (OIW) and the OSI Network Management Forum.    Both of these groups are similar
to the OIM working group in that they are each defining profiles for using ISO standards for 
network management.    Both differ in that they are specifying the use only of underlying ISO
protocols, while the OIM working group is concerned with using OSI management in both OSI
and TCP/IP networks.    In the interest of greater future compatibility, the OIM working group 
has attempted to make this profile conform as closely as possible to the ongoing work of 
these two bodies. 
This section will describe the CMOT Protocol Suite, the CMIP Protocol Suite and Conformance 
Requirements common to both CMOT and CMIP. Later sections will specify the implementers 
agreements for specific layer protocols that comprise the CMOT and CMIP Protocol Suites. 



RFC-1189 Common Management Information Services - Protocol Overview

The CMOT Protocol Suite

The following seven protocols compose the CMOT protocol suite: ISO ACSE, ISO DIS ROSE, 
ISO CMIP, the lightweight presentation protocol (LPP), UDP, TCP, and IP.    The relation of 
these protocols to each other is briefly summarized in Figure 2. 

 

Figure 2.    The CMOT Protocol Suite



RFC-1189 Common Management Information Services - Protocol Overview

The CMIP Protocol Suite

The following six protocols compose the CMIP protocol suite: ISO ACSE, ISO DIS ROSE, ISO 
CMIP, ISO Presentation, ISO    Session and ISO Transport.    The relation of these protocols to 
each other is briefly summarized in Figure 3. 

Figure 3.    The CMIP Protocol Suite



RFC-1189 Common Management Information Services - Protocol Overview

Conformance Requirements

A CMOT-conformant system must implement the following protocols: ACSE, ROSE, CMIP, LPP,
and IP.    A CMOT-conformant system must support the use of the LPP over either UDP or TCP.
The use of the LPP over both UDP and TCP on the same system may be supported. 
A CMIP-conformant system must implement the following protocols: ACSE, ROSE, CMIP, ISO 
Presentation, ISO Session and ISO Transport. 



RFC-1189 Common Management Information Services

Common Management Information Service Element

The Common Management Information Service Element (CMISE) is specified in two ISO 
documents.    The service definition for the Common Management Information Service (CMIS)
is given in ISO 9595 [11].    The protocol specification for the Common Management 
Information Protocol (CMIP) is found in ISO 9596 [12].    In addition, the addenda for 
add/remove support in M-SET [32, 34] must be supported for both CMOT and CMIP.    The 
addenda for M-CANCEL-GET [33, 35] may be supported by an implementation, but it's use is 
negotiated as part of association negotiation. 



RFC-1189 Common Management Information Services - CMIS

Association Policies

The following ACSE services are required by CMISE: A-ASSOCIATE, A- RELEASE, A-ABORT, and
A-P-ABORT.    The rest of the CMIP protocol uses the RO-INVOKE, RO-RESULT, RO-ERROR, and 
RO-REJECT services of ROSE. 
There are four types of association that may be negotiated between managing and managed
systems.    These types are: 

Event M-EVENT-REPORTs may be sent by the managed system; no other CMIP 
PDUs are allowed 

Event/Monitor same as Event type except that, in addition, the managing system may 
also issue M-GET requests and receive M-GET responses over the 
association 

Monitor/Control managing system may issue M-GET, M-SET, M-CREATE, M-DELETE and 
M-ACTION requests over the association; no event reporting is allowed 

Full Mgr/Agent all functions must be supported

A conformant system    must support at least one of these Association types.    Note that a 
system may play both managing and managed system roles, but not on the same 
association. 
The negotiation process uses the A-ASSOCIATE and A-RELEASE services. Application Context 
Name is used to determine the requestor's "role" in an association (as managing or 
managed system) and to determine the type of the association. 
The following values for Application Context Name are registered for for CMOT and CMIP: 

{iso(1) identified-organization(3) dod(6)
internet(1) mgmt(2) mib(1) oim(9) acn(1)
cmot1095(1)}
(for backwards compatible negotiation with RFC 1095 CMOT
implementations)

{iso(1) identified-organization(3) dod(6)
internet(1) mgmt(2) mib(1) oim(9) acn(1)
manager-event-association(2)}

{iso(1) identified-organization(3) dod(6)
internet(1) mgmt(2) mib(1) oim(9) acn(1)
manager-event-monitor-association(3)}

{iso(1) identified-organization(3) dod(6)
internet(1) mgmt(2) mib(1) oim(9) acn(1)
manager-monitor-control-association(4)}

{iso(1) identified-organization(3) dod(6)
internet(1) mgmt(2) mib(1) oim(9) acn(1)
manager-full-association(5)}



{iso(1) identified-organization(3) dod(6)
internet(1) mgmt(2) mib(1) oim(9) acn(1)
agent-event-association(6)}

The following negotiation rules are to be used:
1.  A managed system may only request an Event association and, in fact, 

must create an Event association if it has an event to report and no 
suitable association already exists. 

2. Managing systems may request any association type.
3. An association is created by the requesting system issuing an A-

ASSOCIATE request with the requestor's AE-TITLE and the desired 
application context.    The responding system then returns either 1) an A-
ASSOCIATE response with the requestor's AE-TITLE and the application 
context which it wishes to accept or 2) an A-ASSOCIATE response rejecting 
the association. 

4. Managed systems may negotiate "downward" from Full to Monitor/Control, 
Event/Monitor or Event by returning the new application context in the A-
ASSOCIATE response to the managing system during the association 
creation process.    In the same fashion, managed systems may negotiate 
from Event/Monitor to Event. 

5. When a managing system receives an application context in an A-
ASSOCIATE response that differs from the context sent in an A-ASSOCIATE 
request it may either proceed with the new context or refuse the new 
context by issuing an A-RELEASE request. 

A-RELEASE is used when the requestor does not agree with the new context.    A-ABORT is 
used for invalid negotiation.    If A-ABORT were to be used to terminate an association, there 
exists the potential for loss of information, such as pending events or confirmations. A-
ABORT must be used, however, when a protocol violation occurs or where an association is 
not yet established. 



RFC-1189 Common Management Information Services - CMIS Services

General Agreements on Users of CMIS

The general agreements on users of CMIS shall be as specified in the OIW Stable 
Agreements [30] section 18.6.2. 
The following additional agreements are specified.

o A system need only implement the services and service primitives 
required for the association types that it supports. 

o Current/Event times shall be fields shall use 1 millisecond granularity.    If 
the system generating the PDU does not have the current time, yet does 
have the time since last boot, then GeneralizedTime can be used to 
encode this information.    The time since last boot will be added to the 
base time "0001 Jan 1 00:00:00.00" using the Gregorian calendar 
algorithm. (In the Gregorian calendar, all years have 365 days except 
those divisible by 4 and not by 400, which have 366.)    The use of the year
1 as the base year will prevent any confusion with current time. 
If no meaningful time is available, then the year 0 shall be used in 
GeneralizedTime to indicate this fact. 



RFC-1189 Common Management Information Services - CMIS Services

Specific Agreements on Users of CMIS

The specific agreements on users of CMIS shall be as specified in the OIW Stable 
Agreements [30] section 18.6.3. 
The following additional agreements are specified:

o Event time shall be mandatory for all events. 
o Both the "managed Object Class" and "managed Object Instance" 

parameters must be present in the following CMIS Service 
Response/Confirmation primitives: the M-EVENT-REPORT Confirmed, the M-
GET, the M-SET, the M-ACTION, the M-CREATE, and the M-DELETE. 



RFC-1189 Common Management Information Services - CMIS

CMIP Agreements

The CMIS and CMIP implementers agreements documented in the OIW Stable Implementers 
Agreements [30] plus those mandated by the CMIP standard will be used for both CMOT and 
CMIP.    In addition to these implementers agreements, the following specific agreements 
must be observed: 
o An implementation is required to support all filter items except subsetOf, supersetOf, 
nonNullSetIntersection, and substrings. 
o The "managedObjectInstance" field must be present in the ProcessingFailure Error 
PDU.    The "managedObjectClass" field must be present in the NoSuchArgument Error PDU. 
[Temporary Note:    The CMIS/P implementers agreements have reach a fairly stable status in
the OIW working agreements document.    It is expected that the CMIS/P agreements (18.6.2 
and 18.6.3) will be recommended to be moved into the stable agreements document during 
either the June 1990 meetings.    Reference [30] points to the presumed June 1990 updated 
version of the stable agreements document.] 



RFC-1189 Common Management Information Services

Services Required by CMIP

The services required by CMIP shall be as specified in the OIW Stable Implementors 
Agreements [30] section 18.6.5. 
The following additional agreements are specified:

o ASCE Requirements:    Application contexts shall be as defined in section 
4.1 of these agreements.    The values and defaults of parameters to the 
ACSE parameters given to the presentation service are specified in RFC 
1085 [13] for CMOT and in the NIST Stable Implementers Agreements [30] 
for CMIP. 

o Presentation Requirements:    CMOT implementations shall be supported by
the Lightweight Presentation Protocol (LPP) [13].    The LPP may use either 
TCP or UDP.    When UDP is used, an implementation need not accept LPP 
PDUs whose length exceeds 484 octets. 

o Session Requirements:    CMOT implementations will not require the 
session protocol. 



RFC-1189 Common Management Information Services

Acknowledgements

This RFC is the result of the work of many people.    The following members of the IETF OSI 
Internet Management and preceding Netman working groups made important contributions: 

Amatzia Ben-Artzi, Synoptics
Asheem Chandna, AT&T Bell Laboratories
Ken Chapman, Digital Equipment Corporation
Anthony Chung, Sytek
George Cohn, Ungermann-Bass
Gabriele Cressman, Sun Microsystems
Tom Halcin, Hewlett-Packard
Pranati Kapadia, Hewlett-Packard
Lee LaBarre, The MITRE Corporation (co-chair)
Dave Mackie, 3Com
Keith McCloghrie, Hughes/InterLan
Jim Robertson, 3Com
Milt Roselinsky, CMC
Marshall Rose, PSI
John Scott, Data General
Lou Steinberg, IBM



RFC-1189 Common Management Information Services

Authors' Addresses

Unnikrishnan S. Warrier
NetLabs
11693 San Vicente Blvd
Suite 348
Los Angeles, CA 90049
Phone: (213) 476-4070
Email: unni@netlabs.com

Larry Besaw
Hewlett-Packard
3404 East Harmony Road
Fort Collins, CO 80525
Phone: (303) 229-6022
Email: lmb%hpcndaw@hplabs.hp.com

Lee LaBarre
Mitre
Burlington Road
Bedford, MA 01730
Phone: (617) 271-8507
Email: cel@mbunix.mitre.org

Brian D. Handspicker
Digital Equipment Corporation
550 King St.
Littleton, Ma. 01460
Phone: (508) 486-7894
Email: bd@vines.enet.dec.com



7.    References

      [1] Cerf, V., "IAB Recommendations for the Development of Internet
              Network Management Standards", RFC 1052, IAB, April 1988.

      [2] Rose, M., and K. McCloghrie, "Structure and Identification of
              Management Information for TCP/IP-based internets", RFC 1065,
              TWG, August 1988.

      [3] McCloghrie, K., and M. Rose, "Management Information Base for
              Network Management of TCP/IP-based internets", RFC 1066, TWG,
              August 1988.

      [4] Case, J., M. Fedor, M. Schoffstall, and J. Davin, "A Simple
              Network Management Protocol (SNMP)", RFC 1098, (Obsoletes RFC
              1067), University of Tennessee at Knoxville, NYSERNet, Inc.,
              Rensselaer Polytechnic Institute, MIT Laboratory for Computer
              Science, April 1989.

      [5] ISO 8824: "Information Processing Systems - Open Systems
              Interconnection, Specification of Abstract Syntax Notation One
              (ASN.1)", Geneva, March 1988.

      [6] ISO 8825: "Information Processing Systems - Open Systems
              Interconnection, Specification of Basic Encoding Rules for
              Abstract Notation One (ASN.1)", Geneva, March 1988.

      [7] ISO 8649: "Information Processing Systems - Open Systems
              Interconnection, Service Definition for Association Control
              Service Element".

      [8] ISO 8650: "Information Processing Systems - Open Systems
              Interconnection, Protocol Specification for Association Control
              Service Element".

      [9] CCITT Recommendation X.219, Working Document for ISO 9072-1:
              "Information processing systems - Text Communication, Remote



              Operations: Model, Notation and Service Definition", Gloucester,
              November 1987.

    [10] CCITT Recommendation X.229, Working Document for ISO 9072-2:
              "Information processing systems - Text Communication, Remote
              Operations: Protocol Specification", Gloucester, November 1987.

    [11] ISO 9595: "Information Processing Systems - Open Systems
              Interconnection, Management Information Service Definition - Part
              2: Common Management Information Service", 22 December 1988.

    [12] ISO 9596: "Information Processing Systems - Open Systems
              Interconnection, Management Information Protocol Specification -
              Part 2: Common Management Information Protocol", 22 December
              1988.

    [13] Rose, M., "ISO Presentation Services on top of TCP/IP-based
              internets", RFC 1085, TWG, December 1988.

    [14] OSI Network Management Forum, "Forum Interoperable Interface
              Protocols", September 1988.

    [15] ISO DIS 7498-4: "Information Processing Systems - Open Systems
              Interconnection, Basic Reference Model - Part 4: OSI Management
              Framework".

    [16] ISO/IEC JTC1/SC21/WG4 N571: "Information Processing Systems -
              Open Systems Interconnection, Systems Management: Overview",
              London, July 1988.

    [17] Klerer, S. Mark, "The OSI Management Architecture: An Overview",
              IEEE Network Magazine, March 1988.

    [18] Ben-Artzi, A., "Network Management for TCP/IP Networks: An
              Overview", Internet Engineering Task Force working note, April
              1988.



    [19] ISO/IEC JTC1/SC21/WG4 N3324: "Information Processing Pystems -
              Open Systems Interconnection, Management Information Services -
              Structure of Management Information - Part I: Management
              Information Model", Sydney, December 1988.

    [20] Postel, J., "User Datagram Protocol", RFC 768, USC/Information
              Sciences Institute, August 1980.

    [21] Postel, J., "Transmission Control Protocol", RFC 793,
              USC/Information Sciences Institute, September 1981.

    [22] ISO DP 9534: "Information processing systems - Open Systems
              Interconnection, Application Layer Structure", 10 March 1987.

    [23] Rose, M., and D. Cass, "ISO Transport Services on top of the TCP,
              Version: 3", RFC 1006, Northrop Research and Technology Center,
              May 1987.

    [24] ISO 8822: "Information Processing Systems - Open Systems
              Interconnection, Connection Oriented Presentation Service
              Definition", June 1987.

    [25] Postel, J., "Internet Protocol", RFC 791, USC/Information
              Sciences Institute, September 1981.

    [26] CCITT Draft Recommendation X.500, ISO 9594/1-8: "The Directory",
              Geneva, March 1988.

    [27] Warrier, U. and L. Besaw, "The Common Management Information
              Services and Protocol over TCP/IP (CMOT)", RFC 1095, Unisys
              Corporation, Hewlett-Packard, April 1989.

    [28] McCloghrie, K., and M. Rose, "Management Information Base for
              Network Management of TCP/IP-based internets", RFC 1156, Hughes
              LAN Systems, Performance Systems International, May 1990.

    [29]    LaBarre, L., "OIM MIB-II", working note, December 1989.



    [30] NIST NMSIG, "NIST Stable Implementers Agreements", NIST Special
              Publication 500-162, as ammended by June 1990.

    [31] NIST NMSIG, "NIST Working Implementers Agreements", December
              1989.

    [32] ISO IS 9595 1989: DAD1: "CMIS Add/Remove Addendum".

    [33] ISO IS 9595 1989: DAD2: "CMIS Cancel-Get Addendum".

    [34] ISO IS 9596 1989: DAD1: "CMIP Add/Remove Addendum".

    [35] ISO IS 9596 1989: DAD2: "CMIP Cancel-Get Addendum".

8.    Security Considerations

      Security issues are not discussed in this memo.



RFC-1196 The Finger User Information Protocol
D. Zimmerman

Center for Discrete Mathematics
and

Threoretical Computer Science
Rutgers University
December 1990

Introduction
Use of the Protocol
Security
Examples
Acknowledgments
Author's Address

Status of this Memo
This memo defines a protocol for the exchange of user information. This RFC specifies an IAB
standards track protocol for the Internet community, and requests discussion and 
suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol
Standards" for the standardization state and status of this protocol. Distribution of this 
memo is unlimited. 
Abstract
This memo describes the Finger User Information Protocol.    This is a simple protocol which 
provides an interface to a remote user information program. 
Based on RFC-742, a description of the original Finger protocol, this memo attempts to 
clarify the expected communication between the two ends of a Finger connection.    It also 
tries not to invalidate the many existing implementations or add unnecessary restrictions to 
the original protocol definition.    This edition corrects and clarifies in a minor way, RFC-1194.



RFC-1196 Finger Protocol

Introduction

Intent
History
Requirements



RFC-1196 Finger Protocol - Introduction

Intent

This memo describes the Finger User Information Protocol.    This is a simple protocol which 
provides an interface to a remote user information program (RUIP). 
Based on RFC-742, a description of the original Finger protocol, this memo attempts to 
clarify the expected communication between the two ends of a Finger connection.    It also 
tries not to invalidate the many current implementations or add unnecessary restrictions to 
the original protocol definition. 
The most prevalent implementations of Finger today seem to be primarily derived from the 
BSD UNIX work at the University of California, Berkeley.    Thus, this memo is based around 
the BSD version's behavior. 
However, the BSD version provides few options to tailor the Finger RUIP for a particular site's
security policy, or to protect the user from dangerous data.    Furthermore, there are MANY 
potential security holes that implementors and administrators need to be aware of, 
particularly since the purpose of this protocol is to return information about a system's 
users, a sensitive issue at best. Therefore, this memo makes a number of important security 
comments and recommendations. 



RFC-1196 Finger Protocol - Introduction

History

The FINGER program at SAIL, written by Les Earnest, was the inspiration for the NAME 
program on ITS.    Earl Killian at MIT and Brian Harvey at SAIL were jointly responsible for 
implementing the original protocol. 
Ken Harrenstien is the author of RFC-742, "Name/Finger", which this memo began life as. 



RFC-1196 Finger Protocol

Requirements

In this document, the words that are used to define the significance of each particular 
requirement are capitalized.    These words are: 

* "must"
This word or the adjective "REQUIRED" means that the item is an absolute 
requirement of the specification. 

* "should"
This word or the adjective "RECOMMENDED" means that there may exist 
valid reasons in particular circumstances to ignore this item, but the full 
implications should be understood and the case carefully weighed before 
choosing a different course. 

* "may"
This word or the adjective "OPTIONAL" means that this item is truly 
optional.    One vendor may choose to include the item because a 
particular marketplace requires it or because it enhances the product, for 
example; another vendor may omit the same item. 

An implementation is not compliant if it fails to satisfy one or more of the must 
requirements.    An implementation that satisfies all the must and all the should 
requirements is said to be "unconditionally compliant"; one that satisfies all the must 
requirements but not all the should requirements is said to be "conditionally compliant". 



RFC-1196 Finger Protocol

Use of the Protocol

Flow of Events
Data Format
Query Specifications
RUIP {Q2} Behavior
Expected RUIP Response

{C} Query
{U}{C} Query
{U} Ambiguity
/W Query Token
Vending Machines



RFC-1196 Finger Protocol - Use of the Protocol

Flow of Events

Finger is based on the Transmission Control Protocol, using TCP port 79 decimal (117 octal).   
A TCP connection is opened to a remote host on the Finger port.    An RUIP becomes available
on the remote end of the connection to process the request.    The RUIP is sent a one line 
query based upon the Finger query specification.    The RUIP processes the query, returns an 
answer, then closes the connection normally. 



RFC-1196 Finger Protocol - Use of the Protocol

Data Format

Any data transferred must be in ASCII format, with no parity, and with lines ending in CRLF 
(ASCII 13 followed by ASCII 10).    This excludes other character formats such as EBCDIC, etc. 
This also means that any characters between ASCII 128 and ASCII 255 should truly be 
international data, not 7-bit ASCII with the parity bit set. 



RFC-1196 Finger Protocol - Use of the Protocol

Query Specifications

An RUIP must accept the entire Finger query specification.
The Finger query specification is defined:

{Q1} ::= [{U}] [/W] {C}
{Q2} ::= [{U}]{H} [/W] {C}
{U} ::= username
{H} ::= @hostname | @hostname{H}
{C} ::= <CRLF>

{H}, being recursive, means that there is no arbitrary limit on the number of @hostname 
tokens in the query.    In examples of the {Q2} request specification, the number of 
@hostname tokens is limited to two, simply for brevity. 
Be aware that {Q1} and {Q2} do not refer to a user typing "finger user@host" from an 
operating system prompt.    It refers to the line that an RUIP actually receives.    So, if a user 
types "finger user@host<CRLF>", the RUIP on the remote host receives "user<CRLF>", 
which corresponds to {Q1}. 
As with anything in the IP protocol suite, "be liberal in what you accept". 



RFC-1196 Finger Protocol - Use of the Protocol

RUIP {Q2} Behavior

A query of {Q2} is a request to forward a query to another RUIP.    An RUIP must either 
provide or actively refuse this forwarding service (see section 3.2.1).    If an RUIP provides 
this service, it must conform to the following behavior: 

Given that:
Host <H1> opens a Finger connection <F1-2> to an RUIP on host <H2>. 
<H1> gives the <H2> RUIP a query <Q1-2> of type {Q2} (e.g., 
FOO@HOST1@HOST2). 

It should be derived that:
Host <H3> is the right-most host in <Q1-2> (i.e., HOST2)
Query <Q2-3> is the remainder of <Q1-2> after removing the right-most 
"@hostname" token in the query (i.e., FOO@HOST1) 

And so:
The <H2> RUIP then must itself open a Finger connection <F2-3> to <H3>, 
using <Q2-3>. 
The <H2> RUIP must return any information received from <F2-3> to <H1> 
via <F1-2>. 
The <H2> RUIP must close <F1-2> in normal circumstances only when the 
<H3> RUIP closes <F2-3>. 



RFC-1196 Finger Protocol - Use of the Protocol

Expected RUIP Response

For the most part, the output of an RUIP doesn't follow a strict specification, since it is 
designed to be read by people instead of programs.    It should mainly strive to be 
informative. 
Output of ANY query is subject to the discussion in the security section. 



RFC-1196 Finger Protocol - Expected RUIP Response

{C} Query

A query of {C} is a request for a list of all online users.    An RUIP must either answer or 
actively refuse (see section 3.2.2).    If it answers, then it must provide at least the user's full
name.    The system administrator should be allowed to include other useful information 
(per section 3.2.3), such as: 

- terminal location
- office location
- office phone number
- job name
- idle time (number of minutes since last typed input, or since last job 

activity). 



RFC-1196 Finger Protocol - Expected RUIP Response

{U}{C} Query

A query of {U}{C} is a request for in-depth status of a specified user {U}.    If you really 
want to refuse this service, you probably don't want to be running Finger in the first place. 
An answer must include at least the full name of the user.    If the user is logged in, at least 
the same amount of information returned by {C} for that user must also be returned by {U}
{C}. 
Since this is a query for information on a specific user, the system administrator should be 
allowed to choose to return additional useful information (per section 3.2.3), such as: 

- office location
- office phone number
- home phone number
- status of login (not logged in, logout time, etc)
- user information file

A user information file is a feature wherein a user may leave a short message that will be 
included in the response to Finger requests. (This is sometimes called a "plan" file.)    This is 
easily implemented by (for example) having the program look for a specially named text file 
in the user's home directory or some common area; the exact method is left to the 
implementor.    The system administrator should be allowed to specifically turn this feature 
on and off.    See section 3.2.4 for caveats. 
There may be a way for the user to run a program in response to a Finger query.    If this 
feature exists, the system administrator should be allowed to specifically turn it on and off.  
See the section on "Execution of User Programs" for caveats. 



RFC-1196 Finger Protocol - Expected RUIP Response

{U} Ambiguity

Allowable "names" in the command line must include "user names" or "login names" as 
defined by the system.    If a name is ambiguous, the system administrator should be 
allowed to choose whether or not all possible derivations should be returned in some fashion
(per section 3.2.6). 



RFC-1196 Finger Protocol - Expected RUIP Response

/W Query Token

The token /W in the {Q1} or {Q2} query types should at best be interpreted at the last 
RUIP to signify a higher level of verbosity in the user information output, or at worst be 
ignored. 



RFC-1196 Finger Protocol - Expected RUIP Response

Vending Machines

Vending machines should respond to a {C} request with a list of all items currently 
available for purchase and possible consumption. Vending machines should respond to a 
{U}{C} request with a detailed count or list of the particular product or product slot.    
Vending machines should NEVER NEVER EVER eat requests.    Or money. 



RFC-1196 Finger Protocol

Security

Implementation Security
RUIP Security

{Q2} Refusal
{C} Refusal
Atomic Discharge
User Information Files
Execution of User Programs
{U} Ambiguity
Audit Trails

Client Security



RFC-1196 Finger Protocol - Security

Implementation Security

Sound implementation of Finger is of the utmost importance. Implementations should be 
tested against various forms of attack.    In particular, an RUIP should protect itself against 
malformed inputs. Vendors providing Finger with the operating system or network software 
should subject their implementations to penetration testing. 
Finger is one of the avenues for direct penetration, as the Morris worm pointed out quite 
vividly.    Like Telnet, FTP and SMTP, Finger is one of the protocols at the security perimeter of
a host. Accordingly, the soundness of the implementation is paramount.    The 
implementation should receive just as much security scrutiny during design, 
implementation, and testing as Telnet, FTP, or SMTP. 



RFC-1196 Finger Protocol - Security

RUIP Security

Warning!!    Finger discloses information about users; moreover, such information may be
considered sensitive.    Security administrators should make explicit decisions about whether 
to run Finger and what information should be provided in responses.    One existing 
implementation provides the time the user last logged in, the time he last read mail, 
whether unread mail was waiting for him, and who the most recent unread mail was from!    
This makes it possible to track conversations in progress and see where someone's attention
was focused.    Sites that are information-security conscious should not run Finger without an
explicit understanding of how much information it is giving away. 



RFC-1196 Finger Protocol - RUIP Security

{Q2} Refusal

For individual site security concerns, the system administrator should be given an option to 
individually turn on or off RUIP processing of {Q2}.    If RUIP processing of {Q2} is turned off,
the RUIP must return a service refusal message of some sort.    "Finger forwarding service 
denied" is adequate.    The purpose of this is to    allow individual hosts to choose to not 
forward Finger requests, but if they do choose to, to do so consistently. 
Overall, there are few cases which would warrant processing of {Q2} at all, and they are far 
outweighed by the number of cases for refusing to process {Q2}.    In particular, be aware 
that if a machine is part of security perimeter (that is, it is a gateway from the outside world 
to some set of interior machines), then turning {Q2} on provides a path through that 
security perimeter.    Therefore, it is RECOMMENDED that the default of the {Q2} processing 
option be to refuse processing.    It certainly should not be enabled in gateway machines 
without careful consideration of the security implications. 



RFC-1196 Finger Protocol - RUIP Security

{C} Refusal

For individual site security concerns, the system administrator should be given an option to 
individually turn on or off RUIP acceptance of {C}.    If RUIP processing of {C} is turned off, 
the RUIP must return a service refusal message of some sort.    "Finger online user list 
denied" is adequate.    The purpose of this is to allow individual hosts to choose to not list the
users currently online. 



RFC-1196 Finger Protocol - RUIP Security

Atomic Discharge

All implementations of Finger should allow individual system administrators to tailor what 
atoms of information are returned to a query.    For example: 

- Administrator A should be allowed to specifically choose to return office 
location, office phone number, home phone number, and logged in/logout 
time. 

- Administrator B should be allowed to specifically choose to return only 
office location, and office phone number. 

- Administrator C should be allowed to specifically choose to return the 
minimum amount of required information, which is the person's full name. 



RFC-1196 Finger Protocol - RUIP Security

User Information Files

Allowing an RUIP to return information out of a user-modifiable file should be seen as 
equivalent to allowing any information about your system to be freely distributed.    That is, it
is potentially the same as turning on all specifiable options.    This information security 
breach can be done in a number of ways, some cleverly, others straightforwardly.    This 
should disturb the sleep of system administrators who wish to control the returned 
information. 



RFC-1196 Finger Protocol - RUIP Security

Execution of User Programs

Allowing an RUIP to run a user program in response to a Finger query is potentially 
dangerous.    BE CAREFUL!! -- the RUIP must not allow system security to be compromised 
by that program.    Implementing this feature may be more trouble than it is worth, since 
there are always bugs in operating systems, which could be exploited via this type of 
mechanism. 



RFC-1196 Finger Protocol - RUIP Security

{U} Ambiguity

Be aware that a malicious user's clever and/or persistent use of this feature can result in a 
list of most of the usernames on a system. Refusal of {U} ambiguity should be considered in
the same vein as refusal of {C} requests. 



RFC-1196 Finger Protocol - RUIP Security

Audit Trails

Implementations should allow system administrators to log Finger queries. 



RFC-1196 Finger Protocol - Security

Client Security

It is expected that there will normally be some client program that the user runs to query the
initial RUIP.    By default, this program should filter any unprintable data, leaving only 
printable 7-bit characters (ASCII 32 through ASCII 126), tabs (ASCII 9), and CRLFs. This is to 
protect against people playing with terminal escape codes, changing other peoples' X 
window names, or committing other dastardly or confusing deeds.    Two separate user 
options should be considered to modify this behavior, so that users may choose to view 
international or control characters: 

- one to allow all characters less than ASCII 32
- another to allow all characters greater than ASCII 126

For environments that live and breathe international data, the system administrator should 
be given a mechanism to enable the latter option by default for all users on a particular 
system.    This can be done via a global environment variable or similar mechanism. 



RFC-1196 Finger Protocol

Examples

Example with a Null Command Line ({C})
Example with Name Specified ({U}{C})
Example with Ambiguous Name Specified ({U}{C})
Example of Query Type {Q2} ({U}{H}{H}{C})



RFC-1196 Finger Protocol - Examples

Example with a Null Command Line ({C})

Site: elbereth.rutgers.edu
Command line: <CRLF>
Login       Name               TTY Idle    When            Office
rinehart Mark J. Rinehart      p0  1:11 Mon 12:15  019 Hill       x3166
greenfie Stephen J. Greenfiel  p1       Mon 15:46  542 Hill       x3074
rapatel  Rocky - Rakesh Patel  p3    4d Thu 00:58  028 Hill       x2287
pleasant Mel Pleasant          p4    3d Thu 21:32  019 Hill    908-932-
dphillip Dave Phillips         p5  021: Sun 18:24  265 Hill       x3792
dmk      David Katinsky        p6    2d Thu 14:11  028 Hill       x2492
cherniss Cary Cherniss         p7    5  Mon 15:42  127 Psychol    x2008
harnaga  Doug Harnaga          p8  2:01 Mon 10:15  055 Hill       x2351
brisco   Thomas P. Brisco      pe  2:09 Mon 13:37  h055           x2351
laidlaw  Angus Laidlaw         q0  1:55 Mon 11:26  E313C       648-5592
cje      Chris Jarocha-Ernst   q1    8  Mon 13:43  259 Hill       x2413



RFC-1196 Finger Protocol - Examples

Example with Name Specified ({U}{C})

Site: dimacs.rutgers.edu
Command line: pirmann<CRLF>
Login name: pirmann                     In real life: David Pirmann
Office: 016 Hill, x2443                 Home phone: 989-8482
Directory: /dimacs/u1/pirmann           Shell: /bin/tcsh
Last login Sat Jun 23 10:47 on ttyp0 from romulus.rutgers.
No unread mail
Project:
Plan:
                      Work Schedule, Summer 1990
                 Rutgers LCSR Operations, 908-932-2443

                        Monday       5pm - 12am
                        Tuesday      5pm - 12am
                        Wednesday    9am -  5pm
                        Thursday     9am -  5pm
                        Saturday     9am -  5pm

                           larf larf hoo hoo



RFC-1196 Finger Protocol - Examples

Example with Ambiguous Name Specified ({U}{C})

Site: elbereth.rutgers.edu
Command line: ron<CRLF>
Login name: spinner                     In real life: Ron Spinner
Office: Ops Cubby,    x2443             Home phone: 463-7358
Directory: /u1/spinner                  Shell: /bin/tcsh
Last login Mon May  7 16:38 on ttyq7
Plan:
            ught i
          ca      n
        m           a
       '      ...     t
      I      .   .     i
             !         m
      !       !       e
       p       !pool
        l
         e
          H

Login name: surak                       In real life: Ron Surak
Office: 000 OMB Dou,    x9256
Directory: /u2/surak                    Shell: /bin/tcsh
Last login Fri Jul 27 09:55 on ttyq3
No Plan.

Login name: etter                       In real life: Ron Etter
Directory: /u2/etter                    Shell: /bin/tcsh
Never logged in.
No Plan.



RFC-1196 Finger Protocol - Examples

Example of Query Type {Q2} ({U}{H}{H}{C})

Site: dimacs.rutgers.edu
Command line: hedrick@math.rutgers.edu@pilot.njin.net<CRLF>

[pilot.njin.net]
[math.rutgers.edu]
Login name: hedrick                     In real life: Charles Hedrick
Office: 484 Hill, x3088
Directory: /math/u2/hedrick             Shell: /bin/tcsh
Last login Sun Jun 24 00:08 on ttyp1 from monster-gw.rutge
No unread mail
No Plan.



RFC-1196 Finger Protocol

Acknowledgments

Thanks to everyone in the Internet Engineering Task Force for their comments.    Special 
thanks to Steve Crocker for his security recommendations and prose. 



RFC-1196 Finger Protocol

Author's Address

David Paul Zimmerman
Center for Discrete Mathematics and
Theoretical Computer Science
Rutgers University
P.O. Box 1179
Piscataway, NJ 08855-1179
Phone: (908)932-4592
EMail: dpz@dimacs.rutgers.edu



RFC-1206 FYI on Questions and Answers
to

Commonly asked "New Internet User" Questions
G. Malkin; FTP Software, Inc.

A. Marine; SRI
February 1991

FYI #4

Status of this Memo
This FYI RFC is one of two FYI's called, "Questions and Answers" (Q/A), produced by the User 
Services Working Group of the Internet Engineering Task Force (IETF).    The goal is to 
document the most commonly asked questions and answers in the Internet. 
This memo provides information for the Internet community.    It does not specify any 
standard.    Distribution of this memo is unlimited. 

Introduction
Acknowledgements
Questions About the Internet
Questions About TCP/IP
Questions About the Domain Name System
Questions About Internet Documentation
Questions about Internet Organizations and Contacts
Questions About Services
Mailing Lists
Miscellaneous "Internet lore" questions
Suggested Reading
Condensed Glossary
Authors' Addresses



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Introduction

New users joining the Internet community have the same questions as did everyone else 
who has ever joined.    Our quest is to provide the Internet community with up to date, basic 
Internet knowledge and experience, while moving the redundancies away from the 
electronic mailing lists so that the lists' subscribers do not have to read the same queries 
and answers over and over again. 
Future updates of this memo will be produced as User Services members become aware of 
additional questions that should be included, and of deficiencies or inaccuracies that should 
be amended in this document. An additional FYI Q/A will be published which will deal with 
intermediate and advanced Q/A topics. 
The Q/A mailing lists are maintained by Gary Malkin at FTP.COM.    They are used by a 
subgroup of the User Services Working Group to discuss the Q/A FYIs.    They include: 

quail@ftp.com This is a discussion mailing list.    Its primary use is for 
pre-release review of the Q/A FYIs. 

quail-request@ftp.com This is how you join the quail mailing list.
quail-box@ftp.com This is a write-only list which serves as a repository for 

candidate questions and answers. It is not necessary to 
be on the quail mailing list to forward to the quail-box. 



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Acknowledgements

The following people deserve thanks for their help and contributions to this FYI Q/A:    Vint 
Cerf (CNRI), Ralph Droms (Bucknell), Tracy LaQuey Parker (UTexas), Craig Partridge (SICS), 
Jon Postel (ISI), Joyce K. Reynolds (ISI), Karen Roubicek (BBNST), Marty Schoffstall (PSI, Inc.), 
Patricia Smith (Merit), Gene Spafford (Purdue) and James Van Bokkelen (FTP Software, Inc.). 



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Questions About the Internet

What is the Internet?
I just got on the Internet.    What can I do now?
How do I find out if a site has a computer on the Internet?



What is the Internet?

The Internet is a large collection of networks (all of which run the TCP/IP 
protocols) that are tied together so that users of any of the networks can use 
the network services provided by TCP/IP to reach users on any of the other 
networks.    The Internet started with the ARPANET, but now includes such 
networks as NSFNET, NYSERnet, and thousands of others.    There are other 
major wide area networks, such as BITNET and DECnet networks, that are not 
based on the TCP/IP protocols and are thus not part of the Internet.    However,
it is possible to communicate between them and the Internet via electronic 
mail because of mail gateways that act as "translators" between the different 
network protocols involved. 
Note: You will often see "internet" with a small "i".    This could refer to any 
network built based on TCP/IP, or might refer to networks using other protocol 
families that are composites built of smaller networks. 



I just got on the Internet.    What can I do now?
You now have access to all the resources you are authorized to use on your 
own Internet host, on any other Internet host on which you have an account, 
and on any other Internet host that offers publicly accessible information.    
The Internet gives you the ability to move information between these hosts 
via file transfers.    Once you are logged into one host, you can use the Internet
to open a connection to another, login, and use its services interactively (this 
is known as remote login or "TELNETTING".    In addition, you can send 
electronic mail to users at any Internet site and to users on many non-Internet
sites that are accessible via electronic mail. 
There are various other services you can use.    For example, some hosts 
provide access to specialized databases or to archives of information.    The 
Internet Resource Guide provides information regarding some of these sites.    
The Internet Resource Guide lists facilities on the Internet that are available to 
users.    Such facilities include supercomputer centers, library catalogs and 
specialized data collections.    The guide is published by the NSF Network 
Service Center (NNSC) and is continuously being updated. The Resource Guide
is distributed free via e-mail (send a note to resource-guide-
request@nnsc.nsf.net to join the e-mail distribution) and via anonymous FTP 
(in nnsc.nsf.net:resource- guide/*).    Hardcopy is available at a nominal fee (to 
cover reproduction costs) from the NNSC.    Call the NNSC at 617-873-3400 for 
more information. 



How do I find out if a site has a computer on the Internet?
Three good sources to consult are "!%@:: A Directory of Electronic Mail 
Addressing and Networks" by Donnalyn Frey and Rick Adams; "The User's 
Directory of Computer Networks", by Tracy LaQuey; and "The Matrix: 
Computer Networks and Conferencing Systems Worldwide", by John 
Quarterman. 
In addition, it is possible to find some information about Internet sites in the 
WHOIS database maintained at the DDN NIC at SRI International.    The DDN 
NIC (Defense Data Network, Network Information Center) provides an 
information retrieval interface to the database that is also called WHOIS.    To 
use this interface, TELNET to NIC.DDN.MIL and type "whois" (carriage return).   
No login is necessary.    Type "help" at the whois prompt for more information 
on using the facility.    WHOIS will show many sites, but may not show every 
site registered with the DDN NIC (simply for reasons having to do with how the
program is set up to search the database). 



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Questions About TCP/IP

What is TCP/IP?
What are the other well-known standard protocols in the TCP/IP family?



What is TCP/IP?
TCP/IP (Transmission Control Protocol/Internet Protocol) [4,5,6] is the common 
name for a family of over 100 data-communications protocols used to 
organize computers and data-communications equipment into computer 
networks.    TCP/IP was developed to interconnect hosts on ARPANET, PRNET 
(packet radio), and SATNET (packet satellite).    All three of these networks 
have since been retired; but TCP/IP lives on.    It is currently used on a large 
international network of networks called the Internet, whose members include 
universities, other research institutions, government facilities, and many 
corporations.    TCP/IP is also sometimes used for other networks, particularly 
local area networks that tie together numerous different kinds of computers or
tie together engineering workstations. 



What are the other well-known standard protocols in the TCP/IP family? 
Other than TCP and IP, the three main protocols in the TCP/IP suite are the 
Simple Mail Transfer Protocol (SMTP) [RFC-821], the File Transfer Protocol (FTP)
[RFC-959], and the TELNET Protocol [RFC-854].    There are many other 
protocols in use on the Internet.    The Internet Activities Board (IAB) regularly 
publishes an RFC [RFC-1250] under the title "IAB Official Protocol Standards" 
that describes the state of standardization of the various Internet protocols.    
This document is the best guide to the current status of Internet protocols and
their recommended usage. 



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Questions About the Domain Name System

What is the Domain Name System?
The Domain Name System (DNS) is a hierarchical, distributed method of 
organizing the name space of the Internet.    The DNS administratively groups 
hosts into a hierarchy of authority that allows addressing and other 
information to be widely distributed and maintained.    A big advantage to the 
DNS is that using it eliminates dependence on a centrally-maintained file that 
maps host names to addresses. 

What is a Fully Qualified Domain Name?
A Fully Qualified Domain Name (FQDN) is a domain name that includes all 
higher level domains relevant to the entity named. If you think of the DNS as a
tree-structure with each node having its own label, a Fully Qualified Domain 
Name for a specific node would be its label followed by the labels of all the 
other nodes between it and the root of the tree.    For example, for a host, a 
FQDN would include the string that identifies the particular host, plus all 
domains of which the host is a part up to and including the top-level domain 
(the root domain is always null).    For example, PARIS.NISC.SRI.COM is a Fully
Qualified Domain Name for the host at 192.33.33.109.    In addition, 
NISC.SRI.COM is the FQDN for the NISC domain. 



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Questions About Internet Documentation

What is an RFC?
How do I obtain RFCs?
How do I obtain a list of RFCs?
Which RFCs are Standards?
What is an Internet Draft?
How do I obtain OSI Standards documents?



What is an RFC?
The Request for Comments documents (RFCs) are working notes of the 
Internet research and development community.    A document in this series 
may be on essentially any topic related to computer communication, and may 
be anything from a meeting report to the specification of a standard.    
Submissions for Requests for Comments may be sent to the RFC Editor, Jon 
Postel (POSTEL@ISI.EDU). 
Most RFCs are the descriptions of network protocols or services,often giving 
detailed procedures and formats for their implementation.    Other RFCs report 
on the results of policy studies or summarize the work of technical committees
or workshops.    All RFCs are considered public domain unless explicitly marked
otherwise. 
While RFCs are not refereed publications, they do receive technical review 
from either the task forces, individual technical experts, or the RFC Editor, as 
appropriate.    Currently, most standards are published as RFCs, but not all 
RFCs specify standards. 
Anyone can submit a document for publication as an RFC. Submissions must 
be made via electronic mail to the RFC Editor. Please consult RFC 1111, 
"Instructions to RFC Authors" [RFC-1111], for further information.    RFCs are 
accessible online in public access files, and a short message is sent to a 
notification distribution list indicating the availability of the memo.    Requests 
to be added to this distribution list should be sent to RFC- 
REQUEST@NIC.DDN.MIL. 
The online files are copied by interested people and printed or displayed at 
their sites on their equipment.    (An RFC may also be returned via electronic 
mail in response to an electronic mail query.) This means that the format of 
the online files must meet the constraints of a wide variety of printing and 
display equipment. 
Once a document is assigned an RFC number and published, that RFC is never
revised or re-issued with the same number.    There is never a question of 
having the most recent version of a particular RFC.    However, a protocol 
(such as File Transfer Protocol (FTP)) may be improved and re-documented 
many times in several different RFCs.    It is important to verify that you have 
the most recent RFC on a particular protocol.    The "IAB Official Protocol 
Standards" [RFC-1250] memo is the reference for determining the correct RFC 
to refer to for the current specification of each protocol. 



How do I obtain RFCs?
RFCs can be obtained via FTP from NIC.DDN.MIL, with the pathname 
RFC:RFCnnnn.TXT or RFC:RFCnnnn.PS (where "nnnn" refers to the number of 
the RFC).    Login using FTP, username "anonymous" and password "guest".    
The NIC also provides an automatic mail service for those sites which cannot 
use FTP.    Address the request to SERVICE@NIC.DDN.MIL and in the subject 
field of the message indicate the RFC number, as in "Subject: RFC nnnn" (or 
"Subject: RFC nnnn.PS" for PostScript RFCs). 
RFCs can also be obtained via FTP from NIS.NSF.NET.    Using FTP, login with 
username "anonymous" and password "guest"; then connect to the RFC 
directory ("cd RFC").    The file name is of the form RFCnnnn.TXT-1 (where 
"nnnn" refers to the number of the RFC).    The NIS also provides an automatic 
mail service for those sites which cannot use FTP.    Address the request to 
NIS-INFO@NIS.NSF.NET and leave the subject field of the message blank.    
The first line of the text of the message must be "SEND RFCnnnn.TXT-1", 
where nnnn is replaced by the RFC number. 
Requests for special distribution should be addressed to either the author of 
the RFC in question, or to NIC@NIC.DDN.MIL.    SRI International operates 
NIC.DDN.MIL and has a hardcopy subscription service for RFCs as well as 
several publications which incorporate a selection of RFCs defining Internet 
standards.    Unless specifically noted otherwise on the RFC itself, all RFCs are 
for unlimited distribution. 



How do I obtain a list of RFCs?
The NIC maintains a file that is an index of the RFCs.    It lists each RFC, 
starting with the most recent, and for each RFC provides the number, title, 
author(s), issue date, and number of hardcopy pages.    In addition, it lists the 
online formats (PostScript or ASCII text) for each RFC and the number of bytes 
each such version is online on the NIC.DDN.MIL host.    If an RFC is also an FYI,
that fact is noted, with the corresponding FYI number.    (There is a parallel FYI 
Index available).    Finally, the Index notes whether or not an RFC is obsoleted 
or updated by another RFC, and gives the number of that RFC, or if an RFC 
itself obsoletes or updates another RFC, and gives that RFC number.    The 
index is updated online each time an RFC is issued. 
This RFC Index is available online from the NIC.DDN.MIL host as RFC:RFC-
INDEX.TXT.    The FYI Index is online as FYI:FYI-INDEX.TXT. It is also available
from the NIC in hardcopy for $10, as are individual RFCs.    Call the NIC at 1-
800-235-3155 for help in obtaining the file. 



Which RFCs are Standards?
See "IAB Official Protocol Standards" [RFC-1250].



What is an Internet Draft?    Are there any guidelines available for writing one? 
Internet Drafts (I-D's) are the current working documents of the IETF.    Internet
Drafts are generally in the format of an RFC with some key differences: 
- The Internet Drafts are not RFC's and are not a numbered document 

series. 
- The words INTERNET-DRAFT appear in place of RFC XXXX in the upper left-

hand corner. 
- The document does not refer to itself as an RFC or as a Draft RFC. 
- An Internet Draft does not state nor imply that it is a proposed standard.    

To do so conflicts with the role of the IAB, the RFC Editor, and the Internet 
Engineering Steering Group (IESG). 

An Internet Drafts Directory has been installed to make available, for review 
and comment by the IETF members, draft documents that will be submitted 
ultimately to the IAB and the RFC Editor to be considered for publishing as an 
RFC.    The Internet Drafts Directories are maintained primarily at the NSFNET 
Network Service Center (NNSC).    There are several "shadow" machines which 
contain the IETF and Internet Drafts Directories.    They are: 

NSF Network Service Center:    nnsc.nsf.net
DDN NIC:    nic.ddn.mil
Pacific Rim:    munnari.oz.au
Europe:    nic.nordu.net (192.36.148.17)

To access these directories, use anonymous FTP.    Login with username, 
"anonymous", password, "guest".    Once logged in, change to the directory, 
"cd internet-drafts".    Internet Draft files can then be retrieved. 
For further information on the Internet Drafts of the IETF, or if you have 
problems with retrieving Internet Draft documents, contact Megan Davies 
(mdavies@nri.reston.va.us) or Greg Vaudreuil 
(gvaudre@nri.reston.va.us) for assistance. 



How do I obtain OSI Standards documents?
OSI Standards documents are NOT available from the Internet via anonymous 
FTP due to copyright restrictions.    These are available from: 

Omnicom Information Service
501 Church Street NE
Suite 304
Vienna, VA    22180    USA
Telephone: (800) 666-4266 or (703) 281-1135
Fax: (703) 281-1505

However, the GOSIP specification which covers the use of OSI protocols within 
the U.S. Government is available from the NIC and from the National Institute 
of Standards and Technology (NIST). The final text of GOSIP Version 2 is now 
available from both sites.    Version 2 is expected to become a Federal 
Information Processing Standard (FIPS) in early 1991. 
Online sources:

Available through anonymous ftp from osi.ncsl.nist.gov (129.6.48.100) as: 
./pub/gosip/gosip_v2.txt        -- ascii
./pub/gosip/gosip_v2.txt.Z      -- ascii compressed
./pub/gosip/gosip_v2.ps         -- PostScript
./pub/gosip/gosip_v2.ps.Z       -- PostScript compressed
Available through anonymous ftp from nic.ddn.mil (192.67.67.20) as: 
PROTOCOLS:GOSIP-V2.TXT        -- ascii
PROTOCOLS:GOSIP-V2.PS         -- PostScript

Hardcopy sources:
Standards Processing Coordinator (ADP)
National Institute of Standards and Technology
Technology Building, Room B-64
Gaithersburg, MD    20899
(301) 975-2816

Network Information Systems Center
SRI International, Room EJ291
333 Ravenswood Ave.
Menlo Park, CA    94025
1-800-235-3155



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Questions about Internet Organizations and Contacts

What is the IAB?
What is the IANA?
What is a NIC?    What is a NOC?
What is "The NIC"?
What is the IR?
What is the IETF?
What is the IRTF?



What is the IAB?
The Internet Activities Board (IAB) is the coordinating committee for Internet 
design, engineering and management [RFC-1160].    IAB members are deeply 
committed to making the Internet function effectively and evolve to meet a 
large scale, high speed future.    The chairman serves a term of two years and 
is elected by the members of the IAB.    The current Chair of the IAB is Vint 
Cerf.    The IAB focuses on the TCP/IP protocol suite, and extensions to the 
Internet system to support multiple protocol suites. 
The IAB performs the following functions:
1) Sets Internet Standards,
2) Manages the RFC publication process,
3) Reviews the operation of the IETF and IRTF,
4) Performs strategic planning for the Internet, identifying long-range 

problems and opportunities, 
5) Acts as an international technical policy liaison and representative for the 

Internet community, and 
6) Resolves technical issues which cannot be treated within the IETF or IRTF 

frameworks. 
The IAB has two principal subsidiary task forces:
1) Internet Engineering Task Force (IETF)
2) Internet Research Task Force (IRTF)
Each of these Task Forces is led by a chairman and guided by a Steering Group
which reports to the IAB through its chairman.    For the most part, a collection 
of Research or Working Groups carries out the work program of each Task 
Force. 

All decisions of the IAB are made public.    The principal vehicle by which IAB decisions are 
propagated to the parties interested in the Internet and its TCP/IP protocol suite is the 
Request for Comments (RFC) note series and the Internet Monthly Report.



What is the IANA? 
The task of coordinating the assignment of values to the parameters of 
protocols is delegated by the Internet Activities Board (IAB) to the Internet 
Assigned Numbers Authority (IANA). These protocol parameters include op-
codes, type fields, terminal types, system names, object identifiers, and so on.
The "Assigned Numbers" Request for Comments (RFC) [RFC-1060] documents 
the currently assigned values from several series of numbers used in network 
protocol implementations.    Internet addresses and Autonomous System 
numbers are assigned by the Network Information Center at SRI International. 
This responsibility has been delegated by the IANA to the DDN NIC which 
serves as the Internet Registry.    The IANA is located at USC/Information 
Sciences Institute. 
Current types of assignments listed in Assigned Numbers and maintained by 
the IANA are: 

Address Resolution Protocol Parameters
ARPANET and MILNET X.25 Address Mappings
ARPANET and MILNET Logical Addresses
ARPANET and MILNET Link Numbers
BOOTP Parameters and BOOTP Extension Codes
Domain System Parameters
IANA Ethernet Address Blocks
Ethernet Numbers of Interest
IEEE 802 Numbers of Interest
Internet Protocol Numbers
Internet Version Numbers
IP Time to Live Parameter
IP TOS Parameters
Machine Names
Mail Encryption Types
Multicast Addresses
Network Management Parameters
Point-to-Point Protocol Field Assignments
PRONET 80 Type Numbers
Port Assignments
Protocol and Service Names
Protocol/Type Field Assignments
Public Data Network Numbers
Reverse Address Resolution Protocol Operation Codes
TELNET Options
Terminal Type Names
Unix Ports
X.25 Type Numbers

For more information on number assignments, contact IANA@ISI.EDU.



What is a NIC?    What is a NOC?
"NIC" stands for Network Information Center.    It is an organization which 
provides network users with information about services provided by the 
network. 
"NOC" stands Network Operations Center.    It is an organization that is 
responsible for maintaining a network. 
For many networks, especially smaller, local networks, the functions of the NIC
and NOC are combined.    For larger networks, such as mid-level and backbone
networks, the NIC and NOC organizations are separate, yet they do need to 
interact to fully perform their functions. 



What is "The NIC"?
"The NIC" is the Defense Data Network, Network Information Center (DDN NIC)
at SRI International, which is a network information center which holds a 
primary repository for RFCs and Internet Drafts.    The host name is 
NIC.DDN.MIL.    Shadow copies of the RFCs and the Internet Drafts are 
maintained by the NSFNET on NIS.NSF.NET. 
The DDN NIC also provides various user assistance services for DDN users; 
contact NIC@NIC.DDN.MIL or call 1-800-235-3155 for more information.    In 
addition, the DDN NIC is the Internet registration authority for the root domain
and several top and second level domains; maintains the official DoD Internet 
Host Table; is the site of the Internet Registry (IR); and maintains the WHOIS 
database of network users, hosts, domains, networks, and Points of Contact. 



What is the IR?
The Internet Registry (IR) is the organization that is responsible for assigning 
identifiers, such as IP network numbers and autonomous system numbers, to 
networks.    The IR also gathers and registers such assigned information.    The 
IR may, in the future, allocate the authority to assign network identifiers to 
other organizations; however, it will continue to gather data regarding such 
assignments.    At present, the DDN NIC at SRI International serves as the IR. 



What is the IETF?
The Internet has grown to encompass a large number of widely geographically
dispersed networks in academic and research communities.    It now provides 
an infrastructure for a broad community with various interests.    Moreover, the
family of Internet protocols and system components has moved from 
experimental to commercial development.    To help coordinate the operation, 
management and evolution of the Internet, the IAB established the Internet 
Engineering Task Force (IETF). 
The IETF is chaired by Phill Gross and managed by its Internet Engineering 
Steering Group (IESG).    The IETF is a large open community of network 
designers, operators, vendors, and researchers concerned with the Internet 
and the Internet protocol suite.    It is organized around a set of several 
technical areas, each managed by a technical area director.    In addition to the
IETF Chairman, the area directors make up the IESG membership. 
The IAB has delegated to the IESG the general responsibility for making the 
Internet work and for the resolution of all short- and mid-range protocol and 
architectural issues required to make the Internet function effectively. 



What is the IRTF?
To promote research in networking and the development of new technology, 
the IAB established the Internet Research Task Force (IRTF). 
In the area of network protocols, the distinction between research and 
engineering is not always clear, so there will sometimes be overlap between 
activities of the IETF and the IRTF.    There is, in fact, considerable overlap in 
membership between the two groups. This overlap is regarded as vital for 
cross-fertilization and technology transfer. 
The IRTF is a community of network researchers, generally with an Internet 
focus.    The work of the IRTF is governed by its Internet Research Steering 
Group (IRSG).    The chairman of the IRTF and IRSG is David Clark. 



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Questions About Services

How do I find someone's electronic mail address?
How do I use the WHOIS program at the DDN NIC?
How do I become registered in the DDN NIC's WHOIS database?
How do I use the White Pages at PSI?
How do I use the Knowbot Information Service?
What is Usenet?    What is Netnews?
How do I get on Usenet?    How do I get Netnews on my computer?
What is anonymous FTP?
What is "TELNET"?



How do I find someone's electronic mail address?
There are a number of directories on the Internet; however, all of them are far 
from complete.    The largest directories are the WHOIS database at the DDN 
NIC, the PSInet White Pages, and KNOWBOT. Generally, it is still necessary to 
ask the person for his or her email address. 



How do I use the WHOIS program at the DDN NIC?
To use the WHOIS program to search the WHOIS database at the DDN NIC, 
TELNET to the NIC host, NIC.DDN.MIL.    There is no need to login.    Type 
"whois" to call up the information retrieval program. Next, type the name of 
the person, host, domain, network, or mailbox for which you need information. 
If you are only typing part of the name, end your search string with a period.    
Type "help" for a more in-depth explanation of what you can search for and 
how you can search.    If you have trouble, send a message to 
NIC@NIC.DDN.MIL or call 1-800-235-3155.    Bug reports can be sent to BUG-
WHOIS@NIC.DDN.MIL and suggestions for improvements to the program can be
sent to SUGGESTIONS@NIC.DDN.MIL. 



How do I become registered in the DDN NIC's WHOIS database?
If you would like to be listed in the WHOIS database, you must have an 
electronic mailbox accessible from the Internet.    First obtain the file 
NETINFO:USER-TEMPLATE.TXT.    You can either retrieve this file via anonymous
FTP from NIC.DDN.MIL or get it through electronic mail.    To obtain the file via 
electronic mail, send a message to SERVICE@NIC.DDN.MIL and put the file 
name in the subject line of the message; that is, "Subject: NETINFO USER- 
TEMPLATE.TXT".    The file will be returned to you overnight. 
Fill out the name and address information requested in the file and return it to 
REGISTRAR@NIC.DDN.MIL.    Your application will be processed and you will be 
added to the database.    Unless you are an official Point of Contact for a 
network entity registered at the DDN NIC, the DDN NIC will not regularly poll 
you for updates, so you should remember to send corrections to your 
information as your contact data changes. 



How do I use the White Pages at PSI?
Performance Systems International, Inc. (PSI), sponsors a White Pages Pilot 
Project that collects personnel information from member organizations into a 
database and provides online access to that data.    This effort is based on the 
OSI X.500 Directory standard. 
To access the data, TELNET to WP.PSI.COM and login as "fred" (no password is 
necessary).    You may now look up information on participating organizations.  
The program provides help on usage. For example, typing "help" will show you
a list of commands, "manual" will give detailed documentation, and "whois" 
will provide information regarding how to find references to people. For a list 
of the organizations that are participating in the pilot project by providing 
information regarding their members, type "whois -org *". 
For more information, send a message to WP-INFO@PSI.COM.



How do I use the Knowbot Information Service?
The Knowbot Information Service is a white pages "meta-service" that 
provides a uniform interface to heterogeneous white pages services in the 
Internet.    Using the Knowbot Information Service, you can form a single query
that can search for white pages information from the NIC WHOIS service, the 
CSNET WHOIS service, the PSI White Pages Pilot Project, and MCI Mail, among 
others, and have the responses displayed in a single, uniform format. 
Currently, the Knowbot Information Service can be accessed through TELNET 
to port 185 on hosts nri.reston.va.us and sol.bucknell.edu. From a UNIX 
host, use "telnet nri.reston.va.us 185".    There is also an electronic mail 
interface avaliable by sending mail to netaddress at either nri.reston.va.us 
or sol.bucknell.edu. 
The commands "help" and "man" summarize the command interface. Simply 
entering a user name at the prompt searches a default list of Internet 
directory services for the requested information. Organization and country 
information can be included thorgh the syntax: 
"userid@organization.country".    For example, the queries 
"droms@bucknell" and "kille@ucl.gb" are both valid.    Note that these are 
not Domain Names, but rather a syntax to specify an organization and a 
country for the search. 
The default list of directory services currently includes the whois services at 
the SRI NIC and the CSNET NIC and the white pages service for MCIMail.    If an
organization is specified, the PSI X.500 service is also searched.    Other 
services can be requested explicitly. 



What is Usenet?    What is Netnews?
Usenet and Netnews are common names of a distributed computer bulletin 
board system that some computers on the Internet participate in.    It is not 
strictly an Internet service: many computers not on the Internet also 
participate.    Netnews can be a valuable tool to economize what might 
otherwise be a large volume of traffic from electronic mailing lists. 



How do I get on Usenet?    How do I get Netnews on my computer?
To get on Usenet, you must acquire the software, which is available for some 
computers at no cost from some anonymous FTP sites across the Internet, and
you must find an existing Usenet site that is willing to support a connection to 
your computer.    In many cases, this "connection" merely represents 
additional traffic over existing Internet access channels. 



What is anonymous FTP?
Anonymous FTP is a conventional way of allowing you to sign on to a 
computer on the Internet and copy specified public files from it [RFC-959].    
Some sites offer anonymous FTP to distribute software and various kinds of 
information.    You use it like any FTP, but the username is "anonymous".    
Many systems will allow any password and request that the password you 
choose is your userid.    If this fails, the generic password is usually "guest". 



What is "TELNET"?
The term "TELNET" refers to the remote login that's possible on the Internet 
because of the TELNET Protocol [RFC-854].    The use of this term as a verb, as 
in "telnet to a host" means to establish a connection across the Internet from 
one host to another.    Usually, you must have an account on the remote host 
to be able to login to it once you've made a connection.    However, some 
hosts, such as those offering white pages directories, provide public services 
that do not require a personal account. 



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Mailing Lists

What is a mailing list?
How do I contact the administrator of a mailing list?
What are some good mailing lists or news groups?
How do I subscribe to the TCP-IP mailing list?
How do I subscribe to the IETF mailing list?
How do I subscribe to the RFC Distribution list?



What is a mailing list?
A mailing list is really nothing more than an alias that has multiple 
destinations.    Mailing lists are usually created to discuss specific topics.    
Anybody interested in that topic, may (usually) join that list.    Some mailing 
lists have membership restrictions, others have message content restrictions, 
and still others are moderated.    Most large, "public" mailing lists, such as IETF
and TCP-IP, have an additional mail address to which requests to be added or 
deleted may be sent.    Usually, these are of the form listname-request. 
There is a "list-of-lists" file available on the host ftp.nisc.sri.com that lists most
of the major mailing lists, describes their primary topics, and explains how to 
subscribe to them.    The file is available for anonymous ftp in the netinfo 
directory as interest-groups (that is, the path is: netinfo/interest-groups).    It 
can also be obtained via electronic mail.    Send a message to mail-
server@nisc.sri.com with the body of the message reading, "Send 
netinfo/interest-groups" and the file will be returned in moderate size pieces 
via electronic mail. 



How do I contact the administrator of a mailing list rather than posting to the 
entire list?

For every mailing list mentioned in the "interest-groups" file, there is a 
description of how to join the list or send other such administrative messages 
to the person in charge of the list.    In general, however, it is usually safe to 
assume that you can send a message to an address in the format of 
ListName-request@domain.    The convention of having a parallel mailbox 
conforming to the "-request" format is very widely followed.    All 
administrative messages regarding using, joining, or quitting the list should be
sent to that mailbox instead of to the whole list so that the readers of the list 
don't have to read them. 



What are some good mailing lists or news groups?
The TCP-IP, IETF, and RFC Distribution lists are primary lists for new Internet 
users who desire further information about current and emerging 
developments in the Internet.    The first two lists are unmoderated discussion 
lists, and the latter is an announcement service used by the RFC Editor. 



How do I subscribe to the TCP-IP mailing list?
To be added to the TCP-IP mailing list, send a message to:

TCP-IP-REQUEST@NIC.DDN.MIL



How do I subscribe to the IETF mailing list?
To be added to the IETF mailing list, send a message to:

IETF-REQUEST@ISI.EDU



How do I subscribe to the RFC Distribution list?
To be added to the RFC Distribution list, send a message to:

RFC-REQUEST@NIC.DDN.MIL



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Miscellaneous "Internet lore" Questions

What does :-) mean?
In many electronic mail messages, it is sometimes useful to indicate that part 
of a message is meant in jest.    It is also sometimes useful to communicate 
emotion which simple words do not readily convey.    To provide these nuances,
a collection of "smiley faces" has evolved.    If you turn your head sideways to 
the left, :-) appears as a smiling face.    Some of the more common faces are: 

:-)    smile
:)      also a smile
:-D    laughing
:-}    grin
:-]    smirk
:-(    frown
;-)    wink
8-)    wide-eyed
:-X    close mouthed
:-o    oh, no!

What do "btw", "fyi", "imho", "wrt", and "rtfm" mean?
Often commmon expressions are abbreviated in informal network postings.    
These abbreviations stand for "by the way", "for your information", "in my 
humble [or honest] opinion", "with respect to", and "read the f*ing manual" 
(with the "f" word varying according to the vehemence of the reader). 

What is the "FAQ" list?
This list provides answers to "Frequently Asked Questions" that often appear 
on various Usenet newsgroups.    The list is posted every four to six weeks to 
the news.announce.newusers group.    It is intended to provide a background 
for new users learning how to use the news.    As the FAQ list provide new 
users with the answers to such questions, it helps keep the newsgroups 
themselves comparatively free of repetition.    Often specific newsgroups will 
have and frequently post versions of a FAQ list that are specific to their topics. 
Other information is also routinely posted.    Here are the subject lines of 
several general information postings provided on Usenet: 

Answers to Frequently Asked Questions    (the "FAQ" list)
Introduction to news.announce
Rules for posting to Usenet
How to Create a New Newsgroup
How to Create a New Trial Newsgroup
A Primer on How to Work With the Usenet Community
Emily Postnews Answers Your Questions on Netiquette
Hints on writing style for Usenet
USENET Software: History and Sources
List of Active Newsgroups
Alternative Newsgroup Hierarchies
How to Construct the Mailpaths File



Regional Newsgroup Hierarchies
List of Moderators
Publicly Accessible Mailing Lists
List of Periodic Informational Postings
How to Get Information about Networks
A Guide to Social Newsgroups and Mailing Lists



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Suggested Reading

For further information about the Internet and its protocols in general, you may choose to 
obtain copies of the following works: 
Bowers, K., T. LaQuey, J. Reynolds, K. Roubicek, M. Stahl, and A. Yuan, "Where to Start - A 
Bibliography of General Internetworking Information", RFC 1175, FYI 3, CNRI, U Texas, ISI, 
BBN, SRI, Mitre, August 1990. 
Comer, D., "Internetworking with TCP/IP: Principles, Protocols, and Architecture", Prentice 
Hall, New Jersey, 1989. 
Krol, E., "The Hitchhikers Guide to the Internet", RFC 1118, University of Illinois Urbana, 
September 1989. 



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Condensed Glossary

As with any profession, computers have a particular terminology all their own.    Below is a 
condensed glossary to assist in making some sense of the Internet world. 

ACM Association for Computer Machinery A group established in 1947 to 
promote professional development and research on computers. 

address There are two separate uses of this term in internet networking: 
"electronic mail address" and "internet address".      An electronic 
mail address is the string of characters that you must give an 
electronic mail program to direct a message to a particular person. 
See "internet address" for its definition. 

AI Artificial Intelligence -    The branch of computer science which 
deals with the simulation of human intelligence by computer 
systems. 

AIX Advanced Interactive Executive -    IBM's version of Unix. 
ANSI American National Standards Institute -    A group that certifies 

organizations which develop U.S. standards for the information 
processing industry.    ANSI accredited groups participate in defining
network protocol standards. 

ARP Address Resolution Protocol -    An Internet protocol which runs on 
Ethernet and all IEEE 802.X LANs which maps internet addresses to 
MAC addresses. 

ARPA Advanced Research Projects Agency -    The former name of what is 
now called DARPA. 

ARPANET Advanced Research Projects Agency Network -    A pioneering long 
haul network funded by ARPA.    It served as the basis for early 
networking research as well as a central backbone during the 
development of the Internet.    The ARPANET consisted of individual 
packet    switching computers interconnected by leased lines. 

AS Autonomous System -    A collection of gateways (routers) under a 
single administrative authority using a common Interior Gateway 
Protocol for routing packets. 

ASCII American Standard Code for Information Interchange

B Byte -    One character of information, usually eight bits wide. 
b bit - binary digit -    The smallest amount of information which may 

be stored in a computer. 
BBN Bolt Beranek and Newman, Inc. -    The Cambridge, MA company 

responsible for development, operation and monitoring of the 
ARPANET, and later, the Internet core gateway system, the CSNET 
Coordination and Information Center (CIC), and NSFNET Network 
Service Center (NNSC). 

BITNET Because It's Time Network -    BITNET has about 2,500 host 
computers, primarily at universities, in many countries.    It is 



managed by EDUCOM, which provides administrative support and 
information services.    There are three main constituents of the 
network: BITNET in the United States and Mexico, NETNORTH in 
Canada, and EARN in Europe.    There are also AsiaNet, in Japan, and
connections in South America.    See CREN. 

bps bits per second -    A measure of data transmission speed. 
BSD Berkeley Software Distribution -    Term used when describing 

different versions of the Berkeley UNIX software, as in "4.3BSD 
UNIX". 

catenet A network in which hosts are connected to networks with varying 
characteristics, and the networks are interconnected by gateways 
(routers).    The Internet is an example of a catenet. 

CCITT International Telegraph and Telephone Consultative Committee 
core g'way Historically, one of a set of gateways (routers) operated by the 

Internet Network Operations Center at BBN.    The core gateway 
system forms a central part of Internet routing in that all groups 
had to advertise paths to their networks from a core gateway. 

CREN The Corporation for Research and Educational Networking -    
BITNET and CSNET have recently merged to form CREN. 

CSNET Computer + Science Network -    A large data communications 
network for institutions doing research in computer science.      It 
uses several different protocols including some of its own.    CSNET 
sites include universities, research laboratories, and commercial 
companies.    See CREN. 

DARPA U.S. Department of Defense Advanced Research Projects Agency -    
The government agency that funded the ARPANET and later started
the Internet. 

datagram The unit transmitted between a pair of internet modules. The 
Internet Protocol provides for transmitting blocks of data, called 
datagrams, from sources to destinations. The Internet Protocol does
not provide a reliable communication facility.    There are no 
acknowledgements either end-to-end or hop-by-hop.    There is no 
error control for data, only a header checksum.    There are no 
retransmissions.    There is no flow control.    See IP. 

DCA Defense Communications Agency -    The government agency 
responsible for installation of the Defense Data Network (DDN), 
including the ARPANET and MILNET lines and PSNs.    Currently, DCA
administers the DDN, and supports the user assistance and network
registration services of the DDN NIC. 

DDN Defense Data Network -    Comprises the MILNET and several other 
DoD networks. 

DDN NIC The network information center at SRI International.    It is the 
primary repository for RFCs and Internet Drafts, as well as providing
other services. 

DEC Digital Equipment Corporation



DECnet Digital Equipment Corporation network -    A networking protocol for
DEC computers and network devices. 

default route A routing table entry which is used to direct any data addressed to 
any network numbers not explicitly listed in the routing table. 

DNS The Domain Name System is a mechanism used in the Internet for 
translating names of host computers into addresses.    The DNS also
allows host computers not directly on the Internet to have 
registered names in the same style, but returns the electronic mail 
gateway which accesses the non-Internet network instead of an IP 
address. 

DOD U.S. Department of Defense
DOE U.S. Department of Energy
dot addr. (dotted address notation) -    Dot address refers to the common 

notation for Internet addresses of the form A.B.C.D; where each 
letter represents, in decimal, one byte of the four byte IP address. 

EARN European Academic Research Network -    One of three main 
constituents of BITNET. 

EBCDIC Extended Binary-coded Decimal Interchange Code
EGP Exterior Gateway Protocol -    A protocol which distributes routing 

information to the gateways (routers) which connect autonomous 
systems. 

Ethernet  A network standard for the hardware and data link levels. There 
are two types of Ethernet: Digital/Intel/Xerox (DIX) and IEEE 802.3. 

FDDI Fiber Distributed Data Interface -    FDDI is a high-speed (100Mb) 
token ring LAN. 

FIPS Federal Information Processing Standard

FTP File Transfer Protocol -    The Internet standard high-level protocol for
transferring files from one computer to another. 

gateway See router
GB Gigabyte -    A unit of data storage size which represents 2^30 (over

1 billion) characters of information. 
Gb Gigabit -    2^30 bits of information (usually used to express a data 

transfer rate; as in, 1 gigabit/second = 1Gbps). 
GNU Gnu's Not UNIX -    A UNIX-compatible operating system developed 

by the Free Software Foundation. 
header The portion of a packet, preceding the actual data, containing 

source and destination addresses and error-checking fields. 
host number The part of an internet address that designates which node on the 

(sub)network is being addressed. 
HP Hewlett-Packard
HYPERchannel High-speed communications link. 
I/O Input/Output



IAB Internet Activities Board -    The IAB is the coordinating committee 
for Internet design, engineering and management. 

IBM International Business Machines Corporation
ICMP Internet Control Message Protocol -    ICMP is an extension to the 

Internet Protocol.    It allows for the generation of error messages, 
test packets and informational messages related to IP. 

IEEE Institute for Electrical and Electronics Engineers
IETF Internet Engineering Task Force -    The IETF is a large open 

community of network designers, operators, vendors, and 
researchers whose purpose is to coordinate the operation, 
management and evolution of the Internet, and to resolve short- 
and mid-range protocol and architectural issues.    It is a major 
source of proposed protocol standards which are submitted to the 
Internet Activities Board for final approval.    The IETF meets three 
times a year and extensive minutes of the plenary proceedings are 
issued. 

internet(work)Any connection of two or more local or wide-area networks.

Internet  The global collection of interconnected local, mid-level and wide-
area networks which use IP as the network layer protocol. 

internet address  An assigned number which identifies a host in an internet. It 
has two or three parts: network number, optional subnet number, 
and host number. 

IP Internet Protocol -    The network layer protocol for the Internet.    It 
is a packet switching, datagram protocol defined in RFC 791. 

IRTF Internet Research Task Force -    The IRTF is a community of network
researchers, generally with an Internet focus.    The work of the IRTF
is governed by its Internet Research Steering Group (IRSG). 

ISO International Organization for Standardization
KB Kilobyte -    A unit of data storage size which represents 2^10 

(1024) characters of information. 
Kb Kilobit -    2^10 bits of information (usually used to express a data 

transfer rate; as in, 1 kilobit/second = 1Kbps = 1Kb). 
LAN Local Area Network -    A network that takes advantage of the 

proximity of computers to offer relatively efficient, higher speed 
communications than long-haul or wide-area networks. 

LISP List Processing Language -    A high-level computer language 
invented by Professor John McCarthy in 1961 to support research 
into computer based logic, logical reasoning, and artificial 
intelligence.    It was the first symbolic (as opposed to numeric) 
computer processing language. 

MAC Medium Access Control -    For broadcast networks, it is the method 
which devices use to determine which device has line access at any
given time. 

Mac Apple Macintosh computer.
MAN Metropolitan Area Network



MB Megabyte -    A unit of data storage size which represents 2^20 
(over one million) characters of information. 

Mb Megabit -    2^20 bits of information (usually used to express a data 
transfer rate; as in, 1 megabit/second = 1Mbps). 

MILNET Military Network -    A network used for unclassified military 
production applications.    It is part of the DDN and the Internet. 

MIT Massachusetts Institute of Technology
MTTF Mean Time to Failure - The average time between hardware 

breakdown or loss of service.    This may be an empirical 
measurement or a calculation based on the MTTF of component 
parts. 

MTTR Mean Time to Recovery (or Repair) -    The average time it takes to 
restore service after a breakdown or loss.    This is usually an 
empirical measurement. 

MVS Multiple Virtual Storage -    An IBM operating system based on OS/1. 
NASA National Aeronautics and Space Administration
NBS National Bureau of Standards - Now called NIST.
network number  The part of an internet address which designates the network 

to which the addressed node belongs. 
NFS Network File System -    A network service that lets a program 

running on one computer to use data stored on a different 
computer on the same internet as if it were on its own disk. 

NIC Network Information Center - An organization which provides 
network users with information about services provided by the 
network. 

NOC Network Operations Center -    An organization that is responsible 
for maintaining a network. 

NIST National Institute of Standards and Technology - Formerly NBS.
NSF National Science Foundation
NSFNET National Science Foundation Network -    The NSFNET is a highspeed

"network of networks" which is hierarchical in nature.    At the 
highest level is a network that spans the continental United States.  
Attached to that are mid-level networks and attached to the mid-
levels are campus and local networks.    NSFNET also has 
connections out of the U.S. to Canada, Mexico, Europe, and the 
Pacific Rim. The NSFNET is part of the Internet. 

NSFNET Mid-level Level Network -    A network connected to the highest level
of the NSFNET that covers a region of the United States.    It is to 
mid-level networks that local sites connect.    The mid-level 
networks were once called "regionals". 

OSI Open Systems Interconnection -    A set of protocols designed to be 
an international standard method for connecting unlike computers 
and networks.    Europe has done most of the work developing OSI 
and will probably use it as soon as possible. 

OSI Ref. Model  An "outline" of OSI which defines its seven layers and their 



functions.    Sometimes used to help describe other networks. 
OSPF Open Shortest-Path First Interior Gateway Protocol -    A proposed 

replacement for RIP.    It addresses some problems of RIP and is 
based upon principles that have been well-tested in non-internet 
protocols.    Originally acronymed as OSPFIGP. 

packet The unit of data sent across a packet switching network. The term 
is used loosely.    While some Internet literature uses it to refer 
specifically to data sent across a physical network, other literature 
views the Internet as a packet switching network and describes IP 
datagrams as packets. 

PC Personal Computer
PCNFS Personal Computer Network File System
POSIX Portable Operating System Interface -    Operating system based on 

UNIX. 
PPP Point-to-Point Protocol -    The Point-to-Point Protocol (PPP) provides 

a method for transmitting datagrams over serial point-to-point 
links. 

protocol  A formal description of message formats and the rules two 
computers must follow to exchange those messages. Protocols can 
describe low-level details of machine-to-machine interfaces (e.g., 
the order in which bits and bytes are sent across a wire) or high-
level exchanges between allocation programs (e.g., the way in 
which two programs transfer a file across the Internet). 

RFC The Internet's Request for Comments documents series.      The 
RFCs are working notes of the Internet research and development 
community.    A document in this series may be on essentially any 
topic related to computer communication, and may be anything 
from a meeting report to the specification of a standard. 

RIP Routing Interchange Protocol -    One protocol which may be used on
internets simply to pass routing information between gateways.      It
is used on may LANs and on some of the NSFNET intermediate level
networks. 

RJE Remote Job Entry -    The general protocol for submitting batch jobs 
and retrieving the results. 

RLOGIN Remote Login -    A service on internets very similar to TELNET.      
RLOGIN was invented for use between Berkeley Unix systems on 
the same LAN at a time when TELNET programs didn't provide all 
the services users wanted.      Berkeley plans to phase it out. 

router A special-purpose dedicated computer that attaches to two or more
networks and routes packets from one network to the other.    In 
particular, an Internet gateway routes IP datagrams among the 
networks it connects.    Gateways route packets to other gateways 
until they can be delivered to the final destination directly across 
one physical network. 

RPC Remote Procedure Call -    An easy and popular paradigm for 
implementing the client-server model of distributed computing. 



server A computer that shares its resources, such as printers and files, 
with other computers on the network.    An example of this is a 
Network Files System (NFS) Server which shares its disk space with 
one or more workstations that may not have local disk drives of 
their own. 

SLIP Serial Line Internet Protocol -    SLIP is currently a defacto standard, 
commonly used for point-to-point serial connections running TCP/IP. 
It is not an Internet standard but is defined in RFC 1055. 

SMTP Simple Mail Transfer Protocol -    The Internet standard protocol for 
transferring electronic mail messages from one computer to 
another. SMTP specifies how two mail systems interact and the 
format of control messages they exchange to transfer mail. 

SNA System Network Architecture -    IBM's data communications 
protocol. 

SNMP Simple Network Management Protocol -    The Simple Network 
Management Protocol (RFC 1157) is the Internet's standard for 
remote monitoring and management of hosts, routers and other 
nodes and devices on a network. 

subnet A portion of a network, which may be a physically independent 
network, which shares a network address with other portions of the 
network and is distinguished by a subnet number.    A subnet is to a 
network what a network is to an internet. 

subnet number  A part of the internet address which designates a subnet. It is 
ignored for the purposes internet routing, but is used for intranet 
routing. 

T1 A term for a digital carrier facility used to transmit a DS-1 formatted
digital signal at 1.544 megabits per second. 

T3 A term for a digital carrier facility used to transmit a DS-3 formatted
digital signal at 44.746 megabits per second. 

TCP Transmission Control Protocol -    A transport layer protocol for the 
Internet.    It is a connection oriented, stream protocol defined by 
RFC 793. 

TCP/IP Transmission Control Protocol/Internet Protocol This is a common 
shorthand which refers to the suite of application and transport 
protocols which run over IP.    These include FTP, TELNET, SMTP, and
UDP (a transport layer protocol). 

Telenet A public packet-switching network operated by US Sprint.    Also 
known as "SprintNet". 

TELNET The Internet standard protocol for remote terminal connection 
service.    TELNET allows a user at one site to interact with a remote
timesharing system at another site as if the user's terminal was 
connected directly to the remote computer. 

THEnet The Texas Higher Education Network, a multiprotocol network 
connecting most major academic and research institutions in the 
State of Texas, as well as several institutions in Mexico. 

Token Ring  A type of LAN.      Examples are IEEE 802.5, ProNET-10/80 and FDDI. 
The term "token ring" is often used to denote 802.5 



Tymnet A public character-switching/packet-switching network operated by 
British Telecom. 

UDP User Datagram Protocol -    A transport layer protocol for the 
Internet.    It is a datagram protocol which adds a level of reliability 
and multiplexing to IP datagrams.    It is defined in RFC 768. 

ULTRIX UNIX-based operating system for Digital Equipment Corporation 
computers. 

UNIX An operating system developed by Bell Laboratories that supports 
multiuser and multitasking operations. 

UUCP UNIX-to-UNIX Copy Program -    A protocol used for communication 
between consenting UNIX systems. 

VMS Virtual Memory System -    A Digital Equipment Corporation 
operating system. 

WAN Wide Area Network
WHOIS An Internet program which allows users to query a database of 

people and other Internet entities, such as domains,            networks,
and hosts, kept at the NIC.    The information for            people shows 
a person's company name, address, phone number            and email 
address. 

XNS Xerox Network System -    A data communications protocol suite 
developed by Xerox.    It uses Ethernet to move the data between 
computers. 

X.25 A data communications interface specification developed to 
describe how data passes into and out of public data 
communications networks.    The public networks such as Sprintnet 
and Tymnet use X.25 to interface to customer computers. 



RFC-1206 FYI on Questions and Answers for "New Internet Users"

Authors' Addresses

Gary Scott Malkin
FTP Software, Inc.
26 Princess Street
Wakefield, MA 01880

Phone:    (617) 246-0900

EMail:    gmalkin@ftp.com

April N. Marine
SRI International
Network Information Systems Center
333 Ravenswood Avenue, EJ294
Menlo Park, CA 94025

Phone:    (415) 859-5318

EMail:    APRIL@nic.ddn.mil



RFC-1207:    FYI on Questions and Answers to Commonly Asked
"Experienced Internet User" Questions

G. Malkin, FTP Software, Inc.
A. Marine, SRI
J. Reynolds, ISI
February 1991

FYI: 7

This FYI RFC is one of two FYI's called, "Questions and Answers" (Q/A), produced by the User 
Services Working Group of the Internet Engineering Task Force (IETF).    The goal is to 
document the most commonly asked questions and answers in the Internet.
This memo provides information for the Internet community.    It does not specify any 
standard.    Distribution of this memo is unlimited.    Security issues are not discussed in this 
memo.

Introduction
Acknowledgements
Questions about the Internet
Questions About Other Networks and Internets
Questions About Internet Documentation
Questions About the Domain Name System (DNS)
Questions About Network Management
Questions about Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol 
(PPP) Implementations
Questions About Routing
Other Protocol and Standards Implementation Questions
Suggested Reading
References
Authors' Addresses



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Introduction
During the last few months, several people have monitored various major mailing lists and 
have extracted questions that are important or commonly asked.    This FYI RFC is one of two
in a series of FYI's which present the questions and their answers.    The first FYI, FYI 4, 
presented questions new Internet users commonly ask and their answers.
The goal of this FYI is to codify the Internet lore so that network operations staff, especially 
for networks just joining the Internet, will have an accurate and up to date set of references 
from which to work.    Also, redundancies are moved away from the electronic mailing lists so
that the lists' subscribers do not have to read the same queries and answers over and over 
again.
Although the questions and their responses are taken from various mailing lists, they are 
presented here loosely grouped by related topic for ease of reading.    First the question is 
presented, then the answer (or answers) as it appeared on the mailing list.
Sometimes the answers are abridged for better use of space.    If a question was not 
answered on the mailing list, the editors provide an answer.    These answers are not 
distinguished from the answers found on the lists.    Sometimes, in order to be as complete 
as possible, the editors provide additional information that was not present in the original 
answer.    If so, that information falls under the heading "Additional Information".
The answers are as correct as the reviewers can make them.    However, much of this 
information changes with time.    As the FYI is updated, temporal errors will be corrected.
Many of the questions are in first person, and the answers were directed to the originator of 
the question.    These phrasings have not been changed except where necessary for clarity.    
References to the correspondents' names have been removed.
The Q/A mailing lists are maintained by Gary Malkin at FTP.COM.    They are used by a 
subgroup of the User Services Working Group to discuss the Q/A FYIs.    They include:

quail@ftp.com This is a discussion mailing list.    Its primary use is for pre-
release review of the Q/A FYIs.
quail-request@ftp.co This is how you join the quail mailing list.
quail-box@ftp.com This is where the questions and answers will be forwarded-and-
stored.    It is not necessary to be on the quail mailing list to forward to the quail-box.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Acknowledgments

The following people deserve thanks for their help and contributions to this FYI Q/A: Jim 
Conklin (EDUCOM), John C. Klensin (MIT), Professor Kynikos (Special Consultant), Jon Postel 
(ISI), Marshall Rose (PSI, Inc.), David Sitman (Tel Aviv University), Patricia Smith (Merit), Gene
Spafford (Purdue), and James Van Bokkelen (FTP Software, Inc.).



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions about the Internet
How do I get statistics regarding the traffic on NSFNET?

Merit/NSFNET Information Services maintains a variety of statistical data at 
'nis.nsf.net' (35.1.1.48) in the 'stats' directory.    Information includes packet 
counts by NSS and byte counts for type of use (ftp, smtp, telnet, etc.).    
Filenames are of the form 'NSFyy-mm.type'.
Files are available for anonymous ftp; use 'guest' as the password.
The data in these files represent only traffic which traverses the highest level 
of the NSFNET, not traffic within a campus or regional network.    Send 
questions/comments to nsfnet- info@merit.edu.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Other Networks and Internets
We have a user who would like to access a machine on "EARN/BITNET".    I can't 
find anything on this in the domain name tables.    Please, what is this, and how 
do I connect to it?

There are several machines on the Internet that act as gateways between the 
Internet and BITNET.    Two examples are UICVM.UIC.EDU and 
CUNYVM.CUNY.EDU.    You can address a mail message to user
%nodename.bitnet@uicvm.uic.edu where the message will be passed from 
the Internet to BITNET.

Additional Information:
These same gateways, known as INTERBIT on the BITNET/EARN side, transfer mail from 
computers on that network which support SMTP mail headers, onto the Internet.    (Many 
BITNET/EARN computers still do not support SMTP, which is not a part of the IBM protocol 
used, and it is not possible to send mail from those computers across the gateways into the 
Internet, in general.)
BITNET and EARN are the two largest of several cooperating networks which use the IBM 
RSCS/NJE protocol suite, but are not limited to IBM systems.    These independently 
administered, interconnected networks function as a single, worldwide network directly 
connecting more than 3,300 computers in about 1,400, mostly higher-education, 
organizations worldwide.    This worldwide network supports electronic mail, including 
mailing lists, sender-initiated file transfer, and short "interactive" messages.
BITNET, frequently used (outside of Europe) to refer to the whole worldwide network, 
technically refers to that portion in the United States, plus sites in other countries which are 
connected through the United States and do not have their own separately administered 
cooperating networks.    More than 550 organizations in the U.S.    participate in BITNET.
EARN is the European Academic Research Network.    EARN links more than 500 institutions 
in Europe and several surrounding countries.
BITNET and CSNET merged organizationally on October 1, 1990, to form CREN, the 
Corporation for Research and Educational Networking.    The two networks remain separate 
at the operational level level, however.    (EARN and the other Cooperating Networks were 
not involved in this merger.)



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Internet Documentation
Where do I get information regarding ordering documents related to GOSIP?

The complete information as issued by NIST is available online on the 
NIC.DDN.MIL host as PROTOCOLS:GOSIP-ORDER-INFO.TXT.    The file contains 
pointers to contact people, ordering addresses, prices, and, in some cases, 
online pathnames, for various GOSIP related documents.    In addition, the 
information as of August 1990 was published as an appendix to RFC-1169, 
"Explaining the Role of GOSIP".



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Domain Name System (DNS)
Is there a DNS Query server?
Has any one else had frequent BIND failures?
Does the owner of a host name get to choose its case?
When is a glue RR necessary?



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Domain Name System (DNS)
Is there a DNS Query server?

Actually, what you are looking for is the service that host 128.218.1.109 
provides on port 5555 - you simply connect to that host at that port, type in a 
fully qualified domain name and it responds with an internet address and 
closes the connection.    I used it when I had a host that still only had 
/etc/hosts and it did just what I needed - which was basically a manual 
nslookup.
However, the vast majority of users will find it simpler to just use a DNS query 
tool and ask the DNS directly.    This doesn't require much sophistication, and 
does allow the user to see how short names are expanded at the user's site 
rather than at 128.218.1.109 (wherever that is).    For example, suppose a user
wants to find out the address of a fully-qualified domain name 
"X.MISKATONIC.EDU", and also see what host and address are used when "Z" 
is typed as a host name.
Assuming the user is on a UNIX host and has a copy of the dig program, type:
dig x.miskatonic.edu
and
dig z
and the answers will appear.    You are now on your way to becoming a DNS 
expert.    There are other UNIX alternatives, e.g., nslookup, and similar 
programs for non-UNIX systems.    Your local DNS guru certainly has one or 
more of these tools, and although they are often kept from the public, they are
really quite easy to use for simple cases.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Domain Name System (DNS)
Has any one else had frequent BIND failures (especially major domain sites that 
have heavy TCP domain loads)?

We have been having a frequent BIND failure on both our VAX and Solbourne 
that is traced to TCP domain queries from an IBM NSMAIN nameserver running
in cache mode (UDP queries do not cause this problem, though it is usually a 
UDP resolution that is active upon the crash -- this resolution is an innocent 
victim).
I have discovered that something is trashing the hash areas (sometimes even 
as it is being recursively used in a resolution).    Also, occasionally the 
socket/file descriptor for the TCP connection is changed to invalid entries 
causing a reply write fail (though this is not necessarily fatal, and the rest of 
the structure is not apparently altered).
In both the case of BIND and the IBM implementation, often called FAL, there 
are multiple versions, with older versions being truly bad.    Upgrade to recent 
version before exploring further.
BIND has always had a problem with polluting its own database.
These problems have been related to TCP connections, NS RRs with small 
TTLs, and several other causes.    Experience suggests that the style of bug 
fixing has often been that of reducing the problem by 90% rather than 
eliminating it.
IBM's support for the DNS (outside of UNIX systems) is interesting in its 
techniques, encouraging in its improvement, but still somewhat depressing 
when compared to most other DNS software.    IBM also uses terminology that 
varies somewhat from the usual DNS usage and preserves some archaic 
syntax, e.g., "..".
The combination of an old BIND and an old IBM server is just plain unpleasant.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Domain Name System (DNS)
Is the model used by the domain name system for host names that the owner of a 
name gets to choose its case?

The model used by the DNS is that you get to control at a specific point in the 
name space, and are hence free to select case as you choose, until points 
where you in turn give away control.    As a practical matter, there are several 
implementations that don't do the right thing.    IBM implementations often 
map everything into a single case.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Domain Name System (DNS)
According to RFC 1034 (Name Server Technical Considerations) one should not 
have to code glue RR's for name server's names unless they are below the cut.    
When I don't put glue RR's in, and do a query for NS records, the "additional" field
is left blank.    As far as I can tell, all other zones I query for NS records have this 
filled with the IP addresses of the NS hosts.    Is this required or should I not be 
concerned that the additional field is empty?

The protocol says that an empty additional field is not a problem when the 
name server's name is not "below" the cut.
In practice, putting in the glue where it is not required can cause problems if 
the servers named in the glue are used for several zones.    This is broken 
behavior in BIND.    Not putting in glue can cause other problems in BIND, 
usually when the server name is difficult to resolve.    So, the bottom line is to 
put glue in only when required, and don't use aliases or anything else tricky 
when it comes to identifying name servers.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Network Management Implementations

Are there any standards for authentication mechanisms for PDUs?
Can vendors make their enterprise-specific variables available to users through a 

standard distribution mechanism?
How can I determine whether I can just print a string or whether I should display 

the octet bytes?
Where are MIB tools available for public FTP?
What is the syntax for creating a private MIB object?



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Network Management Implementations
In reading the SNMP RFCs (1155-1158) I find mention of authentication of PDUs.    
Are there any standards for authentication mechanisms?

There is a working group of the IETF that is working on this problem.    They 
are close to a solution, but nothing has yet reached RFC publication yet.    
Expect something solid and implementable by October of 1991.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Network Management Implementations
Can vendors make their enterprise-specific variables available to users through a 
standard distribution mechanism?

Yes.    But before someone submits a MIB, they should check it out themselves.
On uu.psi.com in pilot/snmp-wg/, there are two files

mosy-sparc-4.0.3.c
mosy-sun3-3.5

The first will run on a Sun-Sparc, the second will run on a Sun-3.    After 
retrieving one of these files in BINARY mode via anonymous FTP, the submittor
can run their MIB through it, e.g.,
% mosy mymib.my
Once your MIB passes, send it to:
mib-checker@isi.edu
If everything is OK, the mib-checker will arrange to have it installed in the 
/share/ftp/mib directory on venera.isi.edu.

Note: This processing does not offer an official endorsement.    The documents submitted 
must not be marked proprietary, confidential, or the like.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Network Management Implementations
I have a question regarding those pesky octet strings again.    I use the variable-type field of 
the Response pdu to determine how the result should be displayed to the user.    For 
example, I convert NetworkAddresses to their dotted decimal format ("132.243.50.4").    I 
convert Object Identifiers into strings ("1.3.6.1.2....").
I would LIKE to just print Octet Strings as strings.    But, this causes a problem in such cases 
as atPhysAddress in which the Octet string contains the 6 byte address instead of a printable
ASCII string.    In this case, I would want to display the 6 bytes instead of just trying to print 
the string.

MY QUESTION IS: Does anyone have a suggestion as to how I can determine 
whether I can just print the string or whether I should display the octet bytes.    * 
Remember: I want to support enterprise specific variables too.

In general, there is no way that you can tell what is inside an OCTET STRING 
without knowing something about the object that the OCTET STRING comes 
from.    In MIB-II, (RFC-1158), some objects are marked as DisplayString which 
has the syntax of OCTET STRING but is restricted to characters from the NVT 
ASCII character set (see the TELNET Specification, RFC 854, for further 
information).    These objects are:
sysDescr
sysContact
sysName
sysLocation
ifDescr

If you want to be able to arbitrarily decide how to display the strings, without 
knowing anything about the object, then you can scan the octets, looking for 
any octet which is not printable ASCII.    If you find at least one, you can print 
the entire string, octet by octet, in "%02x:" notation.    If all of the octets are 
printable ASCII, then you can just printf the string.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Network Management Implementations
If archived MIBs must be 1155-compatible ("Structure and Identification of 
Management Information for TCP/IP-based Internets"), it would be nice if those who 
submit them check them first.    Where are these MIB tools available for public 
FTP?    Ideally, a simple syntax checker (that didn't actually generate code) would 
be nice.

In the ISODE 6.0 release there is a tool called MOSY which recognizes the 
1155 syntax and produces a flat ASCII file.    If you can run it through MOSY 
without problems then you are OK.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Network Management Implementations
Suppose I want to create a private MIB object for causing some action to happen, 
say, do a reset.    Should the syntax or this object specify a value such as:

Syntax:
INTEGER {
perform reset (1),
}

even though there is only a single value?    Or, is it ok to just allow a Set on this 
object with any value to perform the desired action?    If the later, how is this 
specified?

For our SNMP manageable gizmos and doohickies with similar "action" type 
MIB variables, I've defined two values
                        Syntax:

INTEGER {
reset(1)
not-reset(2)
}

And defined behavior so that the only valid value that the variable may be set 
to is "reset" (which is returned in the get response PDU) and at all other times 
a get/getnext will respond with "not-reset".



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions about Serial Line Internet Protocol (SLIP) and Point-to-
Point Protocol (PPP) Implementations

Will SLIP run only on synchronous serial lines?
Where I can find more information on PPP standards?
Is there a way to run a SLIP program on a IBM computer running SCO Xenix/Unix, 

with a multi-port serial board?



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions about Serial Line Internet Protocol (SLIP) and Point-to-
Point Protocol (PPP) Implementations

I seem to recall hearing that SLIP will only run on synchronous serial lines.    Is this
true?    ... is there something about SLIP which precludes it's being implemented 
over async lines?

Other way around:    SLIP is designed for async lines and is not a good fit on 
sync lines.    PPP works on either, and is what you should be implementing if 
you're implementing something.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions about Serial Line Internet Protocol (SLIP) and Point-to-
Point Protocol (PPP) Implementations

Since we are very interested in standards in this area, could someone tell me 
where I can find more information on PPP?
Also, can this protocol be used in other fields than for the Internet (i.e., 
telecontrol, telemetering) where we see a profusion of proprietary incompatible 
and hard to maintain Point-to-Point Protocols?

PPP was designed to be useful for many protocols besides just IP.    Whether it 
would be useful for your particular application should probably be discussed 
with the IETF's Point-to-Point Protocol Working Group discussion list.    For 
general discussion: ietf- ppp@ucdavis.edu.    To subscribe: ietf-ppp-
request@ucdavis.edu
The PPP specification is available as RFC-1171, and a PPP options specification
is available as RFC-1172.
In UnixWorld of April 1990 (Vol. VII, No. 4, Pg. 85), Howard Baldwin writes:
                  "Point-to-Point Protocol (PPP) has just been submitted to the CCITT 
from the Internet Engineering Task Force.    It specifies a standard for 
encapsulating Internet Protocol data and other network layer (level three on 
ISO's OSI Model) protocol information over point-to-point links; it also provides 
ways to test and configure lines and the upper level protocols on the OSI 
Model.    The only requirement is a provision of a duplex circuit either 
dedicated or switched, that can operate in either an asynchronous or 
synchronous mode, transparent to the data-linklayer frame.
                  "According to Michael Ballard, director of network systems for Telebit, 
PPP is a direct improvement upon Serial Line Internet Protocol (SLIP), which 
had neither error correction nor a way to exchange network address."



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions about Serial Line Internet Protocol (SLIP) and Point-to-
Point Protocol (PPP) Implementations

Does anyone know if there is a way to run a SLIP program on a IBM computer 
running SCO Xenix/Unix, with a multi-port serial board?
SCO TCP/IP for Xenix supports SLIP.    It works.    However, be warned: SCO SLIP works *only* 
with SCO serial drivers, so it will *not* work with intelligent boards that come with their own 
drivers.    If you want lots of SLIP ports, you'll need lots of dumb ports, perhaps with a multi-
dumb-port board.
Here's the setup -- SunOS 3.5, with the 4.3BSD TCP, IP & SLIP distributions installed.    Slip is 
running between the "ttya" ports of two Sun 3/60's.    "ping", "rlogin", etc., works fine, but a 
NFS mount results in "server not responding: RPC Timed Out".
SunOS 3.5 turns the UDP checksum off, which is legal and works okay over interfaces such 
as ethernet which has link- level checksumming.    On the other hand, SLIP doesn't perform 
checksums thus running NFS over SLIP requires you to turn the UDP checksum on.    
Otherwise, you'll experience erratic behavior such as the one described above.
Save the older kernel and try,

% adb -k -w /vmunix /dev/kmem udpcksum?w 1
to patch up the kernel.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Questions About Routing
Some postings mentioned "maximum entropy routing".    Could someone please 
provide a pointer to on-line or off-line references to this topic?

Try NYU CSD Technical Report 371: "Some Comments on Highly Dynamic 
Network Routing," by Herbert J. Bernstein, May 1988.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Other Protocol and Standards Implementation Questions
Does anyone recognize ethernet type "80F3"?
Does anyone know the significance of a high value for "Bad proto" in the output 

from netstat on Unix machines using ethernet?
Which RFC would explain the proper way to configure broadcast addresses when 

using subnets?
Can anyone tell me what .TAR files exactly are?



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Other Protocol and Standards Implementation Questions
Does anyone recognize ethernet type "80F3"?    I don't see it in RFC 1010, but I am
seeing it on our net.

Ethernet type 0x80F3 is used by AppleTalk for address resolution.    You must 
have Macs on your network which are directly connected to Ethernet.    These 
packets are used by the Mac (generally at startup) to determine a valid 
AppleTalk node number.
Additional Information:
RFC 1010 is obsolete.    Please consult RFC-1060, the current "Assigned 
Numbers" (issued March 1990), which does list "80F3":
Ethernet          Exp. Ethernet    Description          References
-------------     -------------   -----------           ----------
decimal  Hex      decimal  octal
33011   80F3        -      -     AppleTalk AARP (Kinetics)[XEROX]



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Other Protocol and Standards Implementation Questions
Does anyone know the significance of a high value for "Bad proto" in the output 
from netstat on Unix machines using ethernet?    We're seeing values in the tens 
of thousands out of a few hundred thousand packets sent/received in all.    Some 
"Bad proto" values are negative, too.    (Off the scale?)    Any help would be 
appreciated.

This probably indicates that you are getting tens of thousands of broadcast 
packets from some host or hosts on your network.    You might want to buy or 
rent a LAN monitor, or install one of the public-domain packages to see what 
private protocol is guilty.    "FYI on a Network Management Tool Catalog: Tools 
for Monitoring and Debugging TCP/IP Internets and Interconnected Devices" 
(RFC 1147, FYI 2), contains pointers to tools that may help you zero in on the 
problem.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Other Protocol and Standards Implementation Questions
Which RFC would explain the proper way to configure broadcast addresses when 
using subnets?

Consult RFC-922, "Broadcasting Internet Datagrams in the Presence of 
Subnets".



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Other Protocol and Standards Implementation Questions
Can anyone tell me what .TAR files exactly are?    Is it like ZIP or LZH for the IBM 
PC's?    IF so, how do I go about getting a compressor/decompressor for .TAR files 
and what computer does this run on?

TAR stands for "Tape ARchive".    It is a Unix utility which takes files, and 
directories of files, and creates a single large file.    Originally intended to back 
up directory trees onto tape (hence the name), TAR is also used to combine 
files for easier electronic file transfer.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Suggested Reading
For further information about the Internet and its protocols in general, you may choose to 
obtain copies of the following works:
Bowers, K., T. LaQuey, J. Reynolds, K. Roubicek, M. Stahl, and A.    Yuan, "Where to Start - A 
Bibliography of General Internetworking Information", RFC 1175, FYI 3, CNRI, U Texas, ISI, 
BBN, SRI, Mitre, August 1990.
Braden, R., Editor, "Requirements for Internet Hosts -- Communication Layer", RFC 1122, 
Internet Engineering Task Force, October 1989.
Braden, R., Editor, "Requirements for Internet Hosts -- Application and Support", RFC 1123, 
Internet Engineering Task Force, October 1989.
Comer, D., "Internetworking with TCP/IP: Principles, Protocols, and Architecture", Prentice 
Hall, New Jersey, 1989.
Frey, D. and R. Adams, "!%@:: A Directory of Electronic Mail Addressing and Networks", 
O'Reilly and Associates, Newton, MA, August 1989.
Krol, E., "The Hitchhikers Guide to the Internet", RFC 1118, University of Illinois Urbana, 
September 1989.
LaQuey, T, Editor, "Users' Directory of Computer Networks", Digital Press, Bedford, MA, 
1990.
Malkin, G., and A. Marine, "FYI on Questions and Answers - Answers to Commonly asked 
"New Internet User" Questions", RFC 1206, FYI 4, FTP Software, Inc., SRI, February 1991.
Postel, J., Editor, "IAB Official Protocol Standards", RFC 1140, Internet Activities Board, May 
1990.
Quarterman, J., "Matrix: Computer Networks and Conferencing Systems Worldwide", Digital 
Press, Bedford, MA, 1989.
Reynolds, J., and J. Postel, "Assigned Numbers", RFC 1060, USC/Information Sciences 
Institute, March 1990.
Socolofsky, T., and C. Kale, "A TCP/IP Tutorial", RFC 1180, Spider Systems Limited, January 
1991.
Stevens, W., "UNIX Network Programming", ISBN 0-13-949876-1, Prentice Hall, Englewood 
Cliffs, NJ, 1990.
Stine, R., Editor, "FYI on a Network Management Tool Catalog:    Tools for Monitoring and 
Debugging TCP/IP Internets and Interconnected Devices" RFC 1147, FYI 2, Sparta, Inc., April 
1990.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

References
[1] Cerf, V., and K. Mills, "Explaining the Role of GOSIP", RFC 1169, IAB, NIST, August 1990.
[2] Mockapetris, P., "Domain Names - Concepts and Facilities", RFC 1034, USC/Information 
Sciences Institute, November 1987.
[3] Rose, M., and K. McCloghrie, "Structure and Identification of Management Information for 
TCP/IP-based Internets", RFC 1155, Performance Systems International, Hughes LAN 
Systems, May 1990.
[4] McCloghrie, K., and M. Rose, "Management Information Base for Network Management of
TCP/IP-based internets", RFC 1156, Hughes LAN Systems, Performance Systems 
International, May 1990.
[5] Case, J., M. Fedor, M. Schoffstall, and J. Davin, "A Simple Network Management Protocol 
(SNMP)", RFC 1157, SNMP Research, Performance Systems International, Performance 
Systems International, MIT Laboratory for Computer Science, May 1990.
[6] Rose, M., Editor, "Management Information Base for Network Management of TCP/IP-
based internets: MIB-II", RFC 1158, Performance Systems International, May 1990.
[7] Postel, J., and J. Reynolds, "TELNET Protocol Specification", RFC 854, USC/Information 
Sciences Institute, May 1983.
[8] Romkey, J., "A Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP", RFC
1055, June 1988.
[9] Perkins, D., "The Point-to-Point Protocol: A Proposal for Multi- Protocol Transmission of 
Datagrams Over Point-to-Point Links", RFC 1171, CMU, July 1990.
[10] Perkins, D., and R. Hobby, "The Point-to-Point Protocol (PPP) Initial Configuration 
Options", CMU, UC Davis, July 1990.
[11] Reynolds, J., and J. Postel, "Assigned Numbers", RFC 1060, USC/Information Sciences 
Institute, March 1990.
[12] Stine, R., Editor, "FYI on a Network Management Tool Catalog:    Tools for Monitoring and 
Debugging TCP/IP Internets and Interconnected Devices" RFC 1147, FYI 2, Sparta, Inc., April 
1990.
[13] Braden, R., Editor, "Requirements for Internet Hosts -- Communication Layer", RFC 
1122, Internet Engineering Task Force, October 1989.



RFC-1207 FYI on Questions and Answers for "Experienced Internet Users"

Authors' Addresses
      Gary Scott Malkin
      FTP Software, Inc.
      26 Princess Street
      Wakefield, MA 01880

      Phone:    (617) 246-0900
      EMail:    gmalkin@ftp.com

      April N. Marine
      SRI International
      Network Information Systems Center
      333 Ravenswood Avenue, EJ294
      Menlo Park, CA 94025

      Phone:    (415) 859-5318
      EMail:    APRIL@nic.ddn.mil

      Joyce K. Reynolds
      USC/Information Sciences Institute
      4676 Admiralty Way
      Marina del Rey, CA    90292-6695

      Phone:    (213) 822-1511
      EMail:    jkrey@isi.edu



Perkins, D., "The Point-to-Point Protocol: A Proposal for Multi- Protocol Transmission of 
Datagrams Over Point-to-Point Links", RFC 1171, CMU, July 1990.
Perkins, D., and R. Hobby, "The Point-to-Point Protocol (PPP) Initial Configuration Options", 
CMU, UC Davis, July 1990.



RFC-1212 Concise MIB Definitions
Marshall Rose & Keith McCloghrie, Editors

March 1991

Status of this Memo
This memo defines a format for producing MIB modules.    This RFC specifies an IAB 
standards track document for the Internet community, and requests discussion and 
suggestions for improvements.    Please refer to the current edition of the "IAB Official 
Protocol Standards" for the standardization state and status of this protocol. Distribution of 
this memo is unlimited. 

Abstract
Historical Perspective
Columnar Objects

Row Deletion
Row Addition

Defining Objects
Mapping of the OBJECT-TYPE macro
Usage Example

Appendix: DE-osifying MIBs
Managed Object Mapping
Mapping to the SYNTAX clause
Action Mapping

Acknowledgements
Authors' Addresses



RFC-1212 Concise MIB Definitions

Abstract

This memo describes a straight-forward approach toward producing concise, yet descriptive,
MIB modules.    It is intended that all future MIB modules be written in this format. 



RFC-1212 Concise MIB Definitions

Historical Perspective

As reported in RFC-1052, IAB Recommendations for the Development of Internet Network 
Management Standards [RFC-1052], a two-prong strategy for network management of 
TCP/IP-based internets was undertaken.    In the short-term, the Simple Network Management
Protocol (SNMP), defined in RFC-1067, was to be used to manage nodes in the Internet 
community. In the long-term, the use of the OSI network management framework was to be 
examined.    Two documents were produced to define the management information: RFC-
1065, which defined the Structure of Management Information (SMI), and RFC-1066, which 
defined the Management Information Base (MIB).    Both of these documents were designed 
so as to be compatible with both the SNMP and the OSI network management framework. 
This strategy was quite successful in the short-term: Internet-based network management 
technology was fielded, by both the research and commercial communities, within a few 
months.    As a result of this, portions of the Internet community became network 
manageable in a timely fashion. 
As reported in RFC-1109, Report of the Second Ad Hoc Network Management Review Group 
[RFC-1109], the requirements of the SNMP and the OSI network management frameworks 
were more different than anticipated. As such, the requirement for compatibility between 
the SMI/MIB and both frameworks was suspended.    This action permitted the operational 
network management framework, based on the SNMP, to respond to new operational needs 
in the Internet community by producing MIB-II. 
In May of 1990, the core documents were elevated to "Standard Protocols" with 
"Recommended" status.    As such, the Internet-standard network management framework 
consists of: Structure and Identification of Management Information for TCP/IP-based 
internets, [RFC-1155], which describes how managed objects contained in the MIB are 
defined; Management Information Base for Network Management of TCP/IP-based internets, 
which describes the managed objects contained in the MIB, [RFC-1156]; and, the Simple 
Network Management Protocol, [RFC-1157], which defines the protocol used to manage 
these objects.    Consistent with the IAB directive to produce simple, workable systems in the 
short-term, the list of managed objects defined in the Internet-standard MIB was derived by 
taking only those elements which are considered essential.    However, the SMI defined three
extensibility mechanisms: one, the addition of new standard objects through the definitions 
of new versions of the MIB; two, the addition of widely-available but non-standard objects 
through the experimental subtree; and three, the addition of private objects through the 
enterprises subtree.    Such additional objects can not only be used for vendor-specific 
elements, but also for experimentation as required to further the knowledge of which other 
objects are essential. 
As more objects are defined using the second method, experience has shown that the 
resulting MIB descriptions contain redundant information.    In order to provide for MIB 
descriptions which are more concise, and yet as informative, an enhancement is suggested.  
This enhancement allows the author of a MIB to remove the redundant information, while 
retaining the important descriptive text. 
Before presenting the approach, a brief presentation of columnar object handling by the 
SNMP is necessary.    This explains and further motivates the value of the enhancement. 



RFC-1212 Concise MIB Definitions

Columnar Objects

The SNMP supports operations on MIB objects whose syntax is ObjectSyntax as defined in 
the SMI.    Informally stated, SNMP operations apply exclusively to scalar objects.    However, 
it is convenient for developers of management applications to impose imaginary, tabular 
structures on the ordered collection of objects that constitute the MIB.    Each such 
conceptual table contains zero or more rows, and each row may contain one or more scalar 
objects, termed columnar objects.    Historically, this conceptualization has been formalized 
by using the OBJECT-TYPE macro to define both an object which corresponds to a table and 
an object which corresponds to a row in that table.    (The ACCESS clause for such objects is 
"not-accessible", of course.) However, it must be emphasized that, at the protocol level, 
relationships among columnar objects in the same row is a matter of convention, not of 
protocol. 
Note that there are good reasons why the tabular structure is not a matter of protocol.    
Consider the operation of the SNMP Get-Next-PDU acting on the last columnar object of an 
instance of a conceptual row; it returns the next column of the first conceptual row or the 
first object instance occurring after the table.    In contrast, if the rows were a matter of 
protocol, then it would instead return an error.    By not returning an error, a single PDU 
exchange informs the manager that not only has the end of the conceptual row/table been 
reached, but also provides information on the next object instance, thereby increasing the 
information density of the PDU exchange. 



RFC-1212 Concise MIB Definitions -- Columnar Objects

Row Deletion

Nonetheless, it is highly useful to provide a means whereby a conceptual row may be 
removed from a table. In MIB-II, this was achieved by defining, for each conceptual row, an 
integer-valued columnar object.    If a management station sets the value of this object to 
some value, usually termed "invalid", then the effect is one of invalidating the corresponding
row in the table.    However, it is an implementation-specific matter as to whether an agent 
removes an invalidated entry from the table.    Accordingly, management stations must be 
prepared to receive tabular information from agents that corresponds to entries not 
currently in use.    Proper interpretation of such entries requires examination of the columnar 
object indicating the in-use status. 



RFC-1212 Concise MIB Definitions -- Columnar Objects

Row Addition

It is also highly useful to have a clear understanding of how a conceptual row may be added 
to a table.    In the SNMP, at the protocol level, a management station issues an SNMP set 
operation containing an arbitrary set of variable bindings.    In the case that an agent detects
that one or more of those variable bindings refers to an object instance not currently 
available in that agent, it may, according to the rules of the SNMP, behave according to any 
of the following paradigms: 

(1) It may reject the SNMP set operation as referring to non-existent object 
instances by returning a response with the error-status field set to 
"noSuchName" and the error-index field set to refer to the first vacuous 
reference. 

(2) It may accept the SNMP set operation as requesting the creation    of new 
object instances corresponding to each of the object instances named in 
the variable bindings. The value of each (potentially) newly created object 
instance is specified by the "value" component of the relevant variable 
binding.    In this case, if the request specifies a value for a newly (or 
previously) created object that it deems inappropriate by reason of value 
or syntax, then it rejects the SNMP set operation by responding with the 
error-status field set to badValue and the error-index field set to refer to 
the first offending variable binding. 

(3) It may accept the SNMP set operation and create new object instances as 
described in (2) above and, in addition, at its discretion, create 
supplemental object instances to complete a row in a conceptual table of 
which the new object instances specified in the request may be a part. 

It should be emphasized that all three of the above behaviors are fully conformant to the 
SNMP specification and are fully acceptable, subject to any restrictions which may be 
imposed by access control and/or the definitions of the MIB objects themselves. 



RFC-1212 Concise MIB Definitions

Defining Objects

The Internet-standard SMI employs a two-level approach towards object definition.    A MIB 
definition consists of two parts: a textual part, in which objects are placed into groups, and a
MIB module, in which objects are described solely in terms of the ASN.1 macro OBJECT-TYPE, 
which is defined by the SMI. 
An example of the former definition might be:

OBJECT:
sysLocation { system 6 }

Syntax:
DisplayString (SIZE (0..255))

Definition:
The physical location of this node (e.g., "telephone closet, 3rd 
floor"). 

Access:
read-only.

Status:
mandatory.

An example of the latter definition might be:
sysLocation OBJECT-TYPE

SYNTAX    DisplayString (SIZE (0..255))
ACCESS    read-only
STATUS    mandatory
::= { system 6 }

In the interests of brevity and to reduce the chance of editing errors, it would 
seem useful to combine the two definitions.    This can be accomplished by 
defining an extension to the OBJECT-TYPE macro: 
IMPORTS

ObjectName
FROM RFC1155-SMI

DisplayString
FROM RFC1158-MIB;
OBJECT-TYPE MACRO ::=
BEGIN

TYPE NOTATION ::=
-- must conform to
-- RFC1155's ObjectSyntax

"SYNTAX" type(ObjectSyntax)
"ACCESS" Access
"STATUS" Status
DescrPart
ReferPart
IndexPart
DefValPart

VALUE NOTATION ::= value (VALUE ObjectName)
Access ::= "read-only"



| "read-write"
| "write-only"
| "not-accessible"

Status ::= "mandatory"
| "optional"
| "obsolete"
| "deprecated"

DescrPart ::=
"DESCRIPTION" value (description DisplayString)
| empty

ReferPart ::=
"REFERENCE" value (reference DisplayString)
| empty

IndexPart ::=
"INDEX" "{" IndexTypes "}"
| empty

IndexTypes ::=
IndexType | IndexTypes "," IndexType

IndexType ::=
-- if indexobject, use the SYNTAX
-- value of the correspondent
-- OBJECT-TYPE invocation

value (indexobject ObjectName)
-- otherwise use named SMI type
-- must conform to IndexSyntax below

| type (indextype)
DefValPart ::=

"DEFVAL" "{" value (defvalue ObjectSyntax) "}"
| empty

END

IndexSyntax ::=
CHOICE {

number
INTEGER (0..MAX),

string
OCTET STRING,

object
OBJECT IDENTIFIER,

address
NetworkAddress,

ipAddress
IpAddress

}



RFC-1212 Concise MIB Definitions -- Defining Objects

Mapping of the OBJECT-TYPE macro

It should be noted that the expansion of the OBJECT-TYPE macro is something which 
conceptually happens during implementation and not during run-time. 

Mapping of the SYNTAX clause
Mapping of the ACCESS clause
Mapping of the STATUS clause
Mapping of the DESCRIPTION clause
Mapping of the REFERENCE clause
Mapping of the INDEX clause
Mapping of the DEFVAL clause
Mapping of the OBJECT-TYPE value



RFC-1212 Concise MIB Definitions: Mapping of the Object Type Macro

Mapping of the SYNTAX clause

The SYNTAX clause, which must be present, defines the abstract data structure 
corresponding to that object type.    The ASN.1 language [6] is used for this purpose.    
However, the SMI purposely restricts the ASN.1 constructs which may be used.    These 
restrictions are made expressly for simplicity. 



RFC-1212 Concise MIB Definitions: Mapping of the Object Type Macro

Mapping of the ACCESS clause

The ACCESS clause, which must be present, defines the minimum level of support required 
for that object type.    As a local matter, implementations may support other access types 
(e.g., an implementation may elect to permitting writing a variable marked as read-only).    
Further, protocol-specific "views" (e.g., those indirectly implied by an SNMP community) may
make further restrictions on access to a variable. 



RFC-1212 Concise MIB Definitions: Mapping of the Object Type Macro

Mapping of the STATUS clause

The STATUS clause, which must be present, defines the implementation support required for 
that object type. 



RFC-1212 Concise MIB Definitions: Mapping of the Object Type Macro

Mapping of the DESCRIPTION clause

The DESCRIPTION clause, which need not be present, contains a textual definition of that 
object type which provides all semantic definitions necessary for implementation, and 
should embody any information which would otherwise be communicated in any ASN.1 
commentary annotations associated with the object.    Note that, in order to conform to the 
ASN.1 syntax, the entire value of this clause must be enclosed in double quotation marks, 
although the value may be multi-line. 
Further, note that if the MIB module does not contain a textual description of the object type
elsewhere then the DESCRIPTION clause must be present. 



RFC-1212 Concise MIB Definitions: Mapping of the Object Type Macro

Mapping of the REFERENCE clause

The REFERENCE clause, which need not be present, contains a textual cross-reference to an 
object defined in some other MIB module.    This is useful when de-osifying a MIB produced 
by some other organization. 



RFC-1212 Concise MIB Definitions: Mapping of the Object Type Macro

Mapping of the INDEX clause

The INDEX clause, which may be present only if that object type corresponds to a conceptual
row, defines instance identification information for that object type.    (Historically, each MIB 
definition contained a section entitled "Identification of OBJECT instances for use with the 
SNMP".    By using the INDEX clause, this section need no longer occur as this clause 
concisely captures the precise semantics needed for instance identification.) 
If the INDEX clause is not present, and the object type corresponds to a non-columnar 
object, then instances of the object are identified by appending a sub-identifier of zero to the
name of that object. Further, note that if the MIB module does not contain a textual 
description of how instance identification information is derived for columnar objects, then 
the INDEX clause must be present. 
To define the instance identification information, determine which object value(s) will 
unambiguously distinguish a conceptual row.    The syntax of those objects indicate how to 
form the instance-identifier: 

(1) integer-valued: a single sub-identifier taking the integer value (this works 
only for non-negative integers); 

(2) string-valued, fixed-length strings: `n' sub-identifiers, where `n' is the 
length of the string (each octet of the string is encoded in a separate sub-
identifier); 

(3) string-valued, variable-length strings: `n+1' sub- identifiers, where `n' is 
the length of the string (the first sub-identifier is `n' itself, following this, 
each octet of the string is encoded in a separate sub- identifier); 

(4) object identifier-valued: `n+1' sub-identifiers, where `n' is the number of 
sub-identifiers in the value (the first sub-identifier is `n' itself, following 
this, each sub-identifier in the value is copied); 

(5) NetworkAddress-valued: `n+1' sub-identifiers, where `n' depends on the 
kind of address being encoded (the first sub-identifier indicates the kind of 
address, value 1 indicates an IpAddress); or, 

(6) IpAddress-valued: 4 sub-identifiers, in the familiar a.b.c.d notation. 
Note that if an "indextype" value is present (e.g., INTEGER rather than ifIndex), then a 
DESCRIPTION clause must be present; the text contained therein indicates the semantics of 
the "indextype" value. 
By way of example, in the context of MIB-II [7], the following INDEX clauses might be 
present: 

objects under            INDEX clause  
ifEntry { ifIndex }
atEntry { atNetIfIndex,

atNetAddress }
ipAddrEntry { ipAdEntAddr }
ipRouteEntry { ipRouteDest }
ipNetToMediaEntry { ipNetToMediaIfIndex,

ipNetToMediaNetAddress }
tcpConnEntry { tcpConnLocalAddress,
tcpConnLocalPort,
tcpConnRemoteAddress,



tcpConnRemotePort }
udpEntry { udpLocalAddress,

udpLocalPort }
egpNeighEntry { egpNeighAddr }



RFC-1212 Concise MIB Definitions: Mapping of the Object Type Macro

Mapping of the DEFVAL clause

The DEFVAL clause, which need not be present, defines an acceptable default value which 
may be used when an object instance is created at the discretion of the agent acting in 
conformance with the third paradigm described in Section 4.2 above. 
During conceptual row creation, if an instance of a columnar object is not present as one of 
the operands in the correspondent SNMP set operation, then the value of the DEFVAL clause,
if present, indicates an acceptable default value that the agent might use. 
The value of the DEFVAL clause must, of course, correspond to the SYNTAX clause for the 
object.    Note that if an operand to the SNMP set operation is an instance of a read-only 
object, then the error noSuchName will be returned.    As such, the DEFVAL clause can be 
used to provide an acceptable default value that the agent might use. 
It is possible that no acceptable default value may exist for any of the columnar objects in a 
conceptual row for which the creation of new object instances is allowed.    In this case, the 
objects specified in the INDEX clause must have a corresponding ACCESS clause value of 
read-write. 
By way of example, consider the following possible DEFVAL clauses:

ObjectSyntax             DEFVAL clause  
INTEGER 1 -- same for Counter, Gauge, TimeTicks
OCTET STRING 'ffffffffffff'h
DisplayString "any NVT ASCII string"
OBJECT IDENTIFIER sysDescr
OBJECT IDENTIFIER { system 2 }
NULL NULL
NetworkAddress { internet 'c0210415'h }
IpAddress 'c0210415'h -- 192.33.4.21



RFC-1212 Concise MIB Definitions: Mapping of the Object Type Macro

Mapping of the OBJECT-TYPE value

The value of an invocation of the OBJECT-TYPE macro is the name of the object, which is an 
object identifier. 



RFC-1212 Concise MIB Definitions -- Defining Objects

Usage Example

Consider how the ipNetToMediaTable from MIB-II might be fully described: 
-- the IP Address Translation table

-- The IP address translation table contain the IpAddress to
-- `physical' address equivalences.    Some interfaces do not
-- use translation tables for determining address
-- equivalences (e.g., DDN-X.25 has an algorithmic method);
-- if all interfaces are of this type, then the Address
-- Translation table is empty, i.e., has zero entries.

ipNetToMediaTable OBJECT-TYPE
SYNTAX    SEQUENCE OF IpNetToMediaEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"The IP Address Translation table used for mapping from IP addresses to 
physical addresses." 

::= { ip 22 }

ipNetToMediaEntry OBJECT-TYPE
SYNTAX    IpNetToMediaEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"Each entry contains one IpAddress to `physical' address equivalence." 
INDEX      { ipNetToMediaIfIndex,

                                                ipNetToMediaNetAddress }
::= { ipNetToMediaTable 1 }

IpNetToMediaEntry ::=
SEQUENCE {

                                    ipNetToMediaIfIndex
                                            INTEGER,
                                    ipNetToMediaPhysAddress
                                            PhysAddress,
                                    ipNetToMediaNetAddress
                                            IpAddress,
                                    ipNetToMediaType
                                            INTEGER

}

ipNetToMediaIfIndex OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The interface on which this entry's equivalence is effective.    The interface 
identified by a particular value of this index is the same interface as identified 



by the same value of ifIndex." 
::= { ipNetToMediaEntry 1 }

ipNetToMediaPhysAddress OBJECT-TYPE
SYNTAX    PhysAddress
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The media-dependent `physical' address."
::= { ipNetToMediaEntry 2 }

ipNetToMediaNetAddress OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The IpAddress corresponding to the media- dependent `physical' address." 
::= { ipNetToMediaEntry 3 }

ipNetToMediaType OBJECT-TYPE
SYNTAX    INTEGER {

                                                    other(1),                -- none of the following
                                                    invalid(2),            -- an invalidated mapping
                                                    dynamic(3),
                                                    static(4)
                                            }

ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The type of mapping.

Setting this object to the value invalid(2) has the effect of invalidating the 
corresponding entry in the ipNetToMediaTable.    That is, it effectively 
dissasociates the interface identified with said entry from the mapping 
identified with said entry. It is an implementation-specific matter as to whether
the agent removes an invalidated entry from the table.    Accordingly, 
management stations must be prepared to receive tabular information from 
agents that corresponds to entries not currently in use.    Proper interpretation 
of such entries requires examination of the relevant ipNetToMediaType object."

::= { ipNetToMediaEntry 4 }



RFC-1212 Concise MIB Definitions

Appendix: DE-osifying MIBs

There has been an increasing amount of work recently on taking MIBs defined by other 
organizations (e.g., the IEEE) and de-osifying them for use with the Internet-standard 
network management framework.    The steps to achieve this are straight-forward, though 
tedious.    Of course, it is helpful to already be experienced in writing MIB modules for use 
with the Internet-standard network management framework. 
The first step is to construct a skeletal MIB module, e.g.,

RFC1213-MIB DEFINITIONS ::= BEGIN
IMPORTS

experimental, OBJECT-TYPE, Counter
FROM RFC1155-SMI;

                                              -- contact IANA for actual number
root        OBJECT IDENTIFIER ::= { experimental xx }

END
The next step is to categorize the objects into groups.    For experimental MIBs, optional 
objects are permitted.    However, when a MIB module is placed in the Internet-standard 
space, these optional objects are either removed, or placed in a optional group, which, if 
implemented, all objects in the group must be implemented.    For the first pass, it is wisest 
to simply ignore any optional objects in the original MIB: experience shows it is better to 
define a core MIB module first, containing only essential objects; later, if experience 
demands, other objects can be added. 
It must be emphasized that groups are "units of conformance" within a MIB: everything in a 
group is "mandatory" and implementations do either whole groups or none. 



RFC-1212 Concise MIB Definitions -- DE-osifying MIBs

Managed Object Mapping

Next for each managed object class, determine whether there can exist multiple instances of
that managed object class.    If not, then for each of its attributes, use the OBJECT-TYPE 
macro to make an equivalent definition. 
Otherwise, if multiple instances of the managed object class can exist, then define a 
conceptual table having conceptual rows each containing a columnar object for each of the 
managed object class's attributes. If the managed object class is contained within the 
containment tree of another managed object class, then the assignment of an object type is 
normally required for each of the "distinguished attributes" of the containing managed 
object class.    If they do not already exist within the MIB module, then they can be added via
the definition of additional columnar objects in the conceptual row corresponding to the 
contained managed object class. 
In defining a conceptual row, it is useful to consider the optimization of network 
management operations which will act upon its columnar objects.    In particular, it is wisest 
to avoid defining more columnar objects within a conceptual row, than can fit in a single 
PDU.    As a rule of thumb, a conceptual row should contain no more than approximately 20 
objects.    Similarly, or as a way to abide by the "20 object guideline", columnar objects 
should be grouped into tables according to the expected grouping of network management 
operations upon them.    As such, the content of conceptual rows should reflect typical 
access scenarios, e.g., they should be organized along functional lines such as one row for 
statistics and another row for parameters, or along usage lines such as commonly-needed 
objects versus rarely-needed objects. 
On the other hand, the definition of conceptual rows where the number of columnar objects 
used as indexes outnumbers the number used to hold information, should also be avoided.    
In particular, the splitting of a managed object class's attributes into many conceptual tables
should not be used as a way to obtain the same degree of flexibility/complexity as is often 
found in MIB's with a myriad of optionals. 



RFC-1212 Concise MIB Definitions -- DE-osifying MIBs

Mapping to the SYNTAX clause

When mapping to the SYNTAX clause of the OBJECT-type macro:
(1) An object with BOOLEAN syntax becomes an INTEGER taking either of 

values true(1) or false(2). 
(2) An object with ENUMERATED syntax becomes an INTEGER, taking any of 

the values given. 
(3) An object with BIT STRING syntax containing no more than 32 bits 

becomes an INTEGER defined as a sum; otherwise if more than 32 bits are 
present, the object becomes an OCTET STRING, with the bits numbered 
from left-to-right, in which the least significant bits of the last octet may be
"reserved for future use". 

(4) An object with a character string syntax becomes either an OCTET STRING 
or a DisplayString, depending on the repertoire of the character string. 

(5) An non-tabular object with a complex syntax, such as REAL or EXTERNAL, 
must be decomposed, usually into an OCTET STRING (if sensible).    As a 
rule, any object with a complicated syntax should be avoided. 

(6) Tabular objects must be decomposed into rows of columnar objects. 
Mapping to the ACCESS clause

This is straight-forward.
Mapping to the STATUS clause

This is usually straight-forward; however, some osified-MIBs use the term 
"recommended".    In this case, a choice must be made between "mandatory" 
and "optional". 

Mapping to the DESCRIPTION clause
This is straight-forward: simply copy the text, making sure that any embedded
double quotation marks are sanitized (i.e., replaced with single-quotes or 
removed). 

Mapping to the REFERENCE clause
This is straight-forward: simply include a textual reference to the object being 
mapped, the document which defines the object, and perhaps a page number 
in the document. 

Mapping to the INDEX clause
Decide how instance-identifiers for columnar objects are to be formed and 
define this clause accordingly. 

Mapping to the DEFVAL clause
Decide if a meaningful default value can be assigned to the object being 
mapped, and if so, define the DEFVAL clause accordingly. 



RFC-1212 Concise MIB Definitions -- DE-osifying MIBs

Action Mapping

Actions are modeled as read-write objects, in which writing a particular value results in the 
action taking place. 
Mapping to the SYNTAX clause

Usually an INTEGER syntax is used with a distinguished value provided for 
each action that the object provides access to.    In addition, there is usually 
one other distinguished value, which is the one returned when the object is 
read. 

Mapping to the ACCESS clause
Always use read-write.

Mapping to the STATUS clause
This is straight-forward.

Mapping to the DESCRIPTION clause
This is straight-forward: simply copy the text, making sure that any embedded
double quotation marks are sanitized (i.e., replaced with single-quotes or 
removed). 

Mapping to the REFERENCE clause
This is straight-forward: simply include a textual reference to the action being 
mapped, the document which defines the action, and perhaps a page number 
in the document. 



RFC-1212 Concise MIB Definitions

Acknowledgements

This document was produced by the SNMP Working Group:
Anne Ambler, Spider
Karl Auerbach, Sun
Fred Baker, ACC
Ken Brinkerhoff
Ron Broersma, NOSC
Jack Brown, US Army
Theodore Brunner, Bellcore
Jeffrey Buffum, HP
John Burress, Wellfleet
Jeffrey D. Case, University of Tennessee at Knoxville
Chris Chiptasso, Spartacus
Paul Ciarfella, DEC
Bob Collet
John Cook, Chipcom
Tracy Cox, Bellcore
James R. Davin, MIT-LCS
Eric Decker, cisco
Kurt Dobbins, Cabletron
Nadya El-Afandi, Network Systems
Gary Ellis, HP
Fred Engle
Mike Erlinger
Mark S. Fedor, PSI
Richard Fox, Synoptics
Karen Frisa, CMU
Chris Gunner, DEC
Fred Harris, University of Tennessee at Knoxville
Ken Hibbard, Xylogics
Ole Jacobsen, Interop
Ken Jones
Satish Joshi, Synoptics
Frank Kastenholz, Racal-Interlan
Shimshon Kaufman, Spartacus
Ken Key, University of Tennessee at Knoxville
Jim Kinder, Fibercom
Alex Koifman, BBN
Christopher Kolb, PSI
Cheryl Krupczak, NCR
Paul Langille, DEC
Peter Lin, Vitalink
John Lunny, TWG
Carl Malamud
Randy Mayhew, University of Tennessee at Knoxville
Keith McCloghrie, Hughes LAN Systems
Donna McMaster, David Systems
Lynn Monsanto, Sun
Dave Perkins, 3COM
Jim Reinstedler, Ungerman Bass



Anil Rijsinghani, DEC
Kathy Rinehart, Arnold AFB
Kary Robertson
Marshall T. Rose, PSI (chair)
L. Michael Sabo, NCSC
Jon Saperia, DEC
Greg Satz, cisco
Martin Schoffstall, PSI
John Seligson
Steve Sherry, Xyplex
Fei Shu, NEC
Sam Sjogren, TGV
Mark Sleeper, Sparta
Lance Sprung
Mike St.Johns
Bob Stewart, Xyplex
Emil Sturniold
Kaj Tesink, Bellcore
Dean Throop, Data General
Bill Townsend, Xylogics
Maurice Turcotte, Racal-Milgo
Kannan Varadhou
Sudhanshu Verma, HP
Bill Versteeg, Network Research Corporation
Warren Vik, Interactive Systems
David Waitzman, BBN
Steve Waldbusser, CMU
Dan Wintringhan
David Wood
Wengyik Yeong, PSI
Jeff Young, Cray Research



RFC-1212 Concise MIB Definitions

Authors' Addresses

Keith McCloghrie
Hughes LAN Systems
1225 Charleston Road
Mountain View, CA 94043
1225 Charleston Road
Mountain View, CA 94043

Phone: (415) 966-7934
EMail: kzm@hls.com

Marshall T. Rose
Performance Systems International
5201 Great America Parkway
Suite 3106
Santa Clara, CA    95054

Phone: +1 408 562 6222
EMail: mrose@psi.com
X.500:    rose, psi, us



7.    References

[1] Cerf, V., "IAB Recommendations for the Development of Internet
              Network Management Standards", RFC 1052, NRI, April 1988.

[2] Cerf, V., "Report of the Second Ad Hoc Network Management Review
              Group", RFC 1109, NRI, August 1989.

[3] Rose M., and K. McCloghrie, "Structure and Identification of
              Management Information for TCP/IP-based internets", RFC 1155,
              Performance Systems International, Hughes LAN Systems, May 1990.

[4] McCloghrie K., and M. Rose, "Management Information Base for
              Network Management of TCP/IP-based internets", RFC 1156, Hughes
              LAN Systems, Performance Systems International, May 1990.

[5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
              Network Management Protocol", RFC 1157, SNMP Research,
              Performance Systems International, Performance Systems
              International, MIT Laboratory for Computer Science, May 1990.

[6] Information processing systems - Open Systems Interconnection -
              Specification of Abstract Syntax Notation One (ASN.1),
              International Organization for Standardization International
              Standard 8824, December 1987.

[7] Rose M., Editor, "Management Information Base for Network
              Management of TCP/IP-based internets: MIB-II", RFC 1213,
              Performance Systems International, March 1991.

8.    Security Considerations

Security issues are not discussed in this memo.
RFC-1212 Concise MIB Defintiions



RFC-1213 Management Information Base
for

Network Managment of TCP/IP Based Internets
MIB-II

Keith McCloghrie & Marshall Rose; Editors
March 1991

Status of This Memo
Abstract
Introduction
Changes from RFC-1156
Changes from RFC-1158
Objects

Format of Definitions
Overview
Object Definitions
Group Definitions
Acknowledgements
Authors' Addresses



RFC-1213 Management Information Base: MIB-II

Status of This Memo

This memo defines the second version of the Management Information Base (MIB-II) for use 
with network management protocols in TCP/IP- based internets.    This RFC specifies an IAB 
standards track protocol for the Internet community, and requests discussion and 
suggestions for improvements.    Please refer to the current edition of the "IAB Official 
Protocol Standards" for the standardization state and status of this protocol.    Distribution of 
this memo is unlimited. 



RFC-1213 Management Information Base: MIB-II

Abstract

This memo defines the second version of the Management Information Base (MIB-II) for use 
with network management protocols in TCP/IP- based internets.    In particular, together with 
its companion memos which describe the structure of management information (RFC 1155) 
along with the network management protocol (RFC 1157) for TCP/IP- based internets, these 
documents provide a simple, workable architecture and system for managing TCP/IP-based 
internets and in particular the Internet community. 



RFC-1213 Management Information Base: MIB-II

Introduction

As reported in IAB Recommendations for the Development of Internet Network Management 
Standards [RFC-1052], a two-prong strategy for network management of TCP/IP-based 
internets was undertaken.    In the short-term, the Simple Network Management Protocol 
(SNMP) was to be used to manage nodes in the Internet community.    In the long-term, the 
use of the OSI network management framework was to be examined. Two documents were 
produced to define the management information: The Structure of Management Information 
(SMI) [RFC-1155], and Management Information Base (MIB) [RFC-1156].    Both of these 
documents were designed so as to be compatible with both the SNMP and the OSI network 
management framework. 
This strategy was quite successful in the short-term: Internet-based network management 
technology was fielded, by both the research and commercial communities, within a few 
months.    As a result of this, portions of the Internet community became network 
manageable in a timely fashion. 
As reported in Report of the Second Ad Hoc Network Management Review Group [RFC-1109],
the requirements of the SNMP and the OSI network management frameworks were more 
different than anticipated. As such, the requirement for compatibility between the SMI/MIB 
and both frameworks was suspended.    This action permitted the operational network 
management framework, the SNMP, to respond to new operational needs in the Internet 
community by producing this document. 
As such, the current network management framework for TCP/IP- based internets consists of:
Structure and Identification of Management Information for TCP/IP-based internets, [RFC-
1155], which describes how managed objects contained in the MIB are defined; 
Management Information Base for Network Management of TCP/IP-based internets: MIB-II, 
this memo, which describes the managed objects contained in the MIB (and supercedes RFC-
1156 Management Information Base[RFC-1156]); and, the Simple Network Management 
Protocol, [RFC-1157], which defines the protocol used to manage these objects. 



RFC-1213 Management Information Base: MIB-II

Changes from RFC-1156

Although the current memo (RFC-1213) supercedes "Management Information 
Base" [RFC-1156], that memo is available is still listed as an IAB Standard and is 
included in the system.
Features of this MIB include:

(1) incremental additions to reflect new operational requirements;
(2) upwards compatibility with the SMI/MIB and the SNMP;
(3) improved support for multi-protocol entities; and,
(4) textual clean-up of the MIB to improve clarity and readability.

The objects defined in MIB-II have the OBJECT IDENTIFIER prefix:
mib-2            OBJECT IDENTIFIER ::= { mgmt 1 }

which is identical to the prefix used in MIB-I.
Depricated Objects
Display Strings
Physical Addresses
The Transmission Group
The SNMP Group



RFC-1213 Management Information Base: MIB-II - Changes from RFC-1156

Deprecated Objects

In order to better prepare implementors for future changes in the MIB, a new term 
"deprecated" may be used when describing an object. A deprecated object in the MIB is one 
which must be supported, but one which will most likely be removed from the next version 
of the MIB (e.g., MIB-III). 
MIB-II marks one object as being deprecated:

atTable
As a result of deprecating the atTable object, the entire Address Translation group is 
deprecated. 
Note that no functionality is lost with the deprecation of these objects: new objects providing
equivalent or superior functionality are defined in MIB-II. 



RFC-1213 Management Information Base: MIB-II - Changes from RFC-1156

Display Strings

In the past, there have been misinterpretations of the MIB as to when a string of octets 
should contain printable characters, meant to be displayed to a human.    As a textual 
convention in the MIB, the datatype 

DisplayString ::=
OCTET STRING

is introduced.    A DisplayString is restricted to the NVT ASCII character set, as defined in The 
Telnet Protocol [RFC-854]. 
The following objects are now defined in terms of DisplayString:

sysDescr
ifDescr

It should be noted that this change has no effect on either the syntax nor semantics of these
objects.    The use of the DisplayString notation is merely an artifact of the explanatory 
method used in MIB-II and future MIBs. 
Further it should be noted that any object defined in terms of OCTET STRING may contain 
arbitrary binary data, in which each octet may take any value from 0 to 255 (decimal). 



RFC-1213 Management Information Base: MIB-II

Physical Addresses

As a further, textual convention in the MIB, the datatype
PhysAddress ::=

OCTET STRING
is introduced to represent media- or physical-level addresses.
The following objects are now defined in terms of PhysAddress:

ifPhysAddress
atPhysAddress
ipNetToMediaPhysAddress

It should be noted that this change has no effect on either the syntax nor semantics of these
objects.    The use of the PhysAddress notation is merely an artifact of the explanatory 
method used in MIB-II and future MIBs. 



RFC-1213 Management Information Base: MIB-II - Changes from RFC-1156

The Transmission Group

MIB-I was lacking in that it did not distinguish between different types of transmission 
media.    A new group, the Transmission group, is allocated for this purpose: 

transmission OBJECT IDENTIFIER ::= { mib-2 10 }



RFC-1213 Management Information Base: MIB-II - Changes from RFC-1156

The SNMP Group

The application-oriented working groups of the IETF have been tasked to be receptive 
towards defining MIB variables specific to their respective applications. 
For the SNMP, it is useful to have statistical information.    A new group, the SNMP group, is 
allocated for this purpose: 

snmp      OBJECT IDENTIFIER ::= { mib-2 11 }



RFC-1213 Management Information Base: MIB-II

Changes from RFC-1158

Since the current RFC (1213) obsoletes RFC-1158, RFC-1158 is not included in this
system.
Features of this MIB include:

(1) The managed objects in this document have been defined using the 
conventions defined in the Internet-standard SMI, as amended by the 
extensions specified in [RFC-1212].    It must be emphasized that 
definitions made using these extensions are semantically identically to 
those in RFC-1158. 

(2) The PhysAddress textual convention has been introduced to represent 
media addresses. 

(3) The ACCESS clause of sysLocation is now read-write.
(4) The definition of sysServices has been clarified.
(5) New ifType values (29-32) have been defined.    In addition, the textual-

descriptor for the DS1 and E1 interface types has been corrected. 
(6) The definition of ipForwarding has been clarified.
(7) The definition of ipRouteType has been clarified.
(8) The ipRouteMetric5 and ipRouteInfo objects have been defined. 
(9) The ACCESS clause of tcpConnState is now read-write, to support deletion 

of the TCB associated with a TCP connection.    The definition of this object 
has been clarified to explain this usage. 

(10) The definition of egpNeighEventTrigger has been clarified. 
(11) The definition of several of the variables in the new snmp group have 

been clarified.    In addition, the snmpInBadTypes and snmpOutReadOnlys 
objects are no longer present.    (However, the object identifiers associated 
with those objects are reserved to prevent future use.) 

(12) The definition of snmpInReadOnlys has been clarified.
(13) The textual descriptor of the snmpEnableAuthTraps has been changed 

to snmpEnableAuthenTraps, and the definition has been clarified. 
(14) The ipRoutingDiscards object was added.
(15) The optional use of an implementation-dependent, small positive 

integer was disallowed when identifying instances of the IP address and 
routing tables. 



RFC-1213 Management Information Base: MIB-II

Objects

Managed objects are accessed via a virtual information store, termed the Management 
Information Base or MIB.    Objects in the MIB are defined using the subset of Abstract Syntax
Notation One (ASN.1) [8] defined in the SMI.    In particular, each object has a name, a 
syntax, and an encoding.    The name is an object identifier, an administratively assigned 
name, which specifies an object type.    The object type together with an object instance 
serves to uniquely identify a specific instantiation of the object.    For human convenience, 
we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to the object 
type. 
The syntax of an object type defines the abstract data structure corresponding to that object
type.    The ASN.1 language is used for this purpose.    However, the SMI [RFC-1155] 
purposely restricts the ASN.1 constructs which may be used.    These restrictions are 
explicitly made for simplicity. 
The encoding of an object type is simply how that object type is represented using the 
object type's syntax.    Implicitly tied to the notion of an object type's syntax and encoding is 
how the object type is represented when being transmitted on the network. 
The SMI specifies the use of the basic encoding rules of ASN.1 [9], subject to the additional 
requirements imposed by the SNMP. 



RFC-1213 Management Information Base: MIB-II

Format of Definitions

The Object Definitions section contains the specification of all object types contained in this 
MIB module.    The object types are defined using the conventions defined in the SMI, as 
amended by the extensions specified in [RFC-1212].    The format of these definitions is 
taken from MIB-I [RFC-1156].
Complete group definitions are also included to facilitate printing.



RFC-1213 Management Information Base: MIB-II

Overview

Consistent with the IAB directive to produce simple, workable systems in the short-term, the 
list of managed objects defined here, has been derived by taking only those elements which 
are considered essential. 
This approach of taking only the essential objects is NOT restrictive, since the SMI defined in 
the companion memo provides three extensibility mechanisms: one, the addition of new 
standard objects through the definitions of new versions of the MIB; two, the addition of 
widely-available but non-standard objects through the experimental subtree; and three, the 
addition of private objects through the enterprises subtree.    Such additional objects can not 
only be used for vendor-specific elements, but also for experimentation as required to 
further the knowledge of which other objects are essential. 
The design of MIB-II is heavily influenced by the first extensibility mechanism.    Several new 
variables have been added based on operational experience and need.    Based on this, the 
criteria for including an object in MIB-II are remarkably similar to the MIB-I criteria: 

(1) An object needed to be essential for either fault or configuration 
management. 

(2) Only weak control objects were permitted (by weak, it is meant that 
tampering with them can do only limited damage).    This criterion reflects 
the fact that the current management protocols are not sufficiently secure 
to do more powerful control operations. 

(3) Evidence of current use and utility was required.
(4) In MIB-I, an attempt was made to limit the number of objects to about 100 

to make it easier for vendors to fully instrument their software.    In MIB-II, 
this limit was raised given the wide technological base now implementing 
MIB-I. 

(5) To avoid redundant variables, it was required that no object be included 
that can be derived from others in the MIB. 

(6) Implementation specific objects (e.g., for BSD UNIX) were excluded. 
(7) It was agreed to avoid heavily instrumenting critical sections of code.    The

general guideline was one counter per critical section per layer. 
MIB-II, like its predecessor, the Internet-standard MIB, contains only essential elements.    
There is no need to allow individual objects to be optional.    Rather, the objects are arranged
into the following groups: 

- System
- Interfaces
- Address Translation (deprecated)
- IP
- ICMP
- TCP
- UDP
- EGP
- Transmission
- SNMP

These groups are the basic unit of conformance: This method is as follows: if the semantics 
of a group is applicable to an implementation, then it must implement all objects in that 



group. For example, an implementation must implement the EGP group if and only if it 
implements the EGP. 
There are two reasons for defining these groups: to provide a means of assigning object 
identifiers; and, to provide a method for implementations of managed agents to know which 
objects they must implement. 



RFC-1213 Management Information Base for Network Management

Object Definitions

The System Group
The Interfaces Group

The Interfaces Table
The Address Translation Group
The IP Group

The IP Address Table
The IP Routing Table
The IP Address Translation Table

The ICMP Group
The TCP Group
The UDP Group

The UDP Table
The EGP Group

The EGP Neighbor Table
The Transmission Group
The SNMP Group



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The System Group

Implementation of the System group is mandatory for all systems. 
sysDescr
sysObjectID
sysUpTime
sysContact
sysName
sysLocation
sysServices



RFC-1213 Management Information Base for Network Management - System 
Group

OBJECT: sysDescr { system 1 }

Syntax:
DisplayString (SIZE (0..255))

Definition:
A textual description of the entity.    This value should include the full name 
and version identification of the system's hardware type, software operating-
system, and networking software.    It is mandatory that this only contain 
printable ASCII characters. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - System 
Group

OBJECT: sysObjectID { system 2 }

Syntax:
OBJECT IDENTIFIER

Definition:
The vendor's authoritative identification of the network management 
subsystem contained in the entity.    This value is allocated within the SMI 
enterprises subtree (1.3.6.1.4.1) and provides an easy and unambiguous 
means for determining "what kind of box" is being managed.    For example, if 
vendor "Flintstones, Inc." was assigned the subtree 1.3.6.1.4.1.42, it could 
assign the identifier 1.3.6.1.4.1.42.1.1 to its "Fred Router". 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - System 
Group

OBJECT: sysUpTime { system 3 }

Syntax:
TimeTicks

Definition:
 The time (in hundredths of a second) since the network management portion 
of the system was last re-initialized.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - System 
Group

OBJECT: sysContact { system 4 }

Syntax:
DisplayString (SIZE(0..255))

Definition:
The textual identification of the contact person for this managed node, 
together with information on how to contact this person. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - System 
Group

OBJECT: sysName { system 5 }

Syntax:
DisplayString (SIZE(0..255))

Definition:
An administratively-assigned name for this managed node.    By convention, 
this is the node's fully-qualified domain name. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - System 
Group

OBJECT: sysLocation { system 6 }

Syntax:
DisplayString (SIZE(0..255))

Definition:
The physical location of this node (e.g., `telephone closet, 3rd floor'). 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - System 
Group

OBJECT: sysServices { system 7 }

Syntax:
INTEGER (0..127)

Definition:
A value which indicates the set of services that this entity primarily offers. 
The value is a sum.    This sum initially takes the value zero, Then, for each 
layer, L, in the range 1 through 7, that this node performs transactions for, 2 
raised to (L - 1) is added to the sum.    For example, a node which performs 
primarily routing functions would have a value of 4 (2^(3-1)).    In contrast, a 
node which is a host offering application services would have a value of 72 
(2^(4-1) + 2^(7-1)).    Note that in the context of the Internet suite of 
protocols, values should be calculated accordingly: 
layer    functionality
        1    physical (e.g., repeaters)
        2    datalink/subnetwork (e.g., bridges)
        3    internet (e.g., IP gateways)
        4    end-to-end    (e.g., IP hosts)
        7    applications (e.g., mail relays)
For systems including OSI protocols, layers 5 and 6 may also be counted.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The Interfaces Group

Implementation of the Interfaces group is mandatory for all systems.    See also Interfaces 
Table.

OBJECT:
ifNumber { interfaces 1 }

Syntax:
INTEGER

Definition:
The number of network interfaces (regardless of their current state) present 
on this system. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The Interfaces Table

Administrative Objects:
ifTable ifSpeed
ifEntry ifPhysAddress
ifIndex ifAdminStatus
ifDescr ifOperStatus
ifType ifLastChange
ifMTU

Input                     Output  
ifInOctets ifOutOctets
ifInNUcastPkts ifOutUcastPkts
ifInDiscards ifOutNUcastPkts
ifInErrors ifOutDiscards
ifInUnknownProtosifOutQLen
ifSpecific



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifTable { interfaces 2 }

Syntax:
SEQUENCE OF IfEntry

Definition:
A list of interface entries.    The number of entries is given by the value of 
ifNumber. 

Access:
not-accessible.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifEntry { ifTable 1 }

Syntax:
IfEntry ::= SEQUENCE {

ifIndex
INTEGER,

ifDescr
DisplayString,

ifType
INTEGER,

ifMtu
INTEGER,

ifSpeed
Gauge,

ifPhysAddress
PhysAddress,

ifAdminStatus
INTEGER,

ifOperStatus
INTEGER,

ifLastChange
TimeTicks,

ifInOctets
Counter,

ifInUcastPkts
Counter,

ifInNUcastPkts
Counter,

ifInDiscards
Counter,

ifInErrors
Counter,

ifInUnknownProtos
Counter,

ifOutOctets
Counter,

ifOutUcastPkts
Counter,

ifOutNUcastPkts
Counter,

ifOutDiscards
Counter,

ifOutErrors
Counter,

ifOutQLen
Gauge

ifSpecific
OBJECT IDENTIFIER

}
Definition:

An interface entry containing objects at the subnetwork layer and below for a 



particular interface. 
Access:

read-write.
Status:

mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifIndex { ifEntry 1 }

Syntax:
INTEGER

Definition:
A unique value for each interface.    Its value ranges between 1 and the value 
of ifNumber.    The value for each interface must remain constant at least from 
one re- initialization of the entity's network management system to the next 
re-initialization. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifDescr { ifEntry 2 }

Syntax:
 DisplayString (SIZE (0..255))

Definition:
A text string containing information about the interface. This string should 
include the name of the manufacturer, the product name and the version of 
the hardware interface.    The string is intended for presentation to a human; it
must not contain anything but printable ASCII characters. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifType { ifEntry 3 }

Syntax:
INTEGER {

other(1), -- none of the following
regular1822(2),
hdh1822(3),
ddn-x25(4),
rfc877-x25(5),
ethernet-csmacd(6),
iso88023-csmacd(7),
iso88024-tokenBus(8),
iso88025-tokenRing(9),
iso88026-man(10),
starLan(11),
proteon-10MBit(12),
proteon-80MBit(13),
hyperchannel(14),
fddi(15),
lapb(16),
sdlc(17),
t1-carrier(18),
cept(19), -- european equivalent of T-1
basicIsdn(20),
primaryIsdn(21),

-- proprietary serial
propPointToPointSerial(22)
ppp(23)
softwareLoopback(24)
eon(25)
ethernet-3Mbit(26)
nsip(27)
slip(28)
ultra(29)
ds3(30)
sip(31)
frame-relay(32)

}
Definition:

The type of interface, distinguished according to the physical/link/network 
protocol(s) immediately "below" IP in the protocol stack. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifMtu { ifEntry 4 }

Syntax:
INTEGER

Definition:
The size of the largest IP datagram which can be sent/received on the 
interface, specified in octets. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifSpeed { ifEntry 5 }

Syntax:
Gauge

Definition:
An estimate of the interface's current bandwidth in bits per second.    For 
interfaces which do not vary in bandwidth or for those where no accurate 
estimation can be made, this object should contain the nominal bandwidth. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifPhysAddress { ifEntry 6 }

Syntax:
OCTET STRING

Definition:
The interface's address at the protocol layer immediately "below" IP in the 
protocol stack.    For interfaces which do not have such an address (e.g., a 
serial line), this object should contain an octet string of zero length. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifAdminStatus { ifEntry 7 }

Syntax:
INTEGER {

up(1), -- ready to pass packets
down(2),
testing(3) -- in some test mode

}
Definition:

The desired state of the interface.    The testing(3) state indicates that no 
operational packets can be passed. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOperStatus { ifEntry 8 }

Syntax:
INTEGER {

up(1),              -- ready to pass packets
down(2),
testing(3)      -- in some test mode

}
Definition:

The current operational state of the interface.    The testing(3) state indicates 
that no operational packets can be passed. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifLastChange { ifEntry 9 }

Syntax:
TimeTicks

Definition:
The value of sysUpTime at the time the interface entered its current 
operational state.    If the current state was entered prior to the last re-
initialization of the local network management subsystem, then this object 
contains a zero value. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInOctets { ifEntry 10 }

Syntax:
Counter

Definition:
The total number of octets received on the interface, including framing 
characters. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInUcastPkts    { ifEntry 11 }

Syntax:
Counter

Definition:
The number of (subnet) unicast packets delivered to a higher-layer protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInNUcastPkts { ifEntry 12 }

Syntax:
Counter

Definition:
The number of non-unicast (i.e., subnet broadcast or subnet multicast) 
packets delivered to a higher-layer protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInDiscards { ifEntry 13 }

Syntax:
Counter

Definition:
The number of inbound packets which were chosen to be discarded even 
though no errors had been detected to prevent their being deliverable to a 
higher-layer protocol.    One possible reason for discarding such a packet could 
be to free up buffer space. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInErrors { ifEntry 14 }

Syntax:
Counter

Definition:
The number of inbound packets that contained errors preventing them from 
being deliverable to a higher-layer protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifInUnknownProtos { ifEntry 15 }

Syntax:
Counter

Definition:
The number of packets received via the interface which were discarded 
because of an unknown or unsupported protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutOctets { ifEntry 16 }

Syntax:
Counter

Definition:
The total number of octets transmitted out of the interface, including framing 
characters. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutUcastPkts { ifEntry 17 }

Syntax:
Counter

Definition:
The total number of packets that higher-level protocols requested be 
transmitted to a subnet-unicast address, including those that were discarded 
or not sent. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutNUcastPkts { ifEntry 18 }

Syntax:
Counter

Definition:
The total number of packets that higher-level protocols requested be 
transmitted to a non-unicast (i.e., a subnet broadcast or subnet multicast) 
address, including those that were discarded or not sent. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutDiscards { ifEntry 19 }

Syntax:
Counter

Definition:
The number of outbound packets which were chosen to be discarded even 
though no errors had been detected to prevent their being transmitted.    One 
possible reason for discarding such a packet could be to free up buffer space. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutErrors { ifEntry 20 }

Syntax:
Counter

Definition:
The number of outbound packets that could not be transmitted because of 
errors. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifOutQLen { ifEntry 21 }

Syntax:
Gauge

Definition:
The length of the output packet queue (in packets).

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Interfaces 
Table

OBJECT: ifSpecific { ifEntry 22 }

Syntax:
OBJECT IDENTIFIER

Definition:
A reference to MIB definitions specific to the particular media being used to 
realize the interface.    For example, if the interface is realized by an ethernet, 
then the value of this object refers to a document defining objects specific to 
ethernet.    If this information is not present, its value should be set to the 
OBJECT IDENTIFIER { 0 0 }, which is a syntatically valid object identifier, and 
any conformant implementation of ASN.1 and BER must be able to generate 
and recognize this value.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The Address Translation Group

In MIB-I [RFC-1156] this group contained a table which permitted mappings from network 
addresses (e.g., IP addresses) to physical addresses (e.g., MAC addresses).    Experience has 
shown that efficient implementations of this table make two assumptions: a single network 
protocol environment, and mappings occur only from network address to physical address.
The need to support multi-protocol nodes (e.g., those with both the IP and CLNP active), and 
the need to support the inverse mapping (e.g., for ES-IS), have invalidated both of these 
assumptions.    As such, the atTable object is declared deprecated.    It is documented here 
for historical reference.
In order to meet both the multi-protocol and inverse mapping requirements, MIB-II and its 
successors will allocate up to two address translation tables inside each network protocol 
group.    That is, the IP group will contain one address translation table, for going from IP 
addresses to physical addresses.    Similarly, when a document defining MIB objects for the 
CLNP is produced (e.g., [RFC-1162]), it will contain two tables, for mappings in both 
directions, as this is required for full functionality. 
It should be noted that the choice of two tables (one for each direction of mapping) provides 
for ease of implementation in many cases, and does not introduce undue burden on 
implementations which realize the address translation abstraction through a single internal 
table. 
The Address Translation group contains one table which is the union across all interfaces of 
the translation tables for converting a NetworkAddress (e.g., an IP address) into a 
subnetwork-specific address.    For lack of a better term, this document refers to such a 
subnetwork-specific address as a "physical" address. 
Examples of such translation tables are:    for broadcast media where ARP is in use, the 
translation table is equivalent to the ARP cache; or, on an X.25 network where non-
algorithmic translation to X.121 addresses is required, the translation table contains the 
NetworkAddress to X.121 address equivalences. 

atTable
atEntry
atIfIndex
atPhysAddress
atNetAddress



RFC-1213 Management Information Base - Address Translation Group

OBJECT: atTable { at 1 }

Syntax:
SEQUENCE OF AtEntry

Definition:
The Address Translation tables contain the NetworkAddress to "physical" 
address equivalences.    Some interfaces do not use translation tables for 
determining address equivalences (e.g., DDN-X.25 has an algorithmic 
method); if all interfaces are of this type, then the Address Translation table is 
empty, i.e., has zero entries. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - Address Translation Group

OBJECT: atEntry { atTable 1 }

Syntax:
AtEntry ::= SEQUENCE {

atIfIndex
INTEGER,

atPhysAddress
PhysAddress,

atNetAddress
NetworkAddress

}
Definition:

Each entry contains one NetworkAddress to "physical" address equivalence. 
Access:

read-write.
Status:

mandatory.



RFC-1213 Management Information Base - Address Translation Group

OBJECT: atIfIndex { atEntry 1 }

Syntax:
INTEGER

Definition:
The interface on which this entry's equivalence is effective.    The interface 
identified by a particular value of this index is the same interface as identified 
by the same value of ifIndex. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - Address Translation Group

OBJECT: atPhysAddress { atEntry 2 }

Syntax:
OCTET STRING

Definition:
The media-dependent "physical" address.

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - Address Translation Group

OBJECT: atNetAddress { atEntry 3 }

Syntax:
NetworkAddress

Definition:
The NetworkAddress (e.g., the IP address) corresponding to the media-
dependent "physical" address. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The IP Group

Implementation of the IP group is mandatory for all systems.
ipForwarding ipOutDiscards
ipDefaultTTL ipOutNoRoutes
ipInReceives ipReasmTimeout
ipInHdrErrors ipReasmReqds
ipInAddrErrors ipReasmOKs
ipForwDatagrams ipReasmFails
ipInUnknownProtos ipFragOKs
ipInDiscards ipFragFails
ipInDelivers ipFragCreates
ipOutRequests
ipAddressTable
ipRouteTable
ipAddressTranslationTable
ipNetToMediaTable
ipRoutingDiscards



RFC-1213 Management Information Base - IP Group

OBJECT: ipForwarding { ip 1 }

Syntax:
INTEGER {

gateway(1), -- entity forwards datagrams
host(2) -- entity does NOT forward datagrams

}
Definition:

The indication of whether this entity is acting as an IP gateway in respect to 
the forwarding of datagrams received by, but not addressed to, this entity.    IP 
gateways forward datagrams; Hosts do not (except those Source-Routed via 
the host). 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipDefaultTTL { ip 2 }

Syntax:
 INTEGER

Definition:
The default value inserted into the Time-To-Live field of the IP header of 
datagrams originated at this entity, whenever a TTL value is not supplied by 
the transport layer protocol. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipInReceives { ip 3 }

Syntax:
Counter

Definition:
The total number of input datagrams received from interfaces, including those
received in error. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipInHdrErrors { ip 4 }

Syntax:
Counter

Definition:
The number of input datagrams discarded due to errors in their IP headers, 
including bad checksums, version number mismatch, other format errors, 
time-to-live exceeded, errors discovered in processing their IP options, etc. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipInAddrErrors { ip 5 }

Syntax:
Counter

Definition:
The number of input datagrams discarded because the IP address in their IP 
header's destination field was not a valid address to be received at this entity. 
This count includes invalid addresses (e.g., 0.0.0.0) and addresses of 
unsupported Classes (e.g., Class E).    For entities which are not IP Gateways 
and therefore do not forward datagrams, this counter includes datagrams 
discarded because the destination address was not a local address. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipForwDatagrams { ip 6 }

Syntax:
Counter

Definition:
The number of input datagrams for which this entity was not their final IP 
destination, as a result of which an attempt was made to find a route to 
forward them to that final destination.    In entities which do not act as IP 
Gateways, this counter will include only those packets which were Source-
Routed via this entity, and the Source-Route option processing was successful.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipInUnknownProtos { ip 7 }

Syntax:
Counter

Definition:
The number of locally-addressed datagrams received successfully but 
discarded because of an unknown or unsupported protocol. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipInDiscards { ip 8 }

Syntax:
Counter

Definition:
The number of input IP datagrams for which no problems were encountered to
prevent their continued processing, but which were discarded (e.g. for lack of 
buffer space). Note that this counter does not include any datagrams 
discarded while awaiting re-assembly. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipInDelivers { ip 9 }

Syntax:
Counter

Definition:
The total number of input datagrams successfully delivered to IP user-
protocols (including ICMP). 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipOutRequests { ip 10 }

Syntax:
Counter

Definition:
The total number of IP datagrams which local IP user- protocols (including 
ICMP) supplied to IP in requests for transmission.    Note that this counter does 
not include any datagrams counted in ipForwDatagrams. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipOutDiscards { ip 11 }

Syntax:
Counter

Definition:
The number of output IP datagrams for which no problem was encountered to 
prevent their transmission to their destination, but which were discarded (e.g.,
for lack of buffer space).    Note that this counter would include datagrams 
counted in ipForwDatagrams if any such packets met this (discretionary) 
discard criterion. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipOutNoRoutes { ip 12 }

Syntax:
Counter

Definition:
The number of IP datagrams discarded because no route could be found to 
transmit them to their destination. Note that this counter includes any packets
counted in ipForwDatagrams which meet this "no-route" criterion. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipReasmTimeout { ip 13 }

Syntax:
INTEGER

Definition:
The maximum number of seconds which received fragments are held while 
they are awaiting reassembly at this entity. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipReasmReqds { ip 14 }

Syntax:
Counter

Definition:
The number of IP fragments received which needed to be reassembled at this 
entity. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipReasmOKs { ip 15 }

Syntax:
Counter

Definition:
The number of IP datagrams successfully re-assembled.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipReasmFails { ip 16 }

Syntax:
Counter

Definition:
The number of failures detected by the IP re-assembly algorithm (for whatever
reason:    timed out, errors, etc). 
Note that this is not necessarily a count of discarded IP fragments since some 
algorithms (notably RFC 815's) can lose track of the number of fragments by 
combining them as they are received. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipFragOKs { ip 17 }

Syntax:
Counter

Definition:
The number of IP datagrams that have been successfully fragmented at this 
entity. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipFragFails { ip 18 }

Syntax:
Counter

Definition:
The number of IP datagrams that have been discarded because they needed 
to be fragmented at this entity but could not be, e.g., because their "Don't 
Fragment" flag was set. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipFragCreates { ip 19 }

Syntax:
Counter

Definition:
The number of IP datagram fragments that have been generated as a result of
fragmentation at this entity. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - IP Group

The IP Address Table

The Ip Address table contains this entity's IP addressing information. 
ipAddrTable
ipAddrEntry
ipAdEntAddr
ipAdEntIfIndex
ipAdEntNetMask
ipAdEntBcastAddr
ipAdEntReasmMaxSize



RFC-1213 Management Information Base - IP Address Table

OBJECT: ipAddrTable { ip 20 }

Syntax:
SEQUENCE OF IpAddrEntry

Definition:
The table of addressing information relevant to this entity's IP addresses. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Address Table

OBJECT: ipAddrEntry { ipAddrTable 1 }

Syntax:
IpAddrEntry ::= SEQUENCE {

ipAdEntAddr
IpAddress,

ipAdEntIfIndex
INTEGER,

ipAdEntNetMask
IpAddress,

ipAdEntBcastAddr
INTEGER

ipAdEntReasmMaxSize
INTEGER (0..65535)

}
Definition:

The addressing information for one of this entity's IP addresses. 
Access:

read-only.
Status:

mandatory.



RFC-1213 Management Information Base - IP Address Table

OBJECT: ipAdEntAddr    { ipAddrEntry 1 }

Syntax:
IpAddress

Definition:
The IP address to which this entry's addressing information pertains. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Address Table

OBJECT: ipAdEntIfIndex    { ipAddrEntry 2 }

Syntax:
INTEGER

Definition:
The index value which uniquely identifies the interface to which this entry is 
applicable.    The interface identified by a particular value of this index is the    
same interface as identified by the same value of    ifIndex. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Address Table

OBJECT: ipAdEntNetMask    { ipAddrEntry 3 }

Syntax:
IpAddress

Definition:
The subnet mask associated with the IP address of this entry.    The value of 
the mask is an IP address with all the network bits set to 1 and all the hosts 
bits set to 0. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Address Table

OBJECT: ipAdEntBcastAddr { ipAddrEntry 4 }

Syntax:
INTEGER

Definition:
The value of the least-significant bit in the IP broadcast address used for 
sending datagrams on the (logical) interface associated with the IP address of 
this entry.    For example, when the Internet standard all-ones broadcast 
address is used, the value will be 1. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Address Table

OBJECT: ipAdEntReasmMaxSize { ipAddrEntry 5 }

Syntax:
INTEGER (0..65535)

Definition:
The size of the largest IP datagram which this entity can re-assemble from 
incoming IP fragmented datagrams received on this interface. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - IP Group

The IP Route Table

The IP Routing Table contains an entry for each route presently known to this entity.    Note 
that the action to be taken in response to a request to read a non-existent entry, is specific 
to the network management protocol being used. 

ipRouteTable
ipRouteEntry
ipRouteDest
ipRouteIfIndex
ipRouteMetric1
ipRouteMetric2
ipRouteMetric3
ipRouteMetric4
ipRouteMetric5
ipRouteNextHop
ipRouteType
ipRouteProto
ipRouteAge
ipRouteMask
ipRouteInfo



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteTable { ip 21 }

Syntax:
SEQUENCE OF IpRouteEntry

Definition:
This entity's IP Routing table.

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteEntry { ipRouteTable 1 }

Syntax:
IpRouteEntry ::= SEQUENCE {

ipRouteDest
IpAddress,

ipRouteIfIndex
INTEGER,

ipRouteMetric1
INTEGER,

ipRouteMetric2
INTEGER,

ipRouteMetric3
INTEGER,

ipRouteMetric4
INTEGER,

ipRouteNextHop
IpAddress,

ipRouteType
INTEGER,

ipRouteProto
INTEGER,

ipRouteAge
INTEGER

ipRouteMask
IpAddress,

ipRouteMetric5
INTEGER,

ipRouteInfo
OBJECT IDENTIFIER

}
Definition:

A route to a particular destination.
Access:

read-write.
Status:

mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteDest { ipRouteEntry 1 }

Syntax:
IpAddress

Definition:
The destination IP address of this route.    An entry with a value of 0.0.0.0 is 
considered a default route. Multiple such default routes can appear in the 
table, but access to such multiple entries is dependent on the table-access 
mechanisms defined by the network management protocol in use. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteIfIndex    { ipRouteEntry 2 }

Syntax:
INTEGER

Definition:
The index value which uniquely identifies the local interface through which the
next hop of this route should be reached.    The interface identified by a 
particular value of this index is the same interface as identified by the same 
value of ifIndex. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteMetric1 { ipRouteEntry 3 }

Syntax:
INTEGER

Definition:
The primary routing metric for this route.    The semantics of this metric are 
determined by the routing-protocol specified in the route's ipRouteProto value. 
If this metric is not used, its value should be set to -1. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteMetric2 { ipRouteEntry 4 }

Syntax:
INTEGER

Definition:
An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing- protocol specified in the route's ipRouteProto 
value.    If this metric is not used, its value should be set to -1. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteMetric3 { ipRouteEntry 5 }

Syntax:
INTEGER

Definition:
An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing- protocol specified in the route's ipRouteProto 
value.    If this metric is not used, its value should be set to -1. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteMetric4 { ipRouteEntry 6 }

Syntax:
INTEGER

Definition:
An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing- protocol specified in the route's ipRouteProto 
value.    If this metric is not used, its value should be set to -1. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteMetric5 { ipRouteEntry 12 }

Syntax:
INTEGER

Definition:
An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing-protocol specified in the route's ipRouteProto value. 
If this metric is not used, its value should be set to -1.

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteNextHop { ipRouteEntry 7 }

Syntax:
IpAddress

Definition:
The IP address of the next hop of this route.

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteType { ipRouteEntry 8 }

Syntax:
INTEGER {

other(1), -- none of the following
invalid(2), -- an invalidated route
direct(3), -- route to directly connected (sub-)network
remote(4),-- route to a non-local host/network/sub-network

}
Definition:

The type of route.
Access:

read-write.
Status:

mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteProto { ipRouteEntry 9 }

Syntax:
INTEGER {

other(1), -- none of the following
-- non-protocol information,
-- e.g., manually configured

local(2), -- entries
-- set via a network management

netmgmt(3), -- protocol
-- obtained via ICMP,

icmp(4), -- e.g., Redirect
-- the remaining values are
-- all gateway routing protocols

egp(5),
ggp(6),
hello(7),
rip(8),
is-is(9),
es-is(10),
ciscoIgrp(11),
bbnSpfIgp(12),
oigp(13)

}
Definition:

The routing mechanism via which this route was learned. Inclusion of values 
for gateway routing protocols is not intended to imply that hosts should 
support those protocols. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteAge { ipRouteEntry 10 }

Syntax:
INTEGER

Definition:
The number of seconds since this route was last updated or otherwise 
determined to be correct.      Note that no semantics of "too old" can be implied
except through knowledge of the routing protocol by which the route was 
learned. 

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteMask { ipRouteEntry 11 }

Syntax:
ipAddress

Definition:
Indicate the mask to be logical-ANDed with the destination address before 
being compared to the value in the ipRouteDest field.    For those systems that 
do not support arbitrary subnet masks, an agent constructs the value of the 
ipRouteMask by determining whether the value of the correspondent 
ipRouteDest field belong to a class-A, B, or C network, and then using one of: 

mask                      network
255.0.0.0            class-A
255.255.0.0        class-B
255.255.255.0    class-C

If the value of the ipRouteDest is 0.0.0.0 (a default route), then the mask 
value is also 0.0.0.0.    It should be noted that all IP routing subsystems 
implicitly use this mechanism.

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

OBJECT: ipRouteInfo { ipRouteEntry 13 }

Syntax:
INTEGER

Definition:
A reference to MIB definitions specific to the particular routing protocol which 
is responsible for this route, as determined by the value specified in the 
route's ipRouteProto value.    If this information is not present, its value should 
be set to the OBJECT IDENTIFIER { 0 0 }, which is a syntatically valid object 
identifier, and any conformant implementation of ASN.1 and BER must be able
to generate and recognize this value.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - IP Routing Table

The IP Address Translation Table

The IP address translation table contain the IpAddress to `physical' address equivalences.    
Some interfaces do not use translation tables for determining address equivalences (e.g., 
DDN-X.25 has an algorithmic method); if all interfaces are of this type, then the Address 
Translation table is empty, i.e., has zero entries. 

ipNetToMediaTable
ipNetToMediaEntry

ipNetToMediaIfIndex
ipNetToMediaNetAddress

ipNetToMediaPhysAddress
ipNetToMediaNetAddress

ipNetToMediaType



RFC-1213 Management Information Base - IP Address Translation Table

OBJECT: ipNetToMediaTable { ip 22 }

Syntax:
SEQUENCE OF lpNetToMediaEntry

Definition:
The IP Address Translation table used for mapping from IP addresses to 
physical addresses.

Access:
not-accessible

Status:
mandatory.



RFC-1213 Management Information Base - IP Address Translation Table

OBJECT: ipNetToMediaEntry { ipNetToMediaTable 1 }

Syntax:
IpNetToMediaEntry ::=
SEQUENCE {

                                    ipNetToMediaIfIndex
                                            INTEGER,
                                    ipNetToMediaPhysAddress
                                            PhysAddress,
                                    ipNetToMediaNetAddress
                                            IpAddress,
                                    ipNetToMediaType
                                            INTEGER

}
Definition:

Each entry contains one IpAddress to `physical' address equivalence.
Access:

not-accessible
Status:

mandatory.



RFC-1213 Management Information Base - IP Address Translation Table

OBJECT: ipNetToMediaIfIndex { ipNetToMediaEntry 1 }

Syntax:
INTEGER

Definition:
The interface on which this entry's equivalence is effective.    The interface 
identified by a particular value of this index is the same interface as identified 
by the same value of ifIndex.

Access:
read-write

Status:
mandatory.



RFC-1213 Management Information Base - IP Address Translation Table

OBJECT: ipNetToMediaPhysAddress { ipNetToMediaEntry 2 }

Syntax:
PhysAddress

Definition:
The media-dependent `physical' address.

Access:
read-write

Status:
mandatory.



RFC-1213 Management Information Base - IP Address Translation Table

OBJECT: ipNetToMediaNetAddress { ipNetToMediaEntry 3}

Syntax:
IpAddress

Definition:
The IpAddress corresponding to the media- dependent `physical' address.

Access:
read-write

Status:
mandatory.



RFC-1213 Management Information Base - IP Address Translation Table

OBJECT: ipNetToMediaType { ipNetToMediaEntry 4}

Syntax:
INTEGER {

other(1) -- none of the following
invalid(2) -- an invalidated mapping
dynamic(3)
static(4)

}
Definition:

The type of mapping.
Setting this object to the value invalid(2) has the effect of invalidating the 
corresponding entry in the ipNetToMediaTable.    That is, it effectively 
dissasociates the interface identified with said entry from the mapping 
identified with said entry. It is an implementation-specific matter as to whether
the agent removes an invalidated entry from the table.    Accordingly, 
management stations must be prepared to receive tabular information from 
agents that corresponds to entries not currently in use.    Proper interpretation 
of such entries requires examination of the relevant ipNetToMediaType object.

Access:
read-write

Status:
mandatory.



RFC-1213 Management Information Base - IP Group

OBJECT: ipRoutingDiscards { ip 23}

Syntax:
Counter

Definition:
The number of routing entries which were chosen to be discarded even though
they are valid.    One possible reason for discarding such an entry could be to 
free-up buffer space for other routing entries.

Access:
read-only

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The ICMP Group

Implementation of the ICMP group is mandatory for all systems.
The ICMP group contains the ICMP input and output statistics.
Note that individual counters for ICMP message (sub-)codes have been omitted from this 
(version of the) MIB for simplicity. 

icmpInMsgs icmpOutMsgs
icmpInErrors icmpOutErrors
icmpInDestUnreachs icmpOutDestUnreachs
icmpInTimeExcds icmpOutTimeExcds
icmpInParmProbs icmpOutParmProbs
icmpInSrcQuenchs icmpOutSrcQuenchs
icmpInRedirects icmpOutRedirects
icmpInEchos icmpOutEchos
icmpInEchoReps icmpOutEchoReps
icmpInTimestamps icmpOutTimestamps
icmpInTimestampReps icmpOutTimestampReps
icmpInAddrMasks icmpOutAddrMasks
icmpInAddrMaskReps icmpOutAddrMaskReps



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInMsgs { icmp 1 }

Syntax:
Counter

Definition:
The total number of ICMP messages which the entity received.    Note that this 
counter includes all those counted by icmpInErrors. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInErrors { icmp 2 }

Syntax:
Counter

Definition:
The number of ICMP messages which the entity received but determined as 
having errors (bad ICMP checksums, bad length, etc.). 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInDestUnreachs { icmp 3 }

Syntax:
Counter

Definition:
The number of ICMP Destination Unreachable messages received. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInTimeExcds { icmp 4 }

Syntax:
Counter

Definition:
The number of ICMP Time Exceeded messages received.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInParmProbs { icmp 5 }

Syntax:
Counter

Definition:
The number of ICMP Parameter Problem messages received.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInSrcQuenchs { icmp 6 }

Syntax:
Counter

Definition:
The number of ICMP Source Quench messages received.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInRedirects { icmp 7 }

Syntax:
Counter

Definition:
The number of ICMP Redirect messages received.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInEchos { icmp 8 }

Syntax:
Counter

Definition:
The number of ICMP Echo (request) messages received.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInEchoReps { icmp 9 }

Syntax:
Counter

Definition:
The number of ICMP Echo Reply messages received.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInTimestamps { icmp 10 }

Syntax:
Counter

Definition:
The number of ICMP Timestamp (request) messages received.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInTimestampReps { icmp 11 }

Syntax:
Counter

Definition:
The number of ICMP Timestamp Reply messages received.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInAddrMasks { icmp 12 }

Syntax:
Counter

Definition:
The number of ICMP Address Mask Request messages received. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpInAddrMaskReps { icmp 13 }

Syntax:
Counter

Definition:
The number of ICMP Address Mask Reply messages received.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutMsgs { icmp 14 }

Syntax:
Counter

Definition:
The total number of ICMP messages which this entity attempted to send.    
Note that this counter includes all those counted by icmpOutErrors. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutErrors { icmp 15 }

Syntax:
Counter

Definition:
The number of ICMP messages which this entity did not send due to problems 
discovered within ICMP such as a lack of buffers.    This value should not 
include errors discovered outside the ICMP layer such as the inability of IP to 
route the resultant datagram.    In some implementations there may be no 
types of error which contribute to this counter's value. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutDestUnreachs { icmp 16 }

Syntax:
Counter

Definition:
The number of ICMP Destination Unreachable messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutTimeExcds { icmp 17 }

Syntax:
Counter

Definition:
The number of ICMP Time Exceeded messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutParmProbs { icmp 18 }

Syntax:
Counter

Definition:
The number of ICMP Parameter Problem messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutSrcQuenchs { icmp 19 }

Syntax:
Counter

Definition:
The number of ICMP Source Quench messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutRedirects { icmp 20 }

Syntax:
Counter

Definition:
The number of ICMP Redirect messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutEchos { icmp 21 }

Syntax:
Counter

Definition:
The number of ICMP Echo (request) messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutEchoReps { icmp 22 }

Syntax:
Counter

Definition:
The number of ICMP Echo Reply messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutTimestamps { icmp 23 }

Syntax:
Counter

Definition:
The number of ICMP Timestamp (request) messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutTimestampReps { icmp 24 }

Syntax:
Counter

Definition:
The number of ICMP Timestamp Reply messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutAddrMasks { icmp 25 }

Syntax:
Counter

Definition:
The number of ICMP Address Mask Request messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - ICMP Group

OBJECT: icmpOutAddrMaskReps { icmp 26 }

Syntax:
Counter

Definition:
The number of ICMP Address Mask Reply messages sent.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The TCP Group

Implementation of the TCP group is mandatory for all systems that implement the TCP 
protocol. 
Note that instances of object types that represent information about a particular TCP 
connection are transient; they persist only as long as the connection in question. 

tcpRtoAlgorithm tcpConnTable
tcpRtoMin tcpConnEntry
tcpRtoMax tcpConnState
tcpMaxConn tcpConnLocalAddress
tcpActiveOpens tcpConnLocalPort
tcpPassiveOpens tcpConnRemAddress
tcpAttemptFails tcpConnRemPort
tcpEstabResets tcpInErrs
tcpCurrEstab tcpOutRsts
tcpInSegs
tcpOutSegs
tcpRetransSegs



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpRtoAlgorithm { tcp 1 }

Syntax:
INTEGER {

other(1), -- none of the following
constant(2), -- a constant rto
rsre(3), -- MIL-STD-1778, Appendix B
vanj(4) -- Van Jacobson's algorithm [15]

}
Definition:

The algorithm used to determine the timeout value used for retransmitting 
unacknowledged octets. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpRtoMin { tcp 2 }

Syntax:
INTEGER

Definition:
The minimum value permitted by a TCP implementation for the retransmission
timeout, measured in milliseconds.    More refined semantics for objects of this 
type depend upon the algorithm used to determine the retransmission 
timeout.    In particular, when the timeout algorithm is rsre(3), an object of this
type has the semantics of the LBOUND quantity described in RFC 793. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpRtoMax { tcp 3 }

Syntax:
INTEGER

Definition:
The maximum value permitted by a TCP implementation for the 
retransmission timeout, measured in milliseconds.    More refined semantics 
for objects of this type depend upon the algorithm used to determine the 
retransmission timeout.    In particular, when the timeout algorithm is rsre(3), 
an object of this type has the semantics of the UBOUND quantity described in 
RFC 793. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpMaxConn { tcp 4 }

Syntax:
INTEGER

Definition:
The limit on the total number of TCP connections the entity can support.    In 
entities where the maximum number of connections is dynamic, this object 
should contain the value "-1". 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpActiveOpens { tcp 5 }

Syntax:
Counter

Definition:
The number of times TCP connections have made a direct transition to the 
SYN-SENT state from the CLOSED state. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpPassiveOpens { tcp 6 }

Syntax:
Counter

Definition:
The number of times TCP connections have made a direct transition to the 
SYN-RCVD state from the LISTEN state. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpAttemptFails { tcp 7 }

Syntax:
Counter

Definition:
The number of times TCP connections have made a direct transition to the 
CLOSED state from either the SYN-SENT state or the SYN-RCVD state, plus the 
number of times TCP connections have made a direct transition to the LISTEN 
state from the SYN-RCVD state. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpEstabResets { tcp 8 }

Syntax:
Counter

Definition:
The number of times TCP connections have made a direct transition to the 
CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpCurrEstab { tcp 9 }

Syntax:
Gauge

Definition:
The number of TCP connections for which the current state is either 
ESTABLISHED or CLOSE-WAIT. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpInSegs { tcp 10 }

Syntax:
Counter

Definition:
The total number of segments received, including those received in error.    
This count includes segments received on currently established connections. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpOutSegs { tcp 11 }

Syntax:
Counter

Definition:
The total number of segments sent, including those on current connections 
but excluding those containing only retransmitted octets. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpRetransSegs { tcp 12 }

Syntax:
Counter

Definition:
The total number of segments retransmitted - that is, the number of TCP 
segments transmitted containing one or more previously transmitted octets. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpConnTable { tcp 13 }

Syntax:
SEQUENCE OF TcpConnEntry

Definition:
A table containing TCP connection-specific information. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpConnEntry { tcpConnTable 1 }

Syntax:
TcpConnEntry ::= SEQUENCE {

tcpConnState
INTEGER,

tcpConnLocalAddress
IpAddress,

tcpConnLocalPort
INTEGER (0..65535),

tcpConnRemAddress
IpAddress,

tcpConnRemPort
INTEGER (0..65535)

}
Definition:

Information about a particular current TCP connection. An object of this type is
transient, in that it ceases to exist when (or soon after) the connection makes 
the transition to the CLOSED state. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpConnState { tcpConnEntry 1 }

Syntax:
INTEGER {

closed(1),
listen(2),
synSent(3),
synReceived(4),
established(5),
finWait1(6),
finWait2(7),
closeWait(8),
lastAck(9),
closing(10),
timeWait(11)

}
Definition:

The state of this TCP connection.
Access:

read-only.
Status:

mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpConnLocalAddress { tcpConnEntry 2 }

Syntax:
IpAddress

Definition:
The local IP address for this TCP connection.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpConnLocalPort { tcpConnEntry 3 }

Syntax:
INTEGER (0..65535)

Definition:
The local port number for this TCP connection.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpConnRemAddress { tcpConnEntry 4 }

Syntax:
IpAddress

Definition:
The remote IP address for this TCP connection.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpConnRemPort { tcpConnEntry 5 }

Syntax:
INTEGER (0..65535)

Definition:
The remote port number for this TCP connection.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpInErrs { tcp 14 }

Syntax:
Counter

Definition:
The total number of segments received in error (e.g., bad TCP checksums).

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - TCP Group

OBJECT: tcpOutRsts { tcp 15 }

Syntax:
Counter

Definition:
The number of TCP segments sent containing the RST flag.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The UDP Group

Implementation of the UDP group is mandatory for all systems which implement the UDP 
protocol. 

udpInDatagrams
udpNoPorts
udpInErrors
udpOutDatagrams
udpTable

udpEntry
udpLocalAddress
udpLocalPort



RFC-1213 Management Information Base - UDP Group

OBJECT: udpInDatagrams { udp 1 }

Syntax:
Counter

Definition:
The total number of UDP datagrams delivered to UDP users. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - UDP Group

OBJECT: udpNoPorts { udp 2 }

Syntax:
Counter

Definition:
The total number of received UDP datagrams for which there was no 
application at the destination port. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - UDP Group

OBJECT: udpInErrors { udp 3 }

Syntax:
Counter

Definition:
The number of received UDP datagrams that could not be delivered for 
reasons other than the lack of an application at the destination port. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - UDP Group

OBJECT: udpOutDatagrams { udp 4 }

Syntax:
Counter

Definition:
The total number of UDP datagrams sent from this entity. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - UDP Group

OBJECT: udpTable { udp 5 }

The UDP listener table contains information about this entity's UDP end-points on which a
local application is currently accepting datagrams. 
Syntax:

SEQUENCE OF udpEntry
Definition:

A table containing UDP listener information.
Access:

not-accessible
Status:

mandatory.



RFC-1213 Management Information Base - UDP Table

OBJECT: udpEntry { udpTable 1 }

Syntax:
SEQUENCE {

                                    udpLocalAddress
                                            IpAddress,
                                    udpLocalPort
                                            INTEGER (0..65535)

}
Definition:

Information about a particular current UDP listener.
Access:

not-accessible
Status:

mandatory.



RFC-1213 Management Information Base - UDP Table

OBJECT: udpLocalAddress { udpEntry 1 }

Syntax:
IpAddress

Definition:
The local IP address for this UDP listener.    In the case of a UDP listener which 
is willing to accept datagrams for any IP interface associated with the node, 
the value 0.0.0.0 is used.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - UDP Table

OBJECT: udpLocalPort { udpEntry 2 }

Syntax:
INTEGER (0..65535)

Definition:
The local port number for this UDP listener.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The EGP Group

Implementation of the EGP group is mandatory for all systems which implement the EGP 
protocol. 

egpInMsgs
egpInErrors
egpOutMsgs
egpOutErrors
egpAs



RFC-1213 Management Information Base - EGP Group

OBJECT: egpInMsgs { egp 1 }

Syntax:
Counter

Definition:
The number of EGP messages received without error.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Group

OBJECT: egpInErrors { egp 2 }

Syntax:
Counter

Definition:
The number of EGP messages received that proved to be

in error.
Access:

read-only.
Status:

mandatory.



RFC-1213 Management Information Base - EGP Group

OBJECT: egpOutMsgs { egp 3 }

Syntax:
Counter

Definition:
The total number of locally generated EGP messages.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Group

OBJECT: egpOutErrors { egp 4 }

Syntax:
Counter

Definition:
The number of locally generated EGP messages not sent due to resource 
limitations within an EGP entity. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Group

OBJECT: egpAs { egp 6 }

Syntax:
INTEGER

Definition:
The autonomous system number of this EGP entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management - Object 
Definitions

The EGP Neighbor Table

The Egp Neighbor table contains information about this entity's EGP neighbors. 
egpNeighTable egpNeighInErrMsgs
egpNeighEntry egpNeighOutErrMsgs
egpNeighState egpNeighStateUps
egpNeighAddr egpNeighStateDowns
egpNeighAs egpNeighIntervalHello
egpNeighInMsgs egpNeighIntervalPoll
egpNeighInErrs egpNeighMode
egpNeighOutMsgs egpNeighEventTrigger
egpNeighOutErrs



RFC-1213 Management Information Base - EGP Neighbor Table

OBJECT: egpNeighTable { egp 5 }

Syntax:
SEQUENCE OF EgpNeighEntry

Definition:
The EGP neighbor table.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Table

OBJECT: egpNeighEntry { egpNeighTable 1 }

Syntax:
SEQUENCE {

                                    egpNeighState
                                            INTEGER,
                                    egpNeighAddr
                                            IpAddress,
                                    egpNeighAs
                                            INTEGER,
                                    egpNeighInMsgs
                                            Counter,
                                    egpNeighInErrs
                                            Counter,
                                    egpNeighOutMsgs
                                            Counter,
                                    egpNeighOutErrs
                                            Counter,
                                    egpNeighInErrMsgs
                                            Counter,
                                    egpNeighOutErrMsgs
                                            Counter,
                                    egpNeighStateUps
                                            Counter,
                                    egpNeighStateDowns
                                            Counter,
                                    egpNeighIntervalHello
                                            INTEGER,
                                    egpNeighIntervalPoll
                                            INTEGER,
                                    egpNeighMode
                                            INTEGER,
                                    egpNeighEventTrigger
                                            INTEGER

}
Definition:

Information about this entity's relationship with a particular EGP neighbor. 
Access:

read-only.
Status:

mandatory.



RFC-1213 Management Information Base - EGP Neighbor Table

OBJECT: egpNeighState { egpNeighEntry 1 }

Syntax:
INTEGER {

idle(1),
acquisition(2),
down(3),
up(4),
cease(5)

}
Definition:

The EGP state of the local system with respect to this entry's EGP neighbor.    
Each EGP state is represented by a value that is one greater than the 
numerical value associated with said state in RFC 904. 

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Table

OBJECT: egpNeighAddr { egpNeighEntry 2 }

Syntax:
IpAddress

Definition:
The IP address of this entry's EGP neighbor.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighAs { egpNeighEntry 3 }

Syntax:
INTEGER

Definition:
The autonomous system of this EGP peer.    Zero should be specified if the 
autonomous system number of the neighbor is not yet known.

Access:
read-only

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighInMsgs { egpNeighEntry 4 }

Syntax:
Counter

Definition:
The number of EGP messages received without error from this EGP peer.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighInErrs { egpNeighEntry 5 }

Syntax:
Counter

Definition:
The number of EGP messages received from this EGP peer that proved to be in
error (e.g., bad EGP checksum).

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighOutMsgs { egpNeighEntry 6 }

Syntax:
Counter

Definition:
The number of locally generated EGP messages to this EGP peer.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighOutErrs { egpNeighEntry 7 }

Syntax:
Counter

Definition:
The number of locally generated EGP messages not sent to this EGP peer due 
to resource limitations within an EGP entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighInErrMsgs { egpNeighEntry 8 }

Syntax:
Counter

Definition:
The number of EGP-defined error messages received from this EGP peer.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighOutErrMsgs { egpNeighEntry 9 }

Syntax:
Counter

Definition:
The number of EGP-defined error messages sent to this EGP peer.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighStateUps { egpNeighEntry 10 }

Syntax:
Counter

Definition:
The number of EGP state transitions to the UP state with this EGP peer.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighStateDowns { egpNeighEntry 11 }

Syntax:
Counter

Definition:
The number of EGP state transitions from the UP state to any other state with 
this EGP peer.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighIntervalHello { egpNeighEntry 12 }

Syntax:
INTEGER

Definition:
The interval between EGP Hello command retransmissions (in hundredths of a 
second).    This represents the t1 timer as defined in RFC 904.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighIntervalPoll { egpNeighEntry 13 }

Syntax:
INTEGER

Definition:
The interval between EGP poll command retransmissions (in hundredths of a 
second).    This represents the t3 timer as defined in RFC 904.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighMode { egpNeighEntry 14 }

Syntax:
INTEGER { active(1), passive(2) }

Definition:
The polling mode of this EGP entity, either passive or active.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - EGP Neighbor Group

OBJECT: egpNeighEventTrigger { egpNeighEntry 15 }

Syntax:
INTEGER { start(1), stop(2) }

Definition:
A control variable used to trigger operator- initiated Start and Stop events.    
When read, this variable always returns the most recent value that 
egpNeighEventTrigger was set to.    If it has not been set since the last 
initialization of the network management subsystem on the node, it returns a 
value of `stop'. 
When set, this variable causes a Start or Stop event on the specified neighbor,
as specified on pages 8-10 of RFC 904.    Briefly, a Start event causes an Idle 
peer to begin neighbor acquisition and a non-Idle peer to reinitiate neighbor 
acquisition.    A stop event causes a non-Idle peer to return to the Idle state 
until a Start event occurs, either via egpNeighEventTrigger or otherwise.

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base - Object Definitions

The Transmission Group

Based on the transmission media underlying each interface on a system, the corresponding 
portion of the Transmission group is mandatory for that system. 
When Internet-standard definitions for managing transmission media are defined, the 
transmission group is used to provide a prefix for the names of those objects. 
Typically, such definitions reside in the experimental portion of the MIB until they are 
"proven", then as a part of the Internet standardization process, the definitions are 
accordingly elevated and a new object identifier, under the transmission group is defined. By
convention, the name assigned is: 

 type OBJECT IDENTIFIER        ::= { transmission number }
where "type" is the symbolic value used for the media in the ifType column of the ifTable 
object,and "number" is the actual integer value corresponding to the symbol. 



RFC-1213 Management Information Base - Object Definitions

The SNMP Group

Implementation of the SNMP group is mandatory for all systems which support an SNMP 
protocol entity.    Some of the objects defined below will be zero-valued in those SNMP 
implementations that are optimized to support only those functions specific to either a 
management agent or a management station.    In particular, it should be observed that the 
objects below refer to an SNMP entity, and there may be several SNMP entities residing on a 
managed node (e.g., if the node is hosting acting as a management station). 

snmpInPkts snmpOutPkts
snmpInBadVersions snmpInBadCommunityNames
snmpInBadCommunityUses snmpInASNParseErrs
snmpInTooBigs snmpInNoSuchNames
snmpInBadValues snmpInReadOnlys
snmpInGenErrs snmpInTotalReqVars
snmpInTotalSetVars snmpInGetRequests
snmpInGetNexts snmpInSetRequests
snmpInGetResponses snmpInTraps
snmpOutTooBigs snmpOutNoSuchNames
snmpOutBadValues snmpOutGenErrs
snmpOutGetRequests snmpOutGetNexts
snmpOutSetRequests snmpOutGetResponses
snmpOutTraps snmpEnableAuthenTraps



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInPkts { snmp 1 }

Syntax:
Counter

Definition:
The total number of Messages delivered to the SNMP entity from the transport
service.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutPkts { snmp 2 }

Syntax:
Counter

Definition:
The total number of SNMP Messages which were passed from the SNMP 
protocol entity to the transport service.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInBadVersions { snmp 3 }

Syntax:
Counter

Definition:
The total number of SNMP Messages which were delivered to the SNMP 
protocol entity and were for an unsupported SNMP version.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInBadCommunityNames { snmp 4 }

Syntax:
Counter

Definition:
The total number of SNMP Messages delivered to the SNMP protocol entity 
which used a SNMP community name not known to said entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInBadCommunityUses { snmp 5 }

Syntax:
Counter

Definition:
The total number of SNMP Messages delivered to the SNMP protocol entity 
which represented an SNMP operation which was not allowed by the SNMP 
community named in the Message.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInASNParseErrs { snmp 6 }

Syntax:
Counter

Definition:
The total number of ASN.1 or BER errors encountered by the SNMP protocol 
entity when decoding received SNMP Messages.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInTooBigs { snmp 8 }

Syntax:
Counter

Definition:
The total number of SNMP PDUs which were delivered to the SNMP protocol 
entity and for which the value of the error-status field is `tooBig'.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInNoSuchNames { snmp 9 }

Syntax:
Counter

Definition:
The total number of SNMP PDUs which were delivered to the SNMP protocol 
entity and for which the value of the error-status field is `noSuchName'.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInBadValues { snmp 10 }

Syntax:
Counter

Definition:
The total number of SNMP PDUs which were delivered to the SNMP protocol 
entity and for which the value of the error-status field is `badValue'.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInReadOnlys { snmp 11 }

Syntax:
Counter

Definition:
The total number valid SNMP PDUs which were delivered to the SNMP protocol 
entity and for which the value of the error-status field is `readOnly'.    It should 
be noted that it is a protocol error to generate an SNMP PDU which contains 
the value `readOnly' in the error-status field, as such this object is provided as
a means of detecting incorrect implementations of the SNMP.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInGenErrs { snmp 12 }

Syntax:
Counter

Definition:
The total number of SNMP PDUs which were delivered to the SNMP protocol 
entity and for which the value of the error-status field is `genErr'.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInTotalReqVars { snmp 13 }

Syntax:
Counter

Definition:
The total number of MIB objects which have been retrieved successfully by the
SNMP protocol entity as the result of receiving valid SNMP Get-Request and 
Get-Next PDUs.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInTotalSetVars { snmp 14 }

Syntax:
Counter

Definition:
The total number of MIB objects which have been altered successfully by the 
SNMP protocol entity as the result of receiving valid SNMP Set-Request PDUs.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInGetRequests { snmp 15 }

Syntax:
Counter

Definition:
The total number of SNMP Get-Request PDUs which have been accepted and 
processed by the SNMP protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInGetNexts { snmp 16 }

Syntax:
Counter

Definition:
The total number of SNMP Get-Next PDUs which have been accepted and 
processed by the SNMP protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInSetRequests { snmp 17 }

Syntax:
Counter

Definition:
The total number of SNMP Set-Request PDUs which have been accepted and 
processed by the SNMP protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInGetResponses { snmp 18 }

Syntax:
Counter

Definition:
The total number of SNMP Get-Response PDUs which have been accepted and 
processed by the SNMP protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpInTraps { snmp 19 }

Syntax:
Counter

Definition:
The total number of SNMP Trap PDUs which have been accepted and 
processed by the SNMP protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutTooBigs { snmp 20 }

Syntax:
Counter

Definition:
The total number of SNMP PDUs which were generated by the SNMP protocol 
entity and for which the value of the error-status field is `tooBig.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutNoSuchNames { snmp 21 }

Syntax:
Counter

Definition:
The total number of SNMP PDUs which were generated by the SNMP protocol 
entity and for which the value of the error-status is `noSuchName'.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutBadValues { snmp 22 }

Syntax:
Counter

Definition:
The total number of SNMP PDUs which were generated by the SNMP protocol 
entity and for which the value of the error-status field is `badValue'.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutGenErrs { snmp 24 }

Syntax:
Counter

Definition:
The total number of SNMP PDUs which were generated by the SNMP protocol 
entity and for which the value of the error-status field is `genErr'.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutGetRequests { snmp 25 }

Syntax:
Counter

Definition:
The total number of SNMP Get-Request PDUs which have been generated by 
the SNMP protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutGetNexts { snmp 26 }

Syntax:
Counter

Definition:
The total number of SNMP Get-Next PDUs which have been generated by the 
SNMP protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutSetRequests { snmp 27 }

Syntax:
Counter

Definition:
The total number of SNMP Set-Request PDUs which have been generated by 
the SNMP protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutGetResponses { snmp 28 }

Syntax:
Counter

Definition:
The total number of SNMP Get-Response PDUs which have been generated by 
the SNMP protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpOutTraps { snmp 29 }

Syntax:
Counter

Definition:
The total number of SNMP Trap PDUs which have been generated by the SNMP
protocol entity.

Access:
read-only.

Status:
mandatory.



RFC-1213 Management Information Base - SNMP Group

OBJECT: snmpEnableAuthenTraps { snmp 30 }

Syntax:
INTEGER { enabled(1), disabled(2) }

Definition:
Indicates whether the SNMP agent process is permitted to generate 
authentication-failure traps.    The value of this object overrides any 
configuration information; as such, it provides a means whereby all 
authentication-failure traps may be disabled. 
Note that it is strongly recommended that this object be stored in non-volatile 
memory so that it remains constant between re-initializations of the network 
management system.

Access:
read-write.

Status:
mandatory.



RFC-1213 Management Information Base for Network Management

Group Definitions

The definitions in this section are identical to those in the preceeding sections, but are 
arranged so that an entire group is contained in a single "topic" and may therefore be 
printed out.

Groups in MIB-II
system OBJECT IDENTIFIER ::= { mib-2 1 }
interfaces OBJECT IDENTIFIER ::= { mib-2 2 }
at OBJECT IDENTIFIER ::= { mib-2 3 }
ip OBJECT IDENTIFIER ::= { mib-2 4 }
icmp OBJECT IDENTIFIER ::= { mib-2 5 }
tcp OBJECT IDENTIFIER ::= { mib-2 6 }
udp OBJECT IDENTIFIER ::= { mib-2 7 }
egp OBJECT IDENTIFIER ::= { mib-2 8 }
-- historical (some say hysterical)
-- cmot OBJECT IDENTIFIER ::= { mib-2 9 }
transmission OBJECT IDENTIFIER ::= { mib-2 10 }
snmp OBJECT IDENTIFIER ::= { mib-2 11 }

RFC1213-MIB DEFINITIONS ::= BEGIN

IMPORTS
                                    mgmt, NetworkAddress, IpAddress, Counter, Gauge,
                                                    TimeTicks
                                            FROM RFC1155-SMI
                                    OBJECT-TYPE
                                                    FROM RFC-1212;

--    This MIB module uses the extended OBJECT-TYPE macro as
--    defined in [RFC-1212];

--    MIB-II (same prefix as MIB-I)

mib-2            OBJECT IDENTIFIER ::= { mgmt 1 }

-- textual conventions

DisplayString ::=
OCTET STRING

-- This data type is used to model textual information taken
-- from the NVT ASCII character set.    By convention, objects
-- with this syntax are declared as having
--
--            SIZE (0..255)

PhysAddress ::=
OCTET STRING

-- This data type is used to model media addresses.    For many
-- types of media, this will be in a binary representation.
-- For example, an ethernet address would be represented as



-- a string of 6 octets.



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The System Group
-- Implementation of the System group is mandatory for all
-- systems.    If an agent is not configured to have a value
-- for any of these variables, a string of length 0 is
-- returned.

sysDescr OBJECT-TYPE
SYNTAX    DisplayString (SIZE (0..255))
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"A textual description of the entity.    This value should include the full name 
and version identification of the system's hardware type, software operating-
system, and networking software.    It is mandatory that this only contain 
printable ASCII characters." 

::= { system 1 }

sysObjectID OBJECT-TYPE
SYNTAX    OBJECT IDENTIFIER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The vendor's authoritative identification of the network management 
subsystem contained in the entity.    This value is allocated within the SMI 
enterprises subtree (1.3.6.1.4.1) and provides an easy and unambiguous 
means for determining `what kind of box' is being managed.    For example, if 
vendor `Flintstones, Inc.' was assigned the subtree 1.3.6.1.4.1.4242, it could 
assign the identifier 1.3.6.1.4.1.4242.1.1 to its `Fred Router'." 

::= { system 2 }

sysUpTime OBJECT-TYPE
SYNTAX    TimeTicks
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The time (in hundredths of a second) since the network management portion 
of the system was last re-initialized." 

::= { system 3 }

sysContact OBJECT-TYPE
SYNTAX    DisplayString (SIZE (0..255))
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The textual identification of the contact person for this managed node, 
together with information on how to contact this person." 

::= { system 4 }

sysName OBJECT-TYPE



SYNTAX    DisplayString (SIZE (0..255))
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"An administratively-assigned name for this managed node.    By convention, 
this is the node's fully-qualified domain name." 

::= { system 5 }

sysLocation OBJECT-TYPE
SYNTAX    DisplayString (SIZE (0..255))
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The physical location of this node (e.g., `telephone closet, 3rd floor')." 
::= { system 6 }

sysServices OBJECT-TYPE
SYNTAX    INTEGER (0..127)
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"A value which indicates the set of services that this entity primarily offers. 
The value is a sum.    This sum initially takes the value zero, Then, for each 
layer, L, in the range 1 through 7, that this node performs transactions for, 2 
raised to (L - 1) is added to the sum.    For example, a node which performs 
primarily routing functions would have a value of 4 (2^(3-1)).    In contrast, a 
node which is a host offering application services would have a value of 72 
(2^(4-1) + 2^(7-1)).    Note that in the context of the Internet suite of 
protocols, values should be calculated accordingly: 
layer    functionality
        1    physical (e.g., repeaters)
        2    datalink/subnetwork (e.g., bridges)
        3    internet (e.g., IP gateways)
        4    end-to-end    (e.g., IP hosts)
        7    applications (e.g., mail relays)
For systems including OSI protocols, layers 5 and 6 may also be counted." 

::= { system 7 }



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The Interfaces Group
-- Implementation of the Interfaces group is mandatory for
-- all systems.

ifNumber OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of network interfaces (regardless of their current state) present 
on this system." 

::= { interfaces 1 }

-- the Interfaces table

-- The Interfaces table contains information on the entity's
-- interfaces.    Each interface is thought of as being
-- attached to a `subnetwork'.    Note that this term should
-- not be confused with `subnet' which refers to an
-- addressing partitioning scheme used in the Internet suite
-- of protocols.

ifTable OBJECT-TYPE
SYNTAX    SEQUENCE OF IfEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"A list of interface entries.    The number of entries is given by the value of 
ifNumber." 

::= { interfaces 2 }

ifEntry OBJECT-TYPE
SYNTAX    IfEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"An interface entry containing objects at the subnetwork layer and below for a
particular interface." 

INDEX      { ifIndex }
::= { ifTable 1 }

IfEntry ::=
SEQUENCE {

                                    ifIndex
                                            INTEGER,
                                    ifDescr
                                            DisplayString,
                                    ifType
                                            INTEGER,



                                    ifMtu
                                            INTEGER,
                                    ifSpeed
                                            Gauge,
                                    ifPhysAddress
                                            PhysAddress,
                                    ifAdminStatus
                                            INTEGER,
                                    ifOperStatus
                                            INTEGER,
                                    ifLastChange
                                            TimeTicks,
                                    ifInOctets
                                            Counter,
                                    ifInUcastPkts
                                            Counter,
                                    ifInNUcastPkts
                                            Counter,
                                    ifInDiscards
                                            Counter,
                                    ifInErrors
                                            Counter,
                                    ifInUnknownProtos
                                            Counter,
                                    ifOutOctets
                                            Counter,
                                    ifOutUcastPkts
                                            Counter,
                                    ifOutNUcastPkts
                                            Counter,
                                    ifOutDiscards
                                            Counter,
                                    ifOutErrors
                                            Counter,
                                    ifOutQLen
                                            Gauge,
                                    ifSpecific
                                            OBJECT IDENTIFIER

}

ifIndex OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"A unique value for each interface.    Its value ranges between 1 and the value 
of ifNumber.    The value for each interface must remain constant at least from 
one re-initialization of the entity's network management system to the next 
re- initialization." 

::= { ifEntry 1 }

ifDescr OBJECT-TYPE
SYNTAX    DisplayString (SIZE (0..255))
ACCESS    read-only
STATUS    mandatory



DESCRIPTION
"A textual string containing information about the interface.    This string 
should include the name of the manufacturer, the product name and the 
version of the hardware interface." 

::= { ifEntry 2 }

ifType OBJECT-TYPE
SYNTAX    INTEGER {

                                                    other(1),                    -- none of the following
                                                    regular1822(2),
                                                    hdh1822(3),
                                                    ddn-x25(4),
                                                    rfc877-x25(5),
                                                    ethernet-csmacd(6),
                                                    iso88023-csmacd(7),
                                                    iso88024-tokenBus(8),
                                                    iso88025-tokenRing(9),
                                                    iso88026-man(10),
                                                    starLan(11),
                                                    proteon-10Mbit(12),
                                                    proteon-80Mbit(13),
                                                    hyperchannel(14),
                                                    fddi(15),
                                                    lapb(16),
                                                    sdlc(17),
                                                    ds1(18),                      -- T-1
                                                    e1(19),                        -- european equiv. of T-1
                                                    basicISDN(20),
                                                    primaryISDN(21),      -- proprietary serial
                                                    propPointToPointSerial(22),
                                                    ppp(23),
                                                    softwareLoopback(24),
                                                    eon(25),                        -- CLNP over IP [RFC-1070]
                                                    ethernet-3Mbit(26),
                                                    nsip(27),                      -- XNS over IP
                                                    slip(28),                      -- generic SLIP
                                                    ultra(29),                    -- ULTRA technologies
                                                    ds3(30),                        -- T-3
                                                    sip(31),                        -- SMDS
                                                    frame-relay(32)
                                            }

ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The type of interface, distinguished according to the physical/link protocol(s) 
immediately `below' the network layer in the protocol stack." 

::= { ifEntry 3 }

ifMtu OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The size of the largest datagram which can be sent/received on the interface,



specified in octets.    For interfaces that are used for transmitting network 
datagrams, this is the size of the largest network datagram that can be sent 
on the interface." 

::= { ifEntry 4 }

ifSpeed OBJECT-TYPE
SYNTAX    Gauge
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"An estimate of the interface's current bandwidth in bits per second.    For 
interfaces which do not vary in bandwidth or for those where no accurate 
estimation can be made, this object should contain the nominal bandwidth." 

::= { ifEntry 5 }

ifPhysAddress OBJECT-TYPE
SYNTAX    PhysAddress
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The interface's address at the protocol layer immediately `below' the network
layer in the protocol stack.    For interfaces which do not have such an address 
(e.g., a serial line), this object should contain an octet string of zero length." 

::= { ifEntry 6 }

ifAdminStatus OBJECT-TYPE
SYNTAX    INTEGER {

                                                    up(1),              -- ready to pass packets
                                                    down(2),
                                                    testing(3)      -- in some test mode
                                            }

ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The desired state of the interface.    The testing(3) state indicates that no 
operational packets can be passed." 

::= { ifEntry 7 }

ifOperStatus OBJECT-TYPE
SYNTAX    INTEGER {

                                                    up(1),              -- ready to pass packets
                                                    down(2),
                                                    testing(3)      -- in some test mode
                                            }

ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The current operational state of the interface. The testing(3) state indicates 
that no operational packets can be passed." 

::= { ifEntry 8 }

ifLastChange OBJECT-TYPE
SYNTAX    TimeTicks



ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The value of sysUpTime at the time the interface entered its current 
operational state.    If the current state was entered prior to the last re- 
initialization of the local network management subsystem, then this object 
contains a zero value." 

::= { ifEntry 9 }

ifInOctets OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of octets received on the interface, including framing 
characters." 

::= { ifEntry 10 }

ifInUcastPkts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of subnetwork-unicast packets delivered to a higher-layer 
protocol." 

::= { ifEntry 11 }

ifInNUcastPkts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of non-unicast (i.e., subnetwork- broadcast or subnetwork-
multicast) packets delivered to a higher-layer protocol." 

::= { ifEntry 12 }

ifInDiscards OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of inbound packets which were chosen to be discarded even 
though no errors had been detected to prevent their being deliverable to a 
higher-layer protocol.    One possible reason for discarding such a packet could 
be to free up buffer space." 

::= { ifEntry 13 }

ifInErrors OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of inbound packets that contained errors preventing them from 



being deliverable to a higher-layer protocol." 
::= { ifEntry 14 }

ifInUnknownProtos OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of packets received via the interface which were discarded 
because of an unknown or unsupported protocol." 

::= { ifEntry 15 }

ifOutOctets OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of octets transmitted out of the interface, including framing
characters." 

::= { ifEntry 16 }

ifOutUcastPkts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of packets that higher-level protocols requested be 
transmitted to a subnetwork-unicast address, including those that were 
discarded or not sent." 

::= { ifEntry 17 }

ifOutNUcastPkts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of packets that higher-level protocols requested be 
transmitted to a non- unicast (i.e., a subnetwork-broadcast or subnetwork-
multicast) address, including those that were discarded or not sent." 

::= { ifEntry 18 }

ifOutDiscards OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of outbound packets which were chosen to be discarded even 
though no errors had been detected to prevent their being transmitted.    One 
possible reason for discarding such a packet could be to free up buffer space."

::= { ifEntry 19 }

ifOutErrors OBJECT-TYPE



SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of outbound packets that could not be transmitted because of 
errors." 

::= { ifEntry 20 }

ifOutQLen OBJECT-TYPE
SYNTAX    Gauge
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The length of the output packet queue (in packets)." 
::= { ifEntry 21 }

ifSpecific OBJECT-TYPE
SYNTAX    OBJECT IDENTIFIER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"A reference to MIB definitions specific to the particular media being used to 
realize the interface.    For example, if the interface is realized by an ethernet, 
then the value of this object refers to a document defining objects specific to 
ethernet.    If this information is not present, its value should be set to the 
OBJECT IDENTIFIER { 0 0 }, which is a syntatically valid object identifier, and 
any conformant implementation of ASN.1 and BER must be able to generate 
and recognize this value." 

::= { ifEntry 22 }



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The Address Translation Group
-- Implementation of the Address Translation group is
-- mandatory for all systems.    Note however that this group
-- is deprecated by MIB-II. That is, it is being included
-- solely for compatibility with MIB-I nodes, and will most
-- likely be excluded from MIB-III nodes.    From MIB-II and
-- onwards, each network protocol group contains its own
-- address translation tables.

-- The Address Translation group contains one table which is
-- the union across all interfaces of the translation tables
-- for converting a NetworkAddress (e.g., an IP address) into
-- a subnetwork-specific address.    For lack of a better term,
-- this document refers to such a subnetwork-specific address
-- as a `physical' address.

-- Examples of such translation tables are: for broadcast
-- media where ARP is in use, the translation table is
-- equivalent to the ARP cache; or, on an X.25 network where
-- non-algorithmic translation to X.121 addresses is
-- required, the translation table contains the
-- NetworkAddress to X.121 address equivalences.

atTable OBJECT-TYPE
SYNTAX    SEQUENCE OF AtEntry
ACCESS    not-accessible
STATUS    deprecated
DESCRIPTION

"The Address Translation tables contain the NetworkAddress to `physical' 
address equivalences. Some interfaces do not use translation tables for 
determining address equivalences (e.g., DDN-X.25 has an algorithmic 
method); if all interfaces are of this type, then the Address Translation table is 
empty, i.e., has zero entries." 

::= { at 1 }

atEntry OBJECT-TYPE
SYNTAX    AtEntry
ACCESS    not-accessible
STATUS    deprecated
DESCRIPTION

"Each entry contains one NetworkAddress to `physical' address equivalence." 
INDEX      { atIfIndex,

                                                atNetAddress }
::= { atTable 1 }

AtEntry ::=
SEQUENCE {

                                    atIfIndex
                                            INTEGER,
                                    atPhysAddress



                                            PhysAddress,
                                    atNetAddress
                                            NetworkAddress

}

atIfIndex OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    deprecated
DESCRIPTION

"The interface on which this entry's equivalence is effective.    The interface 
identified by a particular value of this index is the same interface as identified 
by the same value of ifIndex." 

::= { atEntry 1 }

atPhysAddress OBJECT-TYPE
SYNTAX    PhysAddress
ACCESS    read-write
STATUS    deprecated
DESCRIPTION

"The media-dependent `physical' address.
Setting this object to a null string (one of zero length) has the effect of 
invaliding the corresponding entry in the atTable object.    That is, it effectively 
dissasociates the interface identified with said entry from the mapping 
identified with said entry.    It is an implementation-specific matter as to 
whether the agent removes an invalidated entry from the table. Accordingly, 
management stations must be prepared to receive tabular information from 
agents that corresponds to entries not currently in use. Proper interpretation 
of such entries requires examination of the relevant atPhysAddress object." 

::= { atEntry 2 }

atNetAddress OBJECT-TYPE
SYNTAX    NetworkAddress
ACCESS    read-write
STATUS    deprecated
DESCRIPTION

"The NetworkAddress (e.g., the IP address) corresponding to the media-
dependent `physical' address." 

::= { atEntry 3 }



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The IP Group
-- Implementation of the IP group is mandatory for all
-- systems.

ipForwarding OBJECT-TYPE
SYNTAX    INTEGER {

                                                    forwarding(1),        -- acting as a gateway
                                                    not-forwarding(2) -- NOT acting as a gateway
                                            }

ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The indication of whether this entity is acting as an IP gateway in respect to 
the forwarding of datagrams received by, but not addressed to, this entity.    IP 
gateways forward datagrams.    IP hosts do not (except those source-routed via
the host). 
Note that for some managed nodes, this object may take on only a subset of 
the values possible. Accordingly, it is appropriate for an agent to return a 
`badValue' response if a management station attempts to change this object 
to an inappropriate value." 

::= { ip 1 }

ipDefaultTTL OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The default value inserted into the Time-To-Live field of the IP header of 
datagrams originated at this entity, whenever a TTL value is not supplied by 
the transport layer protocol." 

::= { ip 2 }

ipInReceives OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of input datagrams received from interfaces, including 
those received in error." 

::= { ip 3 }

ipInHdrErrors OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of input datagrams discarded due to errors in their IP headers, 
including bad checksums, version number mismatch, other format errors, 
time-to-live exceeded, errors discovered in processing their IP options, etc." 



::= { ip 4 }

ipInAddrErrors OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of input datagrams discarded because the IP address in their IP 
header's destination field was not a valid address to be received at this entity. 
This count includes invalid addresses (e.g., 0.0.0.0) and addresses of 
unsupported Classes (e.g., Class E).    For entities which are not IP Gateways 
and therefore do not forward datagrams, this counter includes datagrams 
discarded because the destination address was not a local address." 

::= { ip 5 }

ipForwDatagrams OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of input datagrams for which this entity was not their final IP 
destination, as a result of which an attempt was made to find a route to 
forward them to that final destination. In entities which do not act as IP 
Gateways, this counter will include only those packets which were Source-
Routed via this entity, and the Source- Route option processing was 
successful." 

::= { ip 6 }

ipInUnknownProtos OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of locally-addressed datagrams received successfully but 
discarded because of an unknown or unsupported protocol." 

::= { ip 7 }

ipInDiscards OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of input IP datagrams for which no problems were encountered 
to prevent their continued processing, but which were discarded (e.g., for lack 
of buffer space).    Note that this counter does not include any datagrams 
discarded while awaiting re-assembly." 

::= { ip 8 }

ipInDelivers OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION



"The total number of input datagrams successfully delivered to IP user-
protocols (including ICMP)." 

::= { ip 9 }

ipOutRequests OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of IP datagrams which local IP user-protocols (including 
ICMP) supplied to IP in requests for transmission.    Note that this counter does 
not include any datagrams counted in ipForwDatagrams." 

::= { ip 10 }

ipOutDiscards OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of output IP datagrams for which no problem was encountered to
prevent their transmission to their destination, but which were discarded (e.g.,
for lack of buffer space).    Note that this counter would include datagrams 
counted in ipForwDatagrams if any such packets met this (discretionary) 
discard criterion." 

::= { ip 11 }

ipOutNoRoutes OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of IP datagrams discarded because no route could be found to 
transmit them to their destination.    Note that this counter includes any 
packets counted in ipForwDatagrams which meet this `no-route' criterion.    
Note that this includes any datagarms which a host cannot route because all 
of its default gateways are down." 

::= { ip 12 }

ipReasmTimeout OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The maximum number of seconds which received fragments are held while 
they are awaiting reassembly at this entity." 

::= { ip 13 }

ipReasmReqds OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of IP fragments received which needed to be reassembled at this



entity." 
::= { ip 14 }

ipReasmOKs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of IP datagrams successfully re- assembled." 
::= { ip 15 }

ipReasmFails OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of failures detected by the IP re- assembly algorithm (for 
whatever reason: timed out, errors, etc).    Note that this is not necessarily a 
count of discarded IP fragments since some algorithms (notably the algorithm 
in RFC 815) can lose track of the number of fragments by combining them as 
they are received." 

::= { ip 16 }

ipFragOKs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of IP datagrams that have been successfully fragmented at this 
entity." 

::= { ip 17 }

ipFragFails OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of IP datagrams that have been discarded because they needed 
to be fragmented at this entity but could not be, e.g., because their Don't 
Fragment flag was set." 

::= { ip 18 }

ipFragCreates OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of IP datagram fragments that have been generated as a result 
of fragmentation at this entity." 

::= { ip 19 }



-- the IP address table

-- The IP address table contains this entity's IP addressing
-- information.

ipAddrTable OBJECT-TYPE
SYNTAX    SEQUENCE OF IpAddrEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"The table of addressing information relevant to this entity's IP addresses." 
::= { ip 20 }

ipAddrEntry OBJECT-TYPE
SYNTAX    IpAddrEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"The addressing information for one of this entity's IP addresses." 
INDEX      { ipAdEntAddr }
::= { ipAddrTable 1 }

IpAddrEntry ::=
SEQUENCE {

                                    ipAdEntAddr
                                            IpAddress,
                                    ipAdEntIfIndex
                                            INTEGER,
                                    ipAdEntNetMask
                                            IpAddress,
                                    ipAdEntBcastAddr
                                            INTEGER,
                                    ipAdEntReasmMaxSize
                                            INTEGER (0..65535)

}

ipAdEntAddr OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The IP address to which this entry's addressing information pertains." 
::= { ipAddrEntry 1 }

ipAdEntIfIndex OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The index value which uniquely identifies the interface to which this entry is 
applicable.    The interface identified by a particular value of this index is the 
same interface as identified by the same value of ifIndex." 



::= { ipAddrEntry 2 }

ipAdEntNetMask OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The subnet mask associated with the IP address of this entry.    The value of 
the mask is an IP address with all the network bits set to 1 and all the hosts 
bits set to 0." 

::= { ipAddrEntry 3 }

ipAdEntBcastAddr OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The value of the least-significant bit in the IP broadcast address used for 
sending datagrams on the (logical) interface associated with the IP address of 
this entry.    For example, when the Internet standard all-ones broadcast 
address is used, the value will be 1.    This value applies to both the subnet 
and network broadcasts addresses used by the entity on this (logical) 
interface." 

::= { ipAddrEntry 4 }

ipAdEntReasmMaxSize OBJECT-TYPE
SYNTAX    INTEGER (0..65535)
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The size of the largest IP datagram which this entity can re-assemble from 
incoming IP fragmented datagrams received on this interface." 

::= { ipAddrEntry 5 }

-- the IP routing table

-- The IP routing table contains an entry for each route
-- presently known to this entity.

ipRouteTable OBJECT-TYPE
SYNTAX    SEQUENCE OF IpRouteEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"This entity's IP Routing table."
::= { ip 21 }

ipRouteEntry OBJECT-TYPE
SYNTAX    IpRouteEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"A route to a particular destination."



INDEX      { ipRouteDest }
::= { ipRouteTable 1 }

IpRouteEntry ::=
SEQUENCE {

                                    ipRouteDest
                                            IpAddress,
                                    ipRouteIfIndex
                                            INTEGER,
                                    ipRouteMetric1
                                            INTEGER,
                                    ipRouteMetric2
                                            INTEGER,
                                    ipRouteMetric3
                                            INTEGER,
                                    ipRouteMetric4
                                            INTEGER,
                                    ipRouteNextHop
                                            IpAddress,
                                    ipRouteType
                                            INTEGER,
                                    ipRouteProto
                                            INTEGER,
                                    ipRouteAge
                                            INTEGER,
                                    ipRouteMask
                                            IpAddress,
                                    ipRouteMetric5
                                            INTEGER,
                                    ipRouteInfo
                                            OBJECT IDENTIFIER

}

ipRouteDest OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The destination IP address of this route.    An entry with a value of 0.0.0.0 is 
considered a default route.    Multiple routes to a single destination can appear
in the table, but access to such multiple entries is dependent on the table- 
access mechanisms defined by the network management protocol in use." 

::= { ipRouteEntry 1 }

ipRouteIfIndex OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The index value which uniquely identifies the local interface through which 
the next hop of this route should be reached.    The interface identified by a 
particular value of this index is the same interface as identified by the same 
value of ifIndex." 

::= { ipRouteEntry 2 }



ipRouteMetric1 OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The primary routing metric for this route.    The semantics of this metric are 
determined by the routing-protocol specified in the route's ipRouteProto value. 
If this metric is not used, its value should be set to -1." 

::= { ipRouteEntry 3 }

ipRouteMetric2 OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing-protocol specified in the route's ipRouteProto value. 
If this metric is not used, its value should be set to -1." 

::= { ipRouteEntry 4 }

ipRouteMetric3 OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing-protocol specified in the route's ipRouteProto value. 
If this metric is not used, its value should be set to -1." 

::= { ipRouteEntry 5 }

ipRouteMetric4 OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing-protocol specified in the route's ipRouteProto value. 
If this metric is not used, its value should be set to -1." 

::= { ipRouteEntry 6 }

ipRouteNextHop OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The IP address of the next hop of this route. (In the case of a route bound to 
an interface which is realized via a broadcast media, the value of this field is 
the agent's IP address on that interface.)" 

::= { ipRouteEntry 7 }

ipRouteType OBJECT-TYPE
SYNTAX    INTEGER {



                                                    other(1),                -- none of the following

                                                    invalid(2),            -- an invalidated route
                                                                                      -- route to directly
                                                    direct(3),              -- connected (sub-)network

                                                                                      -- route to a non-local
                                                    indirect(4)            -- host/network/sub-network
                                            }

ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The type of route.    Note that the values direct(3) and indirect(4) refer to the 
notion of direct and indirect routing in the IP architecture. 
Setting this object to the value invalid(2) has the effect of invalidating the 
corresponding entry in the ipRouteTable object.    That is, it effectively 
dissasociates the destination identified with said entry from the route 
identified with said entry.    It is an implementation-specific matter as to 
whether the agent removes an invalidated entry from the table. Accordingly, 
management stations must be prepared to receive tabular information from 
agents that corresponds to entries not currently in use. Proper interpretation 
of such entries requires examination of the relevant ipRouteType object." 

::= { ipRouteEntry 8 }

ipRouteProto OBJECT-TYPE
SYNTAX    INTEGER {

                                                    other(1),              -- none of the following

                                                                                    -- non-protocol information,
                                                                                    -- e.g., manually configured
                                                    local(2),              -- entries

                                                                                    -- set via a network
                                                    netmgmt(3),          -- management protocol

                                                                                    -- obtained via ICMP,
                                                    icmp(4),                -- e.g., Redirect

                                                                                    -- the remaining values are
                                                                                    -- all gateway routing
                                                                                    -- protocols
                                                    egp(5),
                                                    ggp(6),
                                                    hello(7),
                                                    rip(8),
                                                    is-is(9),
                                                    es-is(10),
                                                    ciscoIgrp(11),
                                                    bbnSpfIgp(12),
                                                    ospf(13),
                                                    bgp(14)
                                            }

ACCESS    read-only
STATUS    mandatory



DESCRIPTION
"The routing mechanism via which this route was learned.    Inclusion of values
for gateway routing protocols is not intended to imply that hosts should 
support those protocols." 

::= { ipRouteEntry 9 }

ipRouteAge OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The number of seconds since this route was last updated or otherwise 
determined to be correct. Note that no semantics of `too old' can be implied 
except through knowledge of the routing protocol by which the route was 
learned." 

::= { ipRouteEntry 10 }

ipRouteMask OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"Indicate the mask to be logical-ANDed with the destination address before 
being compared to the value in the ipRouteDest field.    For those systems that 
do not support arbitrary subnet masks, an agent constructs the value of the 
ipRouteMask by determining whether the value of the correspondent 
ipRouteDest field belong to a class-A, B, or C network, and then using one of: 

mask                      network
255.0.0.0            class-A
255.255.0.0        class-B
255.255.255.0    class-C

If the value of the ipRouteDest is 0.0.0.0 (a default route), then the mask 
value is also 0.0.0.0.    It should be noted that all IP routing subsystems 
implicitly use this mechanism." 

::= { ipRouteEntry 11 }

ipRouteMetric5 OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"An alternate routing metric for this route.    The semantics of this metric are 
determined by the routing-protocol specified in the route's ipRouteProto value. 
If this metric is not used, its value should be set to -1." 

::= { ipRouteEntry 12 }

ipRouteInfo OBJECT-TYPE
SYNTAX    OBJECT IDENTIFIER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"A reference to MIB definitions specific to the particular routing protocol which 



is responsible for this route, as determined by the value specified in the 
route's ipRouteProto value.    If this information is not present, its value should 
be set to the OBJECT IDENTIFIER { 0 0 }, which is a syntatically valid object 
identifier, and any conformant implementation of ASN.1 and BER must be able
to generate and recognize this value." 

::= { ipRouteEntry 13 }

-- the IP Address Translation table

-- The IP address translation table contain the IpAddress to
-- `physical' address equivalences.    Some interfaces do not
-- use translation tables for determining address
-- equivalences (e.g., DDN-X.25 has an algorithmic method);
-- if all interfaces are of this type, then the Address
-- Translation table is empty, i.e., has zero entries.

ipNetToMediaTable OBJECT-TYPE
SYNTAX    SEQUENCE OF IpNetToMediaEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"The IP Address Translation table used for mapping from IP addresses to 
physical addresses." 

::= { ip 22 }

ipNetToMediaEntry OBJECT-TYPE
SYNTAX    IpNetToMediaEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"Each entry contains one IpAddress to `physical' address equivalence." 
INDEX      { ipNetToMediaIfIndex,

                                                ipNetToMediaNetAddress }
::= { ipNetToMediaTable 1 }

IpNetToMediaEntry ::=
SEQUENCE {

                                    ipNetToMediaIfIndex
                                            INTEGER,
                                    ipNetToMediaPhysAddress
                                            PhysAddress,
                                    ipNetToMediaNetAddress
                                            IpAddress,
                                    ipNetToMediaType
                                            INTEGER

}

ipNetToMediaIfIndex OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The interface on which this entry's equivalence is effective.    The interface 



identified by a particular value of this index is the same interface as identified 
by the same value of ifIndex." 

::= { ipNetToMediaEntry 1 }

ipNetToMediaPhysAddress OBJECT-TYPE
SYNTAX    PhysAddress
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The media-dependent `physical' address."
::= { ipNetToMediaEntry 2 }

ipNetToMediaNetAddress OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The IpAddress corresponding to the media- dependent `physical' address." 
::= { ipNetToMediaEntry 3 }

ipNetToMediaType OBJECT-TYPE
SYNTAX    INTEGER {

                                                    other(1),                -- none of the following
                                                    invalid(2),            -- an invalidated mapping
                                                    dynamic(3),
                                                    static(4)
                                            }

ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The type of mapping.

Setting this object to the value invalid(2) has the effect of invalidating the 
corresponding entry in the ipNetToMediaTable.    That is, it effectively 
dissasociates the interface identified with said entry from the mapping 
identified with said entry. It is an implementation-specific matter as to whether
the agent removes an invalidated entry from the table.    Accordingly, 
management stations must be prepared to receive tabular information from 
agents that corresponds to entries not currently in use.    Proper interpretation 
of such entries requires examination of the relevant ipNetToMediaType object."

::= { ipNetToMediaEntry 4 }

-- additional IP objects

ipRoutingDiscards OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of routing entries which were chosen to be discarded even 
though they are valid.    One possible reason for discarding such an entry could



be to free-up buffer space for other routing entries." 
::= { ip 23 }



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The ICMP Group
-- Implementation of the ICMP group is mandatory for all
-- systems.

icmpInMsgs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of ICMP messages which the entity received.    Note that 
this counter includes all those counted by icmpInErrors." 

::= { icmp 1 }

icmpInErrors OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP messages which the entity received but determined as 
having ICMP-specific errors (bad ICMP checksums, bad length, etc.)." 

::= { icmp 2 }

icmpInDestUnreachs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Destination Unreachable messages received." 
::= { icmp 3 }

icmpInTimeExcds OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Time Exceeded messages received." 
::= { icmp 4 }

icmpInParmProbs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Parameter Problem messages received." 
::= { icmp 5 }

icmpInSrcQuenchs OBJECT-TYPE



SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Source Quench messages received." 
::= { icmp 6 }

icmpInRedirects OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Redirect messages received."
::= { icmp 7 }

icmpInEchos OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Echo (request) messages received." 
::= { icmp 8 }

icmpInEchoReps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Echo Reply messages received."
::= { icmp 9 }

icmpInTimestamps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Timestamp (request) messages received." 
::= { icmp 10 }

icmpInTimestampReps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Timestamp Reply messages received." 
::= { icmp 11 }

icmpInAddrMasks OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION



"The number of ICMP Address Mask Request messages received." 
::= { icmp 12 }

icmpInAddrMaskReps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Address Mask Reply messages received." 
::= { icmp 13 }

icmpOutMsgs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of ICMP messages which this entity attempted to send.    
Note that this counter includes all those counted by icmpOutErrors." 

::= { icmp 14 }

icmpOutErrors OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP messages which this entity did not send due to problems
discovered within ICMP such as a lack of buffers.    This value should not 
include errors discovered outside the ICMP layer such as the inability of IP to 
route the resultant datagram.    In some implementations there may be no 
types of error which contribute to this counter's value." 

::= { icmp 15 }

icmpOutDestUnreachs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Destination Unreachable messages sent." 
::= { icmp 16 }

icmpOutTimeExcds OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Time Exceeded messages sent."
::= { icmp 17 }

icmpOutParmProbs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory



DESCRIPTION
"The number of ICMP Parameter Problem messages sent." 

::= { icmp 18 }

icmpOutSrcQuenchs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Source Quench messages sent."
::= { icmp 19 }

icmpOutRedirects OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Redirect messages sent.    For a host, this object will 
always be zero, since hosts do not send redirects." 

::= { icmp 20 }

icmpOutEchos OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Echo (request) messages sent."
::= { icmp 21 }

icmpOutEchoReps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Echo Reply messages sent."
::= { icmp 22 }

icmpOutTimestamps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Timestamp (request) messages sent." 
::= { icmp 23 }

icmpOutTimestampReps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Timestamp Reply messages sent." 
::= { icmp 24 }



icmpOutAddrMasks OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Address Mask Request messages sent." 
::= { icmp 25 }

icmpOutAddrMaskReps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of ICMP Address Mask Reply messages sent." 
::= { icmp 26 }



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The TCP Group
-- Implementation of the TCP group is mandatory for all
-- systems that implement the TCP.

-- Note that instances of object types that represent
-- information about a particular TCP connection are
-- transient; they persist only as long as the connection
-- in question.

tcpRtoAlgorithm OBJECT-TYPE
SYNTAX    INTEGER {

                                                    other(1),        -- none of the following
                                                    constant(2), -- a constant rto
                                                    rsre(3),          -- MIL-STD-1778, Appendix B
                                                    vanj(4)            -- Van Jacobson's algorithm [10]
                                            }

ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The algorithm used to determine the timeout value used for retransmitting 
unacknowledged octets." 

::= { tcp 1 }

tcpRtoMin OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The minimum value permitted by a TCP implementation for the 
retransmission timeout, measured in milliseconds.    More refined semantics 
for objects of this type depend upon the algorithm used to determine the 
retransmission timeout.    In particular, when the timeout algorithm is rsre(3), 
an object of this type has the semantics of the LBOUND quantity described in 
RFC 793." 

::= { tcp 2 }

tcpRtoMax OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The maximum value permitted by a TCP implementation for the 
retransmission timeout, measured in milliseconds.    More refined semantics 
for objects of this type depend upon the algorithm used to determine the 
retransmission timeout.    In particular, when the timeout algorithm is rsre(3), 
an object of this type has the semantics of the UBOUND quantity described in 
RFC 793." 

::= { tcp 3 }



tcpMaxConn OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The limit on the total number of TCP connections the entity can support.    In 
entities where the maximum number of connections is dynamic, this object 
should contain the value -1." 

::= { tcp 4 }

tcpActiveOpens OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of times TCP connections have made a direct transition to the 
SYN-SENT state from the CLOSED state." 

::= { tcp 5 }

tcpPassiveOpens OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of times TCP connections have made a direct transition to the 
SYN-RCVD state from the LISTEN state." 

::= { tcp 6 }
tcpAttemptFails OBJECT-TYPE

SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of times TCP connections have made a direct transition to the 
CLOSED state from either the SYN-SENT state or the SYN-RCVD state, plus the 
number of times TCP connections have made a direct transition to the LISTEN 
state from the SYN-RCVD state." 

::= { tcp 7 }

tcpEstabResets OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of times TCP connections have made a direct transition to the 
CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state." 

::= { tcp 8 }

tcpCurrEstab OBJECT-TYPE
SYNTAX    Gauge
ACCESS    read-only
STATUS    mandatory
DESCRIPTION



"The number of TCP connections for which the current state is either 
ESTABLISHED or CLOSE- WAIT." 

::= { tcp 9 }

tcpInSegs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of segments received, including those received in error.    
This count includes segments received on currently established connections." 

::= { tcp 10 }

tcpOutSegs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of segments sent, including those on current connections 
but excluding those containing only retransmitted octets." 

::= { tcp 11 }

tcpRetransSegs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of segments retransmitted - that is, the number of TCP 
segments transmitted containing one or more previously transmitted octets." 

::= { tcp 12 }

-- the TCP Connection table

-- The TCP connection table contains information about this
-- entity's existing TCP connections.

tcpConnTable OBJECT-TYPE
SYNTAX    SEQUENCE OF TcpConnEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"A table containing TCP connection-specific information." 
::= { tcp 13 }

tcpConnEntry OBJECT-TYPE
SYNTAX    TcpConnEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"Information about a particular current TCP connection.    An object of this type
is transient, in that it ceases to exist when (or soon after) the connection 
makes the transition to the CLOSED state." 



INDEX      { tcpConnLocalAddress,
                                                tcpConnLocalPort,
                                                tcpConnRemAddress,
                                                tcpConnRemPort }

::= { tcpConnTable 1 }

TcpConnEntry ::=
SEQUENCE {

                                    tcpConnState
                                            INTEGER,
                                    tcpConnLocalAddress
                                            IpAddress,
                                    tcpConnLocalPort
                                            INTEGER (0..65535),
                                    tcpConnRemAddress
                                            IpAddress,
                                    tcpConnRemPort
                                            INTEGER (0..65535)

}

tcpConnState OBJECT-TYPE
SYNTAX    INTEGER {

                                                    closed(1),
                                                    listen(2),
                                                    synSent(3),
                                                    synReceived(4),
                                                    established(5),
                                                    finWait1(6),
                                                    finWait2(7),
                                                    closeWait(8),
                                                    lastAck(9),
                                                    closing(10),
                                                    timeWait(11),
                                                    deleteTCB(12)
                                            }

ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"The state of this TCP connection.
The only value which may be set by a management station is deleteTCB(12).    
Accordingly, it is appropriate for an agent to return a `badValue' response if a 
management station attempts to set this object to any other value. 
If a management station sets this object to the value deleteTCB(12), then this 
has the effect of deleting the TCB (as defined in RFC 793) of the corresponding
connection on the managed node, resulting in immediate termination of the 
connection. 
As an implementation-specific option, a RST segment may be sent from the 
managed node to the other TCP endpoint (note however that RST segments 
are not sent reliably)." 

::= { tcpConnEntry 1 }

tcpConnLocalAddress OBJECT-TYPE
SYNTAX    IpAddress



ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The local IP address for this TCP connection.    In the case of a connection in 
the listen state which is willing to accept connections for any IP interface 
associated with the node, the value 0.0.0.0 is used." 

::= { tcpConnEntry 2 }

tcpConnLocalPort OBJECT-TYPE
SYNTAX    INTEGER (0..65535)
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The local port number for this TCP connection."
::= { tcpConnEntry 3 }

tcpConnRemAddress OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The remote IP address for this TCP connection."
::= { tcpConnEntry 4 }

tcpConnRemPort OBJECT-TYPE
SYNTAX    INTEGER (0..65535)
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The remote port number for this TCP connection."
::= { tcpConnEntry 5 }

-- additional TCP objects

tcpInErrs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of segments received in error (e.g., bad TCP checksums)." 
::= { tcp 14 }

tcpOutRsts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of TCP segments sent containing the RST flag." 
::= { tcp 15 }



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The UDP Group
-- Implementation of the UDP group is mandatory for all
-- systems which implement the UDP.

udpInDatagrams OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of UDP datagrams delivered to UDP users." 
::= { udp 1 }

udpNoPorts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of received UDP datagrams for which there was no 
application at the destination port." 

::= { udp 2 }

udpInErrors OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of received UDP datagrams that could not be delivered for 
reasons other than the lack of an application at the destination port." 

::= { udp 3 }
udpOutDatagrams OBJECT-TYPE

SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of UDP datagrams sent from this entity." 
::= { udp 4 }

-- the UDP Listener table

-- The UDP listener table contains information about this
-- entity's UDP end-points on which a local application is
-- currently accepting datagrams.

udpTable OBJECT-TYPE
SYNTAX    SEQUENCE OF UdpEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION



"A table containing UDP listener information."
::= { udp 5 }

udpEntry OBJECT-TYPE
SYNTAX    UdpEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"Information about a particular current UDP listener." 
INDEX      { udpLocalAddress, udpLocalPort }
::= { udpTable 1 }

UdpEntry ::=
SEQUENCE {

                                    udpLocalAddress
                                            IpAddress,
                                    udpLocalPort
                                            INTEGER (0..65535)

}

udpLocalAddress OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The local IP address for this UDP listener.    In the case of a UDP listener which
is willing to accept datagrams for any IP interface associated with the node, 
the value 0.0.0.0 is used." 

::= { udpEntry 1 }

udpLocalPort OBJECT-TYPE
SYNTAX    INTEGER (0..65535)
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The local port number for this UDP listener."
::= { udpEntry 2 }



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The EGP Group
-- Implementation of the EGP group is mandatory for all
-- systems which implement the EGP.

egpInMsgs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of EGP messages received without error." 
::= { egp 1 }

egpInErrors OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of EGP messages received that proved to be in error." 
::= { egp 2 }

egpOutMsgs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of locally generated EGP messages." 
::= { egp 3 }

egpOutErrors OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of locally generated EGP messages not sent due to resource 
limitations within an EGP entity." 

::= { egp 4 }

-- the EGP Neighbor table

-- The EGP neighbor table contains information about this
-- entity's EGP neighbors.

egpNeighTable OBJECT-TYPE
SYNTAX    SEQUENCE OF EgpNeighEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"The EGP neighbor table."



::= { egp 5 }

egpNeighEntry OBJECT-TYPE
SYNTAX    EgpNeighEntry
ACCESS    not-accessible
STATUS    mandatory
DESCRIPTION

"Information about this entity's relationship with a particular EGP neighbor." 
INDEX      { egpNeighAddr }
::= { egpNeighTable 1 }

EgpNeighEntry ::=
SEQUENCE {

                                    egpNeighState
                                            INTEGER,
                                    egpNeighAddr
                                            IpAddress,
                                    egpNeighAs
                                            INTEGER,
                                    egpNeighInMsgs
                                            Counter,
                                    egpNeighInErrs
                                            Counter,
                                    egpNeighOutMsgs
                                            Counter,
                                    egpNeighOutErrs
                                            Counter,
                                    egpNeighInErrMsgs
                                            Counter,
                                    egpNeighOutErrMsgs
                                            Counter,
                                    egpNeighStateUps
                                            Counter,
                                    egpNeighStateDowns
                                            Counter,
                                    egpNeighIntervalHello
                                            INTEGER,
                                    egpNeighIntervalPoll
                                            INTEGER,
                                    egpNeighMode
                                            INTEGER,
                                    egpNeighEventTrigger
                                            INTEGER

}

egpNeighState OBJECT-TYPE
SYNTAX    INTEGER {

                                                    idle(1),
                                                    acquisition(2),
                                                    down(3),
                                                    up(4),
                                                    cease(5)
                                            }

ACCESS    read-only
STATUS    mandatory



DESCRIPTION
"The EGP state of the local system with respect to this entry's EGP neighbor.    
Each EGP state is represented by a value that is one greater than the 
numerical value associated with said state in RFC 904." 

::= { egpNeighEntry 1 }

egpNeighAddr OBJECT-TYPE
SYNTAX    IpAddress
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The IP address of this entry's EGP neighbor."
::= { egpNeighEntry 2 }

egpNeighAs OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The autonomous system of this EGP peer.    Zero should be specified if the 
autonomous system number of the neighbor is not yet known." 

::= { egpNeighEntry 3 }

egpNeighInMsgs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of EGP messages received without error from this EGP peer." 
::= { egpNeighEntry 4 }

egpNeighInErrs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of EGP messages received from this EGP peer that proved to be 
in error (e.g., bad EGP checksum)." 

::= { egpNeighEntry 5 }

egpNeighOutMsgs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of locally generated EGP messages to this EGP peer." 
::= { egpNeighEntry 6 }

egpNeighOutErrs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory



DESCRIPTION
"The number of locally generated EGP messages not sent to this EGP peer due
to resource limitations within an EGP entity." 

::= { egpNeighEntry 7 }

egpNeighInErrMsgs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of EGP-defined error messages received from this EGP peer." 
::= { egpNeighEntry 8 }

egpNeighOutErrMsgs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of EGP-defined error messages sent to this EGP peer." 
::= { egpNeighEntry 9 }

egpNeighStateUps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of EGP state transitions to the UP state with this EGP peer." 
::= { egpNeighEntry 10 }

egpNeighStateDowns OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The number of EGP state transitions from the UP state to any other state with
this EGP peer." 

::= { egpNeighEntry 11 }

egpNeighIntervalHello OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The interval between EGP Hello command retransmissions (in hundredths of 
a second).    This represents the t1 timer as defined in RFC 904." 

::= { egpNeighEntry 12 }

egpNeighIntervalPoll OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION



"The interval between EGP poll command retransmissions (in hundredths of a 
second).    This represents the t3 timer as defined in RFC 904." 

::= { egpNeighEntry 13 }

egpNeighMode OBJECT-TYPE
SYNTAX    INTEGER { active(1), passive(2) }
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The polling mode of this EGP entity, either passive or active." 
::= { egpNeighEntry 14 }

egpNeighEventTrigger OBJECT-TYPE
SYNTAX    INTEGER { start(1), stop(2) }
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"A control variable used to trigger operator- initiated Start and Stop events.    
When read, this variable always returns the most recent value that 
egpNeighEventTrigger was set to.    If it has not been set since the last 
initialization of the network management subsystem on the node, it returns a 
value of `stop'. 
When set, this variable causes a Start or Stop event on the specified neighbor,
as specified on pages 8-10 of RFC 904.    Briefly, a Start event causes an Idle 
peer to begin neighbor acquisition and a non-Idle peer to reinitiate neighbor 
acquisition.    A stop event causes a non-Idle peer to return to the Idle state 
until a Start event occurs, either via egpNeighEventTrigger or otherwise." 

::= { egpNeighEntry 15 }

-- additional EGP objects

egpAs OBJECT-TYPE
SYNTAX    INTEGER
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The autonomous system number of this EGP entity."
::= { egp 6 }



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The Transmission Group
-- Based on the transmission media underlying each interface
-- on a system, the corresponding portion of the Transmission
-- group is mandatory for that system.

-- When Internet-standard definitions for managing
-- transmission media are defined, the transmission group is
-- used to provide a prefix for the names of those objects.

-- Typically, such definitions reside in the experimental
-- portion of the MIB until they are "proven", then as a
-- part of the Internet standardization process, the
-- definitions are accordingly elevated and a new object
-- identifier, under the transmission group is defined. By
-- convention, the name assigned is:
--
--          type OBJECT IDENTIFIER        ::= { transmission number }
--
-- where "type" is the symbolic value used for the media in
-- the ifType column of the ifTable object, and "number" is
-- the actual integer value corresponding to the symbol.



RFC-1213 Management Information Base for Network Management - Group 
Definitions

The SNMP Group
-- Implementation of the SNMP group is mandatory for all
-- systems which support an SNMP protocol entity.    Some of
-- the objects defined below will be zero-valued in those
-- SNMP implementations that are optimized to support only
-- those functions specific to either a management agent or
-- a management station.    In particular, it should be
-- observed that the objects below refer to an SNMP entity,
-- and there may be several SNMP entities residing on a
-- managed node (e.g., if the node is hosting acting as
-- a management station).

snmpInPkts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of Messages delivered to the SNMP entity from the 
transport service." 

::= { snmp 1 }

snmpOutPkts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Messages which were passed from the SNMP 
protocol entity to the transport service." 

::= { snmp 2 }

snmpInBadVersions OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Messages which were delivered to the SNMP 
protocol entity and were for an unsupported SNMP version." 

::= { snmp 3 }

snmpInBadCommunityNames OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Messages delivered to the SNMP protocol entity 
which used a SNMP community name not known to said entity." 

::= { snmp 4 }

snmpInBadCommunityUses OBJECT-TYPE



SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Messages delivered to the SNMP protocol entity 
which represented an SNMP operation which was not allowed by the SNMP 
community named in the Message." 

::= { snmp 5 }

snmpInASNParseErrs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of ASN.1 or BER errors encountered by the SNMP protocol 
entity when decoding received SNMP Messages." 

::= { snmp 6 }
-- { snmp 7 } is not used

snmpInTooBigs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP PDUs which were delivered to the SNMP protocol 
entity and for which the value of the error-status field is `tooBig'." 

::= { snmp 8 }

snmpInNoSuchNames OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP PDUs which were delivered to the SNMP protocol 
entity and for which the value of the error-status field is `noSuchName'." 

::= { snmp 9 }

snmpInBadValues OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP PDUs which were delivered to the SNMP protocol 
entity and for which the value of the error-status field is `badValue'." 

::= { snmp 10 }

snmpInReadOnlys OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number valid SNMP PDUs which were delivered to the SNMP 
protocol entity and for which the value of the error-status field is `readOnly'.    



It should be noted that it is a protocol error to generate an SNMP PDU which 
contains the value `readOnly' in the error-status field, as such this object is 
provided as a means of detecting incorrect implementations of the SNMP." 

::= { snmp 11 }

snmpInGenErrs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP PDUs which were delivered to the SNMP protocol 
entity and for which the value of the error-status field is `genErr'." 

::= { snmp 12 }

snmpInTotalReqVars OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of MIB objects which have been retrieved successfully by 
the SNMP protocol entity as the result of receiving valid SNMP Get-Request 
and Get-Next PDUs." 

::= { snmp 13 }

snmpInTotalSetVars OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of MIB objects which have been altered successfully by the 
SNMP protocol entity as the result of receiving valid SNMP Set-Request PDUs." 

::= { snmp 14 }

snmpInGetRequests OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Get-Request PDUs which have been accepted and 
processed by the SNMP protocol entity." 

::= { snmp 15 }

snmpInGetNexts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Get-Next PDUs which have been accepted and 
processed by the SNMP protocol entity." 

::= { snmp 16 }

snmpInSetRequests OBJECT-TYPE



SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Set-Request PDUs which have been accepted and 
processed by the SNMP protocol entity." 

::= { snmp 17 }

snmpInGetResponses OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Get-Response PDUs which have been accepted 
and processed by the SNMP protocol entity." 

::= { snmp 18 }

snmpInTraps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Trap PDUs which have been accepted and 
processed by the SNMP protocol entity." 

::= { snmp 19 }

snmpOutTooBigs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP PDUs which were generated by the SNMP protocol 
entity and for which the value of the error-status field is `tooBig.'" 

::= { snmp 20 }
snmpOutNoSuchNames OBJECT-TYPE

SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP PDUs which were generated by the SNMP protocol 
entity and for which the value of the error-status is `noSuchName'." 

::= { snmp 21 }

snmpOutBadValues OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP PDUs which were generated by the SNMP protocol 
entity and for which the value of the error-status field is `badValue'." 

::= { snmp 22 }



-- { snmp 23 } is not used

snmpOutGenErrs OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP PDUs which were generated by the SNMP protocol 
entity and for which the value of the error-status field is `genErr'." 

::= { snmp 24 }

snmpOutGetRequests OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Get-Request PDUs which have been generated by 
the SNMP protocol entity." 

::= { snmp 25 }

snmpOutGetNexts OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Get-Next PDUs which have been generated by the 
SNMP protocol entity." 

::= { snmp 26 }

snmpOutSetRequests OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Set-Request PDUs which have been generated by 
the SNMP protocol entity." 

::= { snmp 27 }

snmpOutGetResponses OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Get-Response PDUs which have been generated by
the SNMP protocol entity." 

::= { snmp 28 }

snmpOutTraps OBJECT-TYPE
SYNTAX    Counter
ACCESS    read-only
STATUS    mandatory
DESCRIPTION

"The total number of SNMP Trap PDUs which have been generated by the 



SNMP protocol entity." 
::= { snmp 29 }

snmpEnableAuthenTraps OBJECT-TYPE
SYNTAX    INTEGER { enabled(1), disabled(2) }
ACCESS    read-write
STATUS    mandatory
DESCRIPTION

"Indicates whether the SNMP agent process is permitted to generate 
authentication-failure traps.    The value of this object overrides any 
configuration information; as such, it provides a means whereby all 
authentication-failure traps may be disabled. 
Note that it is strongly recommended that this object be stored in non-volatile 
memory so that it remains constant between re-initializations of the network 
management system." 

::= { snmp 30 }

END



RFC-1213 Management Information Base: MIB-II

Acknowledgements

This document was produced by the SNMP Working Group:
Anne Ambler, Spider
Karl Auerbach, Sun
Fred Baker, ACC
David Bridgham, Epilogue Technology
Ken Brinkerhoff
Ron Broersma, NOSC
Brian Brown, Synoptics
Jack Brown, US Army
Theodore Brunner, Bellcore
Jeff Buffum, HP
Jeffrey Buffum, HP
John Burress, Wellfleet
Jeffrey D. Case, University of Tennessee at Knoxville
Chris Chiptasso, Spartacus
Paul Ciarfella, DEC
Bob Collet
John Cook, Chipcom
Tracy Cox, Bellcore
James R. Davin, MIT-LCS
Eric Decker, cisco
Kurt Dobbins, Cabletron
Nadya El-Afandi, Network Systems
Gary Ellis, HP
Fred Engle
Mike Erlinger
Mark S. Fedor, PSI
Richard Fox, Synoptics
Karen Frisa, CMU
Stan Froyd, ACC
Chris Gunner, DEC
Fred Harris, University of Tennessee at Knoxville
Ken Hibbard, Xylogics
Ole Jacobsen, Interop
Ken Jones
Satish Joshi, Synoptics
Frank Kastenholz, Racal-Interlan
Shimshon Kaufman, Spartacus
Ken Key, University of Tennessee at Knoxville
Jim Kinder, Fibercom
Alex Koifman, BBN
Christopher Kolb, PSI
Cheryl Krupczak, NCR
Paul Langille, DEC
Martin Lee Schoffstall, PSI
Peter Lin, Vitalink
John Lunny, TWG
Carl Malamud
Gary Malkin, FTP Software, Inc.



Randy Mayhew, University of Tennessee at Knoxville
Keith McCloghrie, Hughes LAN Systems
Donna McMaster, David Systems
Lynn Monsanto, Sun
Dave Perkins, 3COM
Jim Reinstedler, Ungerman Bass
Anil Rijsinghani, DEC
Kathy Rinehart, Arnold AFB
Kary Robertson
Marshall T. Rose, PSI (chair)
L. Michael Sabo, NCSC
Jon Saperia, DEC
Greg Satz, cisco
Martin Schoffstall, PSI
John Seligson
Steve Sherry, Xyplex
Fei Shu, NEC
Sam Sjogren, TGV
Mark Sleeper, Sparta
Lance Sprung
Mike St.Johns
Bob Stewart, Xyplex
Emil Sturniold
Kaj Tesink, Bellcore
Geoff Thompson, Synoptics
Dean Throop, Data General
Bill Townsend, Xylogics
Maurice Turcotte, Racal-Milgo
Kannan Varadhou
Sudhanshu Verma, HP
Bill Versteeg, Network Research Corporation
Warren Vik, Interactive Systems
David Waitzman, BBN
Steve Waldbusser, CMU
Dan Wintringhan
David Wood
Wengyik Yeong, PSI
Jeff Young, Cray Research

In addition, the comments of the following individuals are also acknolwedged: 
Craig A. Finseth, Minnesota Supercomputer Center, Inc.
Jeffrey C. Honig, Cornell University Theory Center
Philip R. Karn, Bellcore



RFC-1213 Management Information Base: MIB-II

Authors' Addresses

Keith McCloghrie
Hughes LAN Systems
1225 Charleston Road
Mountain View, CA 94043
1225 Charleston Road
Mountain View, CA 94043

Phone: (415) 966-7934
EMail: kzm@hls.com

Marshall T. Rose
Performance Systems International
5201 Great America Parkway
Suite 3106
Santa Clara, CA    95054

Phone: +1 408 562 6222
EMail: mrose@psi.com
X.500:    rose, psi, us



Information processing systems - Open Systems Interconnection -    Specification of Abstract 
Syntax Notation One (ASN.1),    International Organization for Standardization, International    
Standard 8824, December 1987. 



Information processing systems - Open Systems Interconnection - Specification of Basic 
Encoding Rules for Abstract Notation One (ASN.1), International Organization for 
Standardization, International Standard 8825, December 1987. 



Jacobson, V., "Congestion Avoidance and Control", SIGCOMM 1988, Stanford, California. 



    



Post Office Protocol - Version 3
M. Rose

Performance Systems International
May 1991

Status of this Memo
This memo suggests a simple method for workstations to dynamically access mail from a 
mailbox server.    This RFC specifies an IAB standards track protocol for the Internet 
community, and requests discussion and suggestions for improvements.    Please refer to the
current edition of the "IAB Official Protocol Standards" for the standardization state and 
status of this protocol.    Distribution of this memo is unlimited. 

Overview
Introduction
A Short Digression
The AUTHORIZATION State

Commands
The TRANSACTION State

Commands
The UPDATE State

Commands
Minimal POP3 Commands
Optional POP3 Commands
Example POP3 Session
Message Format
POP and Split-UA Model
Author's Address



RFC-1225 Post Office Protocol - Version 3

Overview

This memo is a republication of RFC 1081 which was based on RFC 918 (since revised as RFC
937).    Although similar in form to the original Post Office Protocol (POP) proposed for the 
Internet community, the protocol discussed in this memo is similar in spirit to the ideas 
investigated by the MZnet project at the University of California, Irvine. 
Further, substantial work was done on examining POP in a PC-based environment.    This 
work, which resulted in additional functionality in this protocol, was performed by the ACIS 
Networking Systems Group at Stanford University.    The author gratefully acknowledges their
interest. 



RFC-1225 Post Office Protocol - Version 3

Introduction

On certain types of smaller nodes in the Internet it is often impractical to maintain a 
message transport system (MTS).    For example, a workstation may not have sufficient 
resources (cycles, disk space) in order to permit a SMTP server and associated local mail 
delivery system to be kept resident and continuously running. Similarly, it may be expensive
(or impossible) to keep a personal computer interconnected to an IP-style network for long 
amounts of time (the node is lacking the resource known as "connectivity"). 
Despite this, it is often very useful to be able to manage mail on these smaller nodes, and 
they often support a user agent (UA) to aid the tasks of mail handling.    To solve this 
problem, a node which can support an MTS entity offers a maildrop service to these less 
endowed nodes.    The Post Office Protocol - Version 3 (POP3) is intended to permit a 
workstation to dynamically access a maildrop on a server host in a useful fashion.    Usually, 
this means that the POP3 is used to allow a workstation to retrieve mail that the server is 
holding for it. 
For the remainder of this memo, the term "client host" refers to a host making use of the 
POP3 service, while the term "server host" refers to a host which offers the POP3 service. 



RFC-1225 Post Office Protocol - Version 3

A Short Digression

This memo does not specify how a client host enters mail into the transport system, 
although a method consistent with the philosophy of this memo is presented here: 
When the user agent on a client host wishes to enter a message into the transport system, it
establishes an SMTP connection to its relay host (this relay host could be, but need not be, 
the POP3 server host for the client host). 
If this method is followed, then the client host appears to the MTS as a user agent, and 
should NOT be regarded as a "trusted" MTS entity in any sense whatsoever.    This concept, 
along with the role of the POP3 as a part of a split-UA model is discussed later in this memo. 
Initially, the server host starts the POP3 service by listening on TCP port 110.    When a client 
host wishes to make use of the service, it establishes a TCP connection with the server host. 
When the connection is established, the POP3 server sends a greeting.    The client and POP3
server then exchange commands and responses (respectively) until the connection is closed 
or aborted. 
Commands in the POP3 consist of a keyword possibly followed by an argument.    All 
commands are terminated by a CRLF pair. 
Responses in the POP3 consist of a success indicator and a keyword possibly followed by 
additional information.    All responses are terminated by a CRLF pair.    There are currently 
two success indicators: positive ("+OK") and negative ("-ERR"). 
Responses to certain commands are multi-line.    In these cases, which are clearly indicated 
below, after sending the first line of the response and a CRLF, any additional lines are sent, 
each terminated by a CRLF pair.    When all lines of the response have been sent, a final line 
is sent, consisting of a termination octet (decimal code 046, ".") and a CRLF pair.    If any line 
of the multi-line response begins with the termination octet, the line is "byte-stuffed" by pre-
pending the termination octet to that line of the response. 
Hence a multi-line response is terminated with the five octets "CRLF.CRLF".    When 
examining a multi-line response, the client checks to see if the line begins with the 
termination octet.    If so and if octets other than CRLF follow, the the first octet of the line 
(the termination octet) is stripped away.    If so and if CRLF immediately follows the 
termination character, then the response from the POP server is ended and the line 
containing ".CRLF" is not considered part of the multi-line response. 
A POP3 session progresses through a number of states during its lifetime.    Once the TCP 
connection has been opened and the POP3 server has sent the greeting, the session enters 
the AUTHORIZATION state.    In this state, the client must identify itself to the POP3 server.    
Once the client has successfully done this, the server acquires resources associated with the
client's maildrop, and the session enters the TRANSACTION state.    In this state, the client 
requests actions on the part of the POP3 server.    When the client has finished its 
transactions, the session enters the UPDATE state.    In this state, the POP3 server releases 
any resources acquired during the TRANSACTION state and says goodbye.    The TCP 
connection is then closed. 



RFC-1225 Post Office Protocol - Version 3

The AUTHORIZATION State

Once the TCP connection has been opened by a POP3 client, the POP3 server issues a one 
line greeting.    This can be any string terminated by CRLF.    An example might be: 

S.    +OK dewey POP3 server ready (Comments to: PostMaster@UDEL.EDU)
Note that this greeting is a POP3 reply.    The POP3 server should always give a positive 
response as the greeting. 
The POP3 session is now in the AUTHORIZATION state.    The client must now issue the USER 
command.    If the POP3 server responds with a positive success indicator ("+OK"), then the 
client may issue either the PASS command to complete the authorization, or the QUIT 
command to terminate the POP3 session.    If the POP3 server responds with a negative 
success indicator ("-ERR") to the USER command, then the client may either issue a new 
USER command or may issue the QUIT command. 
When the client issues the PASS command, the POP3 server uses the argument pair from the
USER and PASS commands to determine if the client should be given access to the 
appropriate maildrop.    If so, the POP3 server then acquires an exclusive-access lock on the 
maildrop.    If the lock is successfully acquired, the POP3 server parses the maildrop into 
individual messages (read note below), determines the last message (if any) present in the 
maildrop that was referenced by the RETR command, and responds with a positive success 
indicator.    The POP3 session now enters the TRANSACTION state.    If the lock can not be 
acquired or the client should is denied access to the appropriate maildrop or the maildrop 
can't be parsed for some reason, the POP3 server responds with a negative success 
indicator. (If a lock was acquired but the POP3 server intends to respond with a negative 
success indicator, the POP3 server must release the lock prior to rejecting the command.)    
At this point, the client may either issue a new USER command and start again, or the client 
may issue the QUIT command. 

Note:
Minimal implementations of the POP3 need only be able to break a maildrop 
into its component messages; they need not be able to parse individual 
messages. More advanced implementations may wish to have this capability, 
for reasons discussed later. 

After the POP3 server has parsed the maildrop into individual messages, it assigns a 
message-id to each message, and notes the size of the message in octets.    The first 
message in the maildrop is assigned a message-id of "1", the second is assigned "2", and so 
on, so that the n'th message in a maildrop is assigned a message-id of "n".    In POP3 
commands and responses, all message-id's and message sizes are expressed in base-10 
(i.e., decimal). 
It sets the "highest number accessed" to be that of the last message referenced by the RETR
command. 



RFC-1225 Post Office Protocol - Version 3: Authorization State

Commands in Authorization State

USER
PASS
QUIT



RFC-1225 Post Office Protocol - Version 3: Authorization Commands

USER name

Arguments:
A server specific user-id (required) Restrictions: may only be given in the 
AUTHORIZATION state after the POP3 greeting or after an unsuccessful USER 
or PASS command 

Possible Responses:
+OK name is welcome here
-ERR never heard of name

Examples:
C:        USER mrose
S:        +OK mrose is a real hoopy frood
...
C:        USER frated
S:        -ERR sorry, frated doesn't get his mail here



RFC-1225 Post Office Protocol - Version 3: Authorization Commands

PASS string

Arguments:
A server/user-id specific password (required)

Restrictions:
may only be given in the AUTHORIZATION state after a successful USER 
command 

Possible Responses:
+OK maildrop locked and ready
-ERR invalid password
-ERR unable to lock maildrop

Examples:
C:        USER mrose
S:        +OK mrose is a real hoopy frood
C:        PASS secret
S:        +OK mrose's maildrop has 2 messages
(320 octets)
...
C:        USER mrose
S:        +OK mrose is a real hoopy frood
C:        PASS secret
S:        -ERR unable to lock mrose's maildrop, file already locked 



RFC-1225 Post Office Protocol - Version 3: Authorization Commands

QUIT

Arguments:
none

Restrictions:
none

Possible Responses:
+OK
Examples:
C:        QUIT
S:        +OK dewey POP3 server signing off



RFC-1225 Post Office Protocol - Version 3

The TRANSACTION State

Once the client has successfully identified itself to the POP3 server and the POP3 server has 
locked and burst the appropriate maildrop, the POP3 session is now in the TRANSACTION 
state.    The client may now issue any of the following POP3 commands repeatedly.    After 
each command, the POP3 server issues a response.    Eventually, the client issues the QUIT 
command and the POP3 session enters the UPDATE state. 



RFC-1225 Post Office Protocol - Version 3: Transaction State

Commands in Transaction State

STAT
LIST
RETR
DELE
NOOP
LAST
RSET



RFC-1225 Post Office Protocol - Version 3: Transaction Commands

STAT

Arguments:
none

Restrictions:
may only be given in the TRANSACTION state.

Discussion:
The POP3 server issues a positive response with a line containing information 
for the maildrop.    This line is called a "drop listing" for that maildrop. In order 
to simplify parsing, all POP3 servers are required to use a certain format for 
drop listings. The first octets present must indicate the number of messages in
the maildrop.    Following this is the size of the maildrop in octets.    This memo 
makes no requirement on what follows the maildrop size. Minimal 
implementations should just end that line of the response with a CRLF pair.    
More advanced implementations may include other information. 

Note:
This memo strongly discourages implementations from supplying 
additional information in the drop listing.    Other, optional, facilities are 
discussed later on which permit the client to parse the messages in the
maildrop. 

Note that messages marked as deleted are not counted in either total. 
Possible Responses:

+OK nn mm
Examples:

C:        STAT
S:        +OK 2 320



RFC-1225 Post Office Protocol - Version 3: Transaction Commands

LIST [msg]

Arguments:
a message-id (optionally)    If a message-id is given, it may not refer to a 
message marked as deleted. 

Restrictions:
may only be given in the TRANSACTION state.

Discussion:
If an argument was given and the POP3 server issues a positive response with 
a line containing information for that message.    This line is called a "scan 
listing" for that message. 
If no argument was given and the POP3 server issues a positive response, 
then the response given is multi-line.    After the initial +OK, for each message 
in the maildrop, the POP3 server responds with a line containing information 
for that message.    This line is called a "scan listing" for that message. 
In order to simplify parsing, all POP3 servers are required to use a certain 
format for scan listings. The first octets present must be the message-id of the
message.    Following the message-id is the size of the message in octets.    
This memo makes no requirement on what follows the message size in the 
scan listing. Minimal implementations should just end that line of the response
with a CRLF pair.    More advanced implementations may include other 
information, as parsed from the message. 

Note:
This memo strongly discourages implementations from supplying 
additional information in the scan listing.    Other, optional, facilities are
discussed later on which permit the client to parse the messages in the
maildrop. 

Note that messages marked as deleted are not listed.
Possible Responses:

+OK scan listing follows
-ERR no such message

Examples:
C:        LIST
S:        +OK 2 messages (320 octets)
S:        1 120
S:        2 200
S:        .
...
C:        LIST 2
S:        +OK 2 200
...
C:        LIST 3
S:        -ERR no such message, only 2 messages in maildrop 



RFC-1225 Post Office Protocol - Version 3: Transaction Commands

RETR msg

Arguments:
a message-id (required)    This message-id may not refer to a message marked
as deleted. 

Restrictions:
may only be given in the TRANSACTION state.

Discussion:
If the POP3 server issues a positive response, then the response given is multi-
line.    After the initial +OK, the POP3 server sends the message corresponding 
to the given message-id, being careful to byte-stuff the termination character 
(as with all multi-line responses). 
If the number associated with this message is higher than the "highest 
number accessed" in the maildrop, the POP3 server updates the "highest 
number accessed" to the number associated with this message. 

Possible Responses:
+OK message follows
-ERR no such message

Examples:
C:        RETR 1
S:        +OK 120 octets
S:        <the POP3 server sends the entire message here>
S:        .



RFC-1225 Post Office Protocol - Version 3: Transaction Commands

DELE msg

Arguments:
a message-id (required)    This message-id may not refer to a message marked
as deleted. 

Restrictions:
may only be given in the TRANSACTION state.

Discussion:
The POP3 server marks the message as deleted.    Any future reference to the 
message-id associated with the message in a POP3 command generates an 
error.    The POP3 server does not actually delete the message until the POP3 
session enters the UPDATE state. 
If the number associated with this message is higher than the "highest 
number accessed" in the maildrop, the POP3 server updates the "highest 
number accessed" to the number associated with this message. 

Possible Responses:
+OK message deleted
-ERR no such message

Examples:
C:        DELE 1
S:        +OK message 1 deleted
...
C:        DELE 2
S:        -ERR message 2 already deleted



RFC-1225 Post Office Protocol - Version 3: Transaction Commands

NOOP

Arguments:
none

Restrictions:
may only be given in the TRANSACTION state.

Discussion:
The POP3 server does nothing, it merely replies with a positive response. 

Possible Responses:
+OK

Examples:
C:        NOOP
S:        +OK



RFC-1225 Post Office Protocol - Version 3: Transaction Commands

LAST

Arguments:
none

Restrictions:
may only be issued in the TRANSACTION state.

Discussion:
The POP3 server issues a positive response with a line containing the highest 
message number which accessed. Zero is returned in case no message in the 
maildrop has been accessed during previous transactions.    A client may 
thereafter infer that messages, if any, numbered greater than the response to 
the LAST command are messages not yet accessed by the client. 

Possible Response:
+OK nn

Examples:
C:            STAT
S:            +OK 4 320
C:            LAST
S:            +OK 1
C:            RETR 3
S:            +OK 120 octets
S:            <the POP3 server sends the entire message
here>
S:            .
C:            LAST
S:            +OK 3
C:            DELE 2
S:            +OK message 2 deleted
C:            LAST
S:            +OK 3
C:            RSET
S:            +OK
C:            LAST
S:            +OK 1



RFC-1225 Post Office Protocol - Version 3: Transaction Commands

RSET

Arguments:
none

Restrictions:
may only be given in the TRANSACTION state. 

Discussion:
If any messages have been marked as deleted by the POP3 server, they are 
unmarked.    The POP3 server then replies with a positive response.    In 
addition, the "highest number accessed" is also reset to the value determined 
at the beginning of the POP3 session. 

Possible Responses:
+OK

Examples:
C:        RSET
S:        +OK maildrop has 2 messages (320 octets)



RFC-1225 Post Office Protocol - Version 3

The UPDATE State

When the client issues the QUIT command from the TRANSACTION state, the POP3 session 
enters the UPDATE state.    (Note that if the client issues the QUIT command from the 
AUTHORIZATION state, the POP3 session terminates but does not enter the UPDATE state.) 



RFC-1225 Post Office Protocol - Version 3: Update State

Commands in Update State

QUIT
Arguments:

none
Restrictions:

none
Discussion:

The POP3 server removes all messages marked as deleted from the maildrop.  
It then releases the exclusive-access lock on the maildrop and replies as to the
success of these operations.    The TCP connection is then closed. 

Possible Responses:
+OK

Examples:
C:        QUIT
S:        +OK dewey POP3 server signing off (maildrop empty)
...
C:        QUIT
S:        +OK dewey POP3 server signing off (2 messages left)
...



RFC-1225 Post Office Protocol - Version 3

Minimal POP3 Commands

USER name valid in the AUTHORIZATION state
PASS string
QUIT

STAT valid in the TRANSACTION state
LIST [msg]
RETR msg
DELE msg
NOOP
LAST
RSET

QUIT valid in the UPDATE state



RFC-1225 Post Office Protocol - Version 3

Optional POP3 Commands

The POP3 commands discussed above must be supported by all minimal implementations of 
POP3 servers. 
The optional POP3 commands described below permit a POP3 client greater freedom in 
message handling, while preserving a simple POP3 server implementation. 

Note:
This memo strongly encourages implementations to support these 
commands in lieu of developing augmented drop and scan listings.    In short, 
the philosophy of this memo is to put intelligence in the part of the POP3 client
and not the POP3 server. 
TOP
RPOP



RFC-1225 Post Office Protocol - Version 3: Optional Commands

TOP msg n

Arguments:
a message-id (required) and a number.    This message-id may not refer to a 
message marked as deleted. 

Restrictions:
may only be given in the TRANSACTION state.

Discussion:
If the POP3 server issues a positive response, then the response given is multi-
line.    After the initial +OK, the POP3 server sends the headers of the 
message, the blank line separating the headers from the body, and then the 
number of lines indicated message's body, being careful to byte-stuff the 
termination character (as with all multi-line responses). 
Note that if the number of lines requested by the POP3 client is greater than 
than the number of lines in the body, then the POP3 server sends the entire 
message. 

Possible Responses:
+OK top of message follows
-ERR no such message

Examples:
C:        TOP 10
S:        +OK
S:        <the POP3 server sends the headers of the message, a blank line, and 
the first 10 lines of the body of the message> 
S:        .
...
C:        TOP 100
S:        -ERR no such message



RFC-1225 Post Office Protocol - Version 3: Optional Commands

RPOP user

Arguments:
a client specific user-id (required)

Restrictions:
may only be given in the AUTHORIZATION state after a successful USER 
command; in addition, may only be given if the client used a reserved 
(privileged) TCP port to connect to the server.

Discussion: 
The RPOP command may be used instead of the PASS command to 
authenticate access to the maildrop.    In order for this command to be 
successful, the POP3 client must use a reserved TCP port (port < 1024) to 
connect tothe server.    The POP3 server uses the argument pair from the USER
and RPOP commands to determine if the client should be given access to the 
appropriate maildrop.    Unlike the PASS command however, the POP3 server 
considers if the remote user specified by the RPOP command who resides on 
the POP3 client host is allowed to access the maildrop for the user specified by
the USER command (e.g., on Berkeley UNIX, the .rhosts mechanism is used).    
With the exception of this differing in authentication, this command is identical
to the PASS command. 
Note that the use of this feature has allowed much wider penetration into 
numerous hosts on local networks (and sometimes remote networks) by those
who gain illegal access to computers by guessing passwords or otherwise 
breaking into the system. 

Possible Responses:
+OK maildrop locked and ready
-ERR permission denied

Examples:
C:        USER mrose
S:        +OK mrose is a real hoopy frood
C:        RPOP mrose
S:        +OK mrose's maildrop has 2 messages (320 octets)



RFC-1225 Post Office Protocol - Version 3

Example POP3 Session

S: <wait for connection on TCP port 110>
...
C: <open connection>
S:        +OK dewey POP3 server ready (Comments to: PostMaster@UDEL.EDU)
C:        USER mrose
S:        +OK mrose is a real hoopy frood
C:        PASS secret
S:        +OK mrose's maildrop has 2 messages (320 octets)
C:        STAT
S:        +OK 2 320
C:        LIST
S:        +OK 2 messages (320 octets)
S:        1 120
S:        2 200
S:        .
C:        RETR 1
S:        +OK 120 octets
S:        <the POP3 server sends message 1>
S:        .
C:        DELE 1
S:        +OK message 1 deleted
C:        RETR 2
S:        +OK 200 octets
S:        <the POP3 server sends message 2>
S:        .
C:        DELE 2
S:        +OK message 2 deleted
C:        QUIT
S:        +OK dewey POP3 server signing off (maildrop empty)
C:    <close connection>
S:    <wait for next connection>



RFC-1225 Post Office Protocol - Version 3

Message Format

All messages transmitted during a POP3 session are assumed to conform to the standard for 
the format of Internet text messages [RFC822]. 
It is important to note that the byte count for a message on the server host may differ from 
the octet count assigned to that message due to local conventions for designating end-of-
line.    Usually, during the AUTHORIZATION state of the POP3 session, the POP3 client can 
calculate the size of each message in octets when it parses the maildrop into messages.    
For example, if the POP3 server host internally represents end-of-line as a single character, 
then the POP3 server simply counts each occurrence of this character in a message as two 
octets.    Note that lines in the message which start with the termination octet need not be 
counted twice, since the POP3 client will remove all byte-stuffed termination characters 
when it receives a multi-line response. 



RFC-1225 Post Office Protocol - Version 3

The POP and the Split-UA Model

The underlying paradigm in which the POP3 functions is that of a split-UA model.    The POP3 
client host, being a remote PC based workstation, acts solely as a client to the message 
transport system. It does not provide delivery/authentication services to others. Hence, it is 
acting as a UA, on behalf of the person using the workstation.    Furthermore, the workstation
uses SMTP to enter mail into the MTS. 
In this sense, we have two UA functions which interface to the message transport system: 
Posting (SMTP) and Retrieval (POP3).    The entity which supports this type of environment is 
called a split-UA (since the user agent is split between two hosts which must interoperate to 
provide these functions). 

Aside:
Others might term this a remote-UA instead. There are arguments supporting 
the use of both terms. 

This memo has explicitly referenced TCP as the underlying transport agent for the POP3.    
This need not be the case.    In the MZnet split- UA, for example, personal micro-computer 
systems are used which do not have IP-style networking capability.    To connect to the POP3 
server host, a PC establishes a terminal connection using some simple protocol (PhoneNet).   
A program on the PC drives the connection, first establishing a login session as a normal 
user.    The login shell for this pseudo-user is a program which drives the other half of the 
terminal protocol and communicates with one of two servers.    Although MZnet can support 
several PCs, a single pseudo-user login is present on the server host.    The user-id and 
password for this pseudo-user login is known to all members of MZnet.    Hence, the first 
action of the login shell, after starting the terminal protocol, is to demand a USER/PASS 
authorization pair from the PC.    This second level of authorization is used to ascertain who 
is interacting with the MTS. Although the server host is deemed to support a "trusted" MTS 
entity, PCs in MZnet are not.    Naturally, the USER/PASS authorization pair for a PC is known 
only to the owner of the PC (in theory, at least). 
After successfully verifying the identity of the client, a modified SMTP server is started, and 
the PC posts mail with the server host. After the QUIT command is given to the SMTP server 
and it terminates, a modified POP3 server is started, and the PC retrieves mail from the 
server host.    After the QUIT command is given to the POP3 server and it terminates, the 
login shell for the pseudo-user terminates the terminal protocol and logs the job out.    The 
PC then closes the terminal connection to the server host. 
The SMTP server used by MZnet is modified in the sense that it knows that it's talking to a 
user agent and not a "trusted" entity in the message transport system.    Hence, it does 
performs the validation activities normally performed by an entity in the MTS when it 
accepts a message from a UA. 
The POP3 server used by MZnet is modified in the sense that it does not require a 
USER/PASS combination before entering the TRANSACTION state.    The reason for this (of 
course) is that the PC has already identified itself during the second-level authorization step 
described above. 

Note:
Truth in advertising laws require that the author of this memo state that MZnet
has not actually been fully implemented.    The concepts presented and proven
by the project led to the notion of the MZnet split-slot model.    This notion has 
inspired the split-UA concept described in this memo, led to the author's 
interest in the POP, and heavily influenced the the description of the POP3 



herein. 
In fact, some UAs present in the Internet already support the notion of posting 
directly to an SMTP server and retrieving mail directly from a POP server, even
if the POP server and client resided on the same host! 
Aside:
This discussion raises an issue which this memo purposedly avoids: how does 
SMTP know that it's talking to a "trusted" MTS entity? 



RFC-1225 Post Office Protocol - Version 3

Author's Address

Marshall T. Rose
Performance Systems International
5201 Great America Parkway
Suite 3106
Santa Clara, CA    95054

Phone: +1 408 562 6222

EMail: mrose@psi.com
X.500:    rose, psi, us



RFC-1250 IAB Official Protocol Standards
Internet Activities Board

Jon Postel, Editor
August 1991

Status of this Memo
This memo describes the state of standardization of protocols used in the Internet as 
determined by the Internet Activities Board (IAB). Distribution of this memo is unlimited. 

Introduction
The Standardization Process
The Request for Comments Documents
Other Reference Documents
Explanation of Terms

Definitions of Protocol State
Definitions of Protocol Status

The Standards Track
The RFC Processing Decision Table
The Standards Track Diagram

The Protocols
Contacts
Author's Address



RFC-1250 IAB Official Protocol Standards - August 1991

Introduction

Discussion of the standardization process and the RFC document series is presented first, 
followed by an explanation of the terms. The Protocols contains the lists of protocols in each 
stage of standardization.    Finally come pointers to references and contacts for further 
information. 
This memo is intended to be issued quarterly; please be sure the copy you are reading is 
current.    Current copies may be obtained from the Network Information Center or from the 
Internet Assigned Numbers Authority (see the contact information at the end of this memo).  
Do not use this edition after 30-Nov-91. 
See recent changes.    In the official lists an asterisk (*) next to a protocol denotes that it is 
new to this document or has been moved from one protocol level to another. 



RFC-1250 IAB Official Protocol Standards - August 1991

The Standardization Process

The Internet Activities Board maintains this list of documents that define standards for the 
Internet protocol suite (see RFC-1160 for an explanation of the role and organization of the 
IAB and its subsidiary groups, the Internet Engineering Task Force (IETF) and the Internet 
Research Task Force (IRTF)).    The IAB provides these standards with the goal of co-
ordinating the evolution of the Internet protocols; this co-ordination has become quite 
important as the Internet protocols are increasingly in general commercial use. 
The majority of Internet protocol development and standardization activity takes place in the
working groups of the Internet Engineering Task Force. 
Protocols which are to become standards in the Internet go through a series of states 
(proposed standard, draft standard, and standard) involving increasing amounts of scrutiny 
and experimental testing. At each step, the Internet Engineering Steering Group (IESG) of 
the IETF must make a recommendation for advancement of the protocol and the IAB must 
ratify it.    If a recommendation is not ratified, the protocol is remanded to the IETF for further
work. 
To allow time for the Internet community to consider and react to standardization proposals, 
the IAB imposes a minimum delay of 4 months before a proposed standard can be advanced
to a draft standard and 6 months before a draft standard can be promoted to standard. 
It is general IAB practice that no proposed standard can be promoted to draft standard 
without at least two independent implementations (and the recommendation of the IESG).    
Promotion from draft standard to standard generally requires operational experience and 
demonstrated interoperability of two or more implementations (and the recommendation of 
the IESG). 
In cases where there is uncertainty as to the proper decision concerning a protocol the IAB 
may convene a special review committee consisting of experts from the IETF, IRTF and the 
IAB with the purpose of recommending an explicit action to the IAB. 
Advancement of a protocol to proposed standard is an important step since it marks a 
protocol as a candidate for eventual standardization (it puts the protocol "on the standards 
track").    Advancement to draft standard is a major step which warns the community that, 
unless major objections are raised or flaws are discovered, the protocol is likely to be 
advanced to standard in six months. 
Some protocols have been superseded by better ones or are otherwise unused.    Such 
protocols are still documented in this memorandum with the designation "historic". 
Because the IAB believes it is useful to document the results of early protocol research and 
development work, some of the RFCs document protocols which are still in an experimental 
condition.    The protocols are designated "experimental" in this memorandum.    They appear
in this report as a convenience to the community and not as evidence of their 
standardization. Other protocols, such as those developed by other standards organizations, 
or by particular vendors, may be of interest or may be recommended for use in the Internet. 
The specifications of such protocols may be published as RFCs for the convenience of the 
Internet community.    These protocols are labeled "informational" in this memorandum. 
In addition to the working groups of the IETF, protocol development and experimentation 
may take place as a result of the work of the research groups of the Internet Research Task 
Force, or the work of other individuals interested in Internet protocol development.    The IAB 
encourages the documentation of such experimental work in the RFC series, but none of this
work is considered to be on the track for standardization until the IESG has made a 



recommendation to advance the protocol to the proposed standard state, and the IAB has 
approved this step. 
A few protocols have achieved widespread implementation without the approval of the IESG 
and the IAB.    For example, some vendor protocols have become very important to the 
Internet community even though they have not been recommended by the IESG or ratified 
by the IAB. However, the IAB strongly recommends that the IAB standards process be used 
in the evolution of the protocol suite to maximize interoperability (and to prevent 
incompatible protocol requirements from arising).    The IAB reserves the use of the terms 
"standard", "draft standard", and "proposed standard" in any RFC or other publication of 
Internet protocols to only those protocols which the IAB has approved. 
In addition to a state (like "Proposed Standard"), a protocol is also assigned a status, or 
requirement level, in this document.    The possible requirement levels ("Required", 
"Recommended", "Elective", "Limited Use", and "Not Recommended") are defined in Section 
4.2. When a protocol is on the standards track, that is in the proposed standard, draft 
standard, or standard state (see Section 5), the status shown in Section 6 is the current 
status.    For a proposed or draft standard, however, the IAB will also endeavor to indicate the
eventual status this protocol will have after adoption as a standard. 
Few protocols are required to be implemented in all systems; this is because there is such a 
variety of possible systems, for example, gateways, terminal servers, workstations, and 
multi-user hosts.    The requirement level shown in this document is only a one word label, 
which may not be sufficient to characterize the implementation requirements for a protocol 
in all situations.    For some protocols, this document contains an additional status paragraph
(an applicability statement).    In addition, more detailed status information is contained in 
separate requirements documents (see Section 3). 



RFC-1250 IAB Official Protocol Standards - August 1991

The Request for Comments Documents

The documents called Request for Comments (or RFCs) are the working notes of the 
"Network Working Group", that is the Internet research and development community.    A 
document in this series may be on essentially any topic related to computer communication,
and may be anything from a meeting report to the specification of a standard. 

Notice: All standards are published as RFCs, but not all RFCs specify standards. 
Anyone can submit a document for publication as an RFC.    Submissions must be made via 
electronic mail to the RFC Editor (see the contact information at the end of this memo). 
While RFCs are not refereed publications, they do receive technical review from the task 
forces, individual technical experts, or the RFC Editor, as appropriate. 
The RFC series comprises a wide range of documents, ranging from informational 
documents of general interests to specifications of standard Internet protocols.    In cases 
where submission is intended to document a proposed standard, draft standard, or standard 
protocol, the RFC Editor will publish the document only with the approval of both the IESG 
and the IAB.    For documents describing experimental work, the RFC Editor will notify the 
IESG before publication, allowing for the possibility of review by the relevant IETF working 
group or IRTF research group and provide those comments to the author.    See Section 5.1 
for more detail. 
Once a document is assigned an RFC number and published, that RFC is never revised or re-
issued with the same number.    There is never a question of having the most recent version 
of a particular RFC. However, a protocol (such as File Transfer Protocol (FTP)) may be 
improved and re-documented many times in several different RFCs.    It is important to verify
that you have the most recent RFC on a particular protocol.    This "IAB Official Protocol 
Standards" memo is the reference for determining the correct RFC for the current 
specification of each protocol. 
The RFCs are available from the Network Information Center at SRI International, and a 
number of other sites.    For more information about obtaining RFCs, see Sections 7.4 and 
7.5. 



RFC-1250 IAB Official Protocol Standards - August 1991

Other Reference Documents

There are four other reference documents of interest in checking the current status of 
protocol specifications and standardization.    These are the Assigned Numbers, the 
Annotated Internet Protocols, the Gateway Requirements, and the Host Requirements.    Note
that these documents are revised and updated at different times; in case of differences 
between these documents, the most recent must prevail. 
Also, one should be aware of the MIL-STD publications on IP, TCP, Telnet, FTP, and SMTP.

Assigned Numbers
Annotated Internet Protocols
Gateway Requirements
Host Requirements
The MIL-STD Documents



RFC-1250 IAB Official Protocol Standards - August 1991

Assigned Numbers

This document lists the assigned values of the parameters used in the various protocols.    
For example, IP protocol codes, TCP port numbers, Telnet Option Codes, ARP hardware types,
and Terminal Type names.    Assigned Numbers was most recently issued as RFC-1060. 
Another document, Internet Numbers, lists the assigned IP network numbers, and the 
autonomous system numbers.    Internet Numbers was most recently issued as RFC-1166. 



RFC-1250 IAB Official Protocol Standards - August 1991

Annotated Internet Protocols

This document lists the protocols and describes any known problems and ongoing 
experiments.    This document was most recently issued as RFC-1011 under the title "Official 
Internet Protocols". 



RFC-1250 IAB Official Protocol Standards - August 1991

Gateway Requirements

This document reviews the specifications that apply to gateways and supplies guidance and 
clarification for any ambiguities.    Gateway Requirements is RFC-1009.    A working group of 
the IETF is actively preparing a revision. 



RFC-1250 IAB Official Protocol Standards - August 1991

Host Requirements

This pair of documents reviews the specifications that apply to hosts and supplies guidance 
and clarification for any ambiguities.    Host Requirements was recently issued as RFC-1122 
and RFC-1123.

Note: The additions and clarifications included in this pair of RFCs have been 
integrated into the orginal RFCs within this system; Therefore these two 
RFCs are not explicitly included.



RFC-1250 IAB Official Protocol Standards - August 1991

The MIL-STD Documents

The Internet community specifications for IP (RFC-791) and TCP (RFC- 793) and the DoD MIL-
STD specifications are intended to describe exactly the same protocols.    Any difference in 
the protocols specified by these sets of documents should be reported to DCA and to the 
IAB.    The RFCs and the MIL-STDs for IP and TCP differ in style and level of detail.    It is 
strongly advised that the two sets of documents be used together. 
The IAB and the DoD MIL-STD specifications for the FTP, SMTP, and Telnet protocols are 
essentially the same documents (RFCs 765, 821, 854).    The MIL-STD versions have been 
edited slightly.    Note that the current Internet specification for FTP is RFC-959. 

Internet Protocol (IP) MIL-STD-1777
Transmission Control Protocol (TCP) MIL-STD-1778
File Transfer Protocol (FTP) MIL-STD-1780
Simple Mail Transfer Protocol (SMTP) MIL-STD-1781
Telnet Protocol and Options (TELNET) MIL-STD-1782

These documents are available from the Naval Publications and Forms Center.    Requests 
can be initiated by telephone, telegraph, or mail; however, it is preferred that private 
industry use form DD1425, if possible.    These five documents are included in the 1985 DDN 
Protocol Handbook (available from the Network Information Center, see Section 7.4). 

Naval Publications and Forms Center, Code 3015
5801 Tabor Ave
Philadelphia, PA 19120
Phone: 1-215-697-3321 (order tape)
1-215-697-4834 (conversation)



RFC-1250 IAB Official Protocol Standards August 1991

Explanation of Terms

There are two independent categorization of protocols.    The first is the STATE of 
standardization, one of "standard", "draft standard", "proposed standard", "experimental", 
"informational" or "historic". The second is the STATUS of this protocol, one of "required", 
"recommended", "elective", "limited use", or "not recommended". 
The status or requirement level is difficult to portray in a one word label.    These status 
labels should be considered only as an indication, and a further description, or applicability 
statement, should be consulted. 
When a protocol is advanced to proposed standard or draft standard, it is labeled with a 
current status and when possible, the IAB also notes the status that the protocol is expected 
to have when it reaches the standard state. 
At any given time a protocol occupies a cell of the following matrix. Protocols are likely to be 
in cells in about the following proportions (indicated by the relative number of Xs).    A new 
protocol is most likely to start in the (proposed standard, elective) cell, or the (experimental, 
not recommended) cell. 

                      Status
        Req   Rec   Ele   Lim   Not

        +-----+-----+-----+-----+-----+
Std     |  X  | XXX | XXX |     |     |
        +-----+-----+-----+-----+-----+
Draft   |  X  |  X  | XXX |     |     |
        +-----+-----+-----+-----+-----+
Prop    |     |  X  | XXX |  X  |     |
        +-----+-----+-----+-----+-----+
Info    |     |  X  | XXX |  X  |  X  |
        +-----+-----+-----+-----+-----+
Expr    |     |     |  X  | XXX |  X  |
        +-----+-----+-----+-----+-----+
Hist    |     |     |     |  X  | XXX |
State    +-----+-----+-----+-----+-----+

What is a "system"?
Some protocols are particular to hosts and some to gateways; a few protocols 
are used in both.    The definitions of the terms below will refer to a "system" 
which is either a host or a gateway (or both).    It should be clear from the 
context of the particular protocol which types of systems are intended. 



RFC-1250 IAB Official Protocol Standards August 1991

Definitions of Protocol State

Every protocol listed in this document is assigned to a STATE of standardization: "standard", 
"draft standard", "proposed standard",        "experimental", or "historic". 
Standard Protocol

The IAB has established this as an official standard protocol for the Internet.    
These are separated into two groups: (1) IP protocol and above, protocols that 
apply to the whole Internet; and (2) network-specific protocols, generally 
specifications of how to do IP on particular types of networks. .2.    Draft 
Standard Protocol 
The IAB is actively considering this protocol as a possible Standard Protocol.    
Substantial and widespread testing and comment are desired.    Comments 
and test results should be submitted to the IAB.    There is a possibility that 
changes will be made in a Draft Standard Protocol before it becomes a 
Standard Protocol. 

Proposed Standard Protocol
These are protocol proposals that may be considered by the IAB for 
standardization in the future.    Implementation and testing by several groups 
is desirable.    Revision of the protocol specification is likely. 

Experimental Protocol
A system should not implement an experimental protocol unless it is 
participating in the experiment and has coordinated its use of the protocol 
with the developer of the protocol. 
Typically, experimental protocols are those that are developed as part of an 
ongoing research project not related to an operational service offering.    While
they may be proposed as a service protocol at a later stage, and thus become 
proposed standard, draft standard, and then standard protocols, the 
designation of a protocol as experimental may sometimes be meant to 
suggest that the protocol, although perhaps mature, is not intended for 
operational use. 

Informational Protocol
Protocols developed by other standard organizations, or vendors, or that are 
for other reasons outside the purview of the IAB, may be published as RFCs for
the convenience of the Internet community as informational protocols.    Such 
protocols may in some cases also be recommended for use in the Internet by 
the IAB. 

Historic Protocol
These are protocols that are unlikely to ever become standards in the Internet 
either because they have been superseded by later developments or due to 
lack of interest. 



RFC-1250 IAB Official Protocol Standards August 1991

Definitions of Protocol Status

This document lists a STATUS for each protocol.    The status is one of "required", 
"recommended", "elective", "limited use", or "not recommended". 
Required Protocol

A system must implement the required protocols.
Recommended Protocol

A system should implement the recommended protocols.
Elective Protocol

A system may or may not implement an elective protocol. The general notion 
is that if you are going to do something like this, you must do exactly this.    
There may be several elective protocols in a general area, for example, there 
are several electronic mail protocols, and several routing protocols. 

Limited Use Protocol
These protocols are for use in limited circumstances.    This may be because of
their experimental state, specialized nature, limited functionality, or historic 
state. 

Not Recommended Protocol
These protocols are not recommended for general use.    This may be because 
of their limited functionality, specialized nature, or experimental or historic 
state. 



RFC-1250 IAB Official Protocol Standards August 1991

The RFC Processing Decision Table

Here is the current decision table for processing submissions by the RFC Editor.    The 
processing depends on who submitted it, and the status they want it to have. 

+==========================================================+
|**************|               S O U R C E                 |
+==========================================================+
| Desired      |    IAB   |   IESG   |   IRSG   |  Other   |
| Status       |          |          |  or RG   |          |
+==========================================================+
|              |          |          |          |          |
| Full or      |  Publish |  Vote    |  Bogus   |  Bogus   |
| Draft        |   (1)    |   (3)    |   (2)    |   (2)    |
| Standard     |          |          |          |          |
|              |          |          |          |          |
+--------------+----------+----------+----------+----------+
|              |          |          |          |          |
|              |  Publish |  Vote    |  Refer   |  Refer   |
| Proposed     |   (1)    |   (3)    |   (4)    |   (4)    |
| Standard     |          |          |          |          |
|              |          |          |          |          |
+--------------+----------+----------+----------+----------+
|              |          |          |          |          |
|              |  Publish |  Notify  |  Notify  |  Notify  |
| Experimental |   (1)    |   (5)    |   (5)    |   (5)    |
| Protocol     |          |          |          |          |
|              |          |          |          |          |
+--------------+----------+----------+----------+----------+
|              |          |          |          |          |
| Information  |  Publish |Discretion|Discretion|Discretion|
| or Opinion   |   (1)    |   (6)    |   (6)    |   (6)    |
| Paper        |          |          |          |          |
|              |          |          |          |          |
+==========================================================+

(1) Publish.
(2) Bogus.    Inform the source of the rules.    RFCs specifying Standard, or Draft

Standard must come from the IAB, only. 
(3) Vote by the IAB.    If approved then do Publish (1), else do Refer (4). 
(4) Refer to an Area Director for review by a WG.    Expect to see the document

again only after approval by the IESG and the IAB. 
(5) Notify both the IESG and IRSG.    If no protest in 1 week then do Discretion 

(6), else do Refer (4). 
(6) RFC Editor's discretion.    The RFC Editor decides if a review is needed and 

if so by whom.    RFC Editor decides to publish or not. 
Of course, in all cases the RFC Editor can request or make minor changes for style, format, 



and presentation purposes. 
The IESG has designated the IESG Secretary as its agent for forwarding documents with IESG
approval and for registering protest in response to notifications (5) to the RFC Editor.    
Documents from Area Directors or Working Group Chairs may be considered in the same 
way as documents from "other". 



RFC-1250 IAB Official Protocol Standards August 1991

The Standards Track Diagram

There is a part of the STATUS and STATE categorization that is called the standards track.    
Actually, only the changes of state are significant to the progression along the standards 
track, though the status assignments may be changed as well. 
The states illustrated by single line boxes are temporary states, those illustrated by double 
line boxes are long term states.    A protocol will normally be expected to remain in a 
temporary state for several months (minimum four months for proposed standard, minimum
six months for draft standard).    A protocol may be in a long term state for many years. 
A protocol may enter the standards track only on the recommendation of the IESG and by 
action of the IAB; and may move from one state to another along the track only on the 
recommendation of the IESG and by action of the IAB.    That is, it takes both the IESG and 
the IAB to either start a protocol on the track or to move it along. 
Generally, as the protocol enters the standards track a decision is made as to the eventual 
STATUS (elective, recommended, or required) the protocol will have, although a somewhat 
less stringent current status may be assigned, and it then is placed in the the proposed 
standard STATE with that status.    So the initial placement of a protocol is into state 1.    At 
any time the STATUS decision may be revisited. 
         |
         +<----------------------------------------------+
         |                                               ^
         V    0                                          |    4
   +-----------+                                   +===========+
   |   enter   |-->----------------+-------------->|experiment |
   +-----------+                   |               +=====+=====+
                                   |                     |
                                   V    1                |
                             +-----------+               V
                             | proposed  |-------------->+
                        +--->+-----+-----+               |
                        |          |                     |
                        |          V    2                |
                        +<---+-----+-----+               V
                             | draft std |-------------->+
                        +--->+-----+-----+               |
                        |          |                     |
                        |          V    3                |
                        +<---+=====+=====+               V
                             | standard  |-------------->+
                             +=====+=====+               |
                                                         |
                                                         V    5
                                                   +=====+=====+
                                                   | historic  |
                                                   +===========+

The transition from proposed standard (1) to draft standard (2) can only be by action of the 
IAB on the recommendation of the IESG and only after the protocol has been proposed 
standard (1) for at least four months. 
The transition from draft standard (2) to standard (3) can only be by action of the IAB on the 



recommendation of the IESG and only after the protocol has been draft standard (2) for at 
least six months. 
Occasionally, the decision may be that the protocol is not ready for standardization and will 
be assigned to the experimental state (4). This is off the standards track, and the protocol 
may be resubmitted to enter the standards track after further work.    There are other paths 
into the experimental and historic states that do not involve IAB action. 
Sometimes one protocol is replaced by another and thus becomes historic, it may happen 
that a protocol on the standards track is in a sense overtaken by another protocol (or other 
events) and becomes historic (state 5). 



RFC-1250 IAB Official Protocol Standards August 1991

The Protocols

Recent Changes
New RFCs
Other Changes

Standard Protocols
Network-Specific Standard Protocols
Draft Standard Protocols
Proposed Standard Protocols
Telnet Options
Experimental Protocols
Informational Protocols
Historic Protocols



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

New RFCs

1252 OSPF Version 2 MIB
A Proposed Standard protocol.

1251 Who's Who in the Internet
This is an information document and does not specify any level of standard. 

1250 This memo.
1249 DIXIE Protocol Specification

This is an information document and does not specify any level of standard. 
1248 OSPF Version 2 MIB

A Proposed Standard protocol.
1247 OSPF Version 2

A Draft Standard protocol.
1246 Experience with the OSPF Protocol

This is an information document and does not specify any level of standard. 
1245 OSPF Protocol Analysis

This is an information document and does not specify any level of standard. 
1244 Site Security Handbook

This is an information document and does not specify any level of standard. 
1243 AppleTalk Management Information Base

A Proposed Standard protocol.
1242 Benchmarking Terminology for Network Interconnection Devices

This is an information document and does not specify any level of standard. 
1241 A Scheme for an Internet Encapsulation Protocol: Version 1

This is a new Experimental protocol.
1240 OSI Connectionless Transport Services on top of UDP - Version: 1

A Proposed Standard protocol.
1239 Reassignment of Experimental MIBs to Standard MIBs

A Proposed Standard protocol.
1238 CLNS MIB - for use with Connectionless Network Protocol (ISO 8473) and End System 

to Intermediate System (ISO 9542) 
This is a new Experimental protocol.

1237 Guidelines for OSI NSAP Allocation in the Internet
A Proposed Standard protocol.

1236 IP to X.121 Address Mapping for DDN
This is an information document and does not specify any level of standard. 



1235 The Coherent File Distribution Protocol
This is a new Experimental protocol.

1234 Tunneling IPX Traffic through IP Networks
A Proposed Standard protocol.

1233 Definitions of Managed Objects for the DS3 Interface Type
A Proposed Standard protocol.

1232 Definitions of Managed Objects for the DS1 Interface Type
A Proposed Standard protocol.

1231 IEEE 802.5 Token Ring MIB
A Proposed Standard protocol.

1230 IEEE 802.4 Token Bus MIB
A Proposed Standard protocol.

1229 Extensions to the Generic-Interface MIB
A Proposed Standard protocol.

1228 SNMP-DPI-Simple Network Management Protocol Distributed Program Interface
This is a new Experimental protocol.

1227 SNMP MUX Protocol and MIB
This is a new Experimental protocol.

1226 Internet Protocol Encapsulation of AX.25 Frames
This is a new Experimental protocol.

1225 Post Office Protocol - Version 3
A Draft Standard protocol.

1224 Techniques for Managing Asynchronously Generated Alerts
This is a new Experimental protocol.

1223 OSI CLNS and LLC1 Protocols on Network Systems HYPERchannel
This is an information document and does not specify any level of standard. 

1222 Advancing the NSFNET Routing Architecture
This is an information document and does not specify any level of standard. 

1221 Host Access Protocol (HAP) Specification - Version 2
This is an information document and does not specify any level of standard. 

1220 Point-to-Point Protocol Extensions for Bridging
A Proposed Standard protocol.

1219 On the Assignment of Subnet Numbers
This is an information document and does not specify any level of standard. 



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

Other Changes

The following are changes to protocols listed in the previous edition. 
1213 Management Information Base for Network Management of TCP/IP-based internets: 

MIB-II 
Advanced to Standard protocol.

1212 Concise MIB Definitions
Advanced to Draft Standard protocol.

Telnet Options has been added.



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

Standard Protocols
Protocol Name Status RFC
-------- Assigned Numbers Required 1060
-------- Gateway Requirements Required 1009
-------- Host Requirements-Communications Required 1122
-------- Host Requirements-Applications Required 1123
IP Internet Protocol Required 791

    as amended by:
-------- IP Subnet Extension Required 950
-------- IP Broadcast Datagrams Required 919
-------- IP Broadcast Datagrams with Subnets Required 922
ICMP Internet Control Message Protocol Required 792
IGMP Host Extensions for IP Multicasting Recommended1112
UDP User Datagram Protocol Recommended768
TCP Transmission Control Protocol Recommended793
SMI Structure of Management Information Recommended 1155
MIB Management Information Base Recommended1156
SNMP Simple Network Management Protocol Recommended 1157
DOMAIN Domain Name System Recommended1034, 1035
TELNET Telnet Protocol Recommended854
FTP File Transfer Protocol Recommended959
SMTP Simple Mail Transfer Protocol Recommended821
MAIL Format of Electronic Mail Messages Recommended 822
CONTENT Content Type Header Field Recommended1049
EGP Exterior Gateway Protocol Recommended904
ECHO Echo Protocol Recommended862
NTP Network Time Protocol Recommended1119
NETBIOS NetBIOS Service Protocols Elective 1001,1002
DISCARD Discard Protocol Elective 863
CHARGEN Character Generator Protocol Elective 864
QUOTE Quote of the Day Protocol Elective 865
USERS Active Users Protocol Elective 866
DAYTIME Daytime Protocol Elective 867
TIME Time Server Protocol Elective 868

Applicability Statements:
IGMP -- The Internet Activities Board intends to move towards general 
adoption of IP multicasting, as a more efficient solution than broadcasting for 
many applications.    The host interface has been standardized in RFC-1112; 
however, multicast-routing gateways are in the experimental stage and are 
not widely available.    An Internet host should support all of RFC-1112, except 
for the IGMP protocol itself which is optional.    Even without IGMP, 
implementation of RFC-1112 will provide an important advance: IP-layer 
access to local network multicast addressing.    It    is expected that IGMP will 
become recommended for all hosts and gateways at some future date. 
SMI, MIB, SNMP -- The Internet Activities Board recommends that all IP and 
TCP implementations be network manageable.    This implies implementation 
of the Internet MIB (RFC-1156) and at least the recommended management 
protocol SNMP (RFC-1157). 



RFC-1122 and RFC-1123 have been integrated into this system by updating 
the original RFCs to which they referred, rather than by including either of 
them explicitly.



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

Network-Specific Standard Protocols

Protocol        Name                                               Status          RFC  
ARP Address Resolution Protocol Elective 826
RARP A Reverse Address Resolution Protocol Elective 903
IP-ARPA Internet Protocol on ARPANET Elective BBN 1822
IP-WB Internet Protocol on Wideband Network Elective 907
IP-X25 Internet Protocol on X.25 Networks Elective 877
IP-E Internet Protocol on Ethernet Networks Elective 894
IP-EE Internet Protocol on Exp. Ethernet Nets Elective 895
IP-IEEE Internet Protocol on IEEE 802 Elective 1042
IP-DC Internet Protocol on DC Networks Elective 891
IP-HC Internet Protocol on Hyperchannel Elective 1044
IP-ARC Internet Protocol on ARCNET Elective 1051
IP-SLIP Transmission of IP over Serial Lines Elective 1055
IP-NETBIOS Transmission of IP over NETBIOS Elective 1088
IP-FDDI Transmission of IP over FDDI Elective 1103
IP-IPX Transmission of 802.2 over IPX Networks Elective 1132

Applicability Statements:
It is expected that a system will support one or more physical networks and for each 
physical network supported the appropriate protocols from the above list must be 
supported.    That is, it is elective to support any particular type of physical network, and for 
the physical networks actually supported it is required that they be supported exactly 
according to the protocols in the above list.    See also the Host and Gateway Requirements 
RFCs for more specific information on network-specific ("link layer") protocols. 



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

Draft Standard Protocols

Protocol        Name                                               Status          RFC  
OSPF2 Open Shortest Path First Routing V2 Elective 1247*
POP3 Post Office Protocol, Version 3 Elective 1225*
Concise-MIB Concise MIB Definitions Elective 1212*
FINGER Finger Protocol Elective 1196
IP-FDDI Internet Protocol on FDDI Networks Elective 1188
TOPT-LINE Telnet Linemode Option Elective 1184
PPP Point to Point Protocol Elective 1171
-------- Mail Privacy: Procedures Elective 1113
-------- Mail Privacy: Key Management Elective 1114
-------- Mail Privacy: Algorithms Elective 1115
BOOTP Bootstrap Protocol Recom. 951

Bootstrap Protocol Vendor Extendions Recom. 1084
RIP Routing Information Protocol Elective 1058
TP-TCP ISO Transport Service on top of the TCP Elective 1006
NICNAME WhoIs Protocol Elective 954
TFTP Trivial File Transfer Protocol Elective 783

Applicability Statements:
RIP -- The Routing Information Protocol (RIP) is widely implemented and used in the Internet. 
However, both implementors and users should be aware that RIP has some serious technical
limitations as a routing protocol.    The IETF is currently developing several candidates for a 
new standard "open" routing protocol with better properties than RIP.    The IAB urges the 
Internet community to track these developments, and to implement the new protocol when 
it is standardized; improved Internet service will result for many users. 
TP-TCP -- As OSI protocols become more widely implemented and used, there will be an 
increasing need to support interoperation with the TCP/IP protocols.    The Internet 
Engineering Task Force is formulating strategies for interoperation.    RFC-1006 provides one 
interoperation mode, in which TCP/IP is used to emulate TP0 in order to support OSI 
applications.    Hosts that wish to run OSI connection-oriented applications in this mode 
should use the procedure described in RFC- 1006.    In the future, the IAB expects that a 
major portion of the Internet will support both TCP/IP and OSI (inter-)network protocols in 
parallel, and it will then be possible to run OSI applications across the Internet using full OSI 
protocol "stacks". 
PPP -- Point to Point Protocol is a method of sending IP over serial lines, which are a type of 
physical network.    It is anticipated that PPP will be advanced to the network-specific 
standard protocol state in the future. 



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

Proposed Standard Protocols

Protocol         Name                                                   Status       RFC  
OSPF-MIB OSPF Version 2 MIB Elective 1248,1252*
AT- MIB Appletalk MIB Elective 1243*
OSI-UDP OSI TS on UDP Elective 1240*
STD-MIBs Reassignment of Exp MIBs to Std MIBs Elective 1239*
OSI-NSAP Guidelines for OSI NSAP Allocation Elective 1237*
IPX-IP Tunneling IPX Traffic through IP Nets Elective 1234*
DS3-MIB DS3 Interface Objects Elective 1233*
DS1-MIB DS1 Interface Objects Elective 1232*
802.5-MIB IEEE 802.5 Token Ring MIB Elective 1231*
802.4-MIP IEEE 802.4 Token Bus MIB Elective 1230*
GINT-MIB Extensions to the Generic-Interface MIB Elective 1229*
PPP-EXT PPP Extensions for Bridging Elective 1220*
OIM-MIB-II OSI Internet Management: MIB-II Elective 1214
IP-SMDS IP Datagrams over the SMDS Service Elective 1209
IP-ARCNET Transmitting IP Traffic over ARCNET Nets Elective 1201
IS-IS OSI IS-IS for TCP/IP Dual Environments Elective 1195
IP-MTU Path MTU Discovery Elective 1191
CMOT Common Management Information Services Elective 1189

and Protocol over TCP/IP
PPP-INIT PPP Initial Configuration Options Elective 1172
BGP Border Gateway Protocol Elective 1163,1164
IP-CMPRS Compressing TCP/IP Headers Elective 1144
ISO-TS-ECHO Echo for ISO-8473 Elective 1139
SUN-NFS Network File System Protocol Elective 1094
SUN-RPC Remote Procedure Call Protocol Elective 1057
PCMAIL Pcmail Transport Protocol Elective 1056
NFILE A File Access Protocol Elective 1037
------- Mapping between X.400(84) and RFC-822 Elective 987,1026
NNTP Network News Transfer Protocol Elective 977
HOSTNAME HOSTNAME Protocol Elective 953
SFTP Simple File Transfer Protocol Elective 913
RLP Resource Location Protocol Elective 887
SUPDUP SUPDUP Protocol Elective 734

Applicability Statements:
IP-SMDS and IP-ARCNET -- These define methods of sending IP over particular network types. 
It is anticipated that these will be advanced to the network specific standard protocol state 
in the future. 



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

Telnet Options

For convenience all the Telnet Options are collected here with both their state and status.
Protocol           Name                                          Number     State      Status      RFC  
TOPT-BIN Binary Transmission 0 Std Rec 856
TOPT-ECHO Echo 1 Std Rec 857
TOPT-RECN Reconnection 2 Prop Ele
TOPT-SUPP Suppress Go Ahead 3 Std Rec 858
TOPT-APRX Approx Message Size Negotiation 4 Prop Ele
TOPT-STAT Status 5 Std Rec 859
TOPT-TIM Timing Mark 6 Std Rec 860
TOPT-REM Remote Controlled Trans and Echo 7 Prop Ele726
TOPT-OLW Output Line Width 8 Prop Ele
TOPT-OPS Output Page Size 9 Prop Ele
TOPT-OCRD Output Carriage-Return Disposition 10 Prop Ele652
TOPT-OHT Output Horizontal Tabstops 11 Prop Ele 653
TOPT-OHTD Output Horizontal Tab Disposition 12 Prop Ele654
TOPT-OFD Output Formfeed Disposition 13 Prop Ele 655
TOPT-OVT Output Vertical Tabstops 14 Prop Ele 656
TOPT-OVTD Output Vertical Tab Disposition 15 Prop Ele 657
TOPT-OLD Output Linefeed Disposition 16 Prop Ele 658
TOPT-EXT Extended ASCII 17 Prop Ele 698
TOPT-LOGO Logout 18 Prop Ele 727
TOPT-BYTE Byte Macro 19 Prop Ele 735
TOPT-DATA Data Entry Terminal 20 Prop Ele 1043
TOPT-SUP SUPDUP 21 Prop Ele 734
TOPT-SUPO SUPDUP Output 22 Prop Ele 749
TOPT-SNDL Send Location 23 Prop Ele 779
TOPT-TERM Terminal Type 24 Prop Ele 930
TOPT-EOR End of Record 25 Prop Ele 885
TOPT-TACACS TACACS User Identification 26 Prop Ele 927
TOPT-OM Output Marking 27 Prop Ele 933
TOPT-TLN Terminal Location Number 28 Prop Ele 946
TOPT-3270 Telnet 3270 Regime 29 Prop Ele 1041
TOPT-X.3 X.3 PAD 30 Prop Ele 1053
TOPT-NAWS Negotiate About Window Size 31 Prop Ele 1073
TOPT-TS Terminal Speed 32 Prop Ele 1079
TOPT-RFC Remote Flow Control 33 Prop Ele 1080
TOPT-LINE Linemode 34 Draft Ele 1184
TOPT-XDL X Display Location 35 Prop Ele 1096
TOPT-EXTOP Extended-Options-List 255 Std Rec 861



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

Experimental Protocols

Protocol         Name                                                  Status           RFC  
IN-ENCAP Internet Encapsulation Protocol Limited Use 1241*
CLNS-MIB CLNS-MIB Limited Use 1238*
CFDP Coherent File Distribution Protocol Limited Use 1235*
SNMP-DPI SNMP Distributed Program Interface Limited Use 1228*
SNMP-MUX SNMP MUX Protocol and MIB Limited Use 1227*
IP-AX25 IP Encapsulation of AX.25 Frames Limited Use 1226*
ALERTS Managing Asynchronously Generated Alerts Limited Use 1224
MPP Message Posting Protocol Limited Use 1204
ST-II Stream Protocol Limited Use 1190
SNMP-BULK Bulk Table Retrieval with the SNMP Limited Use 1187
DNS-RR New DNS RR Definitions Limited Use 1183
NTP-OSI NTP over OSI Remote Operations Limited Use 1165
MSP Message Send Protocol Limited Use 1159
EHF-MAIL Encoding Header Field for Mail Elective 1154
DMF-MAIL Digest Message Format for Mail Elective 1153
RDP Reliable Data Protocol Limited Use 908,1151
-------- Mapping between X.400(88) and RFC-822 Elective 1148
TCP-ACO TCP Alternate Checksum Option Not Recom.1146
-------- Mapping full 822 to Restricted 822 Elective 1137
IP-DVMRP IP Distance Vector Multicast Routing Not Recom.1075
TCP-LDP TCP Extensions for Long Delay Paths Limited Use 1072
IMAP2 Interactive Mail Access Protocol Limited Use 1176,1064
IMAP3 Interactive Mail Access Protocol Limited Use 1203
VMTP Versatile Message Transaction Protocol Elective 1045
COOKIE-JAR Authentication Scheme Not Recom.1004
NETBLT Bulk Data Transfer Protocol Not Recom.998
IRTP Internet Reliable Transaction Protocol Not Recom.938
AUTH Authentication Service Not Recom.931
LDP Loader Debugger Protocol Not Recom.909
NVP-II Network Voice Protocol Limited Use ISI-memo
PVP Packet Video Protocol Limited Use ISI-memo



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

Informational Protocols

Protocol           Name                                            Status           RFC  
DIXIE DIXIE Protocol Specification Limited Use 1249*
IP-X.121 IP to X.121 Address Mapping for DDN Limited Use 1236*
OSI-HYPER OSI and LLC1 on HYPERchannel Limited Use 1223*
HAP2 Host Access Protocol Limited Use 1221*
SUBNETASGN On the Assignment of Subnet Numbers Limited Use 1219*
SNMP-TRAPS Defining Traps for use with SNMP Limited Use 1215
DAS Directory Assistance Service Limited Use 1202
MD4 MD4 Message Digest Algorithm Limited Use 1186
LPDP Line Printer Daemon Protocol Limited Use 1179



RFC-1250 IAB Official Protocol Standards August 1991; The Protocols

Historic Protocols

Protocol           Name                                               Status        RFC  
SGMP Simple Gateway Monitoring Protocol NR 1028
HEMS High Level Entity Management Protocol NR 1021
STATSRV Statistics Server NR 996
POP2 Post Office Protocol, Version 2 NR 937
RATP Reliable Asynchronous Transfer Protocol NR 916
HFEP Host - Front End Protocol NR 929*
THINWIRE Thinwire Protocol NR 914
HMP Host Monitoring Protocol NR 869
GGP Gateway Gateway Protocol NR 823
RTELNET Remote Telnet Service NR 818
CLOCK DCNET Time Server Protocol NR 778
MPM Internet Message Protocol NR 759
NETRJS Remote Job Service NR 740
NETED Network Standard Text Editor NR 569
RJE Remote Job Entry NR 407
XNET Cross Net Debugger NR IEN-158
NAMESERVER Host Name Server Protocol NR IEN-116
MUX Multiplexing Protocol NR IEN-90
GRAPHICS Graphics Protocol NR NIC-24308



RFC-1250 IAB Official Protocol Standards - August 1991

Contacts

IAB, IETF, IRTF Contacts
Assigned Numbers Authority
Request for Comments Editor
Network Information Center and RFC Distribution
Other Sources for Requests for Comments



RFC-1250 IAB Official Protocol Standards - August 1991; Contacts

Internet Contacts

Internet Activities Board (IAB) Contact
Bob Braden
Executive Director of the IAB
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA    90292-6695
1-213-822-1511
Braden@ISI.EDU
Please send your comments about this list of protocols and especially about 
the Draft Standard Protocols to the Internet Activities Board care of Bob 
Braden, IAB Executive Director. 

Internet Engineering Task Force (IETF) Contact
Phill Gross
Chair of the IETF
Corporation for National Research Initiatives (NRI)
1895 Preston White Drive, Suite 100
Reston, VA 22091
1-703-620-8990
PGross@NRI.RESTON.VA.US
Greg Vaudreuil
IESG Secretary
Corporation for National Research Initiatives
1895 Preston White Drive, Suite 100
Reston, VA 22091
1-703-620-8990
gvaudre@NRI.RESTON.VA.US

Internet Research Task Force (IRTF) Contact
David D. Clark
Chair of the IRTF
Massachusetts Institute of Technology
Laboratory for Computer Science
545 Main Street
Cambridge, MA 02139
1-617-253-6003
ddc@LCS.MIT.EDU



RFC-1250 IAB Official Protocol Standards - August 1991; Contacts

Internet Assigned Numbers Authority Contact

Joyce K. Reynolds
Internet Assigned Numbers Authority
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA    90292-6695
1-213-822-1511
IANA@ISI.EDU
The protocol standards are managed for the IAB by the Internet Assigned 
Numbers Authority. 
Please refer to the documents "Assigned Numbers" (RFC-1060) and "Official 
Internet Protocols" (RFC-1011) for further information about the status of 
protocol documents.    There are two documents that summarize the 
requirements for host and gateways in the Internet, "Host Requirements" 
(RFC-1122 and RFC-1123) and "Gateway Requirements" (RFC-1009).
Note: The material in RFC-1122 and RFC-1123 has been integrated into the 
original RFCs contained in this system, and therefore they are not explicitly 
included.
How to obtain the most recent edition of this "IAB Official Protocol Standards" 
memo: 

The file "in-notes/iab-standards.txt" may be copied via FTP from the 
VENERA.ISI.EDU computer using the FTP username "anonymous" and 
FTP password "guest". 



RFC-1250 IAB Official Protocol Standards - August 1991; Contacts

Request for Comments Editor Contact

Jon Postel
RFC Editor
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA    90292-6695
1-213-822-1511
Postel@ISI.EDU
Documents may be submitted via electronic mail to the RFC Editor for 
consideration for publication as RFC.    If you are not familiar with the format or
style requirements please request the "Instructions for RFC Authors".    In 
general, the style of any recent RFC may be used as a guide. 



RFC-1250 IAB Official Protocol Standards - August 1991; Contacts

The Network Information Center
and

Requests for Comments Distribution Contact

DDN Network Information Center
SRI International
Room EJ291
333 Ravenswood Avenue
Menlo Park, CA    94025
1-800-235-3155
1-415-859-3695
NIC@NIC.DDN.MIL
The Network Information Center (NIC) provides many information services for 
the Internet community.    Among them is maintaining the Requests for 
Comments (RFC) library. 
RFCs can be obtained via FTP from NIC.DDN.MIL, with the pathname 
RFC:RFCnnnn.TXT where "nnnn" refers to the number of the RFC.    A list of all 
RFCs may be obtained by copying the file RFC:RFC-INDEX.TXT. Log in with FTP 
username ANONYMOUS and password GUEST. 
The NIC also provides an automatic mail service for those sites which cannot 
use FTP.    Address the request to SERVICE@NIC.DDN.MIL and in the subject 
field of the message indicate the file name, as in 

"Subject: SEND RFC:RFCnnnn.TXT".
Some RFCs are now available in PostScript, these may be obtained from the 
NIC in a similar fashion by substituting ".PS" for ".TXT". 

How to obtain the most recent edition of this "IAB Official Protocol Standards" 
memo: 

The file RFC:IAB-STANDARDS.TXT may be copied via FTP from 
the NIC.DDN.MIL computer following the same procedures used 
to obtain RFCs. 



RFC-1250 IAB Official Protocol Standards - August 1991; Contacts

Other Sources for Requests for Comments

NSF Network Service Center (NNSC)
NSF Network Service Center (NNSC)
BBN Laboratories, Inc.
10 Moulton St.
Cambridge, MA 02238
617-873-3400
NNSC@NNSC.NSF.NET

NSF Network Information Service (NIS)
NSF Network Information Service
Merit Computer Network
University of Michigan
1075 Beal Avenue
Ann Arbor, MI 48109
313-763-4897
INFO@NIS.NSF.NET

CSNET Coordination and Information Center (CIC)
CSNET Coordination and Information Center
BBN Systems and Technologies Corporation
10 Moulton Street
Cambridge, MA 02238
617-873-2777
INFO@SH.CS.NET



RFC-1250 IAB Official Protocol Standards - August 1991

Author's Address

Jon Postel
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292
Phone: (213) 822-1511
Email: Postel@ISI.EDU



RFC-652 Telnet Output Carriage-Return Disposition Option
D. Crocker UCLA-NMC

25 October 1974

Command name and code
NAOCRD 10      (Negotiate About Output Carriage-Return Disposition)

Default
DON'T NAOCRD/WON'T NAOCRD.

In      the      default      absence        of negotiations    concerning    which party, 
data sender or data receiver, is handling output carriage-returns, neither party
is    required    to handle      carriage-returns    and    neither    party    is    
prohibited    from handling them; but it is appropriate if at least the    data    
receiver handles carriage-returns, albeit primitively. 
Command Meanings
Motivation
Description



RFC-652 Telnet Output Carriage-Return Disposition Option

Command Meanings

In the following, we are discussing    a    simplex    connection,    as described in the NAOL and 
NAOP Telnet options. 

IAC DO NAOCRD
The data sender requests or agrees to negotiate about        output        carriage-
return        character disposition with the    data    receiver.      In    the case    
where    agreement    has been reached and in the absence    of    further    
subnegotiations,    the data    receiver is assumed to be handling output 
carriage-returns. 

IAC DON'T NAOCRD
The data    sender    refuses    to    negotiate    about output    carriage-return    
disposition    with    the data receiver,    or    demands    a    return    to    the 
unnegotiated default mode. 

IAC WILL NAOCRD
The    data    receiver    requests    or      agrees      to negotiate        about        
output        carriage-return disposition with the sender.    In the case where 
agreement    has    been reached and in the absence of further subnegotiations,
the    data    receiver alone      is      assumed      to    be    handling    output 
carriage-returns. 

IAC WON'T NAOCRD
The data receiver refuses    to    negotiate    about output    carriage-return 
disposition, or demands a return to the unnegotiated default mode. 

IAC SB NAOCRD DS <8-bit value> IAC SE
The    data    sender    specifies,    with    the    8-bit value,          which          party       
should        handle carriage-returns    and    what    their    disposition should be.    
The code for DS is 1. 

IAC SB NAOCRD DR <8-bit value> IAC SE
The        data        receiver specifies,    with    the    8-bit value, which party should 
handle carriage-returns and    what    their disposition should be.    The code for 
DR is 0. 



RFC-652 Telnet Output Carriage-Return Disposition Option

Motivation for the Option

There appear to be four cases in which it is useful for the party at one end of a TELNET 
connection to communicate with the other party about carriage-return disposition:

a The sender may wish the receiver to use its local knowledge of the 
terminal to properly handle carriage-returns;

b The receiver may wish the sender to use its local knowledge of the 
terminal to properly handle carriage-returns;

c The sender may wish to use its local knowledge of the data being sent 
to instruct the receiver in the proper handling of carriage-returns;

d The receiver may wish to use its local knowledge of the terminal to 
instruct the sender in the proper handling of carriage-returns.



RFC-652 Telnet Output Carriage-Return Disposition Option

Description of the Option

The data sender and the data receiver use the 8-bit value    along with the NAOCRD SB 
commands as follows: 
   8-bit value     Meaning  

0 Command sender    suggests    that    he    alone    will handle carriage-returns, 
for the connection. 

1 to 250 Command sender suggests that    the    other    party alone      should      handle    
carriage-returns,    but suggests that a delay of the indicated value be used.       
The        value      is      the      number      of character-times to wait or number    of  
NULs    to insert    in    the    data stream before sending the next    data    
character.        (See      qualification, below.) 

251 Not allowed, in order    to    be    compatible    with related Telnet options.
252 Command sender suggests that    the    other    party alone    handle    carriage-

returns,    but    suggests that they be discarded.
253 Not allowed, in order    to    be    compatible    with related Telnet options. 
254 Command sender suggests that    the    other    party alone      should      handle    

carriage-returns    but suggests    waiting    for    a      character      to      be 
transmitted    (on    the other simplex connection) before sending more data.    
(See    qualification, below.)      Note    that, due to the assynchrony of the two 
simplex connections, phase problems can occur with this option.    

255 Command sender suggests that    the    other    party alone      should      handle    
carriage-returns    and suggests nothing about how it should be done. 

The guiding rules are that:
(1) if neither data receiver nor data    sender    wants    to    handle carriage-

returns, the data receiver must do it, and 
(2) if both    data    receiver    and    data    sender    want    to    handle 

carriage-returns, the data sender gets to do it. 
The reasoning for the former rule is that if neither wants to do it,    then    the default in the 
NAOCRD option dominates.    If both want to do it, the sender, who is    presumed    to    have    
special    knowledge about    the data, should be allowed to do it, taking into account any 
suggestions the receiver may make. 
Note that carriage-return delays, controlled by the data sender, must    consist    of    NUL    
characters    inserted    immediately    after the character in question.    This is necessary due 
to the assynchrony    of network    transmissions.      Due    to the Telnet end-of-line convention,
with carriage-returns followed by a linefeed, any    NULs    that    would otherwise    be    placed 
after the carriage-return must be placed after the linefeed, regardless of any modifications 
that may    additionally be made to the line feed (see NAOLFD Telnet option).    
As with all option negotiations, neither party should suggest    a state    already    in    effect    
except    to    refuse to negotiate; changes should be acknowledged; and once refused, an 
option    should    not    be resuggested      until      "something    changes"    (e.g.,    another    
process starts). 
At any time, either party can    disable    further    negotiation    by giving the appropriate 
WON'T NAOCRD or DON'T NAOCRD command. 



RFC-653 Telnet Output Horizontal Tabstops Option
D. Crocker UCLA-NMC

25 October 1974

Command name and code
NAOHTS 11 Negotiate About Output Horizontal Tabstops

Default
DON'T NAOHTS/WON'T NAOHTS.

In the default absence of negotiations concerning which party, data    sender 
or data receiver, is handling output horizontal tabstops, neither    party is 
required to handle them and neither party is prohibited from    handling them; 
but it is appropriate if at least the data receiver    handles horizontal tabstops, 
albeit primitively. 
Command Meanings
Motivation
Description



RFC-653 Telnet Output Horizontal Tabstops Option

Command Meanings

In the following, we are discussing a simplex connection, as described in    the NAOL and 
NAOP Telnet options. 

IAC DO NAOHTS 
The data sender requests or agrees to negotiate about output    horizontal 
tabstops with the data receiver.    In the case where    agreement has been 
reached and in the absence of further    subnegotiations, the data receiver is 
assumed to be handling output    horizontal tabstops. 

IAC DON'T NAOHTS 
The data sender refuses to negotiate about output horizontal tabstops    with 
the data receiver, or demands a return to the unnegotiated    default mode. 

IAC WILL NAOHTS 
The data receiver requests or agrees to negotiate about output    horizontal 
tabstops with the sender.    In the case where agreement has    been reached 
and in the absence of further subnegotiations, the data    receiver alone is 
assumed to be handling output horizontal tabstops. 

IAC WON'T NAOHTS 
The data receiver refuses to negotiate about output horizontal    tabstops, or 
demands a return to the unnegotiated default mode.    

IAC SB NAOHTS DS <8-bit value> ... <8-bit value> IAC SE
The data sender specifies, with the 8-bit value(s), which party should handle 
output horizontal tabstop considerations and what the stops    should be.    The 
code for DS is 1. 

IAC SB NAOHTS DR <8-bit value> ... <8-bit value> IAC SE
The data receiver specifies, with the 8-bit value(s), which party    should 
handle output horizontal tabstop considerations and what the    stops should 
be.    The code for DR is 0. 



RFC-653 Telnet Output Horizontal Tabstops Option

Motivation for the Option

There appear to be four cases in which it is useful for the party at one end of a TELNET 
connection to communicate with the other party about horizontal tabstop disposition:

a The sender may wish the receiver to use its local knowledge of the 
terminal to properly handle horizontal tabstops;

b The receiver may wish the sender to use its local knowledge of the 
terminal to properly handle horizontal tabstops;

c The sender may wish to use its local knowledge of the data being sent 
to instruct the receiver in the proper handling of horizontal tabstops;

d The receiver may wish to use its local knowledge of the terminal to 
instruct the sender in the proper handling of horizontal tabstops.



RFC-653 Telnet Output Horizontal Tabstops Option

Description of the Option

The data sender and the data receiver use the 8-bit value(s) along with the    DS and DR SB 
subcommands as follows (multiple 8-bit values are allowed only    if each is greater than zero
and less than 251): 
   8-bit value:     Meaning:  

0 Command sender suggests that he alone will handle      tabstops, for the 
connection. 

1 to 250 Command sender suggests that the other party alone    should handle tabstop 
considerations, but suggests    that the indicated value(s) be used. The 
value(s)      are the column numbers, relative to the physical        left side of the 
printer page or terminal screen,      that are to be set.                                                      

251 to 254 Not allowed, in order to be compatible with                  related Telnet options.    
255 Command sender suggests that the other party alone    should handle output 

tabstops and suggests nothing    about how it should be done.    

The guiding rules are that:
(1) if neither data receiver nor data sender wants to handle output    horizontal tabstops, the 
data receiver must do it, and 
(2) if both data receiver and data sender want to handle output    horizontal tabstops, the 
data sender gets to do it.
The reasoning for the former rule is that if neither wants to do it, then    the default in the 
NAOHTS option dominates. If both want to do it, the    sender, who is presumed to have 
special knowledge about the data, should be    allowed to do it, taking into account any 
suggestions the receiver may make. As with all option negotiations, neither party should 
suggest a state    already in effect except to refuse to negotiate; changes should be    
acknowledged; and once refused, an option should not be resuggested until    "something 
changes" (e.g., another process starts). At any time, either party can disable further 
negotiation by giving the    appropriate WON'T NAOHTS or DON'T NAOHTS command.



RFC-654 Telnet Output Horizontal Tab Disposition Option
D. Crocker UCLA-NMC

25 October 1974

Command name and code
NAOHTD 12 Negotiate About Output Horizontal Tab Disposition

Default
DON'T NAOHTD/WON'T NAOHTD.

In the default absence of negotiations concerning which party, data sender or 
data receiver, is handling output horizontal tab character considerations, 
neither party is required to handle horizontal tab characters and neither party 
is prohibited from handling them; but it is appropriate if at least the data 
receiver handles horizontal tab character considerations, albeit primitively. 
Command Meanings
Motivation
Description



RFC-654 Telnet Output Horizontal Tab Disposition Option

Command meanings

In the following, we are discussing a simplex connection, as described in    the NAOL and 
NAOP Telnet options. 

IAC DO NAOHTD
The data sender requests or agrees to negotiate about output    horizontal tab 
character disposition with the data receiver.    In the    case where agreement 
has been reached and in the absence of further    subnegotiations, the data 
receiver is assumed to be handling output    horizontal tab character 
considerations. 

IAC DON'T NAOHTD
The data sender refuses to negotiate about output horizontal tab    characters 
with the data receiver, or demands a return to the    unnegotiated default 
mode. 

IAC WILL NAOHTD
The data receiver requests or agrees to negotiate about output horizontal tab 
characters with the sender. In the case where agreement has been reached 
and in the absence of further subnegotiations, the data receiver alone is 
assumed to be handling output horizontal tab character considerations. 

IAC WON'T NAOHTD
The data receiver refuses to negotiate about output horizontal tab    
characters, or demands a return to the unnegotiated default mode.    

IAC SB NAOHTD DS <8-bit value> IAC SE
The data sender specifies, with the 8-bit value, which party should handle 
output horizontal tab characters and what their disposition should be.    The 
code for DS is 1. 

IAC SB NAOHTD DR <8-bit value> IAC SE
The data receiver specifies, with the 8-bit value, which party should handle 
output horizontal tab characters and what their disposition should be.    The 
code for DR is 0. 



RFC-654 Telnet Output Horizontal Tab Disposition Option

Motivation for the Option

There appear to be four cases in which it is useful for the party at one end of a TELNET 
connection to communicate with the other party about horizontal tabstop disposition:

a The sender may wish the receiver to use its local knowledge of the 
terminal to properly handle horizontal tabstops;

b The receiver may wish the sender to use its local knowledge of the 
terminal to properly handle horizontal tabstops;

c The sender may wish to use its local knowledge of the data being sent to 
instruct the receiver in the proper handling of horizontal tabstops;

d The receiver may wish to use its local knowledge of the terminal to instruct
the sender in the proper handling of horizontal tabstops.



RFC-654 Telnet Output Horizontal Tab Disposition Option

Description of the Option

The data sender and the data receiver use the 8-bit value along with the DS and DR SB 
commands as follows: 
    8-bit value            Meaning                                                

0 Command sender suggests that he alone will handle      horizontal tab 
characters, for the connection.          

1 to 250 Command sender suggests that the other party alone    should handle 
horizontal tab characters, but suggests that a delay of the indicated value 
be used. The value is the number of character-times to wait or number of 
NULs to insert in the data stream before sending the next data character.

251 Command sender suggests that the other party alone handle horizontal 
tabs, but suggests that each occurrence of the character be replaced by a 
space.    

252 Command sender suggests that the other party alone handle horizontal 
tabs, but suggests that they be discarded. 

253 Command sender suggests that the other party alone should handle 
horizontal tab characters, but suggests that tabbing be simulated. 

254 Command sender suggests that the other party alone should handle 
horizontal tab characters, but suggests that waiting for a character to be 
transmitted (on the other simplex connection) before sending more data. 
Note that, due to the assynchrony of the two simplex connections, phase 
problems can occur with this option. 

255 Command sender suggests that the other party alone should handle 
output horizontal tabs and suggests nothing about how it should be done. 

      The guiding rules are that: 
1) if neither data receiver nor data sender wants to handle output    horizontal

tab characters, the data receiver must do it, and 
2) if both data receiver and data sender wants to handle output    horizontal 

tab characters, the data sender gets to do it.    
The reasoning for the former rule is that if neither wants to do it, then the default in the 
NAOHTD option dominates.    If both want to do it, the sender, who is presumed to have 
special knowledge about the data, should be allowed to do it, taking into account any 
suggestions the receiver may make.    Simulation is defined as the replacement of the 
horizontal tab character by enough spaces to move the printer head (or line-pointer) to the 
next horizontal tab stop. 
Note that delays, controlled by the data sender, must consist of NUL characters inserted 
immediately after the horizontal tab character.    This is necessary due to the assynchrony of 
network transmissions.    As with all option negotiations, neither party should suggest a state
already in effect except to refuse to negotiate; changes should be acknowledged; and once 
refused, an option should not be resuggested until "something changes" (e.g., another 
process starts).    At any time, either party can disable further negotiation by giving the 
appropriate WON'T NAOHTD or DON'T NAOHTD command. 



RFC-655 Telnet Output Formfeed Disposition Option
D. Crocker UCLA-NMC

25 October 1974

Command name and code
NAOFFD - 13 Negotiate About Output Formfeed Disposition

Default
DON'T NAOFFD/WON'T NAOFFD

In the default absence of negotiations concerning which party, data    sender 
or data receiver, is handling output formfeeds, neither party is required to 
handle formfeeds and neither party is prohibited from    handling them; but it 
is appropriate if at least the data receiver    handles formfeed considerations, 
albeit primitively. 
Command Meanings
Motivation
Description



RFC-655 Telnet Output Formfeed Disposition Option

Command Meanings

In the following, we are discussing a simplex connection, as described in    the NAOL and 
NAOP Telnet Options specifications. 

IAC DO NAOFFD
The data sender requests or agrees to negotiate about output formfeed disposition with the 
data receiver.    In the case where agreement has been reached and in the absence of further
subnegotiations, the data receiver is assumed to be handling output formfeeds. 

IAC DON'T NAOFFD
The data sender refuses to negotiate about output formfeed disposition with the data 
receiver, or demands a return to the unnegotiated default mode. 

IAC WILL NAOFFD
The data receiver requests or agrees to negotiate about output formfeed disposition with the
sender.    In the case where agreement has been reached and in the absence of further 
subnegotiations, the data receiver alone is assumed to be handling output formfeeds. 

IAC WON'T NAOFFD
The data receiver refuses to negotiate about output formfeed disposition, or demands a 
return to the unnegotiated default mode. 

IAC SB NAOFFD DS <8-bit value> IAC SE
The data sender specifies, with the 8-bit value, which party should handle formfeeds and 
what their disposition should be. The code for DS is 1. 

IAC SB NAOFFD DR <8-bit value> IAC SE
The data receiver specifies, with the 8-bit value, which party should handle formfeeds and 
what their disposition should be.    The code for DR is 0. 



RFC-655 Telnet Output Formfeed Disposition Option

Motivation for the Option

There appear to be four cases in which it is useful for the party at one end of a TELNET 
connection to communicate with the other party about formfeed disposition:

a The sender may wish the receiver to use its local knowledge of the 
terminal to properly handle formfeed;

b The receiver may wish the sender to use its local knowledge of the 
terminal to properly handle formfeeds;

c The sender may wish to use its local knowledge of the data being sent to 
instruct the receiver in the proper handling of formfeeds;

d The receiver may wish to use its local knowledge of the terminal to instruct
the sender in the proper handling of formfeeds.



RFC-655 Telnet Output Formfeed Disposition Option

Description of the Option

The data sender and the data receiver use the 8-bit value along with the DS and DR SB 
commands as follows: 
    8-bit value            Meaning  

0 Command sender suggests that he alone will handle formfeeds, for the 
connection. 

1 to 250 Command sender suggests that the other party alone should handle 
formfeeds, but suggests that the indicated value be used.    The value is 
the number of character-times to wait or number of NULs to insert in the 
data stream before sending the next data character. 

251 Command sender suggests that the other party alone handle formfeeds, 
but suggests that each occurrence of the character be replaced by 
carriage-return/line-feed. 

252 Command sender suggests that the other party alone handle formfeeds, 
but suggests that they be discarded.    

253 Command sender suggests that the other party alone should handle 
formfeeds, but suggests that formfeeds be simulated. 

254 Command sender suggests that the other party alone should handle 
output formfeeds but suggests waiting for a character to be transmitted 
(on the other simplex connection) before sending more data. Note that, 
due to the assynchrony of the two simplex connections, phase problems 
can occur with this option. 

255 Command sender suggests that the other party alone should handle 
output formfeeds and suggests nothing about how it should be done. 

The guiding rules are that: 
1) if neither data receiver nor data sender wants to handle output    

formfeeds, the data receiver must do it, and 
2) if both data receiver and data sender want to handle output formfeeds, the

data sender gets to do it.    
The reasoning for the former rule is that if neither wants to do it, then the default in the 
NAOFFD option dominates.    If both want to do it, the sender, who is presumed to have 
special knowledge about the data, should be allowed to do it, taking into account any 
suggestions the receiver may make.    Simulation is defined as the replacement of the 
formfeed character by enough line-feeds (only) to advance the paper (or line-pointer) to the 
top of the next page (or to the top of the terminal screen).    Note that delays, controlled by 
the data sender, must consist of NUL characters inserted immediately after the formfeed 
character.    This is necessary due to the assynchrony of network transmission.    As with all 
option negotiations, neither party should suggest a state already in effect except to refuse to
negotiate; changes should be acknowledged; and once refused, an option should not be 
resuggested until "something changes" (e.g., another process starts).    At any time, either 
party can disable further negotiation by giving the appropriate WON'T NAOFFD or DON'T 
NAOFFD command. 



RFC-656 Telnet Output Vertical Tabstops Option
D. Crocker UCLA-NMC

25 October 1974

Command name and code
NAOVTS 14 Negotiate About Vertcial Tabstops

Default
DON'T NAOVTS/WON'T NAOVTS.

In the default absence of negotiations concerning which party, data sender or 
data receiver, is handling output vertical tabstop considerations, neither party 
is required to handle vertical tabstops and neither party is prohibited from 
handling them; but it is appropriate if at least the data receiver handles 
vertical tabstop considerations, albeit primitively. 
Command Meanings
Motivation
Description



RFC-656 Telnet Output Vertical Tabstops Option

Command Meanings

In the following, we are discussing a simplex connection, as described in    the NAOL and 
NAOP Telnet Options specifications. 

IAC DO NAOVTS 
The data sender requests or agrees to negotiate about output vertical 
tabstops with the data receiver.    In the case where agreement has been 
reached and in the absence of further subnegotiations, the data receiver is 
assumed to be handling output vertical tabstop considerations. 

IAC DON'T NAOVTS 
The data sender refuses to negotiate about output vertical tabstops    with the 
data receiver, or demands a return to the unnegotiated    default mode. 

IAC WILL NAOVTS 
The data receiver requests or agrees to negotiate about output    vertical 
tabstops with the sender.    In the case where agreement has    been reached 
and in the absence of further subnegotiations, the data    receiver alone is 
assumed to be handling output vertical tabstop    considerations. 

IAC WON'T NAOVTS 
The data receiver refuses to negotiate about output vertical tabstops, or 
demands a return to the unnegotiated default mode. 

IAC SB NAOVTS DS <8-bit value> ... <8-bit value> IAC SE
The data sender specifies, with the 8-bit value(s), which party should handle 
output vertical tabstop considerations and what the stops should be.    The 
code for DS is 1. 

IAC SB NAOVTS DR <8-bit value> ... <8-bit value> IAC SE
The data receiver specifies, with the 8-bit value(s), which party    should 
handle output vertical tabstop considerations and what the    stops should be.   
The code for DR is 0. 



RFC-656 Telnet Output Vertical Tabstops Option

Motivation for the Option

There appear to be four cases in which it is useful for the party at one end of a TELNET 
connection to communicate with the other party about vertical tabstop disposition:

a The sender may wish the receiver to use its local knowledge of the 
terminal to properly handle vertical tabstops;

b The receiver may wish the sender to use its local knowledge of the 
terminal to properly handle vertical tabstops;

c The sender may wish to use its local knowledge of the data being sent to 
instruct the receiver in the proper handling of vertical tabstops;

d The receiver may wish to use its local knowledge of the terminal to instruct
the sender in the proper handling of vertical tabstops.



RFC-656 Telnet Output Vertical Tabstops Option

Description of the Option

The data sender and the data receiver use the 8-bit value(s) along with the DS and DR SB 
commands as follows (multiple 8-bit values are allowed only if each is greater than zero and 
less than 251): 
    8-bit value            Meaning  

0 Command sender suggests that he alone will handle the vertical 
tabstops, for the connection.                    

1 to 250 Command sender suggests that the other party alone should 
handle the stops, but suggests that the indicated value(s) be used.  
Each value is the line number, relative to the top of the printer 
page or terminal screen, that is to be set as a vertical tabstop. 

251 to 254 Not allowed, in order to be compatible with related Telnet options. 
255 Command sender suggests that the other party alone should 

handle output vertical tabstops and suggests nothing about how it 
should be done. 

      The guiding rules are that:
1) if neither data receiver nor data sender wants to handle output    vertical 

tabstops, the data receiver must do it, and 
2) if both data receiver and data sender want to handle output vertical    

tabstops, the data sender gets to do it. 
The reasoning for the former rule is that if neither wants to do it, then    the default in the 
NAOVTS option dominates.    If both want to do it, the    sender, who is presumed to have 
special knowledge about the data, should be    allowed to do it, taking into account any 
suggestions the receiver may make. This is necessary due to the assynchrony of network 
transmissions. As with all option negotiations, neither party should suggest a state    already 
in effect except to refuse to negotiate; changes should be    acknowledged; and once 
refused, an option should not be resuggested until    "something changes" (e.g., another 
process starts). At any time, either party can disable further negotiation by giving the    
appropriate WON'T NAOVTS or DON'T NAOVTS command. 



RFC-657 Telnet Output Vertical Tab Disposition Option
D. Crocker UCLA-NMC

25 October 1974

Command name and code
NAOVTD 15 Negotiate About Output Vertcial Tab Disposition

Default
DON'T NAOVTD/WON'T NAOVTD

In the default absence of negotiations concerning which party, data sender or 
data receiver, is handling output vertical tab character considerations, neither 
party is required to handle vertical tab characters and neither party is 
prohibited from handling them; but it is appropriate if at least the data 
receiver handles vertical tab character considerations, albeit primitively. 
Command Meanings
Motivation
Description



RFC-657 Telnet Output Vertical Tab Disposition Option

Command meanings

In the following, we are discussing a simplex connection, as described in the NAOL and NAOP
Telnet Options specifications. 

IAC DO NAOVTD
The data sender requests or agrees to negotiate about output vertical tab 
character disposition with the data receiver.    In the case where agreement 
has been reached and in the absence of further subnegotiations, the data 
receiver is assumed to be handling output vertical tab character 
considerations. 

IAC DON'T NAOVTD
The data sender refuses to negotiate about output vertical tab character 
disposition with the data receiver, or demands a return to the unnegotiated 
default mode. 

IAC WILL NAOVTD
The data receiver requests or agrees to negotiate about output vertical tab 
character disposition with the sender.    In the case where agreement has been
reached and in the absence of further subnegotiations, the data receiver alone
is assumed to be handling output vertical tab character considerations. 

IAC WON'T NAOVTD
The data receiver refuses to negotiate about output vertical tab character 
disposition, or demands a return to the unnegotiated default mode. 

IAC SB NAOVTD DS <8-bit value> IAC SE
The data sender specifies, with the 8-bit value, which party should handle 
output vertical tab characters and what their disposition should be.    The code
for DS is 1. 

IAC SB NAOVTD DR <8-bit value> IAC SE
The data receiver specifies, with the 8-bit value, which party should handle 
output vertical tab characters and what their disposition should be.    The code
for DR is 0. 



RFC-657 Telnet Output Vertical Tab Disposition Option

Motivation for the Option

There appear to be four cases in which it is useful for the party at one end of a TELNET 
connection to communicate with the other party about vertical tabstop disposition:

a The sender may wish the receiver to use its local knowledge of the 
terminal to properly handle vertical tabstops;

b The receiver may wish the sender to use its local knowledge of the 
terminal to properly handle vertical tabstops;

c The sender may wish to use its local knowledge of the data being sent to 
instruct the receiver in the proper handling of vertical tabstops;

d The receiver may wish to use its local knowledge of the terminal to instruct
the sender in the proper handling of vertical tabstops.



RFC-657 Telnet Output Vertical Tab Disposition Option

Description of the Option

The data sender and the data receiver use the 8-bit value along with the DS and DR SB 
commands as follows: 

8 bit value            Meaning  
0 Command sender suggests that he alone will handle vertical tab 

characters, for the connection.
1 to 250 Command sender suggests that the other party alone should handle tab 

characters, but suggests that a delay of the indicated value be used. The 
value is the number of character-times to wait or number of NULs to insert 
in the data stream before sending the next data character. 

251 Command sender suggests that the other party alone handle vertical tabs,
but suggests that each occurrence of the character be replaced by    
carriage-return/linefeed. 

252 Command sender suggests that the other party alone handle vertical tabs,
but suggests that they be discarded. 

253 Command sender suggests that the other party alone should handle tab 
characters, but suggests that tabbing be simulated. 

254 Command sender suggests that the other party alone should handle the 
output disposition but suggests waiting for a character to be transmitted 
(on the other simplex connection) before sending more data. Note that, 
due to the assynchrony of the two simplex connections, phase problems 
can occur with this option. 

255 Command sender suggests that the other party alone hould handle the 
output disposition and suggests nothing about how it should be done. 

The guiding rules are that:
1. if neither data receiver nor data sender wants to handle the    output 

vertical tab characters, the data receiver must do it, and 
2. if both data receiver and data sender want to handle the output vertical 

tab characters, the data sender gets to do it. 
The reasoning for the former rule is that if neither want to do it, then the default in the 
NAOVTD option dominates.    If both want to do it, the sender, who is presumed to have 
special knowledge about the data, should be allowed to do it, taking into account any 
suggestions the receiver may make.    Simulation is defined as the replacement of the 
character by enough line-feeds (only) to advance the paper (or line-pointer) to the next 
vertical tab stop.      Note that delays, controlled by the data sender, must consist of NUL 
characters, inserted immediately after the line-feed character.    This is necessary due to the 
assynchrony of network transmissions.    As with all option negotiations, neither party should 
suggest a state already in effect except to refuse to negotiate; changes should be 
acknowledged; and once refused, an option should not be resuggested until "something 
changes" (e.g., another process starts).    At any time, either party can disable further 
negotiation by giving the appropriate WON'T NAOVTD or DON'T NAOVTD command. 



RFC-658 Telnet Output Linefeed Disposition
D. Crocker UCLA-NMC

25 October 1974

Command name and code
NAOLFD 16 Negotiate About Output Linefeed Disposition

Default
DON'T NAOLFD/WON'T NAOLFD.

In the default absence of negotiations concerning which party, data under or 
data receiver, is handling output linefeed considerations, neither party is 
required nor prohibited from handling linefeeds; but it is appropriate if at least 
the data receiver handles them, albeit primitively. 
Command Meanings
Motivation
Description



RFC-658 Telnet Output Linefeed Disposition Option

Command meanings

In the following, we are discussing a simplex connection, as described in    the NAOL and 
NAOP Telnet Options. 

IAC DO NAOLFD 
The data sender requests or agrees to negotiate about output linefeed 
disposition with the data receiver.    In the case where agreement has been 
reached and in the absence of further subnegotiations, the data receiver is 
assumed to be handling output linefeed considerations. 

IAC DON'T NAOLFD 
The data sender refuses to negotiate about output linefeed disposition with 
the data receiver, or demands a return to the unnegotiated default mode. 

IAC WILL NAOLFD 
The data receiver requests or agrees to negotiate about output linefeed 
disposition with the sender.    In the case where agreement has been reached 
and in the absence of further subnegotiations, the data receiver alone is 
assumed to be handling output linefeed considerations. 

IAC WON'T NAOLFD 
The data receiver refuses to negotiate about output linefeed    disposition, or 
demands a return to the unnegotiated default mode.    

IAC SB NAOLFD DS <8-bit value> IAC SE
The data sender specifies, with the 8-bit value, which party should    handle 
output linefeeds and what their disposition should be.    The    code for DS is 1. 

IAC SB NAOLFD DR <8-bit value> IAC SE
The data receiver specifies, with the 8-bit value, which party should handle 
output linefeeds and what their disposition should be.    The code for DR is 0. 



RFC-658 Telnet Output Linefeed Disposition Option

Motivation for the Option

There appear to be four cases in which it is useful for the party at one end of a TELNET 
connection to communicate with the other party about linefeed disposition:

a The sender may wish the receiver to use its local knowledge of the 
terminal to properly handle linefeeds;

b The receiver may wish the sender to use its local knowledge of the 
terminal to properly handle linefeeds;

c The sender may wish to use its local knowledge of the data being sent to 
instruct the receiver in the proper handling of linefeeds;

d The receiver may wish to use its local knowledge of the terminal to instruct
the sender in the proper handling of linefeeds.



RFC-658 Telnet Output Linefeed Disposition Option

Description of the Option

The data sender and the data receiver use the 8-bit value along with DS and DR SB 
commands as follows: 
    8-bit value            Meaning  

0 Command sender suggests that he alone will handle linefeeds, for 
the connection. 

1 to 250 Command sender suggests that the other party alone should 
handle linefeeds, but suggests that a delay of the indicated value 
be used.    The value is the number of character-times to wait or 
number of      NULs to insert in the data stream before sending the 
next data character.    (See qualifications, below.) 

251 Not allowed, in order to be compatible with related Telnet options. 
252 Command sender suggests that the other party alone handle 

linefeeds, but suggests that they be discarded. 
253 Command sender suggests that the other party alone should 

handle linefeeds, but suggests that linefeeds be simulated. 
254 Command sender suggests that the other party alone should 

handle output linefeeds but suggests waiting for a character to be 
transmitted (on the other simplex connection) before sending more 
data.    (See qualifications, below.) Note that, due to the 
assynchrony of the two simplex connections, phase problems can 
occur with this option. 

255 Command sender suggests that the other party alone should 
handle output linefeeds and suggests nothing about how it should 
be done. 

The guiding rules are that: 
1) if neither data receiver nor data sender wants to handle output    linefeeds,

the data receiver must do it, and 
2) if both data receiver and data sender want to handle output linefeed    

disposition, the data sender gets to do it.    
The reasoning for the former rule is that if neither wants to do it, then the default in the 
NAOLFD option dominates.    If both want to do it, the sender, who is presumed to have 
special knowledge about the data, should be allowed to do it, taking into account any 
suggestions the receiver may make.    Simulation is defined as the replacement of the 
linefeed character by new-line (see following) and enough blanks to move the print head (or 
line pointer) to the same lateral position it occupied just prior to receiving the linefeed.    To 
avoid infinite recursion, such simulation is allowed only for linefeed characters that are not 
immediately preceded by carriage-returns (that is, part of a Telnet new-line combination).    It
is assumed that linefeed simulation will be necessary for printers that do not have a 
separate linefeed (like the IBM 2741); in this case, end-of-line character padding can be 
specified through NAOCRD.    Any padding (0 < <8-bit-value> < 251) of linefeed characters 
is to be done for ALL linefeed characters. 
NOTE: Delays, controlled by the data sender, must consist of NUL characters inserted 
immediately after the character.    This is necessary due to the assynchrony of network 



transmissions.    Additionally, due to the presence of the Telnet end-of-line convention, it may
be necessary to add carriage-return padding or delay after the associated linefeed (see 
NAOCRD Telnet option).    As with all option negotiations, neither party should suggest a 
state already in effect except to refuse to negotiate; changes should be acknowledged; and 
once refused, an option should not be resuggested until "something changes" (e.g., another 
process starts).    At any time, either party can disable further negotiation by giving the 
appropriate WON'T NAOLFD or DON'T NAOLFD command. 



RFC-698 Telnet Extended ASCII Option
July 1975

Command Name and Code.
EXTEND-ASCII 17

Default
DON'T EXTEND-ASCII
WON'T EXTEND-ASCII
i.e., only use standard NVT ASCII
Command Meanings
Motivation
Description of the option
Description of Stanford Extended ASCII Characters



RFC-698 Telnet Extended ASCII Option

Command Meanings

IAC WILL EXTEND-ASCII
The sender of this command requests Permission to begin transmitting, or 
confirms that it may now begin transmitting extended ASCII, where additional 
'control' bits are added to normal ASCII, which are treated sPecially by certain 
programs on the host computer. 

IAC WON'T EXTEND-ASCII
If the connection is already being operated in extended ASCII mode, the 
sender of this command demands that the receiver begin transmitting data 
characters in standard NVT ASCII. If the connection is not already being 
operated in extended ASCII mode, The sender of this command refuses to 
begin transmitting extended ASCII. 

IAC DO EXTEND-ASCII
The sender of this command requests that the receiver begin transmitting,or 
confirms that the receiver of this command is allowed to begin transmitting 
extended ASCII. 

IAC DON'T EXTEND-ASCII
The sender of this command demands that the receiver of this command stop 
or not start transmitting data in extended ASCII mode. 

IAC SB EXTASC
<high order bits (bits 15-8)><low order bits (bits 7-0)> IAC SE
This command transmits an extended ASCII character in the form of two 8-bit 
bytes. Each 8-bit byte contains 8 data bits. 



RFC-698 Telnet Extended ASCII Option

Motivation

Several sites on the net, for example, SU-AI and MIT-AI, use keyboards which use almost all 
128 characters as printable characters, and use one or more additional bits as "control' bits 
as command modifiers or to separate textual input from command input to programs. 
Without these additional bits, several characters cannot be entered as text because they are
used for control purposes, such as the greek letter "beta' which on a TELNET connection is 
CONTROL-C and is used for stopping ones job. In addition there are several commonly used 
programs at these sites which require these additional bits to be run effectively. Hence it is 
necessary to provide some means of sending characters larger than 8 bits wide. 



RFC-698 Telnet Extended ASCII Option

Description of the Option

This option is to allow the transmission of extended ASCII.
Experience has shown that most of the time, 7-bit ASCII is typed, with an occasional "control'
character used. Hence, it is expected normal NVT ASCII would be used for 7-bit ASCII and 
that extended-ASCII be sent as an escape character sequence. 
The exact meaning of these additional bits depends on the user program. At SU-AI and at 
MIT-AI, the first two bits beyond the normal 7-bit ASCII are passed on to the user program 
and are denoted as follows. 
Bit 8 (or 200 octal) is the CONTROL bit
Bit 9 (or 400 octal) is the META bit
NOTE:"CONTROL' is used in a non-standard way here; that is, it usually refers to codes 0-37 

in NVT ASCII. CONTROL and META are echoed by prefixing the normal character with 
013 (integral symbol) for CONTROL and 014 (plus-minus) for META. If both are 
present, it is known as CONTROL-META and echoed as 013 014 7-bit character.



RFC-698 Telnet Extended ASCII Option

Description of Stanford Extended ASCII Characters

In this section, the extended graphic character set used at SU-AI is described for reference, 
although this specific character set is not required as part of the extended ASCII Telnet 
option. Characters described as "hidden" are alternate graphic interpretations of codes 
normally used as format effectors, used by certain typesetting programs. 

Code          Graphic represented  
000 null (hidden vertically centered dot)
001 downward arrow
002 alpha (all Greek letters are lowercase)
003 beta
004 logical and (caret)
005 logical not (dash with downward extension)
006 epsilon
007 pi
010 lambda
011 tab (hidden gamma)
012 linefeed (hidden delta)
013 vertical tab (hidden integral)
014 formfeed (hidden plus-minus)
015 carriage return (hidden circled-plus)
016 infinity
017 del (partial differential)
020 proper subset (right-opening horseshoe)
021 proper superset (left-opening horseshoe)
022 intersection (down-opening horseshoe)
023 union (up-opening horseshoe)
024 universal quantifier (upside-down A)
025 existential quantifier (backwards E)
026 circled-times
027 left-right double headed arrow
030 underbar
031 right pointing arrow
032 tilde
033 not-equal
034 less-than-or-equal
035 greater-than-or-equal
036 equivalence (column of 3 horizontal bars)
037 logical or (V shape)
040-135 as in standard ASCII
136 upward pointing arrow
137 left pointing arrow
140-174 as in standard ASCII
175 altmode (prints as lozenge)
176 right brace
177 rubout (hidden circumflex)



                                                                -4-





RFC-727 Telnet Logout Option
Mark Crispin; MIT-AI

27 October 1977

Command name and code.
LOGOUT 18

Default.
WON'T LOGOUT
DON'T LOGOUT

No forcible logging off of the server's user process.
Command Meanings
Motivation for the Option
Description of the Option
A Sample Implementation



RFC-727 Telnet Logout Option

Command Meanings

IAC WILL LOGOUT
The sender of this command REQUESTS permission to, or confirms that it will, 
forcibly log off the user process at its end. 

IAC WON'T LOGOUT
The sender of this command REFUSES to forcibly log off the user process at its
end. 

IAC DO LOGOUT
The sender of this command REQUESTS that the receiver forcibly log off the 
user process at the receiver's end, or confirms that the receiver has its 
permission to do so. 

IAC DON'T LOGOUT
The sender of this command DEMANDS that the receiver not forcibly log off 
the user process at the receiver's end. 



RFC-727 Telnet Logout Option

Motivation for the Option

Often, a runaway user process could be hung in such a state that it cannot be interrupted by
normal means.    Conversely, the system itself could be bottlenecked so that response delays
are intolerable.    A user (human or otherwise) eventually will time out out of frustration    and
take the drastic means of closing the connection to free itself from the hung process.    In 
some situations, even the simple operation of logging out can take a long time. 
Some systems treat a close to mean that it should log out its user process under it.    
However, many hosts merely "detach" the process so that an accidental close due to a user 
or temporary hardware error will not cause all work done on that job to be lost; when the 
connection is re-established, the user may "attach" back to its process.    While this 
protection is often valuable, if the user is giving up completely on the host, it can cause this 
hung job to continue to load the system. 
This option allows a process to instruct the server that the user process at the server's end 
should be forcibly logged out instead of detached.    A secondary usage of this option might 
be for a server to warn of impending auto-logout of its user process due to inactivity. 



RFC-727 Telnet Logout Option

Description of the Option

When a user decides that it no longer wants its process on the server host and decides that 
it does not want to wait until the host's normal log out protocol has been gone through, it 
sends IAC DO LOGOUT.    The receiver of the command may respond with IAC WILL LOGOUT, 
in which case it will then forcibly log off the user process at its end.    If it responds with IAC 
WON'T LOGOUT, then it indicates that it has not logged off the user process at its end, and if
the connection is broken, the process very possibly will be detached. 
A truly impatient user that feels that it must break away from the server immediately could 
even send IAC DO LOGOUT and then close. At the worst, the server would only ignore the 
request and detach the user process.    A server that implements the LOGOUT option should 
know to log out the user process despite the sudden close and even an inability to confirm 
the LOGOUT request! 



RFC-727 Telnet Logout Option

A Sample Implementation of the Option

The server implements the LOGOUT option both for accepting LOGOUT requests and for 
auto-logout warning. 

Case 1:
The user connects to the server, and starts interacting with the server.    For 
some reason, the user wishes to terminate interaction with the server, and is 
reluctant to go through the normal log out procedure, or perhaps the user is 
unable to go through the normal log out procedure.    It does not want the 
process at the server any more, so it sends IAC DO LOGOUT.    The server 
verifies the request with IAC WILL LOGOUT, and then forcibly logs off the user 
process (perhaps by using a system call that causes another process to be 
logged out).    It does not have to close the connection unless the user closes 
or it wants to close.    Neither does it wait until the user has received its 
confirmation--it starts the log out immediately so if the user has in the mean 
time closed the connection without waiting for confirmation, its logout request
still is performed. 
Case 2:
The user connects to the server, and after logging in, is idle for a while, long 
enough to approach the server's autologout time. The server shortly before 
the autologout sends IAC WILL LOGOUT; the user sees this and sends IAC 
DON'T LOGOUT, and continues work on the host.    Nothing prevents the server
from logging out the user process if inactivity continues; this can be used to 
prevent a malicious user from locking up a process on the server host by the 
simple expedient of sending IAC DON'T LOGOUT every time it sees IAC WILL 
LOGOUT but doing nothing else. 



RFC-735 Telnet Byte Macro Option
David H. Crocker & Richard H. Gumpertz

3 November 1977

Command name and code:
BM 19

Default:
WON'T BM -- DON'T BM
No reinterpretation of data bytes is done.
Command Meanings
Motivation
Description



RFC-735 Telnet Byte Macro Option

Command Meanings:

IAC WILL BM
The sender of this command REQUESTS or AGREES to use the BM option, and 
will send single data characters which are to be interpreted as if replacement 
data strings had been sent. 

IAC WON'T BM
The sender of this option REFUSES to send single data characters which are to
be interpreted as if replacement data strings had been sent. Any existing BM 
<macro byte> definitions are discarded (i.e., reset to their original data 
interpretations). 

IAC DO BM
The sender REQUESTS or AGREES to have the other side (sender of WILL BM) 
send single data characters which are to be interpreted as if replacement data
strings had been sent. 

IAC DON'T BM
The sender REFUSES to allow the other side to send single data characters 
which are to be interpreted as if replacement data strings had been sent. Any 
existing BM <macro byte> definitions are to be discarded. 

IAC SB BM <DEFINE> <macro byte> <count>
<replacement string> IAC SE

where:
<macro byte> is the data byte actually to be sent across the network; it 
may NOT be Telnet IAC (decimal 255, but may be any other 8-bit character.
<count> is one 8-bit byte binary number, indicating how many 
<replacement string> characters follow, up to the ending IAC SE, but not 
including it. Note that doubled IACs in the definition should only be 
counted as one character per pair. 
<replacement string> is a string of zero or more Telnet ASCII characters 
and/or commands, which the <macro byte> is to represent; any character 
may occur within a <replacement string>. Note, however, that an IAC in 
the string must be doubled, to be interpreted later as an IAC; to be 
interpreted later as data byte 255, it must be quadrupled in the original 
<replacement string> specification. 

The indicated <macro byte> will be sent instead of the indicated 
<replacement string>. The receiver of the <macro byte> (the sender of the 
DO BM) is to behave EXACTLY as if the <replacement string> string of bytes 
had instead been received from the network. This interpretation is to occur 
before any other Telnet interpretations, unless the <macro byte> occurs as 
part of a Telnet command; in this case no special interpretation is to be made. 
In particular, an entire Telnet subnegotiation (i.e. from IAC SB through IAC SE) 
is to be considered a Telnet command in which NO replacement should be 
done. 
The effect of a particular <macro byte> may be negated by reseting it to 
"expand" into itself. 



IAC SB BM <DEFINE> X <0> IAC SE may be used to cause X to be ignored in the data 
stream.

<DEFINE> is decimal 1.
IAC SB BM <ACCEPT> <macro byte> IAC SE

The receiver of the <DEFINE> for <macro byte> accepts the requested 
definition and will perform the indicated replacement whenever a <macro 
byte> is received and is not part of any IAC Telnet command sequence. 
<ACCEPT> is decimal 2.

IAC SB BM <REFUSE> <macro byte> <REASON> IAC SE
The receiver of the <DEFINE> for <macro byte> refuses to perform the 
indicated translation from <macro byte> to <replacement string> because 
the particular <macro byte> is not an acceptable choice, the length of the 
<replacement string> exceeds available storage, the length of the actual 
<replacement string> did not match the length predicted in the <count>, or 
for some unspecified reason. 
<REFUSE> is decimal 3.
<REASON> may be:

<Bad-Choice> which is decimal 1;
<Too-Long> (for receiver's storage) which is decimal 2;
<Wrong-Length> (of actual string compared with promised length in 

<count>) which is decimal 3; or
<Other-Reason> (intended for use only until this document can be 

updated to include reasons not anticipated by the 
authors) which is decimal zero (0). 

IAC SB BM <LITERAL> <macro byte> IAC SE
The <macro byte> is to be treated as real data, rather than as representative 
of the <replacement string> 
Note that this subcommand cannot be used during Telnet subcommands, 
since subcommands are defined to end with the next occurrence of "IAC SE". 
Including this BM subcommand within any Telnet subcommand would 
therefore prematurely terminate the containing subcommand. 
<LITERAL> is decimal 4.

IAC SB BM <PLEASE CANCEL> <macro byte> <REASON> IAC SE
The RECEIVER of the defined <macro byte> (i.e., the sender of IAC DO BM) 
requests the sender of <macro byte> to cancel its definition. <REASON> is 
the same as for the <REFUSE> subcommand. 
The <macro byte> sender should (but is not required to) respond by resetting 
<macro byte> (i.e., sending an IAC SB BM <DEFINE> <macro byte> <1> 
<macro byte> IAC SE). 
If the receiver absolutely insists on cancelling a given macro, the best it can 
do is to turn off the entire option, with IAC DONT BM, wait for an 
acknowledging IAC WONT BM and then restart the option, with IAC DO BM. 
This will reset all other macroes as well but it will allow the receiver to REFUSE
with code BAD CHOICE if/when the foreign site attempts to redefine the macro
in question. 





RFC-735 Telnet Byte Macro Option

Motivation for the Option

Subcommands for Telnet options currently require a minimum of five characters to be sent 
over the network (i.e., IAC SB <Option name> IAC SE). For subcommands which are 
employed infrequently, in absolute numbers and in relation to normal data, this overhead is 
tolerable. In other cases, however, it is not. For example, data which is sent in a block- 
oriented fashion may need a "block separator" mark. If blocks are commonly as small as five
or ten bytes, then most of the cross-net data will be control information. The BM option is 
intended as a simple data compression technique, to remove this overhead from the 
communication channel. 



RFC-735 Telnet Byte Macro Option

Description of the Option

The option is enabled through the standard Telnet Option negotiation process. Afterwards, 
the SENDER of data (the side which sends the IAC WILL BM) is free to define and use 
mappings between single and replacement NVT characters. Except for the ability to refuse 
particular definitions, the receiver of data has no control over the definition and use of 
mappings. 
The sender (of the WILL BM) is prohibited from using or redefining a <macro byte> until it 
has received an <ACCEPT> <REFUSE>, or DONT BM, in reply to a <DEFINE>. 
NOTE: The Telnet command character IAC (decimal 255) may be a member of a 

<replacement string> but is the ONLY character which may NOT be defined as a 
<macro byte>. 

Within any Telnet command (i.e., any sequence beginning with IAC) macro replacement may 
NOT take place. Data are to be interpreted only as their normal character values. This avoids
the problem of distinguishing between a character which is to be taken as a <macro byte>, 
and interpreted as its corresponding <replacement string>, and one which is to be taken as 
its usual Telnet NVT value. In all other cases, however, <macro byte>s are to be interpreted 
immediately, as if their corresponding <replacement string>s had actually been sent across 
the network. Expanded strings are not subject to reinterpretation, so that recursive 
definitions cannot be made. Telnet commands may be included in <replacement strings>; 
however, they must be totally contained within the macro or must begin within the macro 
and terminate outside of it. In particular, they may NOT begin outside a macro and continue 
or terminate inside one, since no macro replacement takes place while processing any Telnet
command. 
Note that when skipping data due to Telnet SYNCH (INS/DM) processing, BM macro 
replacement should still take place, since (for example) "IAC DM" would be a valid 
<replacement string>. 
The <count> in the <DEFINE> subcommand is intended to allow the receiver to allocate 
storage. IAC interpretation is not over-ridden during BM subcommands so that IAC SE will 
continue to safely terminate malformed subcommands. 
The BM option is notably inefficient with regard to problems during <macro byte> definition 
and use of <macro byte>s as real data. It is expected that relatively few <macro byte>s will
be defined and that they will represent relatively short strings. Since the Telnet data space 
between decimal 128 and decimal 254 is not normally used, except by implementations 
employing the original (obsolete) Telnet protocol, it is recommended that <macro byte>s 
normally be drawn from that pool. 



RFC-736 Telnet SUPDUP Option
Mark Crispin

Stanford University
31 October 1977

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
are expected to adopt and implement this standard. 
Command Name and Code

SUPDUP 21
Default

WON'T SUPDUP
DON'T    SUPDUP

The SUPDUP display protocol is not in use.

Command Meanings
Motivation
Description



RFC-736 Telnet SUPDUP Option

Command meanings

IAC WILL SUPDUP
The sender of this command    REQUESTS permission to, or    confirms that it 
will, use the SUPDUP display protocol 

IAC WON'T SUPDUP
The sender of this command REFUSES to use the SUPDUP protocol.

IAC DO SUPDUP
The sender of this    command REQUESTS that    the receiver use,    or grants 
the receiver permission to use, the SUPDUP protocol. 

IAC DON'T
The sender of this command DEMANDS that the receiver not use the SUPDUP 
protocol. 



RFC-736 Telnet SUPDUP Option

Motivation for the option

Since the publication of RFC-734 "SUPDUP Protocol",    I have been requested to    design an 
option to    the TELNET    protocol to provide    for SUPDUP    service. This option allows a host 
to    provide SUPDUP service on the    normal TELNET socket (27 octal) instead of 137 (octal) 
which is the normal SUPDUP ICP socket. 



RFC-736 Telnet SUPDUP Option

Description of the option

A user    TELNET    program which    wishes    to use    the    SUPDUP    display protocol instead of
the NVT terminal service should send an IAC    DO SUPDUP.    If    the    server    is    willing to    
use    the    SUPDUP    display protocol, it    should respond    with IAC    WILL SUPDUP;    
otherwise    it should refuse with IAC WONT SUPDUP. 
For hosts    which normally    provide    SUPDUP terminal    services,    the server can send IAC    
WILL SUPDUP upon ICP    which the user may    then accept or refuse. 
If the SUPDUP option is    in effect, no further TELNET    negotiations are allowed.      They    are 
meaningless, since    SUPDUP    has    its    own facilities to perform    the functions that are 
needed.    Hence, octal 377 will become an ordinary transmitted character (in this case    an 
invalid %TD code) instead of an IAC. 
Following the mutual    acceptance of the    SUPDUP option, the    SUPDUP negotiation 
proceeds as described in RFC-734 "SUPDUP Protocol". 



RFC-749 Telnet SUPDUP-Output Option
Bernard Greeberg

MIT-Multics
18 September 1978

Command name and code.
SUPDUP-OUTPUT      22

Default.
WON'T SUPDUP-OUTPUT
DON'T SUPDUP-OUTPUT
i.e., the SUPDUP-OUTPUT format messages may not be transmitted.
Command Meanings
Motivation for the Option
Description of the Option



RFC-749 Telnet SUPDUP-Output Option

Command meanings.

IAC WILL SUPDUP-OUTPUT
The    sender      of    this    command      REQUESTS      permission    to    transmit 
SUPDUP-OUTPUT format messages over the TELNET connection. 

IAC WON'T SUPDUP-OUTPUT
The sender    of this command    STATES    that    he    will    no    longer    send 
SUPDUP-OUTPUT format messages over the TELNET connection. 

IAC DO SUPDUP-OUTPUT
The sender    of this command    grants    the receiver    permission to send 
SUPDUP-OUTPUT format messages over the TELNET connection. 

IAC DON'T SUPDUP-OUTPUT
The sender    of this    command    DEMANDS    that    the    receiver    not    send 
SUPDUP-OUTPUT format messages over the TELNET connection. 

IAC SB SUPDUP-OUTPUT 1 <terminal-parameters> IAC SE
The sender of this command (which must be the TELNET user process) is 
supplying      information    describing    the    capabilities    of    the    user process'
terminal. 

IAC SB SUPDUP-OUTPUT 2 n TD1 TD2 ..    TDn SCx SCy IAC SE
The sender    of this command, which must be the TELNET server process, is 
sending    explicit    screen control information to be carried out by the user 
TELNET process. 



RFC-749 Telnet SUPDUP-Output Option

Motivation for the option.

The SUPDUP-OUTPUT    protocol    provides    a means to access    the virtual display    support 
provided by the SUPDUP protocol (see RFC 734) within the context    of a standard    TELNET 
connection. This allows occasional display-oriented    programs    at non-display-oriented    
servers    to take advantage    of the standardized    display    support    provided by SUPDUP. 
This cannot    be done with the standard    SUPDUP protocol or the TELNET SUPDUP option 
(RFC 736), for they both require that all communication after the negotiation    to    use    
SUPDUP    has    been    completed    proceed according    to the protocol    of RFC 734.      This 
places upon the server total responsibility    for screen    management    for the duration of the
connection,    which, by hypothesis, the non-display oriented server is not willing to accept. 
User TELNET    programs    at display-oriented    user hosts provide    local screen    
management    by mapping    the NVT commands of TELNET into local screen      management 
commands;      often,      this    involves    scrolling, end-of-page    processing, line clearing etc.    
The SUPDUP-OUTPUT option allows    a display-oriented    application program at the server 
side to take over    screen    management    explicitly,    via    the    SUPDUP    display control 
repertoire.    TELNET remains in effect throughout.    The IAC IP and other TELNET commands 
are still valid. 
By means of the SUPDUP-OUTPUT    option,    display-oriented programs can run    on    the    
server      host,    and    control    the    user    host's    screen explicitly.      The user TELNET 
process sends a description of the user terminal    (as specified in RFC 734) to the server 
TELNET process as a subnegiotiation    block when the SUPDUP-OUTPUT    negotiation    has    
been successfully    completed.      The server    TELNET    process sends explicit screen    
control commands via subnegotiation blocks to the user TELNET process. 



RFC-749 Telnet SUPDUP-Output Option

Description of the option.

The SUPDUP-OUTPUT protocol may only be initiated by the server TELNET process.      A 
server    TELNET    process wishing to take advantage of the SUPDUP-OUTPUT    protocol will 
initiate a negotiation for it by sending IAC WILL SUPDUP-OUTPUT.      The user    TELNET    
process    must    accept    or refuse    the offer by    sending    IAC    DO    SUPDUP-OUTPUT    or    
IAC    DON'T SUPDUP-OUTPUT. 
If the user    TELNET    process    agrees    to    support    the    SUPDUP-OUTPUT option,      it    
must    follow      the    sending    of    IAC    DO    SUPDUP-OUTPUT immediately      with    a    
description    of    the    user's    terminal.      This information    is described in RFC 734 as the 
"terminal parameters." It is to be sent as a series    of six-bit    bytes,    one byte per eight-bit 
TELNET    data byte.      These    words may or may not contain the optional line speed and 
graphics capabilities parameters described by RFC 747; the first    six bytes    specify    the 
count of 36-bit words to follow as described by RFC 734. 
The terminal    parameter block will be sent as a subnegotiation of the SUPDUP-OUTPUT 
option: 

IAC SB SUPDUP-OUTPUT 1 byte1 byte2 ... byten IAC SE
The byte of "1"    is a command    code,    for compatibility    with    future extensions.      Upon 
receipt    of the terminal    parameter block from the user TELNET process, the server TELNET 
process may send SUPDUP-OUTPUT blocks as described below. 
The server    TELNET    process    can specify explicit control of the user host's    screen    by    
the    sending    of    subnegotiation    blocks    of    the SUPDUP-OUTPUT    option.      The format   
of such    a    block,    as    seen    in eight-bit TELNET data bytes, is: 

IAC SB SUPDUP-OUTPUT 2 N TD1 TD2 TD3 ... TDn SCx SCy IAC SE
The byte of "2"    is a command    code,    for compatibility    with    future extensions.    The 
TDm bytes are the "%TDCODEs" and printing characters of SUPDUP    output    of RFC 734.    N
is a byte containing a count of the number    of TDm's in this transmission.    N may be zero, 
and may not be greater than 254 (decimal).    SCx and SCy are two bytes specifying the 
anticipated horizontal and vertical (respectively) coordinates of the cursor of the user host's 
screen after the latter has interpreted all the %TDCODEs in this transmission. 
The motivation    for the SCx SCy screen    position    specification is to allow hosts running the
ITS operating system, which will transmit the TDCODEs    directly    into the local output    
system, to assert the "main program    level"    screen    position    without    any interpretation 
of the transmitted TDCODE sequence by the user TELNET program. 
The user TELNET    process must manage the position of the local cursor with respect    to 
standard    TELNET NVT commands and output, and SUPDUP OUTPUT    transmissions.      The 
user TELNET    process may assume that the server    TELNET    process is managing both NVT
and SUPDUP-OUTPUT output in an integrated way. 
The SUPDUP-OUTPUT    option makes no statement about how input is sent; this may be 
negotiated via other options.    By default, NVT input will be used.      The user-to-server    
screen    management commands of RFC 734 are NOT implicitly handled by IAC WILL 
SUPDUP-OUTPUT. 
In the absence    of the transmission    of SUPDUP-OUTPUT    subnegotiation blocks,    a TELNET
connection operating with the SUPDUP-OUTPUT option in effect is indistinguishable from a 
normal TELNET connection.    Thus IAC WON'T SUPDUP-OUTPUT    is highly    optional,    and if 
received by the user TELNET    process,    should    only be used to cause    a diagnostic if 



SUPDUP-OUTPUT    subnegotiation    blocks    are subsequently received.    If received,    the 
user TELNET    process    should    respond    with IAC    DON'T SUPDUP OUTPUT. 
Because    of the optional    nature of IAC WON'T SUPDUP-OUTPUT, the user TELNET    process  
should    be prepared    to send the terminal    parameter subnegotiation    block each time IAC 
WILL SUPDUP-OUTPUT    is    received, i.e., even if the user TELNET process believes SUPDUP-
OUTPUT to be in effect. 
The %TDORS    (output    reset)    code may not be sent in a    SUPDUP-OUTPUT transmission.    
The user TELNET    program may assume that no byte in a subnegotiation block will be 255 
(decimal). 
No multi-byte    TDCODE    sequence    (e.g.,    %TDMOV, %TDILP) may be split across SUPDUP-
OUTPUT subnegotiation blocks. 



References:
      Crispin, Mark:

"SUPDUP Display Protocol", RFC 734, 7 October 1977, NIC 44213.
      Crispin, Mark:

"TELNET SUPDUP Option", RFC 736, 31 October 1977, NIC 44213.
      Crispin, Mark:

 "Recent    Extensions    to the SUPDUP    Protocol",    RFC 747,    21 March 1978, 
NIC 44015. 



RFC-768 User Datagram Protocol

Introduction
Format
Fields

Ports
Checksum

User Interface
IP Interface

Invalid Addresses
IP Options
ICMP Messages

Multihoming
UDP/Application Layer Interface



RFC-768 User Datagram Protocol

Introduction

This User Datagram    Protocol    (UDP)    is    defined    to    make    available    a datagram      
mode    of    packet-switched      computer      communication    in    the environment    of    an    
interconnected    set    of    computer    networks.      This protocol    assumes    that the Internet   
Protocol    (IP) is used as the underlying protocol. 
This protocol    provides    a procedure    for application    programs    to send messages    to 
other programs    with a minimum    of protocol mechanism.    The protocol    is transaction 
oriented, and delivery and duplicate protection are not guaranteed.    Applications requiring 
ordered reliable delivery of streams of data should use the Transmission Control Protocol 
(TCP). 

Protocol Application
The major uses of this protocol is the Internet Name Server [3], and the Trivial 
File Transfer Protocol. 

Protocol Number
This is protocol    17 (21 octal)    when used    in    the    Internet    Protocol.    
Other protocol numbers are listed in Assigned Numbers.



RFC-768 User Datagram Protocol

Format



RFC-768 User Datagram Protocol

Fields

Source Port
An optional field, when meaningful, it indicates the port of the sending    process,    and may 
be assumed    to be the port    to which a reply should    be addressed    in the absence of any 
other information.    If not used, a value of zero is inserted. 
Destination Port
Has a meaning    within the context of a particular internet destination address. 
Length
The length    in octets    of this user datagram including this header and the data.      (This    
means    the minimum value of the length is eight.) 
Checksum
The 16-bit one's complement of the one's complement sum of a pseudo header of 
information from the IP header, the UDP header, and the data,    padded    with zero octets    
at the end (if    necessary)    to    make    a multiple of two octets. 

If the computed checksum is zero, it is transmitted as all ones (the equivalent  
in one's complement    arithmetic).      An all zero transmitted checksum value 
means that the transmitter generated no checksum (for debugging or for 
higher level protocols that don't care). 

The pseudo    header    conceptually prefixed to the UDP header contains the source address, 
the destination address, the protocol, and the UDP length.    This information gives protection
against misrouted datagrams.    This checksum procedure is the same as is used in TCP. 



RFC-768 User Datagram Protocol - Fields

Ports

UDP well-known ports follow the same rules as TCP well-known ports.
If a datagram arrives addressed to a UDP port for which there is no pending LISTEN call, UDP
should send an ICMP Port Unreachable message.



RFC-768 User Datagram Protocol - Fields

Checksum

A host must implement the facility to generate and validate UDP checksums.    An 
application may optionally be able to control whether a UDP checksum will be generated, 
but it must default to checksumming on.
If a UDP datagram is received with a checksum that is non- zero and invalid, UDP must 
silently discard the datagram. An application may optionally be able to control whether UDP 
datagrams without checksums should be discarded or passed to the application.

Discussion
Some applications that normally run only across local area networks have 
chosen to turn off UDP checksums for efficiency.    As a result, numerous cases 
of undetected errors have been reported.    The advisability of ever turning off 
UDP checksumming is very controversial.
Implementation
There is a common implementation error in UDP checksums.    Unlike the TCP 
checksum, the UDP checksum is optional; the value zero is transmitted in the 
checksum field of a UDP header to indicate the absence of a checksum.    If the
transmitter really calculates a UDP checksum of zero, it must transmit the 
checksum as all 1's (65535).    No special action is required at the receiver, 
since zero and 65535 are equivalent in 1's complement arithmetic.



RFC-768 User Datagram Protocol

User Interface

A user interface should allow

the creation of new receive ports, 
receive    operations on the receive ports that return the data octets and an 
indication of source port and source address, 
and an operation that allows a datagram to be sent, specifying the data, 
source and destination ports and addresses to be sent. 



RFC-768 User Datagram Protocol

IP Interface

The UDP module    must be able to determine    the    source    and    destination internet 
addresses and the protocol field from the internet header.    One possible    UDP/IP    interface  
would return    the whole    internet    datagram including all of the internet header in 
response to a receive operation. Such an interface    would    also allow    the UDP to pass    a    
full    internet datagram    complete    with header    to the IP to send.    The IP would verify 
certain fields for consistency and compute the internet header checksum. 



RFC-768 User Datagram Protocol - IP Interface

Invalid Addresses

A UDP datagram received with an invalid IP source address (e.g., a broadcast or multicast 
address) must be discarded by UDP or by the IP layer.
When a host sends a UDP datagram, the source address must be (one of) the IP address(es)
of the host.



RFC-768 User Datagram Protocol - IP Interface

IP Options

UDP must pass any IP option that it receives from the IP layer transparently to the 
application layer.
An application must be able to specify IP options to be sent in its UDP datagrams, and UDP 
must pass these options to the IP layer.

Discussion
At present, the only options that need be passed through UDP are Source 
Route, Record Route, and Time Stamp.    However, new options may be defined
in the future, and UDP need not and should not make any assumptions about 
the format or content of options it passes to or from the application; an 
exception to this might be an IP-layer security option.
An application based on UDP will need to obtain a source route from a request 
datagram and supply a reversed route for sending the corresponding reply.



RFC-768 User Datagram Protocol - IP Interface

ICMP Messages

UDP must pass to the application layer all ICMP error messages that it receives from the IP 
layer.    Conceptually at least, this may be accomplished with an upcall to the 
ERROR_REPORT routine (See Asynchronous Reports).

Discussion
Note that ICMP error messages resulting from sending a UDP datagram are 
received asynchronously.    A UDP-based application that wants to receive ICMP
error messages is responsible for maintaining the state necessary to 
demultiplex these messages when they arrive; for example, the application 
may keep a pending receive operation for this purpose.    The application is 
also responsible to avoid confusion from a delayed ICMP error message 
resulting from an earlier use of the same port(s).



RFC-768 User Datagram Protocol
Multihoming

When a UDP datagram is received, its specific-destination address must be passed up to the
application layer.
An application program must be able to specify the IP source address to be used for sending
a UDP datagram or to leave it unspecified (in which case the networking software will choose
an appropriate source address).    There should be a way to communicate the chosen source
address up to the application layer (e.g, so that the application can later receive a reply 
datagram only from the corresponding interface).

Discussion
A request/response application that uses UDP should use a source address for 
the response that is the same as the specific destination address of the 
request.    See the "General Issues" section of [RFC-1123].



RFC-768 User Datagram Protocol

UDP/Application Layer Interface

The application interface to UDP must provide the full services of the Internet/Transport 
Interface.    Thus, an application using UDP needs the functions of the GET_SRCADDR(), 
GET_MAXSIZES(), ADVISE_DELIVPROB(), and RECV_ICMP() calls described in 
Internet/Transport Layer Interface.    For example, GET_MAXSIZES() can be used to learn the 
effective maximum UDP maximum datagram size for a particular {interface,remote 
host,TOS} triplet.
An application-layer program must be able to set the TTL and TOS values as well as IP 
options for sending a UDP datagram, and these values must be passed transparently to the 
IP layer. UDP may pass the received TOS up to the application layer.



RFC-779 Telnet Send-Location Option
E. Killian; LLL

April 1981

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
are expected to adopt and implement this standard. 
Command Name and Code

SEND-LOCATION 23
Default

WON'T SEND-LOCATION
DON'T    SEND-LOCATION

Command Meanings
Motivation
Description



RFC-779 Telnet Send-Location Option

Command meanings

IAC WILL SEND-LOCATION
The sender REQUESTS or AGREES to use the SEND-LOCATION option to send 
the user's location. 

IAC WON'T SEND-LOCATION
The sender REFUSES to use the SEND-LOCATION option.

IAC DO SEND-LOCATION
The sender REQUESTS that, or AGREES to have, the other side use SEND-
LOCATION commands send the user's location. 

IAC DON'T SEND-LOCATION
The sender DEMANDS the other side not use the SEND-LOCATION option. 

IAC SB SEND-LOCATION <location> IAC SE
The sender specifies the user's location to the other side via a SEND-
LOCATION subnegotiation.    <location> is a sequence of ASCII printable 
characters; it is terminated by the IAC SE. 



RFC-779 Telnet Send-Location Option

Motivation for the option

Many network sites now provide a listing of the users currently logged in giving their names 
and locations (see the NAME/FINGER protocol, RFC 742).    The location is useful for 
physically locating the user if he or she is nearby, or for calling them (a nearby phone 
number is often included). However, for users logged in via the network, the location printed
is often no more than the originating site name. This TELNET option allows the user's TELNET
program to send the user's location to the server TELNET so that it can be displayed in 
addition to the site name.    This functionality is already present in the SUPDUP protocol (RFC 
734). 



RFC-779 Telnet Send-Location Option

Description of the option

When the user TELNET program knows the user's location, it should offer to transmit this 
information to the server TELNET by sending IAC WILL SEND-LOCATION.    If the server's 
system is able to make use of this information (as can the ITS sites), then the server will 
reply with IAC DO SEND-LOCATION.    The user TELNET is then free to send the location in a 
subnegotiation at any time. 



RFC-783 The TFTP Protocol
(Rev 2)

K. R. Sollins
MIT

June 1981

Summary
Purpose
Overview of the Protocol
Relation to other Protocols
Initial Connection Protocol
TFTP Packets
Normal Termination
Premature Termination
Appendix



RFC-783 Trivial File Transfer Protocol (TFTP)

Summary

TFTP    is    a    very    simple protocol used to transfer files.    It is from this that its name 
comes, Trivial File Transfer Protocol or TFTP.      Each nonterminal    packet is acknowledged 
separately.    This document describes the protocol and its types of packets.    The document 
also    explains    the reasons behind some of the design decisions. 

Acknowledgements
The    protocol    was    originally    designed    by    Noel    Chiappa,    and    was 
redesigned by him, Bob Baldwin and Dave Clark, with comments from    Steve 
Szymanski.      The current revision of the document includes modifications 
stemming from discussions with and suggestions from    Larry    Allen,    Noel 
Chiappa,    Dave    Clark,    Geoff Cooper, Mike Greenwald, Liza Martin, David 
Reed, Craig Milo Rogers (of UCS-ISI), Kathy    Yellick,    and    the    author.
The    acknowledgement    and retransmission scheme was inspired by TCP, and
the error mechanism was suggested by PARC's EFTP abort message. 



RFC-783 Trivial File Transfer Protocol (TFTP)

Purpose

TFTP    is    a simple protocol to transfer files, and therefore was named the Trivial File Transfer
Protocol or TFTP.    It has been implemented    on top    of    the Internet User Datagram 
protocol (UDP or Datagram) so it may be used    to    move    files    between    machines    on    
different    networks implementing      UDP.          (This    should    not    exlude    the    possibility    
of implementing TFTP on top of other datagram protocols.)    It    is    designed to    be    small    
and    easy    to implement.    Therefore, it lacks most of the features of a regular FTP.    The 
only thing it can do is read    and    write files    (or    mail)    from/to a remote server.    It cannot
list directories, and currently has no provisions for user authentication.    In common with 
other Internet protocols, it passes 8 bit bytes of data. 
Three modes of transfer are currently    supported:    netascii ;    octet , raw    8 bit bytes; mail, 
netascii characters sent to a user rather than a file.    Additional modes can be defined by 
pairs of cooperating hosts. 
NOTE: The transfer mode "MAIL" should not be supported.



RFC-783 Trivial File Transfer Protocol (TFTP)

Overview of the Protocol

Any transsfer begins with a request to read or write a file, which also serves    to    request a 
connection.    If the server grants the request, the connection is opened and the file is sent in
fixed length blocks of    512 bytes.        Each    data    packet    contains    one    block    of data, 
and must be acknowledged by an acknowledgment packet before the next packet    can    be 
sent.        A    data    packet of less than 512 bytes signals termination of a transfer.    If a 
packet gets lost in the network, the intended    recipient will timeout and may retransmit his 
last packet (which may be data or an acknowledgment),      thus    causing    the    sender    of    
the    lost    packet    to retransmit that lost packet.    The sender has to keep just one packet    
on hand    for    retransmission, since the lock step acknowledgment guarantees that all older 
packets have been received.    Notice    that    both    machines involved    in a transfer are 
considered senders and receivers.    One sends data and receives acknowledgments, the 
other sends    acknowledgments    and receives data. 
Most    errors    cause    termination    of    the    connection.        An    error is signalled by sending
an error packet.    This packet is not    acknowledged, and    not    retransmitted (i.e., a TFTP 
server or user may terminate after sending an error message), so the other end of the    
connection    may    not get    it.      Therefore timeouts are used to detect such a termination 
when the error packet has been lost.    Errors are caused    by    three    types    of events:    not  
being    able    to satisfy the request (e.g., file not found, access violation, or no such user), 
receiving a packet which    cannot    be explained    by a delay or duplication in the network 
(e.g. an incorrectly formed    packet),    and    losing access to a necessary resource (e.g., disk 
full or access denied during a transfer). 
TFTP    recognizes    only    one    error    condition    that    does    not      cause termination,    the   
source port of a received packet being incorrect.    In this case, an error packet is sent to the 
originating host. 
This    protocol      is      very      restrictive,      in      order      to      simplify implementation.        For   
example, the fixed length blocks make allocation straight forward,    and    the    lock    step    
acknowledgement    provides    flow control and eliminates the need to reorder incoming data
packets. 



RFC-783 Trivial File Transfer Protocol (TFTP)

Relation to other Protocols

As mentioned TFTP is designed to be implemented on top of the Datagram protocol.        
Since    Datagram    is    implemented    on the Internet protocol, packets will have an Internet 
header, a    Datagram    header,    and    a    TFTP header.      Additionally, the packets may have
a header (LNI, ARPA header, etc.)    to allow them through the local transport medium.      As    
shown    in Figure 3-1, the order of the contents of a packet will be:    local medium header, if 
used, Internet header, Datagram header, TFTP header, followed by    the    remainder    of    
the    TFTP    packet.    (This may or may not be data depending on the type of packet as 
specified in the TFTP header.)      TFTP does not specify any of the values in the Internet 
header.    On the other hand, the source and destination port fields of the Datagram header 
(its format    is    given in the appendix) are used by TFTP and the length field reflects the size
of the TFTP packet.    The transfer identifiers    (TID's) used    by    TFTP    are    passed    to    the 
Datagram layer to be used as ports; therefore they must be between 0 and    65,535.        The 
initialization    of TID's is discussed in the section on initial connection protocol. 
The    TFTP header consists of a 2 byte opcode field which indicates the packet's type (e.g., 
DATA, ERROR, etc.)    These opcodes and    the    formats of    the various types of packets are 
discussed further in the section on TFTP packets. 



RFC-783 Trivial File Transfer Protocol (TFTP)

Initial Connection Protocol

A transfer is established by sending a request (WRQ to    write    onto    a foreign    file    
system, or RRQ to read from it), and receiving a positive reply, an acknowledgment packet 
for write, or the first data packet    for read.    In general an acknowledgment packet will 
contain the block number of    the data packet being acknowledged.    Each data packet has 
associated with it a block number; block numbers are    consecutive    and    begin    with one.   
Since      the    positive    response    to    a    write    request    is    an acknowledgment packet, in 
this special case the    block    number    will    be zero.    (Normally, since an acknowledgment 
packet is acknowledging a data packet,    the    acknowledgment packet will contain the block
number of the data packet being acknowledged.)    If the reply is an error packet,    then the 
request has been denied. 
In    order to create a connection, each end of the connection chooses a TID for itself, to be 
used for the duration of    that    connection.        The TID's    chosen    for    a    connection 
should be randomly chosen, so that the probability that the same number is chosen twice in 
immediate succession is very low.    Every packet has associated with it the two TID's    of    
the ends    of    the connection, the source TID and the destination TID.    These TID's are 
handed to the supporting UDP (or other datagram    protocol)    as the    source and 
destination ports.    A requesting host chooses its source TID as described above, and sends 
its initial request to the    known    TID 69    decimal    (105    octal)    on    the    serving    host.      
The response to the request, under normal operation, uses a TID chosen by the server as    
its source    TID and the TID chosen for the previous message by the requestor as its 
destination TID.    The two chosen TID's    are    then    used    for    the remainder    of    the    
transfer.    
As an example, the following shows    the    steps    used    to    establish    a connection    to 
write a file.    Note that WRQ, ACK, and DATA are the names of    the    write    request,    
acknowledgment,    and    data    types    of    packets respectively.        The    appendix    contains
a similar example for reading a file. 

1. Host A sends    a    "WRQ"    to    host    B    with    source=    A's    TID, 
destination= 69.

2. Host    B    sends    a "ACK" (with block number= 0) to host A with 
source= B's TID, destination= A's TID. 

At this point the connection has been established    and    the    first    data packet    can    be 
sent by Host A with a sequence number of 1.    In the next step, and in all succeeding steps, 
the hosts should make sure    that    the source    TID matches the value that was agreed on in
steps 1 and 2.    If a source TID does not match, the packet should be discarded as 
erroneously sent from somewhere else.    An error packet should be sent to the    source of 
the incorrect packet, while not disturbing the transfer. 
This    can be    done    only if the    TFTP in fact    receives a packet with an incorrect    TID.    If 
the    supporting    protocols    do    not    allow    it, this particular error condition will not arise. 
The following example demonstrates a correct operation of the protocol in    which the above
situation can occur.    Host A sends a request to host B. Somewhere in the network, the 
request packet is duplicated, and as    a result    two acknowledgments are returned to host A,
with different TID's chosen on host B in response to    the    two    requests.        When    the    
first response    arrives,    host    A    continues    the connection.    When the second response to
the request arrives, it should be rejected, but there is    no reason to terminate the first 
connection.    Therefore, if different TID's are    chosen    for    the    two    connections    on host 
B and host A checks the source TID's of the messages it receives, the first    connection    can 



be maintained while the second is rejected by returning an error packet. 



RFC-783 Trivial File Transfer Protocol (TFTP)

TFTP Packets

TFTP    supports five types of packets, all of which have been mentioned above: 
    opcode           operation  

1 Read request (RRQ)
2 Write request (WRQ)
3 Data (DATA)
4 Acknowledgment (ACK)
5 Error (ERROR)

The TFTP header of a packet contains the    opcode    associated    with    that packet. 

RRQ    and    WRQ    packets    (opcodes 1 and 2 respectively) have the format shown in the 
figure above.    The file name is a sequence of bytes    in    netascii terminated    by    a    zero    
byte.        The    mode    field    contains    the string "netascii", "octet", or "mail" (or any 
comibnation of    upper    and    lower case,    such    as    "NETASCII", NetAscii", etc.) in netascii 
indicating the three modes defined in the protocol.    A    host    which    receives    netascii 
mode data must translate the data to its own format.    Octet mode is used to transfer a file 
that is in the 8-bit format of the machine from which the    file is being transferred.    It is 
assumed that each type of machine has a single 8-bit format that is more common, and that
that    format    is chosen.      For example, on a DEC-20, a 36 bit machine, this is four 8-bit 
bytes to a word with four bits of breakage.    If a host receives a    octet file    and    then    
returns    it, the returned file must be identical to the original.    Mail mode uses the name of a
mail recipient    in    place    of    a file    and    must begin with a WRQ.    Otherwise it is identical 
to netascii mode.    The mail recipient string should be of    the    form    "username"    or 
"username@hostname".        If the second form is used, it allows the option of mail forwarding
by a relay computer. 
The discussion above assumes that both the sender    and    recipient    are operating    in    the
same mode, but there is no reason that this has to be the case.    For example, one might 
build a storage server.    There    is    no reason that such a machine needs to translate 
netascii into its own form of    text.        Rather,    the    sender    might send files in netascii, but 
the storage server might simply store    them    without    translation    in    8-bit format.        
Another    such situation is a problem that currently exists on DEC-20 systems.    Neither 
netascii nor octet accesses all the bits    in    a word.    One might create a special mode for 
such a machine which read all the    bits in a word, but in which the receiver stored the 
information in 8-bit format.    When such a file is retrieved from the storage    site,    it must    
be restored to its original form to be useful, so the reverse mode must also be implemented. 
The user site    will    have    to    remember    some information    to    achieve    this.      In both of
these examples, the request packets would specify octet mode to the foreign host, but the 
local host would be in some other mode.    No such machine    or    application    specific 
modes have been specified in TFTP, but one would be compatible with this specification. 
It    is    also    possible    to define other modes for cooperating pairs of hosts, although this 
must be done with care.    There    is    no    requirement that    any    other    hosts    implement 
these.    There is no central authority that will define these modes or assign them names. 



Data is actually transferred in DATA packets depicted in    the above figure. DATA packets 
(opcode = 3) have a block number and data field.    The block numbers    on data packets 
begin with one and increase by one for each new block of data.    This restriction allows the    
program    to    use    a    single number    to    discriminate    between    new packets and 
duplicates.    The data field is from zero to 512 bytes long.    If it    is    512    bytes    long,    the 
block    is    not    the    last block of data; if it is from zero to 511 bytes long, it signals the end 
of the transfer.    (See the    section    on    Normal Termination for details.) 
All    packets    other    than    those used for termination are acknowledged individually unless 
a timeout occurs.      Sending    a    DATA    packet    is    an acknowledgment    for the ACK 
packet of the previous DATA packet.    The WRQ and DATA packets are acknowledged by ACK 
or ERROR packets, while RRQ and 

ACK    packets    are    acknowledged    by    DATA    or ERROR packets.    The figure above 
depicts an ACK packet; the opcode is 4.    The    block    number    in    an    ACK echoes the 
block number of the DATA packet being acknowledged.    A WRQ is acknowledged with an 
ACK packet having a block number of zero. 

An    ERROR packet (opcode 5) takes the form depicted in the figure above.    An ERROR 
packet can be the acknowledgment of any other type of packet.    The error code is an 
integer indicating the nature of the error.    A table of values and meanings is given in the 
appendix.    (Note that several    error codes    have    been    added    to    this version of this 
document.)    The error message is intended for human consumption, and should    be    in    
netascii. 
Like all other strings, it is terminated with a zero byte.



RFC-783 Trivial File Transfer Protocol (TFTP)

Normal Termination

The end of a transfer is marked by a DATA packet that contains between 0    and    511    bytes
of data (i.e. Datagram length < 516).    This packet is acknowledged by an ACK packet like all
other DATA    packets.        The    host acknowledging    the    final    DATA    packet    may    
terminate    its side of the connection on sending the final ACK.    On the    other    hand,    
dallying    is encouraged.        This    means that the host sending the final ACK will wait for a 
while before terminating in order to retransmit the final    ACK    if it has been lost.    The 
acknowledger will know that the ACK has been lost if    it    receives the final DATA packet 
again.    The host sending the last DATA must retransmit it until the packet is acknowledged 
or the    sending host    times    out.        If    the    response    is    an ACK, the transmission was 
completed successfully.    If the sender of the data times out and is    not prepared    to    
retransmit    any    more,    the    transfer    may still have been completed successfully, after 
which the acknowledger or network may have experienced a problem.    It is    also    possible  
in    this    case    that    the transfer was unsuccessful.    In any case, the connection has been 
closed. 



RFC-783 Trivial File Transfer Protocol (TFTP)

Premature Termination

If    a    request    can    not    be    granted, or some error occurs during the transfer, then an 
ERROR packet (opcode 5) is    sent.        This    is    only    a courtesy    since    it will not be 
retransmitted or acknowledged, so it may never be received.    Timeouts must also be used 
to detect errors. 



RFC-783 Trivial File Transfer Protocol (TFTP)

Appendix

Initial Connection Protocol for reading a file
1. Host    A    sends    a    "RRQ"    to    host    B    with    source= A's TID, 

destination= 69. 
2. Host B sends a "DATA" (with block number= 1) to host    A    with 

source= B's TID, destination= A's TID. 

Error Codes
Value        Meaning  

0 Not defined, see error message (if any).
1 File not found.
2 Access violation.
3 Disk full or allocation exceeded.
4 Illegal TFTP operation.
5 Unknown transfer ID.
6 File already exists.
7 No such user.



Values of Fields
Source Port Picked by originator of packet.
Dest. Port Picked by destination machine (69 for RRQ or WRQ).
Length Number of bytes in packet after Datagram header.
Checksum Reference 2 describes rules for computing checksum.    Field contains 

zero if unused.
Note:    TFTP    passes    transfer    identifiers    (TID's) to the Internet User Datagram protocol to
be used as the source and destination ports. 



RFC-791 Internet Protocol
Jon Postel

USC/Information Sciences Institute
September 1981

This section includes the original text of RFC-791 as well as many corrections, 
comments, and suggestions made since its publication.    There are also links 
to other relevant documents and discussions.

Preface
Introduction
Overview
Specification
APPENDIX A: Examples & Scenarios

Example 1 - Minimal Datagram
Example 2 - Fragmentation
Example 3 - Datagram with Options

APPENDIX B: Data Transmission Order



RFC-791 Internet Protocol

Introduction
Motivation
Scope
Interfaces
Operation

Routing Outbound Datagrams
Local/Remote Decision
Gateways

Gateway Selection
Route Cache

Discussion
Implementation

Dead Gateway Detection
Discussion
Implementation

New Gateway Selection
Source Route Forwarding

Initialization



RFC-791 Internet Protocol

Overview
Relation to Other Protocols
Model of Operation
Function Description

Addressing
Multihoming

Mulithoming Requirements
Discussion

Choosing a Source Address
Additional Notes
Brodcasts

Fragmentation



RFC-791 Internet Protocol

Specification
Internet Header Format
Discussion

Addressing
Fragmentation and Reassembly

Fragmentation Procedure
Reassembly Procedure

Identification
Type-of-Service
Time-to-Live
Options

Implementation
Checksum
Errors

Interfaces
Example Upper Level Interface



RFC-791 Internet Protocol

Preface
This document specifies the DoD Standard Internet Protocol.    This document is based on six 
earlier editions of the ARPA Internet Protocol Specification, and the present text draws 
heavily from them.    There have been many contributors to this work both in terms of 
concepts and in terms of text.    This edition revises aspects of addressing, error handling, 
option codes, and the security, precedence, compartments, and handling restriction features
of the internet protocol. 
Jon Postel
Editor



RFC-791 Internet Protocol - Introduction

Motivation
The Internet Protocol is designed for use in interconnected systems of packet-switched 
computer communication networks.    Such a system has been called a "catenet" [1].    The 
internet protocol provides for transmitting blocks of data called datagrams from sources to 
destinations, where sources and destinations are hosts identified by fixed length addresses.   
The internet protocol also provides for fragmentation and reassembly of long datagrams, if 
necessary, for transmission through "small packet" networks. 



RFC-791 Internet Protocol - Introduction

Scope
The internet protocol is specifically limited in scope to provide the functions necessary to 
deliver a package of bits (an internet datagram) from a source to a destination over an 
interconnected system of networks.    There are no mechanisms to augment end-to-end data 
reliability, flow control, sequencing, or other services commonly found in host-to-host 
protocols.    The internet protocol can capitalize on the services of its supporting networks to 
provide various types and qualities of service. 



RFC-791 Internet Protocol - Introduction

Interfaces
This protocol is called on by host-to-host protocols in an internet environment.    This protocol
calls on local network protocols to carry the internet datagram to the next gateway or 
destination host. 

For example, a TCP module would call on the internet module to take a TCP segment 
(including the TCP header and user data) as the data portion of an internet datagram.    The 
TCP module would provide the addresses and other parameters in the internet header to the
internet module as arguments of the call.    The internet module would then create an 
internet datagram and call on the local network interface to transmit the internet datagram.

In the ARPANET case, for example, the internet module would call on a local net module 
which would add the 1822 leader [2] to the internet datagram creating an ARPANET 
message to transmit to the IMP.    The ARPANET address would be derived from the internet 
address by the local network interface and would be the address of some host in the 
ARPANET, that host might be a gateway to other networks. 



RFC-791 Internet Protocol - Introduction

Operation
The internet protocol implements two basic functions:    addressing and fragmentation. 

The internet modules use the addresses carried in the internet header to transmit internet 
datagrams toward their destinations.    The selection of a path for transmission is called 
routing. 

The internet modules use fields in the internet header to fragment and reassemble internet 
datagrams when necessary for transmission through "small packet" networks. 

The model of operation is that an internet module resides in each host engaged in internet 
communication and in each gateway that interconnects networks.    These modules share 
common rules for interpreting address fields and for fragmenting and assembling internet 
datagrams.    In addition, these modules (especially in gateways) have procedures for 
making routing decisions and other functions. 

The internet protocol treats each internet datagram as an independent entity unrelated to 
any other internet datagram.    There are no connections or logical circuits (virtual or 
otherwise). 

 The internet protocol uses four key mechanisms in providing its service:    Type of Service, 
Time to Live, Options, and Header Checksum. 

The Type of Service is used to indicate the quality of the service desired.    The type of 
service is an abstract or generalized set of parameters which characterize the service 
choices provided in the networks that make up the internet.    This type of service indication 
is to be used by gateways to select the actual transmission parameters for a particular 
network, the network to be used for the next hop, or the next gateway when routing an 
internet datagram. 

The Time to Live is an indication of an upper bound on the lifetime of an internet 
datagram.    It is set by the sender of the datagram and reduced at the points along the route
where it is processed.    If the time to live reaches zero before the internet datagram reaches 
its destination, the internet datagram is destroyed.    The time to live can be thought of as a 
self destruct time limit. 

The Options provide for control functions needed or useful in some situations but 
unnecessary for the most common communications.    The options include provisions for 
timestamps, security, and special routing. 

The Header Checksum provides a verification that the information used in processing 
internet datagram has been transmitted correctly.    The data may contain errors.    If the 
header checksum fails, the internet datagram is discarded at once by the entity which 
detects the error. 

The internet protocol does not provide a reliable communication facility.    There are no 
acknowledgments either end-to-end or hop-by-hop.    There is no error control for data, only 
a header checksum.    There are no retransmissions.    There is no flow control. 

Errors detected may be reported via the Internet Control Message Protocol (ICMP) described 
in RFC-792 which is implemented in the internet protocol module. 



RFC-791 Internet Protocol - Introduction

Routing Outbound Datagrams
The IP layer chooses the correct next hop for each datagram it sends.    If the destination is 
on a connected network, the datagram is sent directly to the destination host; otherwise, it 
has to be routed to a gateway on a connected network.

Local/Remote Discussion
Gateways

Gateway Selection
Route Cache

Discussion
Implementation

Dead Gateway Detection
Discussion
Implementation

New Gateway Selection



RFC-791 Internet Protcol - Routing

Local/Remote Decision
To decide if the destination is on a connected network, the following algorithm, described in 
"Internet Standard Subnetting" [RFC-950] must be used:

(a) The address mask (particular to a local IP address for a multihomed 
host) is a 32-bit mask that selects the network number and subnet 
number fields of the corresponding IP address.

(b) If the IP destination address bits extracted by the address mask match 
the IP source address bits extracted by the same mask, then the 
destination is on the corresponding connected network, and the 
datagram is to be transmitted directly to the destination host.

(c) If not, then the destination is accessible only through a gateway.    
Selection of a gateway is described below (Gateway Selection).

A special-case destination address is handled as follows:

* For a limited broadcast or a multicast address, simply pass the 
datagram to the link layer for the appropriate interface.

* For a (network or subnet) directed broadcast, the datagram can use 
the standard routing algorithms.

The host IP layer must operate correctly in a minimal network environment, and in 
particular, when there are no gateways.    For example, if the IP layer of a host insists on 
finding at least one gateway to initialize, the host will be unable to operate on a single 
isolated broadcast net.



RFC-791 Internet Protocol - Routing

Gateways
Gateways implement internet protocol to forward datagrams between networks.    Gateways 
also implement the Gateway to Gateway Protocol (GGP) [7] to coordinate routing and other 
internet control information. 

In a gateway the higher level protocols need not be implemented and the GGP functions are 
added to the IP module. 



RFC-791 Internet Protcol - Routing

Gateway Selection
To efficiently route a series of datagrams to the same destination, the source host must 
keep a "route cache" of mappings to next-hop gateways.    A host uses the following basic 
algorithm on this cache to route a datagram; this algorithm is designed to put the primary 
routing burden on the gateways (See RFC-816 "Fault Isolation and Recovery").

(a) If the route cache contains no information for a particular destination, 
the host chooses a "default" gateway and sends the datagram to it.    It 
also builds a corresponding Route Cache entry.

(b) If that gateway is not the best next hop to the destination, the gateway
will forward the datagram to the best next-hop gateway and return an 
ICMP Redirect message to the source host.

(c) When it receives a Redirect, the host updates the next-hop gateway in 
the appropriate route cache entry, so later datagrams to the same 
destination will go directly to the best gateway.

Since the subnet mask appropriate to the destination address is generally not known, a 
Network Redirect message should be treated identically to a Host Redirect message; i.e., 
the cache entry for the destination host (only) would be updated (or created, if an entry for 
that host did not exist) for the new gateway.

Discussion
This recommendation is to protect against gateways that erroneously send 
Network Redirects for a subnetted network, in violation of the gateway 
requirements [RFC-1009].

When there is no route cache entry for the destination host address (and the destination is 
not on the connected network), the IP layer must pick a gateway from its list of "default" 
gateways.    The IP layer must support multiple default gateways.
As an extra feature, a host IP layer may implement a table of "static routes".    Each such 
static route may include a flag specifying whether it may be overridden by ICMP Redirects.

Discussion
A host generally needs to know at least one default gateway to get started.    
This information can be obtained from a configuration file or else from the 
host startup sequence, e.g., the BOOTP Protocol [RFC-951].
It has been suggested that a host can augment its list of default gateways by 
recording any new gateways it learns about.    For example, it can record every
gateway to which it is ever redirected.    Such a feature, while possibly useful 
in some circumstances, may cause problems in other cases (e.g., gateways 
are not all equal), and it is not recommended.
A static route is typically a particular preset mapping from destination host or 
network into a particular next-hop gateway; it might also depend on the Type-
of- Service (see next section).    Static routes would be set up by system 
administrators to override the normal automatic routing mechanism, to handle
exceptional situations.    However, any static routing information is a potential 
source of failure as configurations change or equipment fails.



Internet Layer Routing

Route Cache
Each route cache entry needs to include the following fields:

(1) Local IP address (for a multihomed host)
(2) Destination IP address
(3) Type(s)-of-Service
(4) Next-hop gateway IP address

Field (2) may be the full IP address of the destination host, or only the destination network 
number.    Field (3), the TOS, should be included.
See Multihoming Requirements for a discussion of the implications of multihoming for the 
lookup procedure in this cache.

Discussion
Implementation



RFC-791 Internet Protocol - Routing

Route Cache
Discussion

Including the Type-of-Service field in the route cache and considering it in the host route 
algorithm will provide the necessary mechanism for the future when Type-of-Service routing 
is commonly used in the Internet.
Each route cache entry defines the endpoints of an Internet path.    Although the connecting 
path may change dynamically in an arbitrary way, the transmission characteristics of the 
path tend to remain approximately constant over a time period longer than a single typical 
host-host transport connection. Therefore, a route cache entry is a natural place to cache 
data on the properties of the path.    Examples of such properties might be the maximum 
unfragmented datagram size (see Fragmentation), or the average round-trip delay measured
by a transport protocol. This data will generally be both gathered and used by a higher layer 
protocol, e.g., by TCP, or by an application using UDP.    Experiments are currently in progress
on caching path properties in this manner.
There is no consensus on whether the route cache should be keyed on destination host 
addresses alone, or allow both host and network addresses.    Those who favor the use of 
only host addresses argue that:

(1) As required in Gateway Selection, Redirect messages will generally 
result in entries keyed on destination host addresses; the simplest and 
most general scheme would be to use host addresses always.

(2) The IP layer may not always know the address mask for a network 
address in a complex subnetted environment.

(3) The use of only host addresses allows the destination address to be 
used as a pure 32-bit number, which may allow the Internet 
architecture to be more easily extended in the future without any 
change to the hosts.

The opposing view is that allowing a mixture of destination hosts and networks in the route 
cache:

(1) Saves memory space.
(2) Leads to a simpler data structure, easily combining the cache with the 

tables of default and static routes.
(3) Provides a more useful place to cache path properties, as discussed 

earlier.



RFC-791 Internet Protocol - Routing

Route Cache
Implementation

The cache needs to be large enough to include entries for the maximum number of 
destination hosts that may be in use at one time.

A route cache entry may also include control information used to choose an entry for 
replacement. This might take the form of a "recently used" bit, a use count, or a last-used 
timestamp, for example.    It is recommended that it include the time of last modification of 
the entry, for diagnostic purposes.

An implementation may wish to reduce the overhead of scanning the route cache for every 
datagram to be transmitted.    This may be accomplished with a hash table to speed the 
lookup, or by giving a connection- oriented transport protocol a "hint" or temporary handle 
on the appropriate cache entry, to be passed to the IP layer with each subsequent 
datagram.

Although we have described the route cache, the lists of default gateways, and a table of 
static routes as conceptually distinct, in practice they may be combined into a single 
"routing table" data structure.



RFC-791 Internet Protocol - Routing

Dead Gateway Detection
The IP layer must be able to detect the failure of a "next- hop" gateway that is listed in its 
route cache and to choose an alternate gateway (see Identification).
Dead gateway detection is covered in some detail in RFC-816 "Fault Isolation and Recovery".
Experience to date has not produced a complete algorithm which is totally satisfactory, 
though it has identified several forbidden paths and promising techniques.

* A particular gateway should not be used indefinitely in the absence of
positive indications that it is functioning.

* Active probes such as "pinging" (i.e., using an ICMP Echo Request/Reply
exchange) are expensive and scale poorly.    In particular, hosts must 
not actively check the status of a first-hop gateway by simply pinging 
the gateway continuously.

* Even when it is the only effective way to verify a gateway's status, 
pinging must be used only when traffic is being sent to the gateway 
and when there is no other positive indication to suggest that the 
gateway is functioning.

* To avoid pinging, the layers above and/or below the Internet layer 
should be able to give "advice" on the status of route cache entries 
when either positive (gateway OK) or negative (gateway dead) 
information is available.



RFC-791 Internet Protocol - Routing

Dead Gateway Detection
Discussion

If an implementation does not include an adequate mechanism for detecting a dead 
gateway and re-routing, a gateway failure may cause datagrams to apparently vanish into a 
"black hole".    This failure can be extremely confusing for users and difficult for network 
personnel to debug.
The dead-gateway detection mechanism must not cause unacceptable load on the host, on 
connected networks, or on first-hop gateway(s).    The exact constraints on the timeliness of 
dead gateway detection and on acceptable load may vary somewhat depending on the 
nature of the host's mission, but a host generally needs to detect a failed first-hop gateway 
quickly enough that transport-layer connections will not break before an alternate gateway 
can be selected.
Passing advice from other layers of the protocol stack complicates the interfaces between 
the layers, but it is the preferred approach to dead gateway detection. Advice can come 
from almost any part of the IP/TCP architecture, but it is expected to come primarily from the
transport and link layers.    Here are some possible sources for gateway advice:

o TCP or any connection-oriented transport protocol should be able to 
give negative advice, e.g., triggered by excessive retransmissions.

o TCP may give positive advice when (new) data is acknowledged.    Even
though the route may be asymmetric, an ACK for new data proves that 
the acknowleged data must have been transmitted successfully.

o An ICMP Redirect message from a particular gateway should be used 
as positive advice about that gateway.

o Link-layer information that reliably detects and reports host failures 
(e.g., ARPANET Destination Dead messages) should be used as 
negative advice.

o Failure to ARP or to re-validate ARP mappings may be used as negative
advice for the corresponding IP address.

o Packets arriving from a particular link-layer address are evidence that 
the system at this address is alive.    However, turning this information 
into advice about gateways requires mapping the link-layer address 
into an IP address, and then checking that IP address against the 
gateways pointed to by the route cache.    This is probably prohibitively 
inefficient.

Note that positive advice that is given for every datagram received may cause unacceptable
overhead in the implementation.
While advice might be passed using required arguments in all interfaces to the IP layer, 
some transport and application layer protocols cannot deduce the correct advice.    These 
interfaces must therefore allow a neutral value for advice, since either always-positive or 
always-negative advice leads to incorrect behavior.
There is another technique for dead gateway detection that has been commonly used but is 
not recommended.
This technique depends upon the host passively receiving ("wiretapping") the Interior 
Gateway Protocol (IGP) datagrams that the gateways are broadcasting to each other.    This 
approach has the drawback that a host needs to recognize all the interior gateway protocols 
that gateways may use (see "Requirements of Internet Gateways [RFC-1009]).    In addition, 



it only works on a broadcast network.
At present, pinging (i.e., using ICMP Echo messages) is the mechanism for gateway probing 
when absolutely required.    A successful ping guarantees that the addressed interface and 
its associated machine are up, but it does not guarantee that the machine is a gateway as 
opposed to a host.    The normal inference is that if a Redirect or other evidence indicates 
that a machine was a gateway, successful pings will indicate that the machine is still up and 
hence still a gateway. However, since a host silently discards packets that a gateway would 
forward or redirect, this assumption could sometimes fail.    To avoid this problem, a new 
ICMP message under development will ask "are you a gateway?"



RFC-791 Internet Protocol - Routing

Implementing Dead Gateway Detection
The following specific algorithm has been suggested:

o Associate a "reroute timer" with each gateway pointed to by the route 
cache.    Initialize the timer to a value Tr, which must be small enough 
to allow detection of a dead gateway before transport connections time
out.

o Positive advice would reset the reroute timer to Tr.    Negative advice 
would reduce or zero the reroute timer.

o Whenever the IP layer used a particular gateway to route a datagram, 
it would check the corresponding reroute timer.    If the timer had 
expired (reached zero), the IP layer would send a ping to the gateway, 
followed immediately by the datagram.

o The ping (ICMP Echo) would be sent again if necessary, up to N times.   
If no ping reply was received in N tries, the gateway would be assumed
to have failed, and a new first-hop gateway would be chosen for all 
cache entries pointing to the failed gateway.

Note that the size of Tr is inversely related to the amount of advice available.    Tr should be 
large enough to insure that:

* Any pinging will be at a low level (e.g., <10%) of all packets sent to a 
gateway from the host, AND

* pinging is infrequent (e.g., every 3 minutes)
Since the recommended algorithm is concerned with the gateways pointed to by route cache
entries, rather than the cache entries themselves, a two level data structure (perhaps 
coordinated with ARP or similar caches) may be desirable for implementing a route cache.



RFC-791 Internet Protocol - Routing

New Gateway Selection
If the failed gateway is not the current default, the IP layer can immediately switch to a 
default gateway.    If it is the current default that failed, the IP layer must select a different 
default gateway (assuming more than one default is known) for the failed route and for 
establishing new routes.    

Discussion
When a gateway does fail, the other gateways on the connected network will 
learn of the failure through some inter-gateway routing protocol.    However, 
this will not happen instantaneously, since gateway routing protocols typically 
have a settling time of 30-60 seconds.    If the host switches to an alternative 
gateway before the gateways have agreed on the failure, the new target 
gateway will probably forward the datagram to the failed gateway and send a 
Redirect back to the host pointing to the failed gateway (!).    The result is 
likely to be a rapid oscillation in the contents of the host's route cache during 
the gateway settling period.    It has been proposed that the dead- gateway 
logic should include some hysteresis mechanism to prevent such oscillations.   
However, experience has not shown any harm from such oscillations, since 
service cannot be restored to the host until the gateways' routing information 
does settle down.
Implementation
One implementation technique for choosing a new default gateway is to 
simply round-robin among the default gateways in the host's list.    Another is 
to rank the gateways in priority order, and when the current default gateway 
is not the highest priority one, to "ping" the higher-priority gateways slowly to 
detect when they return to service.    This pinging can be at a very low rate, 
e.g., 0.005 per second.



RFC-791 Internet Protocol - Operation

Source Route Forwarding

Subject to restrictions given below, a host may be able to act as an intermediate hop in a 
source route, forwarding a source- routed datagram to the next specified hop.
However, in performing this gateway-like function, the host must obey all the relevant rules 
for a gateway forwarding source-routed datagrams (see "Requirements for Internet 
Gateways [RFC-1009]).    This includes the following specific provisions, which override the 
corresponding host provisions given earlier in this document:

(A) TTL
The TTL field must be decremented and the datagram perhaps 
discarded as specified for a gateway in "Requirements for Internet 
Gateways [RFC-1009].

(B) ICMP Destination Unreachable
A host must be able to generate Destination Unreachable messages 
with the following codes:
4 (Fragmentation Required but DF Set) when a source- routed 

datagram cannot be fragmented to fit into the target network;
5 (Source Route Failed) when a source-routed datagram cannot be

forwarded, e.g., because of a routing problem or because the 
next hop of a strict source route is not on a connected network.

(C) IP Source Address
A source-routed datagram being forwarded may (and normally will) 
have a source address that is not one of the IP addresses of the 
forwarding host.

(D) Record Route Option
A host that is forwarding a source-routed datagram containing a Record
Route option must update that option, if it has room.

(E) Timestamp Option
A host that is forwarding a source-routed datagram containing a 
Timestamp Option must add the current timestamp to that option, 
according to the rules for this option.

To define the rules restricting host forwarding of source- routed datagrams, we use the term 
"local source-routing" if the next hop will be through the same physical interface through 
which the datagram arrived; otherwise, it is "non-local source-routing".

o A host is permitted to perform local source-routing without restriction.
o A host that supports non-local source-routing must have a 

configurable switch to disable forwarding, and this switch must default
to disabled.

o The host must satisfy all gateway requirements for configurable policy 
filters restricting non- local forwarding as described in "Requirements 
for Internet Gateways [RFC-1009].

If a host receives a datagram with an incomplete source route but does not forward it for 
some reason, the host should return an ICMP Destination Unreachable (code 5, Source 
Route Failed) message, unless the datagram was itself an ICMP error message.



RFC-791 Internet Protocol - Operation

Initialization
The following information must be configurable:

(1) IP address(es).
(2) Address mask(s).
(3) A list of default gateways, with a preference level.

A manual method of entering this configuration data must be provided.    In addition, a 
variety of methods can be used to determine this information dynamically.

Discussion
Some host implementations use "wiretapping" of gateway protocols on a 
broadcast network to learn what gateways exist.    A standard method for 
default gateway discovery is under development.



RFC-791 Internet Protocol - Overview

Relation to Other Protocols
The following diagram illustrates the place of the internet protocol in the protocol hierarchy: 

Internet protocol interfaces on one side to the higher level host-to-host protocols and on the 
other side to the local network protocol.    In this context a "local network" may be a small 
network in a building or a large network such as the ARPANET. 



RFC-791 Internet Protocol - Overview

Model of Operation
The    model of operation for transmitting a datagram from one application program to 
another is illustrated by the following scenario: 

We suppose that this transmission will involve one intermediate gateway. 

The sending application program prepares its data and calls on its local internet module to 
send that data as a datagram and passes the destination address and other parameters as 
arguments of the call. 

The internet module prepares a datagram header and attaches the data to it.    The internet 
module determines a local network address for this internet address, in this case it is the 
address of a gateway. 

It sends this datagram and the local network address to the local network interface. 

The local network interface creates a local network header, and attaches the datagram to it, 
then sends the result via the local network. 

The datagram arrives at a gateway host wrapped in the local network header, the local 
network interface strips off this header, and turns the datagram over to the internet module. 
The internet module determines from the internet address that the datagram is to be 
forwarded to another host in a second network.    The internet module determines a local net
address for the destination host.    It calls on the local network interface for that network to 
send the datagram. 

This local network interface creates a local network header and attaches the datagram 
sending the result to the destination host. 

At this destination host the datagram is stripped of the local net header by the local network
interface and handed to the internet module. 

The internet module determines that the datagram is for an application program in this host.
It passes the data to the application program in response to a system call, passing the 
source address and other parameters as results of the call. 



RFC-791 Internet Protocol - Overview

Function Description
The function or purpose of Internet Protocol is to move datagrams through an 
interconnected set of networks.    This is done by passing the datagrams from one internet 
module to another until the destination is reached.    The internet modules reside in hosts 
and gateways in the internet system.    The datagrams are routed from one internet module 
to another through individual networks based on the interpretation of an internet address.    
Thus, one important mechanism of the internet protocol is the internet address. 

In the routing of messages from one internet module to another, datagrams may need to 
traverse a network whose maximum packet size is smaller than the size of the datagram.    
To overcome this difficulty, a fragmentation mechanism is provided in the internet protocol. 



RFC-791 Internet Protocol - Function Description

Addressing
A distinction is made between names, addresses, and routes as discussed in "Names, 
Addresses, Ports, and Routes" [RFC-814].      A name indicates what we seek.    An address 
indicates where it is.    A route indicates how to get there.    The internet protocol deals 
primarily with addresses.    It is the task of higher level (i.e., host-to-host or application) 
protocols to make the mapping from names to addresses.      The internet module maps 
internet addresses to local net addresses.    It is the task of lower level (i.e., local net or 
gateways) procedures to make the mapping from local net addresses to routes. 
Addresses are fixed length of four octets (32 bits).    An address begins with a network 
number, followed by local address (called the "rest" field).    There are three formats or 
classes of internet addresses:    in class a, the high order bit is zero, the next 7 bits are the 
network, and the last 24 bits are the local address; in class b, the high order two bits are 
one-zero, the next 14 bits are the network and the last 16 bits are the local address; in class 
c, the high order three bits are one-one-zero, the next 21 bits are the network and the last 8 
bits are the local address. 
Care must be taken in mapping internet addresses to local net addresses; a single physical 
host must be able to act as if it were several distinct hosts to the extent of using several 
distinct internet addresses.    Some hosts will also have several physical interfaces (multi-
homing). 
That is, provision must be made for a host to have several physical interfaces to the network
with each having several logical internet addresses. 
Examples of address mappings may be found in "Address Mappings" RFC-796.



RFC-791 Internet Protocol

Local Multihoming
Introduction

A multihomed host has multiple IP addresses, which we may think of as "logical interfaces".   
These logical interfaces may be associated with one or more physical interfaces, and these 
physical interfaces may be connected to the same or different networks.
Here are some important cases of multihoming:

(a)    Multiple Logical Networks
The Internet architects envisioned that each physical network would 
have a single unique IP network (or subnet) number.    However, LAN 
administrators have sometimes found it useful to violate this 
assumption, operating a LAN with multiple logical networks per 
physical connected network.
If a host connected to such a physical network is configured to handle 
traffic for each of N different logical networks, then the host will have N
logical interfaces.    These could share a single physical interface, or 
might use N physical interfaces to the same network.

(b)    Multiple Logical Hosts
When a host has multiple IP addresses that all have the same 
<Network-number> part (and the same <Subnet- number> part, if 
any), the logical interfaces are known as "logical hosts".    These logical 
interfaces might share a single physical interface or might use 
separate physical interfaces to the same physical network.

(c)    Simple Multihoming
In this case, each logical interface is mapped into a separate physical 
interface and each physical interface is connected to a different 
physical network.    The term "multihoming" was originally applied only 
to this case, but it is now applied more generally.
A host with embedded gateway functionality will typically fall into the 
simple multihoming case.    Note, however, that a host may be simply 
multihomed without containing an embedded gateway, i.e., without 
forwarding datagrams from one connected network to another.
This case presents the most difficult routing problems. The choice of 
interface (i.e., the choice of first-hop network) may significantly affect 
performance or even reachability of remote parts of the Internet.

Finally, we note another possibility that is NOT multihoming:    one logical interface may be 
bound to multiple physical interfaces, in order to increase the reliability or throughput 
between directly connected machines by providing alternative physical paths between them.
For instance, two systems might be connected by multiple point-to-point links. We call this 
"link-layer multiplexing".    With link-layer multiplexing, the protocols above the link layer are
unaware that multiple physical interfaces are present; the link- layer device driver is 
responsible for multiplexing and routing packets across the physical interfaces.

In the Internet protocol architecture, a transport protocol instance ("entity") has no address 
of its own, but instead uses a single Internet Protocol (IP) address.    This has implications for 
the IP, transport, and application layers, and for the interfaces between them.    In particular,



the application software may have to be aware of the multiple IP addresses of a multihomed 
host; in other cases, the choice can be made within the network software.



RFC-791 Internet Protocol - Multihoming

Requirements
The following general rules apply to the selection of an IP source address for sending a 
datagram from a multihomed host.

(1) if the datagram is sent in response to a received datagram, the source 
address for the response should be the specific-destination address of 
the request.    See UDP Multihoming and TCP Multihoming and 
Applications on Multihomed Hosts for more specific requirements 
on higher layers.
Otherwise, a source address must be selected.

(2) an application must be able to explicitly specify the source address for
initiating a connection or a request.

(3) an the absence of such a specification, the networking software must 
choose a source address.    Rules for this choice are described below.

There are two key requirement issues related to multihoming:
(A) a host may silently discard an incoming datagram whose destination 

address does not correspond to the physical interface through which it 
is received.

(B) a host may restrict itself to sending (non-source- routed) IP datagrams 
only through the physical interface that corresponds to the IP source 
address of the datagrams.



RFC-791 Internet Protocol - Multihoming

Discussion
Internet host implementors have used two different conceptual models for multihoming, 
briefly summarized in the following discussion.    This document takes no stand on which 
model is preferred; each seems to have a place.    This ambivalence is reflected in the issues 
(A) and (B) being optional.
Strong ES Model

The Strong ES (End System, i.e., host) model emphasizes the host/gateway 
(ES/IS) distinction, and would therefore substitute must for may in issues (A) 
and (B) above.    It tends to model a multihomed host as a set of logical hosts 
within the same physical host.
With respect to (A), proponents of the Strong ES model note that automatic 
Internet routing mechanisms could not route a datagram to a physical 
interface that did not correspond to the destination address.
Under the Strong ES model, the route computation for an outgoing datagram 
is the mapping:
route(src IP addr, dest IP addr, TOS) -> gateway
Here the source address is included as a parameter in order to select a 
gateway that is directly reachable on the corresponding physical interface. 
Note that this model logically requires that in general there be at least one 
default gateway, and preferably multiple defaults, for each IP source address.

Weak ES Model
This view de-emphasizes the ES/IS distinction, and would therefore substitute 
must NOT for may in issues (A) and (B).    This model may be the more natural
one for hosts that wiretap gateway routing protocols, and is necessary for 
hosts that have embedded gateway functionality.
The Weak ES Model may cause the Redirect mechanism to fail.    If a datagram 
is sent out a physical interface that does not correspond to the destination 
address, the first-hop gateway will not realize when it needs to send a 
Redirect.    On the other hand, if the host has embedded gateway functionality,
then it has routing information without listening to Redirects.
In the Weak ES model, the route computation for an outgoing datagram is the 
mapping:
route(dest IP addr, TOS) -> gateway, interface



RFC-791 Internet Protocol - Multihoming

Choosing a Source Address
Discussion
When it sends an initial connection request (e.g., a TCP "SYN" segment) or a datagram 
service request (e.g., a UDP-based query), the transport layer on a multihomed host needs 
to know which source address to use.    If the application does not specify it, the transport 
layer must ask the IP layer to perform the conceptual mapping:

GET_SRCADDR(remote IP addr, TOS) -> local IP address
Here TOS is the Type-of-Service value (see Type-of-Service), and the result is the desired 
source address. The following rules are suggested for implementing this mapping:

(a) If the remote Internet address lies on one of the (sub-) nets to which 
the host is directly connected, a corresponding source address may be 
chosen, unless the corresponding interface is known to be down.

(b) The route cache may be consulted, to see if there is an active route to 
the specified destination network through any network interface; if so, 
a local IP address corresponding to that interface may be chosen.

(c) The table of static routes, if any (see Gateway Selection) may be 
similarly consulted.

(d) The default gateways may be consulted.    If these gateways are 
assigned to different interfaces, the interface corresponding to the 
gateway with the highest preference may be chosen.

In the future, there may be a defined way for a multihomed host to ask the gateways on all 
connected networks for advice about the best network to use for a given destination.

Implementation
It will be noted that this process is essentially the same as datagram routing 
(see Routing Outbound Datagrams), and therefore hosts may be able to 
combine the implementation of the two functions.



RFC-791 Internet Protocol - Function Description

Fragmentation
Fragmentation of an internet datagram is necessary when it originates in a local net that 
allows a large packet size and must traverse a local net that limits packets to a smaller size 
to reach its destination. 
An internet datagram can be marked "don't fragment."    Any internet datagram so marked is
not to be internet fragmented under any circumstances.    If internet datagram marked don't 
fragment cannot be delivered to its destination without fragmenting it, it is to be discarded 
instead. 
Fragmentation, transmission and reassembly across a local network which is invisible to the 
internet protocol module is called intranet fragmentation and may be used [6]. 
The internet fragmentation and reassembly procedure needs to be able to break a datagram
into an almost arbitrary number of pieces that can be later reassembled.    The receiver of 
the fragments uses the identification field to ensure that fragments of different datagrams 
are not mixed.    The fragment offset field tells the receiver the position of a fragment in the 
original datagram.    The fragment offset and length determine the portion of the original 
datagram covered by this fragment.    The more-fragments flag indicates (by being reset) the
last fragment.    These fields provide sufficient information to reassemble datagrams. 
The identification field is used to distinguish the fragments of one datagram from those of 
another.    The originating protocol module of an internet datagram sets the identification 
field to a value that must be unique for that source-destination pair and protocol for the time
the datagram will be active in the internet system.    The originating protocol module of a 
complete datagram sets the more-fragments flag to zero and the fragment offset to zero. 
To fragment a long internet datagram, an internet protocol module (for example, in a 
gateway), creates two new internet datagrams and copies the contents of the internet 
header fields from the long datagram into both new internet headers.    The data of the long 
datagram is divided into two portions on a 8 octet (64 bit) boundary (the second portion 
might not be an integral multiple of 8 octets, but the first must be).    Call the number of 8 
octet blocks in the first portion NFB (for Number of Fragment Blocks).    The first portion of 
the data is placed in the first new internet datagram, and the total length field is set to the 
length of the first datagram.    The more-fragments flag is set to one.    The second portion of 
the data is placed in the second new internet datagram, and the total length field is set to 
the length of the second datagram.    The more-fragments flag carries the same value as the 
long datagram.    The fragment offset field of the second new internet datagram is set to the 
value of that field in the long datagram plus NFB. 
This procedure can be generalized for an n-way split, rather than the two-way split 
described. 
To assemble the fragments of an internet datagram, an internet protocol module (for 
example at a destination host) combines internet datagrams that all have the same value 
for the four fields: identification, source, destination, and protocol.    The combination is done
by placing the data portion of each fragment in the relative position indicated by the 
fragment offset in that fragment's internet header.    The first fragment will have the 
fragment offset zero, and the last fragment will have the more-fragments flag reset to zero. 



RFC-791 Internet Protocol - Specification

Internet Header Format

Use the Browse button to see a description of each header field.



RFC-791 Internet Protocol - Specification

Version:    4 bits

The Version field indicates the format of the internet header.    This document 
describes version 4.
A datagram whose version number is not 4 must be silently discarded.



RFC-791 Internet Protocol - Specification

IHL:    4 bits

Internet Header Length is the length of the internet header in 32 bit words, 
and thus points to the beginning of the data.    Note that the minimum value 
for a correct header is 5. 



RFC-791 Internet Protocol - Specification

Type of Service:    8 bits

The Type of Service provides an indication of the abstract parameters of the 
quality of service desired.    These parameters are to be used to guide the 
selection of the actual service parameters when transmitting a datagram 
through a particular network.    Several networks offer service precedence, 
which somehow treats high precedence traffic as more important than other 
traffic (generally by accepting only traffic above a certain precedence at time 
of high load).    The major choice is a three way tradeoff between low-delay, 
high-reliability, and high-throughput. 

Bits 0-2: Precedence.
Bit 3: 0 = Normal Delay,            1 = Low Delay.
Bits 4: 0 = Normal Throughput, 1 = High Throughput.
Bits 5: 0 = Normal Relibility, 1 = High Relibility.
Bit 6-7: Reserved for Future Use.

Precedence
111 - Network Control
110 - Internetwork Control
101 - CRITIC/ECP
100 - Flash Override
011 - Flash
010 - Immediate
001 - Priority
000 - Routine
The use of the Delay, Throughput, and Reliability indications may increase the 
cost (in some sense) of the service.    In many networks better performance for
one of these parameters is coupled with worse performance on another.    
Except for very unusual cases at most two of these three indications should be
set. 
The type of service is used to specify the treatment of the datagram during its
transmission through the internet system.    Example mappings of the internet 
type of service to the actual service provided on networks such as AUTODIN II,
ARPANET, SATNET, and PRNET are given in "Service Mappings" [RFC-795] 
though this document is obsolete. 
The Network Control precedence designation is intended to be used within a 
network only.    The actual use and control of that designation is up to each 
network. The Internetwork Control designation is intended for use by gateway 
control originators only. If the actual use of these precedence designations is 
of concern to a particular network, it is the responsibility of that network to 
control the access to, and use of, those precedence designations. 



RFC-791 Internet Protocol - Specification

Total Length:    16 bits

Total Length is the length of the datagram, measured in octets, including 
internet header and data.    This field allows the length of a datagram to be up 
to 65,535 octets.    Such long datagrams are impractical for most hosts and 
networks.    All hosts must be prepared to accept datagrams of up to 576 
octets (whether they arrive whole or in fragments).    It is recommended that 
hosts only send datagrams larger than 576 octets if they have assurance that 
the destination is prepared to accept the larger datagrams. 

The number 576 is selected to allow a reasonable sized data block to be 
transmitted in addition to the required header information.    For example, this 
size allows a data block of 512 octets plus 64 header octets to fit in a 
datagram.    The maximal internet header is 60 octets, and a typical internet 
header is 20 octets, allowing a margin for headers of higher level protocols. 



RFC-791 Internet Protocol - Specification

Identification:    16 bits
An identifying value assigned by the sender to aid in assembling the 
fragments of a datagram. 
Flags:    3 bits
Various Control Flags.
Bit 0: reserved, must be zero
Bit 1: (DF) 0 = May Fragment,    1 = Don't Fragment.
Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.



RFC-791 Internet Protocol - Specification

Fragment Offset:    13 bits
This field indicates where in the datagram this fragment belongs.
The fragment offset is measured in units of 8 octets (64 bits).    The first 
fragment has offset zero. 



RFC-791 Internet Protocol - Specification

Time to Live:    8 bits
This field indicates the maximum time the datagram is allowed to remain in 
the internet system.    If this field contains the value zero, then the datagram 
must be destroyed.    This field is modified in internet header processing.    The 
time is measured in units of seconds, but since every module that processes a
datagram must decrease the TTL by at least one even if it process the 
datagram in less than a second, the TTL must be thought of only as an upper 
bound on the time a datagram may exist.    The intention is to cause 
undeliverable datagrams to be discarded, and to bound the maximum 
datagram lifetime. 



RFC-791 Internet Protocol - Specification

Protocol:    8 bits
This field indicates the next level protocol used in the data portion of the 
internet datagram.    The values for various protocols are specified in 
"Assigned Numbers". 



RFC-791 Internet Protocol - Specification

Header Checksum:    16 bits
A checksum on the header only.    Since some header fields change (e.g., time 
to live), this is recomputed and verified at each point that the internet header 
is processed. 
The checksum algorithm is:
The checksum field is the 16 bit one's complement of the one's complement 
sum of all 16 bit words in the header.    For purposes of computing the 
checksum, the value of the checksum field is zero. 
This is a simple to compute checksum and experimental evidence indicates it 
is adequate, but it is provisional and may be replaced by a CRC procedure, 
depending on further experience. 



RFC-791 Internet Protocol - Specification

Source Address:    32 bits
The source address.    See Discussion.



RFC-791 Internet Protocol - Specification

Destination Address:    32 bits
The destination address.    See Discussion.



RFC-791 Internet Protocol - Specification

Options:    variable
The options may appear or not in datagrams.    They must be implemented by 
all IP modules (host and gateways).    What is optional is their transmission in 
any particular datagram, not their implementation. 
In some environments the security option may be required in all datagrams. 
The option field is variable in length.    There may be zero or more options.    
There are two cases for the format of an option: 
Case 1: A single octet of option-type.
Case 2: An option-type octet, an option-length octet, and the actual 

option-data octets. 
The option-length octet counts the option-type octet and the option-length 
octet as well as the option-data octets. 
The option-type octet is viewed as having 3 fields:
1 bit      copied flag,
2 bits    option class,
5 bits    option number.
The copied flag indicates that this option is copied into all fragments on 
fragmentation. 
0 = not copied
1 = copied
The option classes are:
0 = control
1 = reserved for future use
2 = debugging and measurement
3 = reserved for future use
The following internet options are defined:

        CLASS         NUMBER             LENGTH            DESCRIPTION  
0 0 - End of Option list.    This option occupies 

only 1 octet; it has no length octet.
0 1 - No Operation.    This option occupies only 1 

octet; it has no length octet.
0 2 11 Security.    Used to carry Security, 

Compartmentation, User Group (TCC), and 
Handling Restriction Codes compatible with 
DOD requirements.

0 3 var. Loose Source Routing.    Used to route the 
internet datagram based on information 
supplied by the source.

0 9 var. Strict Source Routing.    Used to route the 
internet datagram based on information 
supplied by the source.

0 7 var. Record Route.    Used to trace the route an 
internet datagram takes.

0 8 4 Stream ID.    Used to carry the stream 



identifier.
2 4 var. Internet Timestamp.



RFC-791 Internet Protocol - Specific Option Definitions

End of Option List

This option indicates the end of the option list.    This might not coincide with the end of the 
internet header according to the internet header length.    This is used at the end of all 
options, not the end of each option, and need only be used if the end of the options would 
not otherwise coincide with the end of the internet header. 
May be copied, introduced, or deleted on fragmentation, or for any other reason. 



RFC-791 Internet Protocol - Specific Option Definitions

No Operation

This option may be used between options, for example, to align the beginning of a 
subsequent option on a 32 bit boundary. 
May be copied, introduced, or deleted on fragmentation, or for any other reason. 



RFC-791 Internet Protocol - Specific Option Definitions

Security
This option provides a way for hosts to send security, compartmentation, handling 
restrictions, and TCC (closed user group) parameters.    The format for this option as 
originally proposed is as follows (Note: These options are obsolete): 

Security (S field):    16 bits
Specifies one of 16 levels of security (eight of which are reserved for future use). 
00000000 00000000 - Unclassified
11110001 00110101 - Confidential
01111000 10011010 - EFTO
10111100 01001101 - MMMM
01011110 00100110 - PROG
10101111 00010011 - Restricted
11010111 10001000 - Secret
01101011 11000101 - Top Secret
00110101 11100010 - (Reserved for future use)
10011010 11110001 - (Reserved for future use)
01001101 01111000 - (Reserved for future use)
00100100 10111101 - (Reserved for future use)
00010011 01011110 - (Reserved for future use)
10001001 10101111 - (Reserved for future use)
11000100 11010110 - (Reserved for future use)
11100010 01101011 - (Reserved for future use)

Compartments (C field):    16 bits
An all zero value is used when the information transmitted is not 
compartmented.    Other values for the compartments field may be obtained 
from the Defense Intelligence Agency. 

Handling Restrictions (H field):    16 bits
The values for the control and release markings are alphanumeric digraphs 
and are defined in the Defense Intelligence Agency Manual DIAM 65-19, 
"Standard Security Markings". 

Transmission Control Code (TCC field):    24 bits
Provides a means to segregate traffic and define controlled communities of 
interest among subscribers. The TCC values are trigraphs, and are available 
from HQ DCA Code 530. 

Must be copied on fragmentation.    This option appears at most once in a datagram. 



RFC-791 Internet Protocol - Specific Option Definitions

Loose Source and Record Route

The loose source and record route (LSRR) option provides a means for the source of an 
internet datagram to supply routing information to be used by the gateways in forwarding 
the datagram to the destination, and to record the route information. 
The option begins with the option type code.    The second octet is the option length which 
includes the option type code and the length octet, the pointer octet, and length-3 octets of 
route data.    The third octet is the pointer into the route data indicating the octet which 
begins the next source address to be processed.    The pointer is relative to this option, and 
the smallest legal value for the pointer is 4. 
A route data is composed of a series of internet addresses. Each internet address is 32 bits 
or 4 octets.    If the pointer is greater than the length, the source route is empty (and the 
recorded route full) and the routing is to be based on the destination address field. 
If the address in destination address field has been reached and the pointer is not greater 
than the length, the next address in the source route replaces the address in the destination 
address field, and the recorded route address replaces the source address just used, and 
pointer is increased by four. 
The recorded route address is the internet module's own internet address as known in the 
environment into which this datagram is being forwarded. 
This procedure of replacing the source route with the recorded route (though it is in the 
reverse of the order it must be in to be used as a source route) means the option (and the IP 
header as a whole) remains a constant length as the datagram progresses through the 
internet. 
This option is a loose source route because the gateway or host IP is allowed to use any 
route of any number of other intermediate gateways to reach the next address in the route. 
Must be copied on fragmentation.    Appears at most once in a datagram. 



RFC-791 Internet Protocol - Specific Option Definitions

Strict Source and Record Route

The strict source and record route (SSRR) option provides a means for the source of an 
internet datagram to supply routing information to be used by the gateways in forwarding 
the datagram to the destination, and to record the route information. 
The option begins with the option type code.    The second octet is the option length which 
includes the option type code and the length octet, the pointer octet, and length-3 octets of 
route data.    The third octet is the pointer into the route data indicating the octet which 
begins the next source address to be processed.    The pointer is relative to this option, and 
the smallest legal value for the pointer is 4. 
A route data is composed of a series of internet addresses. Each internet address is 32 bits 
or 4 octets.    If the pointer is greater than the length, the source route is empty (and the 
recorded route full) and the routing is to be based on the destination address field. 
If the address in destination address field has been reached and the pointer is not greater 
than the length, the next address in the source route replaces the address in the destination 
address field, and the recorded route address replaces the source address just used, and 
pointer is increased by four. 
The recorded route address is the internet module's own internet address as known in the 
environment into which this datagram is being forwarded. 
This procedure of replacing the source route with the recorded route (though it is in the 
reverse of the order it must be in to be used as a source route) means the option (and the IP 
header as a whole) remains a constant length as the datagram progresses through the 
internet. 
 This option is a strict source route because the gateway or host IP must send the datagram 
directly to the next address in the source route through only the directly connected network 
indicated in the next address to reach the next gateway or host specified in the route. 
Must be copied on fragmentation.    Appears at most once in a datagram. 



RFC-791 Internet Protocol - Specific Option Definitions

Record Route

The record route option provides a means to record the route of an internet datagram. 
The option begins with the option type code.    The second octet is the option length which 
includes the option type code and the length octet, the pointer octet, and length-3 octets of 
route data.    The third octet is the pointer into the route data indicating the octet which 
begins the next area to store a route address.    The pointer is relative to this option, and the 
smallest legal value for the pointer is 4. 
A recorded route is composed of a series of internet addresses. Each internet address is 32 
bits or 4 octets.    If the pointer is greater than the length, the recorded route data area is 
full. The originating host must compose this option with a large enough route data area to 
hold all the address expected.    The size of the option does not change due to adding 
addresses.    The intitial contents of the route data area must be zero. 
When an internet module routes a datagram it checks to see if the record route option is 
present.    If it is, it inserts its own internet address as known in the environment into which 
this datagram is being forwarded into the recorded route begining at the octet indicated by 
the pointer, and increments the pointer by four. 
If the route data area is already full (the pointer exceeds the length) the datagram is 
forwarded without inserting the address into the recorded route.    If there is some room but 
not enough room for a full address to be inserted, the original datagram is considered to be 
in error and is discarded.    In either case an ICMP parameter problem message may be sent 
to the source host. 
Not copied on fragmentation, goes in first fragment only. Appears at most once in a 
datagram. 



RFC-791 Internet Protocol - Specific Option Definitions

Stream Identifier

This option provides a way for the 16-bit SATNET stream identifier to be carried through 
networks that do not support the stream concept. 
Must be copied on fragmentation.    Appears at most once in a datagram.
This option is obsolete and should not be sent.



RFC-791 Internet Protocol - Specific Option Definitions

Internet Timestamp

The Option Length is the number of octets in the option counting the type, length, pointer, 
and overflow/flag octets (maximum length 40). 
The Pointer is the number of octets from the beginning of this option to the end of 
timestamps plus one (i.e., it points to the octet beginning the space for next timestamp).    
The smallest legal value is 5.    The timestamp area is full when the pointer is greater than 
the length. 
The Overflow (oflw) [4 bits] is the number of IP modules that cannot register timestamps due
to lack of space. 
The Flag (flg) [4 bits] values are

0 time stamps only, stored in consecutive 32-bit words,
1 each timestamp is preceded with internet address of the registering 

entity, 
3 the internet address fields are prespecified.    An IP module only 

registers its timestamp if it matches its own address with the next 
specified internet address. 

The Timestamp is a right-justified, 32-bit timestamp in milliseconds since midnight UT.    If 
the time is not available in milliseconds or cannot be provided with respect to midnight UT 
then any time may be inserted as a timestamp provided the high order bit of the timestamp 
field is set to one to indicate the use of a non-standard value. 
The originating host must compose this option with a large enough timestamp data area to 
hold all the timestamp information expected.    The size of the option does not change due to
adding timestamps.    The intitial contents of the timestamp data area must be zero or 
internet address/zero pairs. 
If the timestamp data area is already full (the pointer exceeds the length) the datagram is 
forwarded without inserting the timestamp, but the overflow count is incremented by one. 
If there is some room but not enough room for a full timestamp to be inserted, or the 
overflow count itself overflows, the original datagram is considered to be in error and is 
discarded. In either case an ICMP parameter problem message may be sent to the source 
host. 
The timestamp option is not copied upon fragmentation.    It is carried in the first fragment.    
Appears at most once in a datagram. 



RFC-791 Internet Protocol - Specification

Padding:    variable

The internet header padding is used to ensure that the internet header ends on a 32 bit 
boundary.    The padding is zero. 



RFC-791 Internet Protocol

Discussion
The implementation of a protocol must be robust.    Each implementation must expect to 
interoperate with others created by different individuals.    While the goal of this specification
is to be explicit about the protocol there is the possibility of differing interpretations.    In 
general, an implementation must be conservative in its sending behavior, and liberal in its 
receiving behavior.    That is, it must be careful to send well-formed datagrams, but must 
accept any datagram that it can interpret (e.g., not object to technical errors where the 
meaning is still clear). 
The basic internet service is datagram oriented and provides for the fragmentation of 
datagrams at gateways, with reassembly taking place at the destination internet protocol 
module in the destination host. Of course, fragmentation and reassembly of datagrams 
within a network or by private agreement between the gateways of a network is also 
allowed since this is transparent to the internet protocols and the higher-level protocols.    
This transparent type of fragmentation and reassembly is termed "network-dependent" (or 
intranet) fragmentation and is not discussed further here. 
Internet addresses distinguish sources and destinations to the host level and provide a 
protocol field as well.    It is assumed that each protocol will provide for whatever 
multiplexing is necessary within a host. 



RFC-791 Internet Protocol - Discussion

Addressing
To provide for flexibility in assigning address to networks and allow for the    large number of 
small to intermediate sized networks the interpretation of the address field is coded to 
specify a small number of networks with a large number of host, a moderate number of 
networks with a moderate number of hosts, and a large number of networks with a small 
number of hosts.    In addition there is an escape code for extended addressing mode.    
Additions and Extensions.

Address Formats:

High Order Bits        Format                                           Class  
0 7 bits of net, 24 bits of host A
10 14 bits of net, 16 bits of host B
110 21 bits of net,    8 bits of host C
111 escape to extended addressing mode

A value of zero in the network field means this network.    This is only used in certain ICMP 
messages.    The extended addressing mode is undefined.    Both of these features are 
reserved for future use. 
The actual values assigned for network addresses is given in "Assigned Numbers". 
The local address, assigned by the local network, must allow for a single physical host to act 
as several distinct internet hosts. That is, there must be a mapping between internet host 
addresses and network/host interfaces that allows several internet addresses to correspond 
to one interface.    It must also be allowed for a host to have several physical interfaces and 
to treat the datagrams from several of them as if they were all addressed to a single host. 
Address mappings between internet addresses and addresses for ARPANET, SATNET, PRNET, 
and other networks are described in "Address Mappings" [RFC-796]. 
See Additional Addressing Notes.



RFC-791 Internet Protocol - Addressing

Additional Notes

There are now five classes of IP addresses: Class A through Class E.
Class D addresses are used for IP multicasting [RFC-1112] while Class E addresses are 
reserved for experimental use.
A multicast (Class D) address is a 28-bit logical address that stands for a group of hosts, and 
may be either permanent or transient.    Permanent multicast addresses are allocated by the 
Internet Assigned Number Authority and are listed in Assigned Numbers, while transient 
addresses may be allocated dynamically to transient groups.    Group membership is 
determined dynamically using IGMP.
We now summarize the important special cases for Class A, B, and C IP addresses, using the 
following notation for an IP address:
{ <Network-number>, <Host-number> }
or
{ <Network-number>, <Subnet-number>, <Host-number> }

and the notation "-1" for a field that contains all 1 bits. This notation is not intended to imply
that the 1-bits in an address mask need be contiguous.

(a)    { 0, 0 }

This host on this network.    must not be sent, except as a source address as part of an 
initialization procedure by which the host learns its own IP address.

See also Broadcasts for a non-standard use of {0,0}.

(b)    { 0, <Host-number> }

Specified host on this network.    It must not be sent, except as a source address as part of 
an initialization procedure by which the host learns its full IP address.

(c)    { -1, -1 }

Limited broadcast.    It must not be used as a source address.

A datagram with this destination address will be received by every host on the connected 
physical network but will not be forwarded outside that network.

(d)    { <Network-number>, -1 }

Directed broadcast to the specified network.    It must not be used as a source address.

(e)    { <Network-number>, <Subnet-number>, -1 }

Directed broadcast to the specified subnet.    It must not be used as a source address.

(f)    { <Network-number>, -1, -1 }

Directed broadcast to all subnets of the specified subnetted network.    It must not be used 
as a source address.



(g)    { 127, <any> }

Internal host loopback address.    Addresses of this form must not appear outside a host.

The <Network-number> is administratively assigned so that its value will be unique in the 
entire world.

IP addresses are not permitted to have the value 0 or -1 for any of the <Host-number>, 
<Network-number>, or <Subnet- number> fields (except in the special cases listed above). 
This implies that each of these fields will be at least two bits long.

For further discussion of broadcast addresses, see Broadcasts and Broadcasting Internet 
Datagrams in the Presence of Subnets [RFC-922].

A host must support the subnet extensions to IP [RFC-950].    As a result, there will be an 
address mask of the form: {-1, -1, 0} associated with each of the host's local IP addresses; 
see Address Mask and Local/Remote Decision.

When a host sends any datagram, the IP source address must be one of its own IP 
addresses (but not a broadcast or multicast address).

A host must silently discard an incoming datagram that is not destined for the host.    An 
incoming datagram is destined for the host if the datagram's destination address field is:

(1) (one of) the host's IP address(es); or
(2) an IP broadcast address valid for the connected network; or
(3) the address for a multicast group of which the host is a member on the

incoming physical interface.
For most purposes, a datagram addressed to a broadcast or multicast destination is 
processed as if it had been addressed to one of the host's IP addresses; we use the term 
"specific-destination address" for the equivalent local IP address of the host.    The specific-
destination address is defined to be the destination address in the IP header unless the 
header contains a broadcast or multicast address, in which case the specific-destination is 
an IP address assigned to the physical interface on which the datagram arrived.
A host must silently discard an incoming datagram containing an IP source address that is 
invalid by the rules of this section.    This validation could be done in either the IP layer or by 
each protocol in the transport layer.

Discussion
A mis-addressed datagram might be caused by a link- layer broadcast of a 
unicast datagram or by a gateway or host that is confused or mis-configured.
An architectural goal for Internet hosts was to allow IP addresses to be 
featureless 32-bit numbers, avoiding algorithms that required a knowledge of 
the IP address format.    Otherwise, any future change in the format or 
interpretation of IP addresses will require host software changes.    However, 
validation of broadcast and multicast addresses violates this goal; a few other 
violations are described elsewhere in this document.
Implementers should be aware that applications depending upon the all-
subnets directed broadcast address (f) may be unusable on some networks.    
All- subnets broadcast is not widely implemented in vendor gateways at 
present, and even when it is implemented, a particular network administration
may disable it in the gateway configuration.





RFC-791 Internet Protocol - Addressing

Broadcasts
There are four standard IP broadcast address forms (See Definition and Broadcasting 
Internet Datagrams in the Presence of Subnets [RFC-922]):

Limited Broadcast:    {-1, -1}
Directed Broadcast:    {<Network-number>,-1}
Subnet Directed Broadcast: {<Network-number>,<Subnet-number>,-1}
All-Subnets Directed Broadcast: {<Network-number>,-1,-1}

A host must recognize any of these forms in the destination address of an incoming 
datagram.
There is a class of hosts that use non-standard broadcast address forms, substituting 0 for -
1.    All hosts should recognize and accept any of these non-standard broadcast addresses 
as the destination address of an incoming datagram. A host may optionally have a 
configuration option to choose the 0 or the -1 form of broadcast address, for each physical 
interface, but this option should default to the standard (-1) form.
When a host sends a datagram to a link-layer broadcast address, the IP destination address 
must be a legal IP broadcast or IP multicast address.
A host should silently discard a datagram that is received via a link-layer broadcast but 
does not specify an IP multicast or broadcast destination address.
Hosts should use the Limited Broadcast address to broadcast to a connected network.

Discussion
Using the Limited Broadcast address instead of a Directed Broadcast address 
may improve system robustness.    Problems are often caused by machines 
that do not understand the plethora of broadcast addresses, or that may have 
different ideas about which broadcast addresses are in use.    The prime 
example of the latter is machines that do not understand subnetting but are 
attached to a subnetted net.    Sending a Subnet Broadcast for the connected 
network will confuse those machines, which will see it as a message to some 
other host.
There has been discussion on whether a datagram addressed to the Limited 
Broadcast address ought to be sent from all the interfaces of a multihomed 
host.    This specification takes no stand on the issue.



RFC-791 Internet Protocol - Discussion

Fragmentation and Reassembly
The internet identification field (ID) is used together with the source and destination 
address, and the protocol fields, to identify datagram fragments for reassembly. 
The More Fragments flag bit (MF) is set if the datagram is not the last fragment.    The 
Fragment Offset field identifies the fragment location, relative to the beginning of the 
original unfragmented datagram.    Fragments are counted in units of 8 octets.    The 
fragmentation strategy is designed so than an unfragmented datagram has all zero 
fragmentation information (MF = 0, fragment offset = 0).    If an internet datagram is 
fragmented, its data portion must be broken on 8 octet boundaries. 
This format allows 2**13 = 8192 fragments of 8 octets each for a total of 65,536 octets.    
Note that this is consistent with the the datagram total length field (of course, the header is 
counted in the total length and not in the fragments). 
When fragmentation occurs, some options are copied, but others remain with the first 
fragment only. 
Every internet module must be able to forward a datagram of 68 octets without further 
fragmentation.    This is because an internet header may be up to 60 octets, and the 
minimum fragment is 8 octets. 
Every internet destination must be able to receive a datagram of 576 octets either in one 
piece or in fragments to be reassembled. 
The fields which may be affected by fragmentation include:

(1) options field
(2) more fragments flag
(3) fragment offset
(4) internet header length field
(5) total length field
(6) header checksum

If the Don't Fragment flag (DF) bit is set, then internet fragmentation of this datagram is NOT
permitted, although it may be discarded.    This can be used to prohibit fragmentation in 
cases where the receiving host does not have sufficient resources to reassemble internet 
fragments. 
One example of use of the Don't Fragment feature is to down line load a small host.    A small
host could have a boot strap program that accepts a datagram stores it in memory and then 
executes it. 
The fragmentation and reassembly procedures are most easily described by examples.    The
following procedures are example implementations.
General notation in the following pseudo programs: "=<" means "less than or equal", "#" 
means "not equal", "=" means "equal", "<-" means "is set to".    Also, "x to y" includes x and 
excludes y; for example, "4 to 7" would include 4, 5, and 6 (but not 7). 



RFC-791 Internet Protocol - Discussion

Fragmentation Procedure
Overview

Discussion
Implementation



RFC-791 Internet Protocol - Fragmentation Procedure

Overview

Optionally, the IP layer may implement a mechanism to fragment outgoing datagrams 
intentionally.
We designate by EMTU_S ("Effective MTU for sending") the maximum IP datagram size that 
may be sent, for a particular combination of IP source and destination addresses and 
perhaps TOS.
A host must implement a mechanism to allow the transport layer to learn MMS_S, the 
maximum transport-layer message size that may be sent for a given {source, destination, 
TOS} triplet (see GET_MAXSIZES call in Internet/Transport Layer Interface).    If no local 
fragmentation is performed, the value of MMS_S will be:

MMS_S = EMTU_S - <IP header size>
and EMTU_S must be less than or equal to the MTU of the network interface corresponding 
to the source address of the datagram. Note that <IP header size> in this equation will be 
20, unless the IP reserves space to insert IP options for its own purposes in addition to any 
options inserted by the transport layer.
A host that does not implement local fragmentation must ensure that the transport layer 
(for TCP) or the application layer (for UDP) obtains MMS_S from the IP layer and does not 
send a datagram exceeding MMS_S in size.
It is generally desirable to avoid local fragmentation and to choose EMTU_S low enough to 
avoid fragmentation in any gateway along the path.    In the absence of actual knowledge of 
the minimum MTU along the path, the IP layer should use EMTU_S <= 576 whenever the 
destination address is not on a connected network, and otherwise use the connected 
network's MTU.
The MTU of each physical interface must be configurable.
A host IP layer implementation may have a configuration flag "All-Subnets-MTU", indicating 
that the MTU of the connected network is to be used for destinations on different subnets 
within the same network, but not for other networks.    Thus, this flag causes the network 
class mask, rather than the subnet address mask, to be used to choose an EMTU_S.    For a 
multihomed host, an "All-Subnets-MTU" flag is needed for each network interface.



RFC-791 Internet Protocol - Fragmentation Procedure

Discussion

Picking the correct datagram size to use when sending data is a complex topic [IP:9].
(a) In general, no host is required to accept an IP datagram larger than 

576 bytes (including header and data), so a host must not send a 
larger datagram without explicit knowledge or prior arrangement with 
the destination host.    Thus, MMS_S is only an upper bound on the 
datagram size that a transport protocol may send; even when MMS_S 
exceeds 556, the transport layer must limit its messages to 556 bytes 
in the absence of other knowledge about the destination host.

(b) Some transport protocols (e.g., TCP) provide a way to explicitly inform 
the sender about the largest datagram the other end can receive and 
reassemble "The TCP Maximum Segment Size Option and Related 
Topics" [RFC-879].    There is no corresponding mechanism in the IP 
layer.
A transport protocol that assumes an EMTU_R larger than 576 (see 
Reassembly), can send a datagram of this larger size to another host 
that implements the same protocol.

(c) Hosts should ideally limit their EMTU_S for a given destination to the 
minimum MTU of all the networks along the path, to avoid any 
fragmentation.    IP fragmentation, while formally correct, can create a 
serious transport protocol performance problem, because loss of a 
single fragment means all the fragments in the segment must be 
retransmitted [IP:9].

Since nearly all networks in the Internet currently support an MTU of 576 or greater, we 
strongly recommend the use of 576 for datagrams sent to non-local networks.
It has been suggested that a host could determine the MTU over a given path by sending a 
zero-offset datagram fragment and waiting for the receiver to time out the reassembly 
(which cannot complete!) and return an ICMP Time Exceeded message.    This message 
would include the largest remaining fragment header in its body.    More direct mechanisms 
are being experimented with, but have not yet been adopted (see e.g., RFC-1063).



RFC-791 Internet Protocol - Fragmentation Procedure

Example Implementation
The maximum sized datagram that can be transmitted through the next network is called 
the maximum transmission unit (MTU). 

If the total length is less than or equal the maximum transmission unit then submit this 
datagram to the next step in datagram processing; otherwise cut the datagram into two 
fragments, the first fragment being the maximum size, and the second fragment being the 
rest of the datagram.    The first fragment is submitted to the next step in datagram 
processing, while the second fragment is submitted to this procedure in case it is still too 
large. 

Notation:

FO Fragment Offset
IHL Internet Header Length
DF Don't Fragment flag
MF More Fragments flag
TL Total Length
OFO Old Fragment Offset
OIHL Old Internet Header Length
OMF Old More Fragments flag
OTL Old Total Length
NFB Number of Fragment Blocks
MTU Maximum Transmission Unit

Procedure:

IF TL =< MTU THEN Submit this datagram to the next step in datagram 
processing ELSE IF DF      1 THEN discard the datagram ELSE

To produce the first fragment:

(1) Copy the original internet header;
(2) OIHL <- IHL; OTL <- TL; OFO <- FO; OMF <- MF;
(3) NFB <- (MTU-IHL*4)/8;
(4) Attach the first NFB*8 data octets;
(5) Correct the header:

MF <- 1;    TL <- (IHL*4)+(NFB*8);
Recompute Checksum;

(6) Submit this fragment to the next step in datagram processing; To 
produce the second fragment:

(7) Selectively copy the internet header (some options are not copied, see 
option definitions);

(8) Append the remaining data;
(9) Correct the header:

IHL <- (((OIHL*4)-(length of options not copied))+3)/4;
TL <- OTL - NFB*8 - (OIHL-IHL)*4);



FO <- OFO + NFB;    MF <- OMF;    Recompute Checksum;
(10) Submit this fragment to the fragmentation test; DONE.

In the above procedure each fragment (except the last) was made the maximum allowable 
size.    An alternative might produce less than the maximum size datagrams.    For example, 
one could implement a fragmentation procedure that repeatly divided large datagrams in 
half until the resulting fragments were less than the maximum transmission unit size. 



RFC-791 Internet Protocol - Discussion

Reassembly Procedure

Overview
Description
Timer
Implementation



RFC-791 Internet Protocol - Reassembly Procedure

Overview

The IP layer must implement reassembly of IP datagrams.
We designate the largest datagram size that can be reassembled by EMTU_R ("Effective MTU
to receive"); this is sometimes called the "reassembly buffer size".    EMTU_R must be 
greater than or equal to 576, should be either configurable or indefinite, and should be 
greater than or equal to the MTU of the connected network(s).

Discussion
A fixed EMTU_R limit should not be built into the code because some 
application layer protocols require EMTU_R values larger than 576.

Implementation
An implementation may use a contiguous reassembly buffer for each 
datagram, or it may use a more complex data structure that places no definite
limit on the reassembled datagram size; in the latter case, EMTU_R is said to 
be "indefinite".
Logically, reassembly is performed by simply copying each fragment into the 
packet buffer at the proper offset. Note that fragments may overlap if 
successive retransmissions use different packetizing but the same reassembly
Id.
The tricky part of reassembly is the bookkeeping to determine when all bytes 
of the datagram have been reassembled.    We recommend Clark's algorithm 
as described in RFC-815 "IP Datagram Reassembly Algorithms" that requires 
no additional data space for the bookkeeping.    However, note that, contrary 
to what is described in that document the first fragment header needs to be 
saved for inclusion in a possible ICMP Time Exceeded (Reassembly Timeout) 
message.

There must be a mechanism by which the transport layer can learn MMS_R, the maximum 
message size that can be received and reassembled in an IP datagram (see GET_MAXSIZES 
calls in Section 3.4).    If EMTU_R is not indefinite, then the value of MMS_R is given by:

MMS_R = EMTU_R - 20
since 20 is the minimum size of an IP header.
There must be a reassembly timeout.    The reassembly timeout value should be a fixed 
value, not set from the remaining TTL. It is recommended that the value lie between 60 
seconds and 120 seconds.    If this timeout expires, the partially-reassembled datagram 
must be discarded and an ICMP Time Exceeded message sent to the source host (if 
fragment zero has been received).    



RFC-791 Internet Protocol - Reassembly Procedure

Description
For each datagram the buffer identifier is computed as the concatenation of the source, 
destination, protocol, and identification fields.    If this is a whole datagram (that is both the 
fragment offset and the more fragments    fields are zero), then any reassembly resources 
associated with this buffer identifier are released and the datagram is forwarded to the next 
step in datagram processing. 

If no other fragment with this buffer identifier is on hand then reassembly resources are 
allocated.    The reassembly resources consist of a data buffer, a header buffer, a fragment 
block bit table, a total data length field, and a timer.    The data from the fragment is placed 
in the data buffer according to its fragment offset and length, and bits are set in the 
fragment block bit table corresponding to the fragment blocks received. 

If this is the first fragment (that is the fragment offset is zero)    this header is placed in the 
header buffer.    If this is the last fragment ( that is the more fragments field is zero) the total 
data length is computed.    If this fragment completes the datagram (tested by checking the 
bits set in the fragment block table), then the datagram is sent to the next step in datagram 
processing.

If the timer runs out, the all reassembly resources for this buffer identifier are released.    The
initial setting of the timer is a lower bound on the reassembly waiting time.    This is because 
the waiting time will be increased if the Time to Live in the arriving fragment is greater than 
the current timer value but will not be decreased if it is less.    The maximum this timer value
could reach is the maximum time to live (approximately 4.25 minutes).    The current 
recommendation for the initial timer setting is 60 - 120 seconds.        Note that the choice of 
this parameter value is related to the buffer capacity available and the data rate of the 
transmission medium; that is, data rate times timer value equals buffer size (e.g., 10Kb/s X 
15s = 150Kb). 



RFC-791 Internet Protocol - Reassembly Procedure

Timer
The IP specification says that the reassembly timeout should be the remaining TTL from the 
IP header, but this does not work well because gateways generally treat TTL as a simple hop 
count rather than an elapsed time.    If the reassembly timeout is too small, datagrams will 
be discarded unnecessarily, and communication may fail.    The timeout needs to be at least 
as large as the typical maximum delay across the Internet.    A realistic minimum reassembly
timeout would be 60 seconds.
It has been suggested that a cache might be kept of round-trip times measured by transport 
protocols for various destinations, and that these values might be used to dynamically 
determine a reasonable reassembly timeout value.    Further investigation of this approach is
required.
If the reassembly timeout is set too high, buffer resources in the receiving host will be tied 
up too long, and the MSL (Maximum Segment Lifetime) [TCP:1] will be larger than necessary. 
The MSL controls the maximum rate at which fragmented datagrams can be sent using 
distinct values of the 16-bit Ident field; a larger MSL lowers the maximum rate.    The TCP 
specification [TCP:1] arbitrarily assumes a value of 2 minutes for MSL.    This sets an upper 
limit on a reasonable reassembly timeout value.



RFC-791 Internet Protocol - Reassembly Procedure

Example Implementation
Notation:

FO Fragment Offset
IHL Internet Header Length
MF More Fragments flag
TTL Time To Live
NFB Number of Fragment Blocks
TL Total Length
TDL Total Data Length
BUFID Buffer Identifier
RCVBT Fragment Received Bit Table
TLB Timer Lower Bound

Procedure:

(1) BUFID <- source|destination|protocol|identification;
(2) IF FO = 0 AND MF = 0
(3) THEN IF buffer with BUFID is allocated
(4) THEN flush all reassembly for this BUFID;
(5) Submit datagram to next step; DONE.
(6) ELSE IF no buffer with BUFID is allocated
(7) THEN allocate reassembly resources with BUFID;

TIMER <- TLB; TDL <- 0;
(8) put data from fragment into data buffer with BUFID from octet 

FO*8 to octet (TL-IHL*4))+FO*8;
(9) set RCVBT bits from FO to FO+((TL-(IHL*4)+7)/8);
(10) IF MF = 0 THEN TDL <- TL-(IHL*4)+(FO*8)
(11) IF FO = 0 THEN put header in header buffer
(12) IF TDL # 0
(13) AND all RCVBT bits from 0 to (TDL+7)/8 are set
(14) THEN TL <- TDL+(IHL*4)
(15) Submit datagram to next step;
(16)                                  free all reassembly resources for this BUFID; 

DONE.
(17) TIMER <- MAX(TIMER,TTL);
(18) give up until next fragment or timer expires;
(19) timer expires: flush all reassembly with this BUFID; DONE.

In the case that two or more fragments contain the same data either identically or through a
partial overlap, this procedure will use the more recently arrived copy in the data buffer and 
datagram delivered. 



RFC-791 Internet Protocol - Discussion

Identification
The choice of the Identifier for a datagram is based on the need to provide a way to uniquely
identify the fragments of a particular datagram.    The protocol module assembling 
fragments judges fragments to belong to the same datagram if they have the same source, 
destination, protocol, and Identifier.    Thus, the sender must choose the Identifier to be 
unique for this source, destination pair and protocol for the time the datagram (or any 
fragment of it) could be alive in the internet. 
It seems then that a sending protocol module needs to keep a table of Identifiers, one entry 
for each destination it has communicated with in the last maximum packet lifetime for the 
internet. 
However, since the Identifier field allows 65,536 different values, some host may be able to 
simply use unique identifiers independent of destination. 
It is appropriate for some higher level protocols to choose the identifier. For example, TCP 
protocol modules may retransmit an identical TCP segment, and the probability for correct 
reception would be enhanced if the retransmission carried the same identifier as the original
transmission since fragments of either datagram could be used to construct a correct TCP 
segment.

Discussion
Some Internet protocol experts have maintained that when a host sends an 
identical copy of an earlier datagram, the new copy should contain the same 
Identification value as the original.    There are two suggested advantages:    
(1) if the datagrams are fragmented and some of the fragments are lost, the 
receiver may be able to reconstruct a complete datagram from fragments of 
the original and the copies; (2) a congested gateway might use the IP 
Identification field (and Fragment Offset) to discard duplicate datagrams from 
the queue.

However, the observed patterns of datagram loss in the Internet do not favor 
the probability of retransmitted fragments filling reassembly gaps, while other 
mechanisms (e.g., TCP repacketizing upon retransmission) tend to prevent 
retransmission of an identical datagram [IP:9].    Therefore, we believe that 
retransmitting the same Identification field is not useful.    Also, a 
connectionless transport protocol like UDP would require the cooperation of 
the application programs to retain the same Identification value in identical 
datagrams.



RFC-791 Internet Protocol - Discussion

Type of Service
The type of service (TOS) is for internet service quality selection. The type of service is 
specified along the abstract parameters precedence, delay, throughput, and reliability.    
These abstract parameters are to be mapped into the actual service parameters of the 
particular networks the datagram traverses. 
The "Type-of-Service" byte in the IP header is divided into two sections:    the Precedence 
field (high-order 3 bits), and a field that is customarily called "Type-of-Service" or "TOS" (low-
order 5 bits).    In this document, all references to "TOS" or the "TOS field" refer to the low-
order 5 bits only.
Precedence An independent measure of the importance of this datagram.    This field is 

intended for Department of Defense applications of the Internet Protocols.    
Please consult the Defense Communications Agency (DCA) for guidance on 
the use of this field.    Vendors should note that the use of precedence will 
likely require that its value be passed between protocol layers just as the TOS 
field is.

Delay Prompt delivery is important for datagrams with this indication. 
Throughput High data rate is important for datagrams with this indication. 
Reliability A higher level of effort to ensure delivery is important for datagrams with this 

indication. 
For example, the ARPANET has a priority bit, and a choice between "standard" messages 
(type 0) and "uncontrolled" messages (type 3), (the choice between single packet and 
multipacket messages can also be considered a service parameter). The uncontrolled 
messages tend to be less reliably delivered and suffer less delay.    Suppose an internet 
datagram is to be sent through the ARPANET.    Let the internet type of service be given as: 
Precedence: 5
Delay: 0
Throughput: 1
Reliability: 1
In this example, the mapping of these parameters to those available for the ARPANET would 
be    to set the ARPANET priority bit on since the Internet precedence is in the upper half of 
its range, to select standard messages since the throughput and reliability requirements are 
indicated and delay is not.    More details are given on service mappings in "Service 
Mappings".
The IP layer must provide a means for the transport layer to set the TOS field of every 
datagram that is sent; the default is all zero bits.    The IP layer should pass received TOS 
values up to the transport layer.
The particular link-layer mappings of TOS contained in RFC- 795 should not be 
implemented.    

Discussion
While the TOS field has been little used in the past, it is expected to play an 
increasing role in the near future.    The TOS field is expected to be used to 
control two aspects of gateway operations: routing and queueing algorithms.   
See Type of Service from "Requirements for Internet Hosts -- Application and
Support" [RFC-1123] for the requirements on application programs to specify 
TOS values.
The TOS field may also be mapped into link-layer service selectors.    This has 



been applied to provide effective sharing of serial lines by different classes of 
TCP traffic, for example.    However, the mappings suggested in "Service 
Mappings" [RFC-795] for networks that were included in the Internet as of 
1981 are now obsolete.



RFC-791 Internet Protocol - Discussion

Time to Live
The time to live is set by the sender to the maximum time the datagram is allowed to be in 
the internet system.    If the datagram is in the internet system longer than the time to live, 
then the datagram must be destroyed. 
This field must be decreased at each point that the internet header is processed to reflect 
the time spent processing the datagram. Even if no local information is available on the time
actually spent, the field must be decremented by 1.    The time is measured in units of 
seconds (i.e. the value 1 means one second).    Thus, the maximum time to live is 255 
seconds or 4.25 minutes.    Since every module that processes a datagram must decrease 
the TTL by at least one even if it process the datagram in less than a second, the TTL must 
be thought of only as an upper bound on the time a datagram may exist.    The intention is to
cause undeliverable datagrams to be discarded, and to bound the maximum datagram 
lifetime. 
Some higher level reliable connection protocols are based on assumptions that old duplicate 
datagrams will not arrive after a certain time elapses.    The TTL is a way for such protocols 
to have an assurance that their assumption is met.
A host must not send a datagram with a Time-to-Live (TTL) value of zero.

A host must not discard a datagram just because it was received with TTL less than 2.

The IP layer must provide a means for the transport layer to set the TTL field of every 
datagram that is sent.    When a fixed TTL value is used, it must be configurable.    The 
suggested value for Time to Live is published in Assigned Numbers, as of March 1990 this 
value is 32.

Discussion
The TTL field has two functions: limit the lifetime of TCP segments, and 
terminate Internet routing loops.    Although TTL is a time in seconds, it also 
has some attributes of a hop- count, since each gateway is required to reduce 
the TTL field by at least one.
The intent is that TTL expiration will cause a datagram to be discarded by a 
gateway but not by the destination host; however, hosts that act as gateways 
by forwarding datagrams must follow the gateway rules for TTL.
A higher-layer protocol may want to set the TTL in order to implement an 
"expanding scope" search for some Internet resource.    This is used by some 
diagnostic tools, and is expected to be useful for locating the "nearest" server 
of a given class using IP multicasting, for example.    A particular transport 
protocol may also want to specify its own TTL bound on maximum datagram 
lifetime.
A fixed value must be at least big enough for the Internet "diameter," i.e., the 
longest possible path. A reasonable value is about twice the diameter, to allow
for continued Internet growth.



RFC-791 Internet Protocol - Discussion

Options
The options are optional in each datagram, but required in implementations.    That is, the 
presence or absence of an option is the choice of the sender, but each internet module must
be able to parse every option.    There can be several options present in the option field. 
The options might not end on a 32-bit boundary.    The internet header must be filled out with
octets of zeros.    The first of these would be interpreted as the end-of-options option, and 
the remainder as internet header padding. 
Every internet module must be able to act on every option.    The Security Option is required 
if classified, restricted, or compartmented traffic is to be passed.
There must be a means for the transport layer to specify IP options to be included in 
transmitted IP datagrams (See Internet/Transport Layer Interface).
All IP options (except NOP or END-OF-LIST) received in datagrams must be passed to the 
transport layer (or to ICMP processing when the datagram is an ICMP message).    The IP and 
transport layer must each interpret those IP options that they understand and silently 
ignore the others.
Later sections of this document discuss specific IP option support required by each of ICMP, 
TCP, and UDP.    (See Implementation).

Discussion
Passing all received IP options to the transport layer is a deliberate "violation 
of strict layering" that is designed to ease the introduction of new transport- 
relevant IP options in the future.    Each layer must pick out any options that 
are relevant to its own processing and ignore the rest.    For this purpose, 
every IP option except NOP and END-OF-LIST will include a specification of its 
own length.

This document does not define the order in which a receiver must process 
multiple options in the same IP header.    Hosts sending multiple options must 
be aware that this introduces an ambiguity in the meaning of certain options 
when combined with a source-route option.



RFC-791 Internet Protocol - Options Discussion

Implementation
The IP layer must not crash as the result of an option length that is outside the possible 
range.    For example, erroneous option lengths have been observed to put some IP 
implementations into infinite loops.
Here are the requirements for specific IP options:

Security Option
Stream Identifier
Source Route Options
Record Route Option
Timestamp Option



RFC-791 Internet Protocol - Option Implementation

Security Option
Some environments require the Security option in every datagram; such a 
requirement is outside the scope of this document and the IP standard 
specification.    Note, however, that the security options described in this RFC 
(791) and RFC-1038 are obsolete.    For DoD applications, vendors should 
consult "Internet Protocol Security Options" [RFC-1108] for guidance.



RFC-791 Internet Protocol - Option Implementation

Stream Identifier Option
This option is obsolete; it should not be sent, and it must be silently ignored 
if received.



RFC-791 Internet Protocol - Option Implementation

Source Route Options
A host must support originating a source route and must be able to act as 
the final destination of a source route.

If host receives a datagram containing a completed source route (i.e., the 
pointer points beyond the last field), the datagram has reached its final 
destination; the option as received (the recorded route) must be passed up to
the transport layer (or to ICMP message processing).    This recorded route will 
be reversed and used to form a return source route for reply datagrams (see 
discussion of IP Options in Section 4).    When a return source route is built, it 
must be correctly formed even if the recorded route included the source host 
(see case (B) in the discussion below).

An IP header containing more than one Source Route option must not be 
sent; the effect on routing of multiple Source Route options is implementation-
specific.

Source Route Forwarding presents the rules for a host acting as an 
intermediate hop in a source route, i.e., forwarding a source-routed datagram. 
(See Discussion).



RFC-791 Internet Protocol - Option Implementation

Record Route Option
Implementation of originating and processing the Record Route option is 
optional.



RFC-791 Internet Protocol - Option Implementation

Timestamp Option
Implementation of originating and processing the Timestamp option is 
OPTIONAL.    If it is implemented, the following rules apply:

o The originating host must record a timestamp in a Timestamp 
option whose Internet address fields are not pre-specified or 
whose first pre-specified address is the host's interface address.

o The destination host must (if possible) add the current 
timestamp to a Timestamp option before passing the option to 
the transport layer or to ICMP for processing.

o A timestamp value must follow the rules given in ICMP 
Timestamp for the ICMP Timestamp message.



RFC-791 Internet Protocol - Options

Source Route Option
Discussion

If a source-routed datagram is fragmented, each fragment will contain a copy of the source 
route. Since the processing of IP options (including a source route) must precede 
reassembly, the original datagram will not be reassembled until the final destination is 
reached.

Suppose a source routed datagram is to be routed from host S to host D via gateways G1, 
G2, ... Gn. There was an ambiguity in the specification over whether the source route option 
in a datagram sent out by S should be (A) or (B):

(A):    {>>G2, G3, ... Gn, D}          <--- CORRECT

(B):    {S, >>G2, G3, ... Gn, D}    <---- WRONG

(where >> represents the pointer).    If (A) is sent, the datagram received at D will contain 
the option: {G1, G2, ... Gn >>}, with S and D as the IP source and destination addresses.    If
(B) were sent, the datagram received at D would again contain S and D as the same IP 
source and destination addresses, but the option would be: {S, G1, ...Gn >>}; i.e., the 
originating host would be the first hop in the route.



RFC-791 Internet Protocol - Discussion

Checksum
The internet header checksum is recomputed if the internet header is changed.    For 
example, a reduction of the time to live, additions or changes to internet options, or due to 
fragmentation.    This checksum at the internet level is intended to protect the internet 
header fields from transmission errors. 
There are some applications where a few data bit errors are acceptable while retransmission 
delays are not.    If the internet protocol enforced data correctness such applications could 
not be supported. 
A host must verify the IP header checksum on every received datagram and silently dicsard 
every datagram that has a bad checksum.



RFC-791 Internet Protocol - Discussion

Errors
Internet protocol errors may be reported via the ICMP messages.



RFC-791 Internet Protocol

Interfaces
The functional description of user interfaces to the IP is, at best, fictional, since every 
operating system will have different facilities.    Consequently, we must warn readers that 
different IP implementations may have different user interfaces.    However, all IPs must 
provide a certain minimum    set of services to guarantee that all IP implementations can 
support the same protocol hierarchy.    This section specifies the functional interfaces 
required of all IP implementations. 

Internet protocol interfaces on one side to the local network and on the other side to either a
higher level protocol or an application program.    In the following, the higher level protocol 
or application program (or even a gateway program) will be called the "user" since it is using
the internet module.    Since internet protocol is a datagram protocol, there is minimal 
memory or state maintained between datagram transmissions, and each call on the internet
protocol module by the user supplies all information necessary for the IP to perform the 
service requested. 



RFC-791 Internet Protocol - Interfaces

An Example Upper Level Interface
The following two example calls satisfy the requirements for the user to internet protocol 
module communication ("=>" means returns): 

SEND (src, dst, prot, TOS, TTL, BufPTR, len, Id, DF, opt => result)

where:

src = source address
dst = destination address
prot = protocol
TOS = type of service
TTL = time to live
BufPTR = buffer pointer
len = length of buffer
Id    = Identifier
DF = Don't Fragment
opt = option data
result = response
OK = datagram sent ok
Error = error in arguments or local network error

Note that the precedence is included in the TOS and the security/compartment is passed as 
an option. 

RECV (BufPTR, prot, => result, src, dst, TOS, len, opt)

where:

BufPTR = buffer pointer
prot = protocol
result = response
OK = datagram received ok
Error = error in arguments
len = length of buffer
src = source address
dst = destination address
TOS = type of service
opt = option data

When the user sends a datagram, it executes the SEND call supplying all the arguments.    
The internet protocol module, on receiving this call, checks the arguments and prepares and 
sends the message.    If the arguments are good and the datagram is accepted by the local 
network, the call returns successfully.    If either the arguments are bad, or the datagram is 
not accepted by the local network, the call returns unsuccessfully.    On unsuccessful returns, 
a reasonable report must be made as to the cause of the problem, but the details of such 
reports are up to individual implementations. 

When a datagram arrives at the internet protocol module from the local network, either 
there is a pending RECV call from the user addressed or there is not.    In the first case, the 
pending call is satisfied by passing the information from the datagram to the user.    In the 
second case, the user addressed is notified of a pending datagram.    If the user addressed 



does not exist, an ICMP error message is returned to the sender, and the data is discarded. 

The notification of a user may be via a pseudo interrupt or similar mechanism, as 
appropriate in the particular operating system environment of the implementation. 

A user's RECV call may then either be immediately satisfied by a pending datagram, or the 
call may be pending until a datagram arrives. 

The source address is included in the send call in case the sending host has several 
addresses (multiple physical connections or logical addresses).    The internet module must 
check to see that the source address is one of the legal address for this host. 

An implementation may also allow or require a call to the internet module to indicate 
interest in or reserve exclusive use of a class of datagrams (e.g., all those with a certain 
value in the protocol field). 

This section functionally characterizes a USER/IP interface.    The notation used is similar to 
most procedure of function calls in high level languages, but this usage is not meant to rule 
out trap type service calls (e.g., SVCs, UUOs, EMTs), or any other form of interprocess 
communication. 



RFC-791 Internet Protocol - Examples

Example 1
This is an example of the minimal data carrying internet datagram:

This is a internet datagram in version 4 of internet protocol; the internet header consists of 
five 32 bit words, and the total length of the datagram is 21 octets.    This datagram is a 
complete datagram (not a fragment). 



RFC-791 Internet Protocol - Examples

Example 2
In this example, we show first a moderate size internet datagram (452 data octets), then 
two internet fragments that might result from the fragmentation of this datagram if the 
maximum sized transmission allowed were 280 octets. 

Now the first fragment that results from splitting the datagram after 256 data octets. 

And the second fragment.





RFC-791 Internet Protocol - Examples

Example 3
Here, we show an example of a datagram containing options:



RFC-791 Internet Protocol

Data Transmission Order
The order of transmission of the header and data described in this document is resolved to 
the octet level.    Whenever a diagram shows a group of octets, the order of transmission of 
those octets is the normal order in which they are read in English.    For example, in the 
following diagram the octets are transmitted in the order they are numbered. 

Whenever an octet represents a numeric quantity the left most bit in the diagram is the high
order or most significant bit.    That is, the bit labeled 0 is the most significant bit.    For 
example, the following diagram represents the value 170 (decimal). 

Similarly, whenever a multi-octet field represents a numeric quantity the left most bit of the 
whole field is the most significant bit.    When a multi-octet quantity is transmitted the most 
significant octet is transmitted first. 



RFC-791 Internet Protocol

Glossary
1822
BBN Report 1822, "The Specification of the Interconnection of a Host and an IMP".    The 
specification of interface between a host and the ARPANET. 

ARPANET leader
The control information on an ARPANET message at the host-IMP interface. 

ARPANET message
The unit of transmission between a host and an IMP in the ARPANET.    The maximum size is 
about 1012 octets (8096 bits). 

ARPANET packet
A unit of transmission used internally in the ARPANET between IMPs. The maximum size is 
about 126 octets (1008 bits). 

Destination
The destination address, an internet header field.

DF
The Don't Fragment bit carried in the flags field.

Flags
An internet header field carrying various control flags.

Fragment Offset
This internet header field indicates where in the internet datagram a fragment belongs. 

GGP
Gateway to Gateway Protocol, the protocol used primarily between gateways to control 
routing and other gateway functions. 

header
Control information at the beginning of a message, segment, datagram, packet or block of 
data. 

ICMP
Internet Control Message Protocol, implemented in the internet module, the ICMP is used 
from gateways to hosts and between hosts to report errors and make routing suggestions. 

Identification
An internet header field carrying the identifying value assigned by the sender to aid in 
assembling the fragments of a datagram. 

IHL
The internet header field Internet Header Length is the length of the internet header 
measured in 32 bit words. 

IMP
The Interface Message Processor, the packet switch of the ARPANET. 

Internet Address



A four octet (32 bit) source or destination address consisting of a Network field and a Local 
Address field. 

internet datagram
The unit of data exchanged between a pair of internet modules (includes the internet 
header). 

internet fragment
A portion of the data of an internet datagram with an internet header. 

Local Address
The address of a host within a network.    The actual mapping of an internet local address on 
to the host addresses in a network is quite general, allowing for many to one mappings. 

MF
The More-Fragments Flag carried in the internet header flags field. 

module
An implementation, usually in software, of a protocol or other procedure. 

more-fragments flag
A flag indicating whether or not this internet datagram contains the end of an internet 
datagram, carried in the internet header Flags field. 

NFB
The Number of Fragment Blocks in a the data portion of an internet fragment.    That is, the 
length of a portion of data measured in 8 octet units. 

octet
An eight bit byte.

Options
The internet header Options field may contain several options, and each option may be 
several octets in length. 

Padding
The internet header Padding field is used to ensure that the data begins on 32 bit word 
boundary.    The padding is zero. 

Protocol
In this document, the next higher level protocol identifier, an internet header field. 

Rest
The local address portion of an Internet Address.

Source
The source address, an internet header field.

TCP
Transmission Control Protocol:    A host-to-host protocol for reliable communication in internet
environments. 

TCP Segment
The unit of data exchanged between TCP modules (including the TCP header). 



TFTP
Trivial File Transfer Protocol:    A simple file transfer protocol built on UDP. 

Time to Live
An internet header field which indicates the upper bound on how long this internet datagram
may exist. 

TOS
Type of Service

Total Length
The internet header field Total Length is the length of the datagram in octets including 
internet header and data. 

TTL
Time to Live

Type of Service
An internet header field which indicates the type (or quality) of service for this internet 
datagram. 

UDP
User Datagram Protocol:    A user level protocol for transaction oriented applications. 

User
The user of the internet protocol.    This may be a higher level protocol module, an 
application program, or a gateway program. 

Version
The Version field indicates the format of the internet header.



4.2BSD and its derivatives, but not 4.3BSD.



RFC-792 Internet Control Message Protocol
Jon Postel

USC/Information Sciences Institute
September 1981

DARPA Internet Program
Protocol Specification

This section includes the original text of RFC-792 as well as many corrections, 
comments, and suggestions made since its publication.    There are also links 
to other relevant documents and discussions.
Introduction
Message Formats
Messages

Destination Unreachable
Time Exceeded
Parameter Problem
Source Quench
Redirect
Echo and Echo Reply
Timestamp and Timestamp Reply
Information Request and Information Reply
Address Mask and Address Mask Reply

Discussion
Examples



RFC-792 Internet Control Message Protocol

Introduction
The Internet Protocol (IP) [RFC-791] is used for host-to-host datagram service in a system of 
interconnected networks called the Catenet [2].    The network connecting devices are called 
Gateways. These gateways communicate between themselves for control purposes via a 
Gateway to Gateway Protocol (GGP) [3,4].    Occasionally a gateway or destination host will 
communicate with a source host, for example, to report an error in datagram processing.    
For such purposes this protocol, the Internet Control Message Protocol (ICMP), is used.    
ICMP, uses the basic support of IP as if it were a higher level protocol, however, ICMP is 
actually an integral part of IP, and must be implemented by every IP module. 
ICMP messages are sent in several situations:    for example, when a datagram cannot reach 
its destination, when the gateway does not have the buffering capacity to forward a 
datagram, and when the gateway can direct the host to send traffic on a shorter route. 
The Internet Protocol is not designed to be absolutely reliable.    The purpose of these control
messages is to provide feedback about problems in the communication environment, not to 
make IP reliable. There are still no guarantees that a datagram will be delivered or a control 
message will be returned.    Some datagrams may still be undelivered without any report of 
their loss.    The higher level protocols that use IP must implement their own reliability 
procedures if reliable communication is required. 
The ICMP messages typically report errors in the processing of datagrams.    To avoid the 
infinite regress of messages about messages etc., no ICMP messages are sent about ICMP 
messages.    Also ICMP messages are only sent about errors in handling fragment zero of 
fragemented datagrams.    (Fragment zero has the fragment offeset equal zero). 



RFC-792 Internet Control Message Protocol

Message Formats

ICMP messages are sent using the basic IP header.    The first octet of the data portion of the 
datagram is a ICMP type field; the value of this field determines the format of the remaining 
data.    Any field labeled "unused" is reserved for later extensions and must be zero when 
sent, but receivers should not use these fields (except to include them in the checksum).    
Unless otherwise noted under the individual format descriptions, the values of the internet 
header fields are as follows: 
Version

4
IHL

Internet header length in 32-bit words.
Type of Service

0
Total Length

Length of internet header and data in octets.
Identification, Flags, Fragment Offset

Used in fragmentation.
Time to Live

Time to live in seconds; as this field is decremented at each machine in which 
the datagram is processed, the value in this field should be at least as great 
as the number of gateways which this datagram will traverse. 

Protocol
ICMP = 1

Header Checksum
The checksum is the 16-bit ones's complement of the one's complement sum 
of the ICMP message starting with the ICMP Type. For computing the 
checksum , the checksum field should be zero. This checksum may be 
replaced in the future.

Source Address
The address of the gateway or host that composes the ICMP message. Unless 
otherwise noted, this can be any of a gateway's addresses. 

Destination Address
The address of the gateway or host to which the message should be sent. 



RFC-792 ICMP - Message Formats

Destination Unreachable Message

IP Fields:
Destination Address

The source network and address from the original datagram's data.
ICMP Fields:

Type
3

Code
0 = net unreachable
1 = host unreachable
2 = protocol unreachable
3 = port unreachable
4 = fragmentation needed and DF set
5 = source route failed
6= destination network unknown
7 = destination host unknown
8 = source host isolated
9 = communication with destination network administratively 
prohibited
10 = communication with destination host administratively prohibited
11 = network unreachable for type of service
12 = host unreachable for type of service

Checksum
 Internet Header + 64 bits of Data Datagram
Description

If, according to the information in the gateway's routing tables, the network 
specified in the internet destination field of a datagram is unreachable, e.g., 
the distance to the network is infinity, the gateway may send a destination 
unreachable message to the internet source host of the datagram.    In 
addition, in some networks, the gateway may be able to determine if the 
internet destination host is unreachable.    Gateways in these networks may 
send destination unreachable messages to the source host when the 
destination host is unreachable. 
If, in the destination host, the IP module cannot deliver the datagram    
because the indicated protocol module or process port is not active, the 
destination host may send a destination unreachable message to the source 
host. 
Another case is when a datagram must be fragmented to be forwarded by a 



gateway yet the Don't Fragment flag is on.    In this case the gateway must 
discard the datagram and may return a destination unreachable message. 
Codes 0, 1, 4, and 5 may be received from a gateway.

A host should generate Destination Unreachable messages with code:

2 (Protocol Unreachable), when the designated transport protocol is not 
supported; or

3 (Port Unreachable), when the designated transport protocol (e.g., UDP) is 
unable to demultiplex the datagram but has no protocol mechanism to inform 
the sender.

A Destination Unreachable message that is received must be reported to the transport 
layer.    The transport layer should use the information appropriately; for example, see 
UDP/IP Options, TCP/ICMP, and TCP/Application Layer Interface.    A transport protocol that 
has its own mechanism for notifying the sender that a port is unreachable (e.g., TCP, which 
sends RST segments) must nevertheless accept an ICMP Port Unreachable for the same 
purpose.

A Destination Unreachable message that is received with code 0 (Net), 1 (Host), or 5 (Bad 
Source Route) may result from a routing transient and must therefore be interpreted as only
a hint, not proof, that the specified destination is unreachable (see "Fault Isolation and 
Recovery [RFC-816].    For example, it must not be used as proof of a dead gateway (see 
Routing Outbound Datagrams).



RFC-792 ICMP - Message Formats

Time Exceeded Message

IP Fields:
Destination Address

The source network and address from the original datagram's data.
ICMP Fields:

Type
11

Code
0 = time to live exceeded in transit;
1 = fragment reassembly time exceeded.

Checksum
Internet Header + 64 bits of Data Datagram

Description
If the gateway processing a datagram finds the time to live field is zero it must
discard the datagram.    The gateway may also notify the source host via the 
time exceeded message. 
If a host reassembling a fragmented datagram cannot complete the 
reassembly due to missing fragments within its time limit it discards the 
datagram, and it may send a time exceeded message.    In the future, receipt 
of this message might be part of some "MTU discovery" procedure, to discover
the maximum datagram size that can be sent on the path without 
fragmentation.
If fragment zero is not available then no time exceeded need be sent at all. 
Code 0 may be received from a gateway.    Code 1 may be received from a 
host. 
An incoming Time Exceeded message must be passed to the transport layer.
A gateway will send a Time Exceeded Code 0 (In Transit) message when it 
discards a datagram due to an expired TTL field.    This indicates either a 
gateway routing loop or too small an initial TTL value.



RFC-792 ICMP - Message Formats

Parameter Problem Message

IP Fields:
Destination Address

The source network and address from the original datagram's data.
ICMP Fields:

Type
12

Code
0 = pointer indicates the error.
1 = required option is missing.

Checksum
Pointer

If code = 0, identifies the octet where an error was detected.
Internet Header + 64 bits of Data Datagram

Description
If the gateway or host processing a datagram finds a problem with the header 
parameters such that it cannot complete processing the datagram it must 
discard the datagram.    One potential source of such a problem is with 
incorrect arguments in an option.    The gateway or host may also notify the 
source host via the parameter problem message.    This message is only sent if
the error caused the datagram to be discarded. 
A host should generate Parameter Problem messages.    An incoming 
Parameter Problem message must be passed to the transport layer, and it 
may be reported to the user.
The ICMP Parameter Problem message is sent to the source host for any 
problem not specifically covered by another ICMP message.    Receipt of a 
Parameter Problem message generally indicates some local or remote 
implementation error.
The pointer identifies the octet of the original datagram's header where the 
error was detected (it may be in the middle of an option).    For example, 1 
indicates something is wrong with the Type of Service, and (if there are 
options present) 20 indicates something is wrong with the type code of the 
first option. 
Code 0 may be received from a gateway or a host.
Code 1 is currently in use in the military community for a missing security 
option.



RFC-792 ICMP - Message Formats

Source Quench Message

IP Fields:
Destination Address

The source network and address of the original datagram's data.
ICMP Fields:

Type
4

Code
0

Checksum
Internet Header + 64 bits of Data Datagram

Description
A gateway may discard internet datagrams if it does not have the buffer space
needed to queue the datagrams for output to the next network on the route to
the destination network.    If a gateway discards a datagram, it may send a 
source quench message to the internet source host of the datagram.    A 
destination host may also send a source quench message if datagrams arrive 
too fast to be processed.    The source quench message is a request to the host
to cut back the rate at which it is sending traffic to the internet destination.    
The gateway may send a source quench message for every message that it 
discards.    On receipt of a source quench message, the source host should cut 
back the rate at which it is sending traffic to the specified destination until it 
no longer receives source quench messages from the gateway.    The source 
host can then gradually increase the rate at which it sends traffic to the 
destination until it again receives source quench messages. 
The gateway or host may send the source quench message when it 
approaches its capacity limit rather than waiting until the capacity is 
exceeded.    This means that the data datagram which triggered the source 
quench message may be delivered. 
Code 0 may be received from a gateway or a host.

A host may send a Source Quench message if it is approaching, or has reached, the point at 
which it is forced to discard incoming datagrams due to a shortage of reassembly buffers or 
other resources.    See Section 2.2.3 of [INTRO:2] for suggestions on when to send Source 
Quench.

If a Source Quench message is received, the IP layer must report it to the transport layer (or
ICMP processing). In general, the transport or application layer should implement a 



mechanism to respond to Source Quench for any protocol that can send a sequence of 
datagrams to the same destination and which can reasonably be expected to maintain 
enough state information to make this feasible.    (See Discussion).



RFC-792 Internet Control Message Protocol

ICMP Source Quench
Discussion

A Source Quench may be generated by the target host or by some gateway in the path of a 
datagram.    The host receiving a Source Quench should throttle itself back for a period of 
time, then gradually increase the transmission rate again.    The mechanism to respond to 
Source Quench may be in the transport layer (for connection-oriented protocols like TCP) or 
in the application layer (for protocols that are built on top of UDP).

A mechanism has been proposed, "Something a Host Could Do with Source Quench" [RFC-
1016] to make the IP layer respond directly to Source Quench by controlling the rate at 
which datagrams are sent, however, this proposal is currently experimental and not 
currently recommended.



RFC-792 ICMP - Message Formats

Redirect Message

IP Fields:
Destination Address

The source network and address of the original datagram's data.
ICMP Fields:

Type
5

Code
0 = Redirect datagrams for the Network.
1 = Redirect datagrams for the Host.
2 = Redirect datagrams for the Type of Service and Network.
3 = Redirect datagrams for the Type of Service and Host.

Checksum
Gateway Internet Address

Address of the gateway to which traffic for the network specified
in the internet destination network field of the original 
datagram's data should be sent. 

Internet Header + 64 bits of Data Datagram
Description

The gateway sends a redirect message to a host in the following situation.    A 
gateway, G1, receives an internet datagram from a host on a network to which
the gateway is attached.    The gateway, G1, checks its routing table and 
obtains the address of the next gateway, G2, on the route to the datagram's 
internet destination network, X.    If G2 and the host identified by the internet 
source address of the datagram are on the same network, a redirect message 
is sent to the host.    The redirect message advises the host to send its traffic 
for network X directly to gateway G2 as this is a shorter path to the 
destination.    The gateway forwards the original datagram's data to its 
internet destination. 
For datagrams with the IP source route options and the gateway address in 
the destination address field, a redirect message is not sent even if there is a 
better route to the ultimate destination than the next address in the source 
route. 
Codes 0, 1, 2, and 3 may be received from a gateway.

A host should not send an ICMP Redirect message; Redirects are to be sent only by 
gateways.



A host receiving a Redirect message must update its routing information 
accordingly.    Every host must be prepared to accept both Host and Network 
Redirects and to process them as described in Gateway Selection.

A Redirect message should be silently discarded if the new gateway address it specifies is 
not on the same connected (sub-) net through which the Redirect arrived, or if the source of 
the Redirect is not the current first-hop gateway for the specified destination (see Routing 
Outbound Datagrams).



RFC-792 ICMP - Message Formats

Echo and Echo Reply Message

 
IP Fields:

Addresses
The address of the source in an echo message will be the 
destination of the echo reply message.    To form an echo reply 
message, the source and destination addresses are simply 
reversed, the type code changed to 0, and the checksum 
recomputed. 

ICMP Fields:
Type

8 for echo message;
0 for echo reply message.

Code
0

Checksum
Identifier

If code = 0, an identifier to aid in matching echos and replies, 
may be zero. 

Sequence Number
If code = 0, a sequence number to aid in matching echos and 
replies, may be zero.

Description
The data received in the echo message must be returned in the echo reply 
message. 
The identifier and sequence number may be used by the echo sender to aid in
matching the replies with the echo requests.    For example, the identifier 
might be used like a port in TCP or UDP to identify a session, and the 
sequence number might be incremented on each echo request sent.    The 
echoer returns these same values in the echo reply. 
Code 0 may be received from a gateway or a host.
Every host must implement an ICMP Echo server function that receives Echo 
Requests and sends corresponding Echo Replies. A host should also 
implement an application-layer interface for sending an Echo Request and 
receiving an Echo Reply, for diagnostic purposes.



An ICMP Echo Request destined to an IP broadcast or IP multicast address may
be silently discarded.    (See Discussion).



RFC-792 Internet Control Message Protocol

ICMP Echo Request/Reply
Discussion

This neutral provision results from a passionate debate between those who feel that ICMP 
Echo to a broadcast address provides a valuable diagnostic capability and those who feel 
that misuse of this feature can too easily create packet storms.

The IP source address in an ICMP Echo Reply must be the same as the specific-destination 
address (defined in Addressing) of the corresponding ICMP Echo Request message.

Data received in an ICMP Echo Request must be entirely included in the resulting Echo 
Reply.    However, if sending the Echo Reply requires intentional fragmentation that is not 
implemented, the datagram must be truncated to maximum transmission size (see 
Fragmentation) and sent.

Echo Reply messages must be passed to the ICMP user interface, unless the corresponding 
Echo Request originated in the IP layer.

If a Record Route and/or Time Stamp option is received in an ICMP Echo Request, this option 
(these options) should be updated to include the current host and included in the IP header 
of the Echo Reply message, without "truncation". Thus, the recorded route will be for the 
entire round trip.

If a Source Route option is received in an ICMP Echo Request, the return route must be 
reversed and used as a Source Route option for the Echo Reply message.



RFC-792 ICMP - Message Formats

Timestamp and Timestamp Reply Message

 
IP Fields:

Addresses
The address of the source in a timestamp message will be the 
destination of the timestamp reply message.    To form a 
timestamp reply message, the source and destination addresses
are simply reversed, the type code changed to 14, and the 
checksum recomputed. 

ICMP Fields:
Type

13 for timestamp message;
14 for timestamp reply message.

Code
0

Checksum
Identifier

If code = 0, an identifier to aid in matching timestamp and 
replies, may be zero. 

Sequence Number
If code = 0, a sequence number to aid in matching timestamp 
and replies, may be zero. 

Description
The data received (a timestamp) in the message is returned in the reply 
together with an additional timestamp.    The timestamp is 32 bits of 
milliseconds since midnight UT.    One use of these timestamps is described by 
Mills [5]. 
The Originate Timestamp is the time the sender last touched the message 
before sending it, the Receive Timestamp is the time the echoer first touched 
it on receipt, and the Transmit Timestamp is the time the echoer last touched 
the message on sending it. 
If the time is not available in miliseconds or cannot be provided with respect 
to midnight UT then any time can be inserted in a timestamp provided the 
high order bit of the timestamp is also set to indicate this non-standard value. 



The identifier and sequence number may be used by the echo sender to aid in
matching the replies with the requests.    For example, the identifier might be 
used like a port in TCP or UDP to identify a session, and the sequence number 
might be incremented on each request sent.    The destination returns these 
same values in the reply. 
Code 0 may be received from a gateway or a host.
See Disscussion



RFC-792 Internet Control Message Protocol

Timestamp and Timestamp Reply
Discussion

A host may implement Timestamp and Timestamp Reply.    If they are implemented, the 
following rules must be followed.

o The ICMP Timestamp server function returns a Timestamp Reply to 
every Timestamp message that is received.    If this function is 
implemented, it should be designed for minimum variability in delay 
(e.g., implemented in the kernel to avoid delay in scheduling a user 
process).

The following cases for Timestamp are to be handled according to the corresponding rules 
for ICMP Echo:

o An ICMP Timestamp Request message to an IP broadcast or IP 
multicast address may be silently discarded.

o The IP source address in an ICMP Timestamp Reply must be the same 
as the specific-destination address of the corresponding Timestamp 
Request message.

o If a Source-route option is received in an ICMP Echo Request, the return
route must be reversed and used as a Source Route option for the 
Timestamp Reply message.

o If a Record Route and/or Timestamp option is received in a Timestamp 
Request, this (these) option(s) should be updated to include the 
current host and included in the IP header of the Timestamp Reply 
message.

o Incoming Timestamp Reply messages must be passed up to the ICMP 
user interface.

The preferred form for a timestamp value (the "standard value") is in units of milliseconds 
since midnight Universal Time.    However, it may be difficult to provide this value with 
millisecond resolution.    For example, many systems use clocks that update only at line 
frequency, 50 or 60 times per second.    Therefore, some latitude is allowed in a "standard 
value":

(a) A "standard value" must be updated at least 15 times per second (i.e.,
at most the six low-order bits of the value may be undefined).

(b) The accuracy of a "standard value" must approximate that of operator-
set CPU clocks, i.e., correct within a few minutes.



RFC-792 ICMP - Message Formats

Information Request and Information Reply Message

This message pair is obsolete and a host should not implement    it. 
This section appears for historical reference only.
The Information Request/Reply pair was intended to support self-configuring systems such 
as diskless workstations, to allow them to discover their IP network numbers at boot time.    
However, the RARP and BOOTP protocols provide better mechanisms for a host to discover 
its own IP address.

IP Fields:
Addresses

The address of the source in a information request message will 
be the destination of the information reply message.    To form a 
information reply message, the source and destination 
addresses are simply reversed, the type code changed to 16, 
and the checksum recomputed. 

ICMP Fields:
Type

15 for information request message;
16 for information reply message.

Code
0

Checksum
Identifier

If code = 0, an identifier to aid in matching request and replies, 
may be zero. 

Sequence Number
If code = 0, a sequence number to aid in matching request and 
replies, may be zero. 

Description
This message may be sent with the source network in the IP header source 
and destination address fields zero (which means "this" network).    The 
replying IP module should send the reply with the addresses fully specified.    
This message is a way for a host to find out the number of the network it is on.
The identifier and sequence number may be used by the echo sender to aid in
matching the replies with the requests.    For example, the identifier might be 
used like a port in TCP or UDP to identify a session, and the sequence number 
might be incremented on each request sent.    The destination returns these 
same values in the reply. 



Code 0 may be received from a gateway or a host.



RFC-792 ICMP - Message Formats

Address Mask Request and Address Mask Reply
This message was originally defined in an appendix to "Internet Standard Subnetting 
Procedure" [RFC-950].

              
IP Fields:

Addresses

The address of the source in an address mask request message will be the 
destination of the address mask reply message. To form an address mask 
reply message, the source address of the request becomes the destination 
address of the reply, the source address of the reply is set to the replier's 
address, the type code changed to 18, the address mask value inserted into 
the Address Mask field, and the checksum recomputed.    However, if the 
source address in the request message is zero, then the destination address 
for the reply message should denote a broadcast. 

ICMP Fields:

Type
17 for address mask request message
18 for address mask reply message

Code
0 for address mask request message
1 for address mask reply message

Checksum
Identifier

An identifier to aid in matching requests and replies, may be 
zero. 

Sequence Number
A sequence number to aid in matching requests and replies, 
may be zero. 

Address Mask
A 32-bit mask.

Description
A gateway receiving an address mask request should return it with the 
address mask field set to the 32-bit mask of the bits identifying the subnet 
and network, for the subnet on which the request was received. 
If the requesting host does not know its own IP address, it may leave the 



source field zero; the reply should then be broadcast.    However, this approach
should be avoided if at all possible, since it increases the superfluous 
broadcast load on the network.    Even when the replies are broadcast, since 
there is only one possible address mask for a subnet, there is no need to 
match requests with replies.    The "Identifier" and "Sequence Number" fields 
can be ignored. 
Type 17 may be received from a gateway or a host.
Type 18 may be received from a gateway, or a host acting in lieu of a gateway.
See Examples.



RFC-792 ICMP - Address Mask and Address Mask Reply

Discussion

A host must support the first, and may implement all three, of the following methods for 
determining the address mask(s) corresponding to its IP address(es):

(1) static configuration information;
(2) obtaining the address mask(s) dynamically as a side- effect of the 

system initialization process; and
(3) sending ICMP Address Mask Request(s) and receiving ICMP Address 

Mask Reply(s).
The choice of method to be used in a particular host must be configurable.
When method (3), the use of Address Mask messages, is enabled, then:

(a) When it initializes, the host must broadcast an Address Mask Request 
message on the connected network corresponding to the IP address.    
It must retransmit this message a small number of times if it does not 
receive an immediate Address Mask Reply.

(b) Until it has received an Address Mask Reply, the host should assume a
mask appropriate for the address class of the IP address, i.e., assume 
that the connected network is not subnetted.

(c) The first Address Mask Reply message received must be used to set 
the address mask corresponding to the particular local IP address.    
This is true even if the first Address Mask Reply message is 
"unsolicited", in which case it will have been broadcast and may arrive 
after the host has ceased to retransmit Address Mask Requests.    Once 
the mask has been set by an Address Mask Reply, later Address Mask 
Reply messages must be (silently) ignored.

Conversely, if Address Mask messages are disabled, then no ICMP Address Mask Requests 
will be sent, and any ICMP Address Mask Replies received for that local IP address must be 
(silently) ignored.
A host should make some reasonableness check on any address mask it installs.
A system must not send an Address Mask Reply unless it is an authoritative agent for 
address masks.    An authoritative agent may be a host or a gateway, but it must be 
explicitly configured as a address mask agent.    Receiving an address mask via an Address 
Mask Reply does not give the receiver authority and must not be used as the basis for 
issuing Address Mask Replies.
With a statically configured address mask, there should be an additional configuration flag 
that determines whether the host is to act as an authoritative agent for this mask, i.e., 
whether it will answer Address Mask Request messages using this mask.
If it is configured as an agent, the host must broadcast an Address Mask Reply for the mask 
on the appropriate interface when it initializes.
See System Initialization for more information about the use of Address Mask Request/Reply 
messages.
Hosts that casually send Address Mask Replies with invalid address masks have often been a
serious nuisance.    To prevent this, Address Mask Replies ought to be sent only by 
authoritative agents that have been selected by explicit administrative action.
When an authoritative agent receives an Address Mask Request message, it will send a 



unicast Address Mask Reply to the source IP address.    If the network part of this address is 
zero (see (a) and (b) in Addressing), the Reply will be broadcast.
Getting no reply to its Address Mask Request messages, a host will assume there is no agent
and use an unsubnetted mask, but the agent may be only temporarily unreachable.    An 
agent will broadcast an unsolicited Address Mask Reply whenever it initializes, in order to 
update the masks of all hosts that have initialized in the meantime.



The following reasonableness check on an address mask is suggested: the mask is not all 1 
bits, and it is either zero or else the 8 highest-order bits are on.



RFC-792 ICMP - Address Mask and Address Mask Reply

Examples
These examples show how a host can find out the address mask using the ICMP Address 
Mask Request and Address Mask Reply messages.    For the following examples, assume that 
address 255.255.255.255 denotes "broadcast to this physical medium" [RFC-919]. 

Class A Network Example
Class B Network Example
Class C Netowrk Example



RFC-792 ICMP - Address Mask Examples

Class A Network Example
For this case, assume that the requesting host is on class A network 36.0.0.0, 
has address 36.40.0.123, that there is a gateway at 36.40.0.62, and that a 8-
bit wide subnet field is in use, that is, the address mask is 255.255.0.0. 
The most efficient method, and the one we recommend, is for a host to first 
discover its own address (perhaps using "RARP"), and then to send the ICMP 
request to 255.255.255.255: 

Source address: 36.40.0.123
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Mask Request = 17
Code: 0
Mask: 0

The gateway can then respond directly to the requesting host.
Source address: 36.40.0.62
Destination address: 36.40.0.123
Protocol: ICMP = 1
Type: Address Mask Reply = 18
Code: 0
Mask: 255.255.0.0

Suppose that 36.40.0.123 is a diskless workstation, and does not know even 
its own host number.    It could send the following datagram: 

Source address: 0.0.0.0
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Mask Request = 17
Code: 0
Mask: 0

36.40.0.62 will hear the datagram, and should respond with this datagram: 
Source address: 36.40.0.62
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Mask Reply = 18
Code: 0
Mask: 255.255.0.0

Note that the gateway uses the narrowest possible broadcast to reply.    Even 
so, the over use of broadcasts presents an unnecessary load to all hosts on 
the subnet, and so the use of the "anonymous" (0.0.0.0) source address must 
be kept to a minimum. 
If broadcasting is not allowed, we assume that hosts have wired-in information
about neighbor gateways; thus, 36.40.0.123 might send this datagram: 

Source address: 36.40.0.123
Destination address: 36.40.0.62
Protocol: ICMP = 1
Type: Address Mask Request = 17
Code: 0



Mask: 0
36.40.0.62 should respond exactly as in the previous case.

Source address: 36.40.0.62
Destination address: 36.40.0.123
Protocol: ICMP = 1
Type: Address Mask Reply = 18
Code: 0
Mask: 255.255.0.0



RFC-792 ICMP - Adderss Mask Examples

A Class B Network Example
For this case, assume that the requesting host is on class B network 
128.99.0.0, has address 128.99.4.123, that there is a gateway at 128.99.4.62, 
and that a 6-bit wide subnet field is in use, that is, the address mask is 
255.255.252.0. 
The host sends the ICMP request to 255.255.255.255:

Source address: 128.99.4.123
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Mask Request = 17
Code: 0
Mask: 0

The gateway can then respond directly to the requesting host.
Source address: 128.99.4.62
Destination address: 128.99.4.123
Protocol: ICMP = 1
Type: Address Mask Reply = 18
Code: 0
Mask: 255.255.252.0

In the diskless workstation case the host sends:
Source address: 0.0.0.0
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Mask Request = 17
Code: 0
Mask: 0

128.99.4.62 will hear the datagram, and should respond with this datagram: 
Source address: 128.99.4.62
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Mask Reply = 18
Code: 0
Mask: 255.255.252.0

If broadcasting is not allowed 128.99.4.123 sends:
Source address: 128.99.4.123
Destination address: 128.99.4.62
Protocol: ICMP = 1
Type: Address Mask Request = 17
Code: 0
Mask: 0

128.99.4.62 should respond exactly as in the previous case.
Source address: 128.99.4.62
Destination address: 128.99.4.123
Protocol: ICMP = 1



Type: Address Mask Reply = 18
Code: 0
Mask: 255.255.252.0



RFC-792 ICMP - Address Mask Examples

Class C Network Example
(illustrating non-contiguous subnet bits)

For this case, assume that the requesting host is on class C network 
192.1.127.0, has address 192.1.127.19, that there is a gateway at 
192.1.127.50, and that on network an 3-bit subnet field is in use (01011000), 
that is, the address mask is 255.255.255.88.
The host sends the ICMP request to 255.255.255.255: 

Source address: 192.1.127.19
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Mask Request = 17
Code: 0
Mask: 0

The gateway can then respond directly to the requesting host.
Source address: 192.1.127.50
Destination address: 192.1.127.19
Protocol: ICMP = 1
Type: Address Mask Reply = 18
Code: 0
Mask: 255.255.255.88.

In the diskless workstation case the host sends:
Source address: 0.0.0.0
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Mask Request = 17
Code: 0
Mask: 0

192.1.127.50 will hear the datagram, and should respond with this datagram: 
Source address: 192.1.127.50
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Mask Reply = 18
Code: 0
Mask: 255.255.255.88.

If broadcasting is not allowed 192.1.127.19 sends:
Source address: 192.1.127.19
Destination address: 192.1.127.50
Protocol: ICMP = 1
Type: Address Mask Request = 17
Code: 0
Mask: 0

192.1.127.50 should respond exactly as in the previous case.
Source address: 192.1.127.50
Destination address: 192.1.127.19



Protocol: ICMP = 1
Type: Address Mask Reply = 18
Code: 0
Mask: 255.255.255.88



The 16 bit one's complement of the one's complement sum of all 16 bit words in the header. 
For computing the checksum, the checksum field should be zero.    This checksum may be 
replaced in the future.



The internet header plus the first 64 bits of the original datagram's data.    This data is used 
by the host to match the message to the appropriate process.    If a higher level protocol 
uses port numbers, they are assumed to be in the first 64 data bits of the original 
datagram's data.



RFC-793 Transmission Control Protocol
DARPA Internet Program

Protocol Specification
September 1981

This section includes the original text of RFC-793 as well as many corrections, 
comments, and suggestions made since its publication.    There are also links 
to other relevant documents and discussions.
Preface
Introduction

Motivation
Scope
About This Document
Interfaces
Operation

Philosophy
Functional Specification



RFC-793 Transmission Control Protocol - Table of Contents

Philosophy
Elements of the Internetwork System
Model of Operation
The Host Environment
Interfaces
Relation to Other Protocols
Reliable Communication
Connection Establishment and Clearing

Well-Known Ports
Data Communication
Precedence and Security
Robustness Principle



RFC-793 Transmission Control Protocol - Table of Contents

Functional Specification
Header Format
Terminology

State Diagram
Sequence Numbers
Establishing a connection
Closing a Connection

Normal Close Sequence
Simulaneous Close Sequence
Half-Duplex Close Sequence

Precedence and Security
Data Communication
Interfaces
Event Processing

Queued Segments



RFC-793 Transmission Control Protocol

Sequence Numbers

Overview
Processing Acknowledgements
Validity of Received Segments
Initial Sequence Number Selection
Knowing When to Keep Quiet
The TCP Quiet Time Concept



RFC-793 Transmission Control Protocol

Establishing a Connection
Overview
Simple Case
Simultaneous Initiation
Duplicate SYN’s
Half Open Connections

Alternative Case
Reset Generation
Reset Processing



RFC-793 Transmission Control Protocol

Data Communication
Overview
Efficiency Issues
Retransmission Timeout
The Communication of Urgent Data
Managing the Window

Shrinking the Window
Probing Zero Windows
Window Management Suggestions



RFC-793 Transmission Control Protocol

Preface

This document describes the DoD Standard Transmission Control Protocol (TCP).    There have
been nine earlier editions of the ARPA TCP specification on which this standard is based, and 
the present text draws heavily from them.    There have been many contributors to this work 
both in terms of concepts and in terms of text.    This edition clarifies several details and 
removes the end-of-letter buffer-size adjustments, and redescribes the letter mechanism as 
a push function. 
Jon Postel
Editor



RFC-793 Transmission Control Protocol

Introduction

The Transmission Control Protocol (TCP) is intended for use as a highly reliable host-to-host 
protocol between hosts in packet-switched computer communication networks, and in 
interconnected systems of such networks. 
This document describes the functions to be performed by the Transmission Control Protocol,
the program that implements it, and its interface to programs or users that require its 
services. 
This version of RFC-793 incorporates a number of corrections and extensions that have been
adopted by the Internet Community since its original publication in September of 1981.



RFC-793 Transmission Control Protocol - Introduction

Motivation

Computer communication systems are playing an increasingly important role in military, 
government, and civilian environments.    This document focuses its attention primarily on 
military computer communication requirements, especially robustness in the presence of 
communication unreliability and availability in the presence of congestion, but many of 
these problems are found in the civilian and government sector as well. 
As strategic and tactical computer communication networks are developed and deployed, it 
is essential to provide means of interconnecting them and to provide standard interprocess 
communication protocols which can support a broad range of applications.    In anticipation 
of the need for such standards, the Deputy Undersecretary of Defense for Research and 
Engineering has declared the Transmission Control Protocol (TCP) described herein to be a 
basis for DoD-wide inter-process communication protocol standardization.
TCP is a connection-oriented, end-to-end reliable protocol designed to      fit into a layered 
hierarchy of protocols which support multi-network      applications.    The TCP provides for 
reliable inter-process      communication between pairs of processes in host computers 
attached to      distinct but interconnected computer communication networks.    Very few      
assumptions are made as to the reliability of the communication      protocols below the TCP 
layer.    TCP assumes it can obtain a simple,      potentially unreliable datagram service from 
the lower level      protocols.    In principle, the TCP should be able to operate above a      wide 
spectrum of communication systems ranging from hard-wired      connections to packet-
switched or circuit-switched networks. 
TCP is based on concepts first described by Cerf and Kahn in [1].    The TCP fits into a layered
protocol architecture just above a basic Internet Protocol [RFC-791] which provides a way for
the TCP to send and receive variable-length segments of information enclosed in internet 
datagram "envelopes".    The internet datagram provides a means for addressing source and 
destination TCPs in different networks.    The internet protocol also deals with any 
fragmentation or reassembly of the TCP segments required to achieve transport and delivery
through multiple networks and interconnecting gateways.    The internet protocol also carries
information on the precedence, security classification and compartmentation of the TCP 
segments, so this information can be communicated end-to-end across multiple networks. 

Much of this document is written in the context of TCP implementations which are co-
resident with higher level protocols in the host computer.    Some computer systems will be 
connected to networks via front-end computers which house the TCP and internet protocol 
layers, as well as network specific software.    The TCP specification describes an interface to 
the higher level protocols which appears to be implementable even for the front-end case, 
as long as a suitable host-to-front end protocol is implemented. 



RFC-793 Transmission Control Protocol - Introduction

Scope

The TCP is intended to provide a reliable process-to-process communication service in a 
multinetwork environment.    The TCP is intended to be a host-to-host protocol in common 
use in multiple networks. 



RFC-793 Transmission Control Protocol - Introduction

About this Document

This document represents a specification of the behavior required of any TCP 
implementation, both in its interactions with higher level protocols and in its interactions 
with other TCPs.    The rest of this introduction offers a very brief view of the protocol 
interfaces and operation.    The second section summarizes the philosophical basis for the 
TCP design.    The third section offers both a detailed description of the actions required of 
TCP when various events occur (arrival of new segments, user calls, errors, etc.) and the 
details of the formats of TCP segments. 



RFC-793 Transmission Control Protocol - Introduction

Interfaces

The TCP interfaces on one side to user or application processes and on the other side to a 
lower level protocol such as Internet Protocol. 
The interface between an application process and the TCP is illustrated in reasonable detail.  
This interface consists of a set of calls much like the calls an operating system provides to 
an application process for manipulating files.    For example, there are calls to open and close
connections and to send and receive data on established connections.    It is also expected 
that the TCP can asynchronously communicate with application programs.    Although 
considerable freedom is permitted to TCP implementors to design interfaces which are 
appropriate to a particular operating system environment, a minimum functionality is 
required at the TCP/user interface for any valid implementation. 
The interface between TCP and lower level protocol is essentially unspecified except that it is
assumed there is a mechanism whereby the two levels can asynchronously pass information
to each other. Typically, one expects the lower level protocol to specify this interface.    TCP is
designed to work in a very general environment of interconnected networks.    The lower 
level protocol which is assumed throughout this document is the Internet Protocol [RFC-791].



RFC-793 Transmission Control Protocol - Introduction

Operation

As noted above, the primary purpose of the TCP is to provide reliable, securable logical 
circuit or connection service between pairs of processes.    To provide this service on top of a 
less reliable internet communication system requires facilities in the following areas: 

Basic Data Transfer
Reliability
Flow Control
Multiplexing
Connections
Precedence and Security



RFC-793 Transmission Control Protocol - Operation

Basic Data Transfer

The TCP is able to transfer a continuous stream of octets in each direction between its users 
by packaging some number of octets into segments for transmission through the internet 
system.    In general, the TCPs decide when to block and forward data at their own 
convenience. 
Sometimes users need to be sure that all the data they have submitted to the TCP has been 
transmitted.    For this purpose a push function is defined.    To assure that data submitted to 
a TCP is actually transmitted the sending user indicates that it should be pushed through to 
the receiving user.    A push causes the TCPs to promptly forward and deliver data up to that 
point to the receiver. The exact push point might not be visible to the receiving user and the 
push function does not supply a record boundary marker. 



RFC-793 Transmission Control Protocol - Operation

Reliability

The TCP must recover from data that is damaged, lost, duplicated, or delivered out of order 
by the internet communication system.    This is achieved by assigning a sequence number 
to each octet transmitted, and requiring a positive acknowledgment (ACK) from the 
receiving TCP.    If the ACK is not received within a timeout interval, the data is retransmitted. 
At the receiver, the sequence numbers are used to correctly order segments that may be 
received out of order and to eliminate duplicates.    Damage is handled by adding a 
checksum to each segment transmitted, checking it at the receiver, and discarding damaged
segments. 
As long as the TCPs continue to function properly and the internet system does not become 
completely partitioned, no transmission errors will affect the correct delivery of data.    TCP 
recovers from internet communication system errors. 



RFC-793 Transmission Control Protocol - Operation

Flow Control

TCP provides a means for the receiver to govern the amount of data sent by the sender.    
This is achieved by returning a "window" with every ACK indicating a range of acceptable 
sequence numbers beyond the last segment successfully received.    The window indicates 
an allowed number of octets that the sender may transmit before receiving further 
permission. 



RFC-793 Transmission Control Protocol - Operation

Multiplexing

To allow for many processes within a single Host to use TCP communication facilities 
simultaneously, the TCP provides a set of addresses or ports within each host.    
Concatenated with the network and host addresses from the internet communication layer, 
this forms a socket.    A pair of sockets uniquely identifies each connection. That is, a socket 
may be simultaneously used in multiple connections. 
The binding of ports to processes is handled independently by each Host.    However, it 
proves useful to attach frequently used processes (e.g., a "logger" or timesharing service) to
fixed sockets which are made known to the public.    These services can then be accessed 
through the known addresses.    Establishing and learning the port addresses of other 
processes may involve more dynamic mechanisms. 



RFC-793 Transmission Control Protocol - Operation

Connections

The reliability and flow control mechanisms described above require that TCPs initialize and 
maintain certain status information for each data stream.    The combination of this 
information, including sockets, sequence numbers, and window sizes, is called a connection. 
Each connection is uniquely specified by a pair of sockets identifying its two sides. 
When two processes wish to communicate, their TCP's must first establish a connection 
(initialize the status information on each side).    When their communication is complete, the 
connection is terminated or closed to free the resources for other uses. 
Since connections must be established between unreliable hosts and over the unreliable 
internet communication system, a handshake mechanism with clock-based sequence 
numbers is used to avoid erroneous initialization of connections. 



RFC-793 Transmission Control Protocol - Operation

Precedence and Security

The users of TCP may indicate the security and precedence of their communication.    
Provision is made for default values to be used when these features are not needed. 
                          



RFC-793 Transmission Control Protocol - Philosophy

Elements of the Internetwork System

The internetwork environment consists of hosts connected to networks which are in turn 
interconnected via gateways.    It is assumed here that the networks may be either local 
networks (e.g., the ETHERNET) or large networks (e.g., the ARPANET), but in any case are 
based on packet switching technology.    The active agents that produce and consume 
messages are processes.    Various levels of protocols in the networks, the gateways, and the
hosts support an interprocess communication system that provides two-way data flow on 
logical connections between process ports. 
The term packet is used generically here to mean the data of one transaction between a 
host and its network.    The format of data blocks exchanged within the a network will 
generally not be of concern to us. 
Hosts are computers attached to a network, and from the communication network's point of 
view, are the sources and destinations of packets. Processes are viewed as the active 
elements in host computers (in accordance with the fairly common definition of a process as 
a program in execution).    Even terminals and files or other I/O devices are viewed as 
communicating with each other through the use of processes. Thus, all communication is 
viewed as inter-process communication. 
Since a process may need to distinguish among several communication streams between 
itself and another process (or processes), we imagine that each process may have a number
of ports through which it communicates with the ports of other processes. 



RFC-793 Transmission Control Protocol - Philosophy

Model of Operation

Processes transmit data by calling on the TCP and passing buffers of data as arguments.    
The TCP packages the data from these buffers into segments and calls on the internet 
module to transmit each segment to the destination TCP.    The receiving TCP places the data
from a segment into the receiving user's buffer and notifies the receiving user.    The TCPs 
include control information in the segments which they use to ensure reliable ordered data 
transmission. 
The model of internet communication is that there is an internet protocol module associated 
with each TCP which provides an interface to the local network.    This internet module 
packages TCP segments inside internet datagrams and routes these datagrams to a 
destination internet module or intermediate gateway.    To transmit the datagram through the
local network, it is embedded in a local network packet. 
The packet switches may perform further packaging, fragmentation, or other operations to 
achieve the delivery of the local packet to the destination internet module. 
At a gateway between networks, the internet datagram is "unwrapped" from its local packet 
and examined to determine through which network the internet datagram should travel 
next.    The internet datagram is then "wrapped" in a local packet suitable to the next 
network and routed to the next gateway, or to the final destination. 
A gateway is permitted to break up an internet datagram into smaller internet datagram 
fragments if this is necessary for transmission through the next network.    To do this, the 
gateway produces a set of internet datagrams; each carrying a fragment.    Fragments may 
be further broken into smaller fragments at subsequent gateways.    The internet datagram 
fragment format is designed so that the destination internet module can reassemble 
fragments into internet datagrams. 
A destination internet module unwraps the segment from the datagram (after reassembling 
the datagram, if necessary) and passes it to the destination TCP. 
This simple model of the operation glosses over many details.    One important feature is the 
type of service.    This provides information to the gateway (or internet module) to guide it in 
selecting the service parameters to be used in traversing the next network. Included in the 
type of service information is the precedence of the datagram.    Datagrams may also carry 
security information to permit host and gateways that operate in multilevel secure 
environments to properly segregate datagrams for security considerations. 



RFC-793 Transmission Control Protocol - Philosophy

The Host Environment

The TCP is assumed to be a module in an operating system.    The users access the TCP 
much like they would access the file system.    The TCP may call on other operating system 
functions, for example, to manage data structures.    The actual interface to the network is 
assumed to be controlled by a device driver module.    The TCP does not call on the network 
device driver directly, but rather calls on the internet datagram protocol module which may 
in turn call on the device driver. 
The mechanisms of TCP do not preclude implementation of the TCP in a front-end processor.  
However, in such an implementation, a host-to-front-end protocol must provide the 
functionality to support the type of TCP-user interface described in this document. 



RFC-793 Transmission Control Protocol - Philosophy

Interfaces

The TCP/user interface provides for calls made by the user on the TCP to OPEN or CLOSE a 
connection, to SEND or RECEIVE data, or to obtain STATUS about a connection.    These calls 
are like other calls from user programs on the operating system, for example, the calls to 
open, read from, and close a file. 
The TCP/internet interface provides calls to send and receive datagrams addressed to TCP 
modules in hosts anywhere in the internet system.    These calls have parameters for passing
the address, type of service, precedence, security, and other control information. 



RFC-793 Transmission Control Protocol - Philosophy

Relation to Other Protocols

The following diagram illustrates the place of the TCP in the protocol hierarchy: 

It is expected that the TCP will be able to support higher level protocols efficiently.    It should
be easy to interface higher level protocols like the ARPANET Telnet or AUTODIN II THP to the 
TCP. 



RFC-793 Transmission Control Protocol - Philosophy

Reliable Communication

A stream of data sent on a TCP connection is delivered reliably and in order at the 
destination. 
Transmission is made reliable via the use of sequence numbers and acknowledgments.    
Conceptually, each octet of data is assigned a sequence number.    The sequence number of 
the first octet of data in a segment is transmitted with that segment and is called the 
segment sequence number.    Segments also carry an acknowledgment number which is the 
sequence number of the next expected data octet of transmissions in the reverse direction.   
When the TCP transmits a segment containing data, it puts a copy on a retransmission 
queue and starts a timer; when the acknowledgment for that data is received, the segment 
is deleted from the queue.    If the acknowledgment is not received before the timer runs out,
the segment is retransmitted. 
An acknowledgment by TCP does not guarantee that the data has been delivered to the end 
user, but only that the receiving TCP has taken the responsibility to do so. 
To govern the flow of data between TCPs, a flow control mechanism is employed.    The 
receiving TCP reports a "window" to the sending TCP. This window specifies the number of 
octets, starting with the acknowledgment number, that the receiving TCP is currently 
prepared to receive. 



RFC-793 Transmission Control Protocol - Philosophy

Connection Establishment and Clearing

To identify the separate data streams that a TCP may handle, the TCP provides a port 
identifier.    Since port identifiers are selected independently by each TCP they might not be 
unique.    To provide for unique addresses within each TCP, we concatenate an internet 
address identifying the TCP with a port identifier to create a socket which will be unique 
throughout all networks connected together. 
A connection is fully specified by the pair of sockets at the ends.    A local socket may 
participate in many connections to different foreign sockets.    A connection can be used to 
carry data in both directions, that is, it is "full duplex". 
TCPs are free to associate ports with processes however they choose. However, several 
basic concepts are necessary in any implementation. There must be well-known sockets 
which the TCP associates only with the "appropriate" processes by some means.    We 
envision that processes may "own" ports, and that processes can initiate connections only 
on the ports they own.    (Means for implementing ownership is a local issue, but we envision 
a Request Port user command, or a method of uniquely allocating a group of ports to a given
process, e.g., by associating the high order bits of a port name with a given process.) 
A connection is specified in the OPEN call by the local port and foreign socket arguments.    In
return, the TCP supplies a (short) local connection name by which the user refers to the 
connection in subsequent calls.    There are several things that must be remembered about a
connection.    To store this information we imagine that there is a data structure called a 
Transmission Control Block (TCB).    One implementation strategy would have the local 
connection name be a pointer to the TCB for this connection.    The OPEN call also specifies 
whether the connection establishment is to be actively pursued, or to be passively waited 
for. 
A passive OPEN request means that the process wants to accept incoming connection 
requests rather than attempting to initiate a connection. Often the process requesting a 
passive OPEN will accept a connection request from any caller.    In this case a foreign socket 
of all zeros is used to denote an unspecified socket.    Unspecified foreign sockets are allowed
only on passive OPENs. 
A service process that wished to provide services for unknown other processes would issue a
passive OPEN request with an unspecified foreign socket.    Then a connection could be made
with any process that requested a connection to this local socket.    It would help if this local 
socket were known to be associated with this service. 
Well-known sockets are a convenient mechanism for a priori associating a socket address 
with a standard service.    For instance, the "Telnet-Server" process is permanently assigned 
to a particular socket, and other sockets are reserved for File Transfer, Remote Job Entry, 
Text Generator, Echoer, and Sink processes (the last three being for test purposes).    A 
socket address might be reserved for access to a "Look-Up" service which would return the 
specific socket at which a newly created service would be provided.    The concept of a well-
known socket is part of the TCP specification, but the assignment of sockets to services is 
outside this specification.    (See Assigned Numbers.) 
Processes can issue passive OPENs and wait for matching active OPENs from other 
processes and be informed by the TCP when connections have been established.    Two 
processes which issue active OPENs to each other at the same time will be correctly 
connected.    This flexibility is critical for the support of distributed computing in which 
components act asynchronously with respect to each other. 
There are two principal cases for matching the sockets in the local passive OPENs and an 



foreign active OPENs.    In the first case, the local passive OPENs has fully specified the 
foreign socket.    In this case, the match must be exact.    In the second case, the local 
passive OPENs has left the foreign socket unspecified.    In this case, any foreign socket is 
acceptable as long as the local sockets match. Other possibilities include partially restricted 
matches. 
If there are several pending passive OPENs (recorded in TCBs) with the same local socket, an
foreign active OPEN will be matched to a TCB with the specific foreign socket in the foreign 
active OPEN, if such a TCB exists, before selecting a TCB with an unspecified foreign socket. 
The procedures to establish connections utilize the synchronize (SYN) control flag and 
involves an exchange of three messages.    This exchange has been termed a three-way 
hand shake [3]. 
A connection is initiated by the rendezvous of an arriving segment containing a SYN and a 
waiting TCB entry each created by a user OPEN command.    The matching of local and 
foreign sockets determines when a connection has been initiated.    The connection becomes
"established" when sequence numbers have been synchronized in both directions. 
The clearing of a connection also involves the exchange of segments, in this case carrying 
the FIN control flag. 



RFC-793 Transmission Control Protocol - Philosophy

Well-Known Ports

TCP reserves port numbers in the range 0-255 for "well-known" ports, used to access 
services that are standardized across the Internet.    The remainder of the port space can be 
freely allocated to application processes.    Current well-known port definitions are listed in 
the RFC entitled "Assigned Numbers".    A prerequisite for defining a new well- known port is 
an RFC documenting the proposed service in enough detail to allow new implementations.
Some systems extend this notion by adding a third subdivision of the TCP port space: 
reserved ports, which are generally used for operating-system-specific services.    For 
example, reserved ports might fall between 256 and some system-dependent upper limit. 
Some systems further choose to protect well-known and reserved ports by permitting only 
privileged users to open TCP connections with those port values.    This is perfectly 
reasonable as long as the host does not assume that all hosts protect their low-numbered 
ports in this manner.



RFC-793 Transmission Control Protocol - Philosophy

Data Communication

The data that flows on a connection may be thought of as a stream of octets.    The sending 
user indicates in each SEND call whether the data in that call (and any preceeding calls) 
should be immediately pushed through to the receiving user by the setting of the PUSH flag, 
if this facility is implemented.    If there is no facility to set the PUSH flag in the SEND call, 
then the sending TCP (1) Must not buffer data indefinitely, and (2) must set the PUSH flag 
in the last buffered segment (i.e., when there is no more data to be sent).
A sending TCP is allowed to collect data from the sending user and to send that data in 
segments at its own convenience, until the push function is signaled, then it must send all 
unsent data.    When a receiving TCP sees the PUSH flag, it must not wait for more data from 
the sending TCP before passing the data to the receiving process. 
There is no necessary relationship between push functions and segment boundaries.    The 
data in any particular segment may be the result of a single SEND call, in whole or part, or of
multiple SEND calls. 
The purpose of push function and the PUSH flag is to push data through from the sending 
user to the receiving user.    It does not provide a record service.    The sending TCP should 
collapse successive PSH bits when it packetizes data, to send the largest possible segment.
There is a coupling between the push function and the use of buffers of data that cross the 
TCP/user interface.    Each time a PUSH flag is associated with data placed into the receiving 
user's buffer, the buffer is returned to the user for processing even if the buffer is not filled.   
If data arrives that fills the user's buffer before a PUSH is seen, the data is passed to the 
user in buffer size units. 
TCP also provides a means to communicate to the receiver of data that at some point further
along in the data stream than the receiver is currently reading there is urgent data.    TCP 
does not attempt to define what the user specifically does upon being notified of pending 
urgent data, but the general notion is that the receiving process will take action to process 
the urgent data quickly. 



RFC-793 Transmission Control Protocol - Philosophy

Pushing Data Through

An application program is logically required to set the PUSH flag in a SEND call whenever it 
needs to force delivery of the data to avoid a communication deadlock.    However, a TCP 
should send a maximum-sized segment whenever possible, to improve performance.

Discussion
When the PUSH flag is not implemented on SEND calls, i.e., when the 
application/TCP interface uses a pure streaming model, responsibility for 
aggregating any tiny data fragments to form reasonable sized segments is 
partially borne by the application layer.
Generally, an interactive application protocol must set the PUSH flag at least 
in the last SEND call in each command or response sequence.    A bulk transfer
protocol like FTP should set the PUSH flag on the last segment of a file or when
necessary to prevent buffer deadlock.
At the receiver, the PSH bit forces buffered data to be delivered to the 
application (even if less than a full buffer has been received). Conversely, the 
lack of a PSH bit can be used to avoid unnecessary wakeup calls to the 
application process; this can be an important performance optimization for 
large timesharing hosts. Passing the PSH bit to the receiving application allows
an analogous optimization within the application.



RFC-793 Transmission Control Protocol - Philosophy

Precedence and Security

The TCP makes use of the internet protocol type of service field and security option to 
provide precedence and security on a per connection basis to TCP users.    Not all TCP 
modules will necessarily function in a multilevel secure environment; some may be limited 
to unclassified use only, and others may operate at only one security level and 
compartment.    Consequently, some TCP implementations and services to users may be 
limited to a subset of the multilevel secure case. 
TCP modules which operate in a multilevel secure environment must properly mark outgoing
segments with the security, compartment, and precedence.    Such TCP modules must also 
provide to their users or higher level protocols such as Telnet or THP an interface to allow 
them to specify the desired security level, compartment, and precedence of connections. 



RFC-793 Transmission Control Protocol - Philosophy

Robustness Principle

TCP implementations will follow a general principle of robustness:    be conservative in what 
you do, be liberal in what you accept from others. 



RFC-793 Transmission Control Protocol - Functional Specification

Header Format

TCP segments are sent as internet datagrams.    The Internet Protocol header carries several 
information fields, including the source and destination host addresses.    A TCP header 
follows the internet header, supplying information specific to the TCP protocol.    This division
allows for the existence of host level protocols other than TCP. 

Use the Browse button to see a description of each header field.



RFC-793 Transmission Control Protocol - Header

Source Port:    16 bits
The source port number.

Destination Port:    16 bits
The destination port number.



RFC-793 Transmission Control Protocol - Header

Sequence Number:    32 bits
The sequence number of the first data octet in this segment (except when 
SYN is present). If SYN is present the sequence number is the initial sequence 
number (ISN) and the first data octet is ISN+1. 



RFC-793 Transmission Control Protocol - Header

Acknowledgment Number:    32 bits
If the ACK control bit is set this field contains the value of the next sequence 
number the sender of the segment is expecting to receive.    Once a 
connection is established this is always sent. 



RFC-793 Transmission Control Protocol - Header

Data Offset:    4 bits
The number of 32 bit words in the TCP Header.    This indicates where the data 
begins.    The TCP header (even one including options) is an integral number of
32 bits long. 

Reserved:    6 bits
Reserved for future use.    Must be zero.



RFC-793 Transmission Control Protocol - Header

Control Bits:    6 bits (from left to right):
URG: Urgent Pointer field significant
ACK: Acknowledgment field significant
PSH: Push Function
RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: No more data from sender



RFC-793 Transmission Control Protocol - Header

Window:    16 bits
The number of data octets beginning with the one indicated in the 
acknowledgment field which the sender of this segment is willing to accept. 

The window size must be treated as an unsigned number, or else large window sizes will 
appear like negative windows and TCP will not work.    It is RECOMMENDED that 
implementations reserve 32-bit fields for the send and receive window sizes in the 
connection record and do all window computations with 32 bits.

Discussion
It is known that the window field in the TCP header is too small for high-speed,
long-delay paths. Experimental TCP options have been defined to extend the 
window size; see for example RFC-1072 "TCP Extensions for Long Delay 
Paths".    In anticipation of the adoption of such an extension, TCP 
implementors should treat windows as 32 bits.



RFC-793 Transmission Control Protocol - Header

Checksum:    16 bits
The checksum field is the 16 bit one's complement of the one's complement 
sum of all 16 bit words in the header and text.    If a segment contains an odd 
number of header and text octets to be checksummed, the last octet is 
padded on the right with zeros to form a 16 bit word for checksum purposes.    
The pad is not transmitted as part of the segment.    While computing the 
checksum, the checksum field itself is replaced with zeros. 
The checksum also covers a 96 bit pseudo header conceptually prefixed to the
TCP header.    This pseudo header contains the Source Address, the Destination
Address, the Protocol, and TCP length. This gives the TCP protection against 
misrouted segments.    This information is carried in the Internet Protocol and 
is transferred across the TCP/Network interface in the arguments or results of 
calls by the TCP on the IP. 

The TCP Length is the TCP header length plus the data length in octets (this is 
not an explicitly transmitted quantity, but is computed), and it does not count 
the 12 octets of the pseudo header. 
Unlike the UDP checksum, the TCP checksum is never optional.    The sender 
must generate it and the receiver must check it.



RFC-793 Transmission Control Protocol - Header

Urgent Pointer:    16 bits
This field communicates the current value of the urgent pointer as a positive 
offset from the sequence number in this segment.    The urgent pointer points 
to the sequence number of the last octet of urgent data.    This field is only be 
interpreted in segments with the URG control bit set. 

A TCP must support a sequence of urgent data of any length.
A TCP must inform the application layer asynchronously whenever it receives an Urgent 
pointer and there was previously no pending urgent data, or whenever the Urgent pointer 
advances in the data stream.    There must be a way for the application to learn how much 
urgent data remains to be read from the connection, or at least to determine whether or not 
more urgent data remains to be read.

Discussion
Although the Urgent mechanism may be used for any application, it is 
normally used to send "interrupt"- type commands to a Telnet program (see 
Telnet Synch Sequence.
The asynchronous or "out-of-band" notification will allow the application to go 
into "urgent mode", reading data from the TCP connection.    This allows 
control commands to be sent to an application whose normal input buffers are
full of unprocessed data.
Implementation
The generic ERROR-REPORT() upcall described in Asynchronous Reports is a 
possible mechanism for informing the application of the arrival of urgent data.



RFC-793 Transmission Control Protocol - Header

Options:    variable
Options may occupy space at the end of the TCP header and are a multiple of 
8 bits in length.    All options are included in the checksum.    An option may 
begin on any octet boundary.    There are two cases for the format of an 
option: 
Case 1: A single octet of option-kind.
Case 2: An octet of option-kind, an octet of option-length, and the actual 

option-data octets.
The option-length counts the two octets of option-kind and option-length as 
well as the option-data octets. 
Note that the list of options may be shorter than the data offset field might 
imply.    The content of the header beyond the End-of-Option option must be 
header padding (i.e., zero). 
Currently defined options include (kind indicated in octal):

Kind      Length        Meaning  
0 - End of Option List
1 - No Operation
2 4 Maximum Segment Size

A TCP must be able to receive a TCP option in any segment. A TCP must ignore without 
error any TCP option it does not implement, assuming that the option has a length field (all 
TCP options defined in the future will have length fields). TCP must be prepared to handle an
illegal option length (e.g., zero) without crashing; a suggested procedure is to reset the 
connection and log the reason.



RFC-793 Transmission Control Protocol - Header

Padding:    variable
The TCP header padding is used to ensure that the TCP header ends and data 
begins on a 32 bit boundary.    The padding is composed of zeros. 



RFC-793 Transmission Control Protocol - Functional Specification

End of Option List

This option code indicates the end of the option list.    This might not coincide with the end of
the TCP header according to the Data Offset field.    This is used at the end of all options, not 
the end of each option, and need only be used if the end of the options would not otherwise 
coincide with the end of the TCP header. 



RFC-793 Transmission Control Protocol - Functional Specification

No-Operation

This option code may be used between options, for example, to align the beginning of a 
subsequent option on a word boundary. There is no guarantee that senders will use this 
option, so receivers must be prepared to process options even if they do not begin on a word
boundary. 



RFC-793 Transmission Control Protocol - Functional Specification

Maximum Segment Size

Maximum Segment Size Option Data:    16 bits

If this option is present, then it communicates the maximum receive segment size at the TCP
which sends this segment. This field must only be sent in the initial connection request (i.e., 
in segments with the SYN control bit set).    If this option is not used, any segment size is 
allowed. 
TCP must implement both sending and receiving the Maximum Segment Size option .
TCP should send an MSS (Maximum Segment Size) option in every SYN segment when its 
receive MSS differs from the default 536, and may send it always.
If an MSS option is not received at connection setup, TCP must assume a default send MSS 
of 536 (576-40).
The maximum size of a segment that TCP really sends, the "effective send MSS," must be 
the smaller of the send MSS (which reflects the available reassembly buffer size at the 
remote host) and the largest size permitted by the IP layer:
Eff.snd.MSS = min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize
where:

* SendMSS is the MSS value received from the remote host, or the 
default 536 if no MSS option is received.

* MMS_S is the maximum size for a transport-layer message that TCP 
may send.

* TCPhdrsize is the size of the TCP header; this is normally 20, but may 
be larger if TCP options are to be sent.

* IPoptionsize is the size of any IP options that TCP will pass to the IP 
layer with the current message.

The MSS value to be sent in an MSS option must be less than or equal to:
MMS_R - 20

where MMS_R is the maximum size for a transport-layer message that can be received (and 
reassembled).    TCP obtains MMS_R and MMS_S from the IP layer; see the generic call 
GET_MAXSIZES.

Discussion
The choice of TCP segment size has a strong effect on performance.    Larger 
segments increase throughput by amortizing header size and per-datagram 
processing overhead over more data bytes; however, if the packet is so large 
that it causes IP fragmentation, efficiency drops sharply if any fragments are 
lost [IP:9].
Some TCP implementations send an MSS option only if the destination host is 
on a non-connected network. However, in general the TCP layer may not have 
the appropriate information to make this decision, so it is preferable to leave 



to the IP layer the task of determining a suitable MTU for the Internet path.    
We therefore recommend that TCP always send the option (if not 536) and 
that the IP layer determine MMS_R and Internet/Transport Layer Interface.    A 
proposed IP-layer mechanism to measure the MTU would then modify the IP 
layer without changing TCP.



RFC-793 Transmission Control Protocol - Functional Specification

Terminology

Before we can discuss very much about the operation of the TCP we need to introduce some 
detailed terminology.    The maintenance of a TCP connection requires the remembering of 
several variables.    We conceive of these variables being stored in a connection record called
a Transmission Control Block or TCB.    Among the variables stored in the TCB are the local 
and remote socket numbers, the security and precedence of the connection, pointers to the 
user's send and receive buffers, pointers to the retransmit queue and to the current 
segment. In addition several variables relating to the send and receive sequence numbers 
are stored in the TCB. 

Send Sequence Variables
SND.UNA send unacknowledged
SND.NXT send next
SND.WND send window
SND.UP send urgent pointer
SND.WL1 segment sequence number used for last window update
SND.WL2 segment acknowledgment number used for last window update
ISS initial send sequence number

Receive Sequence Variables
RCV.NXT receive next
RCV.WND receive window
RCV.UP receive urgent pointer
IRS initial receive sequence number

The following diagrams may help to relate some of these variables to the sequence space. 

Send Sequence Space

1 old sequence numbers which have been acknowledged    
2 sequence numbers of unacknowledged data                        
3 sequence numbers allowed for new data transmission 
4 future sequence numbers which are not yet allowed    

The send window is the portion of the sequence space labeled 3 in the above 
figure.

Receive Sequence Space



1 old sequence numbers which have been acknowledged    
2 sequence numbers allowed for new reception                  
3 future sequence numbers which are not yet allowed    
The receive window is the portion of the sequence space labeled 2 in figure 5. 

There are also some variables used frequently in the discussion that take their values from 
the fields of the current segment. 
Current Segment Variables

SEG.SEQ segment sequence number
SEG.ACK segment acknowledgment number
SEG.LEN segment length
SEG.WND segment window
SEG.UP segment urgent pointer
SEG.PRC segment precedence value

A connection progresses through a series of states during its lifetime.    The states are:    
LISTEN, SYN-SENT, SYN-RECEIVED, ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, 
CLOSING, LAST-ACK, TIME-WAIT, and the fictional state CLOSED.    CLOSED is fictional 
because it represents the state when there is no TCB, and therefore, no connection.    Briefly 
the meanings of the states are: 
A TCP connection progresses from one state to another in response to events.    The events 
are the user calls, OPEN, SEND, RECEIVE, CLOSE, ABORT, and STATUS; the incoming 
segments, particularly those containing the SYN, ACK, RST and FIN flags; and timeouts.



LISTEN represents waiting for a connection request from any remote TCP 
and port. 



SYN-SENT represents waiting for a matching connection request after having 
sent a connection request. 



SYN-RECEIVED represents waiting for a confirming connection request 
acknowledgment after having both received and sent a connection 
request. 



ESTABLISHED represents an open connection, data received can be delivered to 
the user.    The normal state for the data transfer phase of the 
connection. 



FIN-WAIT-1 represents waiting for a connection termination request from the 
remote TCP, or an acknowledgment of the connection termination 
request previously sent. 



FIN-WAIT-2 represents waiting for a connection termination request from the 
remote TCP. 



CLOSE-WAIT represents waiting for a connection termination request from the 
local user. 



CLOSING represents waiting for a connection termination request 
acknowledgment from the remote TCP. 



LAST-ACK represents waiting for an acknowledgment of the connection 
termination request previously sent to the remote TCP (which 
includes an acknowledgment of its connection termination request).



TIME-WAIT represents waiting for enough time to pass to be sure the remote 
TCP received the acknowledgment of its connection termination 
request. 



CLOSED represents no connection state at all.



RFC-793 Transmission Control Protocol - Functional Specification

State Diagram

The state diagram below illustrates only state changes, together with the causing events 
and resulting actions, but addresses neither error conditions nor actions which are not 
connected with state changes.    In a later section, more detail is offered with respect to the 
reaction of the TCP to events.
NOTE BENE:    this diagram is only a summary and must not be taken as the total 
specification.                                                                



RFC-793 Transmission Control Protocol - Functional Specification

Sequence Numbers

A fundamental notion in the design is that every octet of data sent over a TCP connection 
has a sequence number.    Since every octet is sequenced, each of them can be 
acknowledged.    The acknowledgment mechanism employed is cumulative so that an 
acknowledgment of sequence number X indicates that all octets up to but not including X 
have been received.    This mechanism allows for straight-forward duplicate detection in the 
presence of retransmission.    Numbering of octets within a segment is that the first data 
octet immediately following the header is the lowest numbered, and the following octets are 
numbered consecutively.
It is essential to remember that the actual sequence number space is finite, though very 
large.    This space ranges from 0 to 2**32 - 1. Since the space is finite, all arithmetic dealing 
with sequence numbers must be performed modulo 2**32.    This unsigned arithmetic 
preserves the relationship of sequence numbers as they cycle from 2**32 - 1 to 0 again.    
There are some subtleties to computer modulo arithmetic, so great care should be taken in 
programming the comparison of such values.    The symbol "=<" means "less than or equal" 
(modulo 2**32).
The typical kinds of sequence number comparisons which the TCP must perform include:

(a) Determining that an acknowledgment refers to some sequence    
number sent but not yet acknowledged.

(b) Determining that all sequence numbers occupied by a segment    have 
been acknowledged (e.g., to remove the segment from a    
retransmission queue).

(c) Determining that an incoming segment contains sequence numbers    
which are expected (i.e., that the segment "overlaps" the    receive 
window).



RFC-793 Transmission Control Protocol - Sequence Numbers

Processing Acknowledgements
In response to sending data the TCP will receive acknowledgments.    The following 
comparisons are needed to process the acknowledgments.

SND.UNA = oldest unacknowledged sequence number
SND.NXT = next sequence number to be sent
SEG.ACK = acknowledgment from the receiving TCP (next sequence 

number expected by the receiving TCP)
SEG.SEQ = first sequence number of a segment
SEG.LEN = the number of octets occupied by the data in the segment 

(counting SYN and FIN)
SEG.SEQ+
SEG.LEN-1 = last sequence number of a segment

A new acknowledgment (called an "acceptable ack"), is one for which the inequality below 
holds:
SND.UNA < SEG.ACK =< SND.NXT
A segment on the retransmission queue is fully acknowledged if the sum of its sequence 
number and length is less or equal than the acknowledgment value in the incoming 
segment.
When data is received the following comparisons are needed:

RCV.NXT = next sequence number expected on an incoming segments, and
is the left or lower edge of the receive window

RCV.NXT+
RCV.WND-1 = last sequence number expected on an incoming segment, and 

is the right or upper edge of the receive window
SEG.SEQ = first sequence number occupied by the incoming segment
SEG.SEQ+
SEG.LEN-1 = last sequence number occupied by the incoming segment



RFC-793 Transmission Control Protocol - Sequence Numbers

Validity of Received Segments
A segment is judged to occupy a portion of valid receive sequence space if

RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
or

RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
The first part of this test checks to see if the beginning of the segment falls in the window, 
the second part of the test checks to see if the end of the segment falls in the window; if the 
segment passes either part of the test it contains data in the window.
Actually, it is a little more complicated than this.    Due to zero windows and zero length 
segments, we have four cases for the acceptability of an incoming segment:

Segment Receive
Length Window Test

0 0 SEG.SEQ = RCV.NXT
0 >0 RCV.NXT <= SEG.SEQ < RCV.NXT + RCV.WND

>0 0 not acceptable
>0 >0 RCV.NXT <= SEG.SEQ < RCV.NXT + RCV.WND

or
RCV.NXT <= SEG.SEQ + SEG.LEN - 1 < RCV.NXT+RCV.WND

Note that when the receive window is zero no segments should be acceptable except ACK 
segments.    Thus, it is be possible for a TCP to maintain a zero receive window while 
transmitting data and receiving ACKs.    However, even when the receive window is zero, a 
TCP must process the RST and URG fields of all incoming segments.
We have taken advantage of the numbering scheme to protect certain control information as
well.    This is achieved by implicitly including some control flags in the sequence space so 
they can be retransmitted and acknowledged without confusion (i.e., one and only one copy 
of the control will be acted upon).    Control information is not physically carried in the 
segment data space.    Consequently, we must adopt rules for implicitly assigning sequence 
numbers to control.    The SYN and FIN are the only controls requiring this protection, and 
these controls are used only at connection opening and closing.    For sequence number 
purposes, the SYN is considered to occur before the first actual data octet of the segment in 
which it occurs, while the FIN is considered to occur after the last actual data octet in a 
segment in which it occurs.    The segment length (SEG.LEN) includes both data and 
sequence space occupying controls.    When a SYN is present then SEG.SEQ is the sequence 
number of the SYN.



RFC-793 Transmission Control Protocol - Sequence Numbers

Initial Sequence Number Selection

The protocol places no restriction on a particular connection being used over and over again.
A connection is defined by a pair of sockets.    New instances of a connection will be referred 
to as incarnations of the connection.    The problem that arises from this is -- "how does the 
TCP identify duplicate segments from previous incarnations of the connection?"    This 
problem becomes apparent if the connection is being opened and closed in quick 
succession, or if the connection breaks with loss of memory and is then reestablished.
To avoid confusion we must prevent segments from one incarnation of a connection from 
being used while the same sequence numbers may still be present in the network from an 
earlier incarnation.    We want to assure this, even if a TCP crashes and loses all knowledge of
the sequence numbers it has been using.    When new connections are created, an initial 
sequence number (ISN) generator is employed which selects a new 32 bit ISN.    The 
generator is bound to a (possibly fictitious) 32 bit clock whose low order bit is incremented 
roughly every 4 microseconds.    Thus, the ISN cycles approximately every 4.55 hours. Since 
we assume that segments will stay in the network no more than the Maximum Segment 
Lifetime (MSL) and that the MSL is less than 4.55 hours we can reasonably assume that ISN's
will be unique.
For each connection there is a send sequence number and a receive sequence number.    The
initial send sequence number (ISS) is chosen by the data sending TCP, and the initial receive
sequence number (IRS) is learned during the connection establishing procedure.
For a connection to be established or initialized, the two TCPs must synchronize on each 
other's initial sequence numbers.    This is done in an exchange of connection establishing 
segments carrying a control bit called "SYN" (for synchronize) and the initial sequence 
numbers.    As a shorthand, segments carrying the SYN bit are also called "SYNs". Hence, the
solution requires a suitable mechanism for picking an initial sequence number and a slightly 
involved handshake to exchange the ISN's.
The synchronization requires each side to send it's own initial sequence number and to 
receive a confirmation of it in acknowledgment from the other side.    Each side must also 
receive the other side's initial sequence number and send a confirming acknowledgment.

1) A --> B    SYN my sequence number is X
2) A <-- B    ACK your sequence number is X
3) A <-- B    SYN my sequence number is Y
4) A --> B    ACK your sequence number is Y

Because steps 2 and 3 can be combined in a single message this is called the three way (or 
three message) handshake.
A three way handshake is necessary because sequence numbers are not tied to a global 
clock in the network, and TCPs may have different mechanisms for picking the ISN's.    The 
receiver of the first SYN has no way of knowing whether the segment was an old delayed 
one or not, unless it remembers the last sequence number used on the connection (which is 
not always possible), and so it must ask the sender to verify this SYN.    The three way 
handshake and the advantages of a clock-driven scheme are discussed in [3].



RFC-793 Transmission Control Protocol - Sequence Numbers

Knowing When to Keep Quiet

To be sure that a TCP does not create a segment that carries a sequence number which may 
be duplicated by an old segment remaining in the network, the TCP must keep quiet for a 
maximum segment lifetime (MSL) before assigning any sequence numbers upon starting up 
or recovering from a crash in which memory of sequence numbers in use was lost.    For this 
specification the MSL is taken to be 2 minutes.    This is an engineering choice, and may be 
changed if experience indicates it is desirable to do so.    Note that if a TCP is reinitialized in 
some sense, yet retains its memory of sequence numbers in use, then it need not wait at all;
it must only be sure to use sequence numbers larger than those recently used.



RFC-793 Transmission Control Protocol - Sequence Numbers

The TCP Quiet Time Concept

This specification provides that hosts which "crash" without retaining any knowledge of the 
last sequence numbers transmitted on each active (i.e., not closed) connection shall delay 
emitting any TCP segments for at least the agreed Maximum Segment Lifetime (MSL) in the 
internet system of which the host is a part.    In the paragraphs below, an explanation for this
specification is given. TCP implementors may violate the "quiet time" restriction, but only at 
the risk of causing some old data to be accepted as new or new data rejected as old 
duplicated by some receivers in the internet system.
TCPs consume sequence number space each time a segment is formed and entered into the 
network output queue at a source host. The duplicate detection and sequencing algorithm in
the TCP protocol relies on the unique binding of segment data to sequence space to the 
extent that sequence numbers will not cycle through all 2**32 values before the segment 
data bound to those sequence numbers has been delivered and acknowledged by the 
receiver and all duplicate copies of the segments have "drained" from the internet.    Without
such an assumption, two distinct TCP segments could conceivably be assigned the same or 
overlapping sequence numbers, causing confusion at the receiver as to which data is new 
and which is old.    Remember that each segment is bound to as many consecutive sequence
numbers as there are octets of data in the segment. 
Under normal conditions, TCPs keep track of the next sequence number to emit and the 
oldest awaiting acknowledgment so as to avoid mistakenly using a sequence number over 
before its first use has been acknowledged.    This alone does not guarantee that old 
duplicate data is drained from the net, so the sequence space has been made very large to 
reduce the probability that a wandering duplicate will cause trouble upon arrival.    At 2 
megabits/sec. it takes 4.5 hours to use up 2**32 octets of sequence space.    Since the 
maximum segment lifetime in the net is not likely to exceed a few tens of seconds, this is 
deemed ample protection for foreseeable nets, even if data rates escalate to l0's of 
megabits/sec.    At 100 megabits/sec, the cycle time is 5.4 minutes which may be a little 
short, but still within reason. 
The basic duplicate detection and sequencing algorithm in TCP can be defeated, however, if 
a source TCP does not have any memory of the sequence numbers it last used on a given 
connection. For example, if the TCP were to start all connections with sequence number 0, 
then upon crashing and restarting, a TCP might re-form an earlier connection (possibly after 
half-open connection resolution) and emit packets with sequence numbers identical to or 
overlapping with packets still in the network which were emitted on an earlier incarnation of 
the same connection.    In the absence of knowledge about the sequence numbers used on a 
particular connection, the TCP specification recommends that the source delay for MSL 
seconds before emitting segments on the connection, to allow time for segments from the 
earlier connection incarnation to drain from the system. 
Even hosts which can remember the time of day and used it to select initial sequence 
number values are not immune from this problem (i.e., even if time of day is used to select 
an initial sequence number for each new connection incarnation). 
Suppose, for example, that a connection is opened starting with sequence number S.    
Suppose that this connection is not used much and that eventually the initial sequence 
number function (ISN(t)) takes on a value equal to the sequence number, say S1, of the last 
segment sent by this TCP on a particular connection.    Now suppose, at this instant, the host 
crashes, recovers, and establishes a new incarnation of the connection. The initial sequence 
number chosen is S1 = ISN(t) -- last used sequence number on old incarnation of 
connection!    If the recovery occurs quickly enough, any old    duplicates in the net bearing 



sequence numbers in the neighborhood of S1 may arrive and be treated as new packets by 
the receiver of the new incarnation of the connection. 
The problem is that the recovering host may not know for how long it crashed nor does it 
know whether there are still old duplicates in the system from earlier connection 
incarnations. 
One way to deal with this problem is to deliberately delay emitting segments for one MSL 
after recovery from a crash- this is the "quite time" specification.    Hosts which prefer to 
avoid waiting are willing to risk possible confusion of old and new packets at a given 
destination may choose not to wait for the "quite time". Implementors may provide TCP 
users with the ability to select on a connection by connection basis whether to wait after a 
crash, or may informally implement the "quite time" for all connections. Obviously, even 
where a user selects to "wait," this is not necessary after the host has been "up" for at least 
MSL seconds. 
To summarize: every segment emitted occupies one or more sequence numbers in the 
sequence space, the numbers occupied by a segment are "busy" or "in use" until MSL 
seconds have passed, upon crashing a block of space-time is occupied by the octets of the 
last emitted segment, if a new connection is started too soon and uses any of the sequence 
numbers in the space-time footprint of the last segment of the previous connection 
incarnation, there is a potential sequence number overlap area which could cause confusion 
at the receiver. 



RFC-793 Transmission Control Protocol - Functional Specification

Establishing a Connection
The "three-way handshake" is the procedure used to establish a connection.    This procedure
normally is initiated by one TCP and responded to by another TCP.    The procedure also 
works if two TCP simultaneously initiate the procedure.    When simultaneous attempt occurs,
each TCP receives a "SYN" segment which carries no acknowledgment after it has sent a 
"SYN".    Of course, the arrival of an old duplicate "SYN" segment can potentially make it 
appear, to the recipient, that a simultaneous connection initiation is in progress. Proper use 
of "reset" segments can disambiguate these cases. 
Several examples of connection initiation follow.    Although these examples do not show 
connection synchronization using data-carrying segments, this is perfectly legitimate, so 
long as the receiving TCP doesn't deliver the data to the user until it is clear the data is valid 
(i.e., the data must be buffered at the receiver until the connection reaches the 
ESTABLISHED state).    The three-way handshake reduces the possibility of false connections. 
It is the implementation of a trade-off between memory and messages to provide 
information for this checking. 
The simplest three-way handshake is shown in figure 7 below.    The figures should be 
interpreted in the following way.    Each line is numbered for reference purposes.    Right 
arrows (-->) indicate departure of a TCP segment from TCP A to TCP B, or arrival of a 
segment at B from A.    Left arrows (<--), indicate the reverse. Ellipsis (...) indicates a 
segment which is still in the network (delayed).    An "XXX" indicates a segment which is lost 
or rejected. Comments appear in parentheses.    TCP states represent the state AFTER the 
departure or arrival of the segment (whose contents are shown in the center of each line).    
Segment contents are shown in abbreviated form, with sequence number, control flags, and 
ACK field.    Other fields such as window, addresses, lengths, and text have been left out in 
the interest of clarity. 



RFC-793 Transmission Control Protocol - Establishing a Conneciton

Basic 3-Way Handshake for Connection Synchronization

TCP A TCP B
1 Closed Listen
2 SYN-Sent --> SEQ: 100 --> SYN-Received

CTL: SYN
3 Established <-- SEQ: 300 <-- SYN-Received

ACK: 100
CTL: SYN,ACK

4 Established --> SEQ: 101 --> Established
ACK: 301
CTL: ACK

5 Established --> SEQ: 101 --> Established
ACK: 301
CTL: ACK data

In line 2 of the above figure, TCP A begins by sending a SYN segment indicating that it will 
use sequence numbers starting with sequence number 100.    In line 3, TCP B sends a SYN 
and acknowledges the SYN it received from TCP A.    Note that the acknowledgment field 
indicates TCP B is now expecting to hear sequence 101, acknowledging the SYN which 
occupied sequence 100. 
At line 4, TCP A responds with an empty segment containing an ACK for TCP B's SYN; and in 
line 5, TCP A sends some data.    Note that the sequence number of the segment in line 5 is 
the same as in line 4 because the ACK does not occupy sequence number space (if it did, we
would wind up ACKing ACK's!). 



RFC-793 Transmission Control Protocol - Establishing Connections

Simultaneous Connection Initiation
Simultaneous initiation is only slightly more complex, as is shown in figure 8.    Each TCP 
cycles from CLOSED to SYN-SENT to SYN-RECEIVED to ESTABLISHED. 

Simultaneous Connection Synchronization
TCP A TCP B

1 Closed Listen
2 SYN-Sent --> SEQ: 100 ...

CTL: SYN
3 SYN-Received <-- SEQ: 300 <-- SYN-Sent

CTL: SYN
4 ... SEQ: 100 --> SYN-Received

CTL: SYN
5 SYN-Received --> SEQ: 100 ...

ACK: 301
CTL: SYN,ACK

6 Established <-- SEQ:300 <-- SYN-Received
ACK: 101
CTL: SYN,ACK

7 ... SEQ: 100 --> Established
ACK: 301
CTL: SYN,ACK

A TCP must support simultaneous open attempts.
Discussion
It sometimes surprises implementors that if two applications attempt to 
simultaneously connect to each other, only one connection is generated 
instead of two. This was an intentional design decision; don't try to "fix" it.

The principle reason for the three-way handshake is to prevent old duplicate connection 
initiations from causing confusion.    To deal with this, a special control message, reset, has 
been devised.    If the receiving TCP is in a    non-synchronized state (i.e., SYN-SENT, SYN-
RECEIVED), it returns to LISTEN on receiving an acceptable reset. If the TCP is in one of the 
synchronized states (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-
ACK, TIME-WAIT), it aborts the connection and informs its user.    We discuss this latter case 
under "half-open" connections. 



RFC-793 Transmission Control Protocol - Establishing Connections

Recovery from Old Duplicate SYN

TCP A TCP B
1 Closed Listen
2 SYN-Sent --> SEQ: 100 ...

CTL: SYN
3 (duplicate) --> SEQ: 90 --> SYN-Received

CTL: SYN
4 SYN-Sent <-- SEQ: 300 <-- SYN-Received

ACK: 91
CTL: SYN,ACK

5 SYN-Sent --> SEQ: 91 --> Listen
CTL: RST

6 Established ... SEQ: 400 --> SYN-Received
ACK: 101
CTL: SYN,ACK

7 SYN-Sent <-- SEQ: 400 <-- SYN-Received
ACK: 101
CTL: SYN,ACK

8 Established --> SEQ: 101 --> Established
ACK: 401
CTL: ACK

As a simple example of recovery from old duplicates, consider the figure above.    At line 3, 
an old duplicate SYN arrives at TCP B.    TCP B cannot tell that this is an old duplicate, so it 
responds normally (line 4).    TCP A detects that the ACK field is incorrect and returns a RST 
(reset) with its SEQ field selected to make the segment believable.    TCP B, on receiving the 
RST, returns to the LISTEN state. When the original SYN (pun intended) finally arrives at line 
6, the synchronization proceeds normally.    If the SYN at line 6 had arrived before the RST, a 
more complex exchange might have occurred with RST's sent in both directions. 



RFC-793 Transmission Control Protocol - Establishing Connections

Half-Open Connections and Other Anomalies

An established connection is said to be    "half-open" if one of the TCPs has closed or aborted 
the connection at its end without the knowledge of the other, or if the two ends of the 
connection have become desynchronized owing to a crash that resulted in loss of memory.    
Such connections will automatically become reset if an attempt is made to send data in 
either direction.    However, half-open connections are expected to be unusual, and the 
recovery procedure is mildly involved. 
If at site A the connection no longer exists, then an attempt by the user at site B to send any
data on it will result in the site B TCP receiving a reset control message.    Such a message 
indicates to the site B TCP that something is wrong, and it is expected to abort the 
connection. 
Assume that two user processes A and B are communicating with one another when a crash 
occurs causing loss of memory to A's TCP. Depending on the operating system supporting 
A's TCP, it is likely that some error recovery mechanism exists.    When the TCP is up again, A
is likely to start again from the beginning or from a recovery point.    As a result, A will 
probably try to OPEN the connection again or try to SEND on the connection it believes open.
In the latter case, it receives the error message "connection not open" from the local (A's) 
TCP.    In an attempt to establish the connection, A's TCP will send a segment containing SYN. 
This scenario leads to the example shown in figure 10.    After TCP A crashes, the user 
attempts to re-open the connection.    TCP B, in the meantime, thinks the connection is open.

TCP A TCP B
1 (CRASH) S:300

R: 100
2 Closed Established
3 SYN-Sent --> SEQ: 400 --> (??)

CTL: SYN
4 (!!) <-- SEQ: 300 <-- Established

ACK: 100
CTL: ACK

5 SYN-Sent --> SEQ: 100 --> (Abort!!)
CTL: RST

6 SYN-Sent Closed
7 SYN-Sent --> SEQ: 400 -->

CTL: SYN

Half-Open Connection Discovery
When the SYN arrives at line 3, TCP B, being in a synchronized state, and the incoming 
segment outside the window, responds with an acknowledgment indicating what sequence it
next expects to hear (ACK 100).    TCP A sees that this segment does not acknowledge 
anything it sent and, being unsynchronized, sends a reset (RST) because it has detected a 
half-open connection.    TCP B aborts at line 5.    TCP A will continue to try to establish the 
connection; the problem is now reduced to the basic 3-way handshake. 



RFC-793 Transmission Control Protocol - Establishing Connections

Half Open Connections - Alternative
An interesting alternative case occurs when TCP A crashes and TCP B tries to send data on 
what it thinks is a synchronized connection. This is illustrated in the figure below.    In this 
case, the data arriving at TCP A from TCP B (line 2) is unacceptable because no such 
connection exists, so TCP A sends a RST.    The RST is acceptable so TCP B processes it and 
aborts the connection. 
Active Side Causes Half-Open Connection Discovery

TCP A TCP B
1 (CRASH) S: 300

R: 100
2 (??) <-- SEQ: 300 <-- Established

ACK: 100
Data: 10
CTL: ACK

3 SYN-Sent --> SEQ: 100 --> (Abort!!)
CTL: RST

In the figure below, we find the two TCPs A and B with passive connections waiting for SYN.    
An old duplicate arriving at TCP B (line 2) stirs B into action.    A SYN-ACK is returned (line 3) 
and causes TCP A to generate a RST (the ACK in line 3 is not acceptable).    TCP B accepts the
reset and returns to its passive LISTEN state. 
Old Duplicate SYN Initiates a Reset on two Passive Sockets

TCP A TCP B
1 Listen Listen
2 ... SEQ: Z --> SYN-Received

CTL: SYN
3 (??) <-- SEQ: X <-- SYN-Received

ACK: Z+1
CTL: SYN,ACK

4 --> SEQ: Z+1 --> return to Listen
CTL: RST

5 Listen Listen

A variety of other cases are possible, all of which are accounted for by the rules for RST 
generation and processing. 



RFC-793 Transmission Control Protocol - Establishing Connections
Reset Generation

As a general rule, reset (RST) must be sent whenever a segment arrives which apparently is 
not intended for the current connection.    A reset must not be sent if it is not clear that this 
is the case. 
There are three groups of states:

1. If the connection does not exist (CLOSED) then a reset is sent in 
response to any incoming segment except another reset.    In 
particular, SYNs addressed to a non-existent connection are rejected by
this means. 
If the incoming segment has an ACK field, the reset takes its sequence 
number from the ACK field of the segment, otherwise the reset has 
sequence number zero and the ACK field is set to the sum of the 
sequence number and segment length of the incoming segment. The 
connection remains in the CLOSED state. 

2. If the connection is in any non-synchronized state (LISTEN, SYN-SENT, 
SYN-RECEIVED), and the incoming segment acknowledges something 
not yet sent (the segment carries an unacceptable ACK), or if an 
incoming segment has a security level or compartment which does not 
exactly match the level and compartment requested for the 
connection, a reset is sent. 
If our SYN has not been acknowledged and the precedence level of the 
incoming segment is higher than the precedence level requested then 
either raise the local precedence level (if allowed by the user and the 
system) or send a reset; or if the precedence level of the incoming 
segment is lower than the precedence level requested then continue as
if the precedence matched exactly (if the remote TCP cannot raise the 
precedence level to match ours this will be detected in the next 
segment it sends, and the connection will be terminated then).    If our 
SYN has been acknowledged (perhaps in this incoming segment) the 
precedence level of the incoming segment must match the local 
precedence level exactly, if it does not a reset must be sent. 
If the incoming segment has an ACK field, the reset takes its sequence 
number from the ACK field of the segment, otherwise the reset has 
sequence number zero and the ACK field is set to the sum of the 
sequence number and segment length of the incoming segment. The 
connection remains in the same state. 

3. If the connection is in a synchronized state (ESTABLISHED, FIN-WAIT-1, 
FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), any 
unacceptable segment (out of window sequence number or 
unacceptible acknowledgment number) must elicit only an empty 
acknowledgment segment containing the current send-sequence 
number and an acknowledgment indicating the next sequence number 
expected to be received, and the connection remains in the same 
state. 
If an incoming segment has a security level, or compartment, or 
precedence which does not exactly match the level, and compartment,
and precedence requested for the connection,a reset is sent and 



connection goes to the CLOSED state.    The reset takes its sequence 
number from the ACK field of the incoming segment. 



RFC-793 Transmission Control Protocol - Establishing Connections
Reset Processing

In all states except SYN-SENT, all reset (RST) segments are validated by checking their SEQ-
fields.    A reset is valid if its sequence number is in the window.    In the SYN-SENT state (a 
RST received in response to an initial SYN), the RST is acceptable if the ACK field 
acknowledges the SYN. 
The receiver of a RST first validates it, then changes state.    If the receiver was in the LISTEN
state, it ignores it.    If the receiver was in SYN-RECEIVED state and had previously been in 
the LISTEN state, then the receiver returns to the LISTEN state, otherwise the receiver aborts
the connection and goes to the CLOSED state.    If the receiver was in any other state, it 
aborts the connection and advises the user and goes to the CLOSED state. 
A TCP should allow a received RST segment to include data.

Discussion
It has been suggested that a RST segment could contain ASCII text that 
encoded and explained the cause of the RST.    No standard has yet been 
established for such data.



RFC-793 Transmission Control Protocol - Functional Specification
Closing a Connection

CLOSE is an operation meaning "I have no more data to send."    The notion of closing a full-
duplex connection is subject to ambiguous interpretation, of course, since it may not be 
obvious how to treat the receiving side of the connection.    We have chosen to treat CLOSE 
in a simplex fashion.    The user who CLOSEs may continue to RECEIVE until he is told that 
the other side has CLOSED also.    Thus, a program could initiate several SENDs followed by a
CLOSE, and then continue to RECEIVE until signaled that a RECEIVE failed because the other 
side has CLOSED.    We assume that the TCP will signal a user, even if no RECEIVEs are 
outstanding, that the other side has closed either normally or via an ABORT, so the user can 
terminate his side gracefully.    A TCP will reliably deliver all buffers SENT before the 
connection was CLOSED so a user who expects no data in return need only wait to hear the 
connection was CLOSED successfully to know that all his data was received at the 
destination TCP.    Users must keep reading connections they close for sending until the TCP 
says no more data.
The normal TCP close sequence delivers buffered data reliably in both directions.    Since the 
two directions of a TCP connection are closed independently, it is possible for a connection 
to be "half closed", i.e., closed in only one direction, and a host is permitted to continue 
sending data in the open direction on a half-closed connection.
There are essentially three cases:

1) The user initiates by telling the TCP to CLOSE the connection
2) The remote TCP initiates by sending a FIN control signal
3) Both users CLOSE simultaneously

Case 1:    Local user initiates the close
In this case, a FIN segment can be constructed and placed on the outgoing 
segment queue.    No further SENDs from the user will be accepted by the TCP,
and it enters the FIN-WAIT-1 state.    RECEIVEs are allowed in this state.    All 
segments preceding and including FIN will be retransmitted until 
acknowledged.    When the other TCP has both acknowledged the FIN and sent 
a FIN of its own, the first TCP can ACK this FIN.    Note that a TCP receiving a 
FIN will ACK but not send its own FIN until its user has CLOSED the connection 
also. 

Case 2:    TCP receives a FIN from the network
If an unsolicited FIN arrives from the network, the receiving TCP can ACK it and
tell the user that the connection is closing.    The user will respond with a 
CLOSE, upon which the TCP can send a FIN to the other TCP after sending any 
remaining data.    The TCP then waits until its own FIN is acknowledged 
whereupon it deletes the connection.    If an ACK is not forthcoming, after the 
user timeout the connection is aborted and the user is told. 

Case 3:    Both users close simultaneously
A simultaneous CLOSE by users at both ends of a connection causes FIN 
segments to be exchanged.    When all segments preceding the FINs have 
been processed and acknowledged, each TCP can ACK the FIN it has received. 
Both will, upon receiving these ACKs, delete the connection. 



RFC-793 Transmission Control Protocol - Closing a Connection

Normal Close Sequence

TCP A TCP B
1 Established Established
2 (Close)

FIN-Wait-1 --> SEQ: 100 --> Close-Wait
ACK: 300
CTL: FIN,ACK

3 FIN-Wait-2 <-- SEQ: 300 <-- Close-Wait
ACK: 101
CTL: ACK

4 Time-Wait <-- SEQ: 300 <-- (Close)
ACK: 101 Last ACK
CTL: FIN,ACK

5 Time-Wait --> SEQ: 101 --> Closed
ACK: 301
CTL: ACK

6 (2 MSL)
Closed

                                              



RFC-793 Transmission Control Protocol - Closing a Connection

Simultaneous Close Sequence

TCP A TCP B
1 Estab Estab
2 (Close) (Close)

FIN-W-1 --> SEQ: 100 ACK: 300 CTL: FIN,ACK ... FIN-W-1
<-- SEQ: 300 ACK: 100 CTL: FIN,ACK <--

SEQ: 100 ACK: 300 CTL: FIN, ACK ...
3 Closing --> SEQ: 101 ACK: 301 CTL: ACK ... Closing

<-- SEQ: 301 ACK: 101 CTL: ACK <--
... SEQ: 101 ACK: 301 CTL: ACK -->

4 Time-W Time-W
(2 MSL) (2 MSL)
Closed Closed



RFC-793 Transmission Control Protocol - Closing a Connection

Half-Duplex Close Sequence

A host may implement a "half-duplex" TCP close sequence, so that an application that has 
called CLOSE cannot continue to read data from the connection.    If such a host issues a 
CLOSE call while received data is still pending in TCP, or if new data is received after CLOSE 
is called, its TCP should send a RST to show that data was lost.
When a connection is closed actively, it must linger in TIME-WAIT state for a time 2xMSL 
(Maximum Segment Lifetime). However, it may accept a new SYN from the remote TCP to 
reopen the connection directly from TIME-WAIT state, if it:

(1) assigns its initial sequence number for the new connection to be larger 
than the largest sequence number it used on the previous connection 
incarnation, and

(2) returns to TIME-WAIT state if the SYN turns out to be an old duplicate.

Discussion
TCP's full-duplex data-preserving close is a feature that is not included in the 
analogous ISO transport protocol TP4.
Some systems have not implemented half-closed connections, presumably 
because they do not fit into the I/O model of their particular operating system. 
On these systems, once an application has called CLOSE, it can no longer read
input data from the connection; this is referred to as a "half-duplex" TCP close 
sequence.
The graceful close algorithm of TCP requires that the connection state remain 
defined on (at least)    one end of the connection, for a timeout period of 
2xMSL, i.e., 4 minutes.    During this period, the (remote socket, local socket) 
pair that defines the connection is busy and cannot be reused.    To shorten the
time that a given port pair is tied up, some TCPs allow a new SYN to be 
accepted in TIME-WAIT state.



RFC-793 Transmission Control Protocol - Functional Specification

Precedence and Security

The intent is that connection be allowed only between ports operating with exactly the same
security and compartment values and at the higher of the precedence level requested by 
the two ports. 
The precedence and security parameters used in TCP are exactly those defined in the 
Internet Protocol (IP).    Throughout this TCP specification the term "security/compartment" is 
intended to indicate the security parameters used in IP including security, compartment, 
user group, and handling restriction. 
A connection attempt with mismatched security/compartment values or a lower precedence 
value must be rejected by sending a reset.    Rejecting a connection due to too low a 
precedence only occurs after an acknowledgment of the SYN has been received. 
Note that TCP modules which operate only at the default value of precedence will still have 
to check the precedence of incoming segments and possibly raise the precedence level they
use on the connection. 
The security paramaters may be used even in a non-secure environment (the values would 
indicate unclassified data), thus hosts in non-secure environments must be prepared to 
receive the security parameters, though they need not send them. 



RFC-793 Transmission Control Protocol - Functional Specification

Data Communication

Once the connection is established data is communicated by the exchange of segments.    
Because segments may be lost due to errors (checksum test failure), or network congestion, 
TCP uses retransmission (after a timeout) to ensure delivery of every segment. Duplicate 
segments may arrive due to network or TCP retransmission. As discussed in the section on 
sequence numbers the TCP performs certain tests on the sequence and acknowledgment 
numbers in the segments to verify their acceptability. 
The sender of data keeps track of the next sequence number to use in the variable SND.NXT.
The receiver of data keeps track of the next sequence number to expect in the variable 
RCV.NXT.    The sender of data keeps track of the oldest unacknowledged sequence number 
in the variable SND.UNA.    If the data flow is momentarily idle and all data sent has been 
acknowledged then the three variables will be equal. 
When the sender creates a segment and transmits it the sender advances SND.NXT.    When 
the receiver accepts a segment it advances RCV.NXT and sends an acknowledgment.    When
the data sender receives an acknowledgment it advances SND.UNA.    The extent to which 
the values of these variables differ is a measure of the delay in the communication. The 
amount by which the variables are advanced is the length of the data in the segment.    Note
that once in the ESTABLISHED state all segments must carry current acknowledgment 
information. 
The CLOSE user call implies a push function, as does the FIN control flag in an incoming 
segment. 



RFC-793 Transmission Control Protocol - Data Communication

Efficiency Issues

Since RFC-793 was written, there has been extensive work on TCP algorithms to achieve 
efficient data communication. Later sections of this document describe required and 
recommended TCP algorithms to determine when to send data (When to Send Data), when 
to send an acknowledgment (When to Send an ACK Segment), and when to update the 
window (When to Send a Window Update).

Discussion
One important performance issue is "Silly Window Syndrome" or "SWS" [RFC-
813], a stable pattern of small incremental window movements resulting in 
extremely poor TCP performance.    Algorithms to avoid SWS are described for 
both the sending side (When to Send Data) and the receiving side (When to 
Send a Window Update).    RFC-813 Window and Acknowledgement Strategy in
TCP discusses several other issues as well.
In brief, SWS is caused by the receiver advancing the right window edge 
whenever it has any new buffer space available to receive data and by the 
sender using any incremental window, no matter how small, to send more 
data.    The result can be a stable pattern of sending tiny data segments, even 
though both sender and receiver have a large total buffer space for the 
connection.    SWS can only occur during the transmission of a large amount of
data; if the connection goes quiescent, the problem will disappear.    It is 
caused by typical straightforward implementation of window management, 
but the sender and receiver algorithms given below will avoid it.
Another important TCP performance issue is that some applications, especially
remote login to character-at- a-time hosts, tend to send streams of one-octet 
data segments.    To avoid deadlocks, every TCP SEND call from such 
applications must be "pushed", either explicitly by the application or else 
implicitly by TCP.    The result may be a stream of TCP segments that contain 
one data octet each, which makes very inefficient use of the Internet and 
contributes to Internet congestion. The Nagle Algorithm described in When to 
Send Data provides a simple and effective solution to this problem.    It does 
have the effect of clumping characters over Telnet connections; this may 
initially surprise users accustomed to single-character echo, but user 
acceptance has not been a problem.
Note that the Nagle algorithm and the send SWS avoidance algorithm play 
complementary roles in improving performance.    The Nagle algorithm 
discourages sending tiny segments when the data to be sent increases in 
small increments, while the SWS avoidance algorithm discourages small 
segments resulting from the right window edge advancing in small 
increments.
A careless implementation can send two or more acknowledgment segments 
per data segment received.    For example, suppose the receiver acknowledges
every data segment immediately.    When the application program 
subsequently consumes the data and increases the available receive buffer 
space again, the receiver may send a second acknowledgment segment to 
update the window at the sender.    The extreme case occurs with single-
character segments on TCP connections using the Telnet protocol for remote 
login service.    Some implementations have been observed in which each 
incoming 1-character segment generates three return segments: (1) the 
acknowledgment, (2) a one byte increase in the window, and (3) the echoed 



character, respectively.



RFC-793 Transmission Control Protocol - Data Communication

Retransmission Timeout

Because of the variability of the networks that compose an internetwork system and the 
wide range of uses of TCP connections the retransmission timeout must be dynamically 
determined.    
A host TCP must implement Karn's algorithm and Jacobson's algorithm for computing the 
retransmission timeout ("RTO").

o Jacobson's algorithm for computing the smoothed round- trip ("RTT") 
time incorporates a simple measure of the variance [TCP:7].

o Karn's algorithm for selecting RTT measurements ensures that 
ambiguous round-trip times will not corrupt the calculation of the 
smoothed round-trip time [TCP:6].

This implementation also must include "exponential backoff" for successive RTO values for 
the same segment. Retransmission of SYN segments should use the same algorithm as 
data segments. 
The following values should be used to initialize the estimation parameters for a new 
connection:

(a) RTT = 0 seconds.
(b) RTO = 3 seconds.    (The smoothed variance is to be initialized to the 

value that will result in this RTO).
The recommended upper and lower bounds on the RTO are known to be inadequate on large
internets.    The lower bound should be measured in fractions of a second (to accommodate 
high speed LANs) and the upper bound should be 2*MSL, i.e., 240 seconds.

Discussion
Experience has shown that these initialization values are reasonable, and that 
in any case the Karn and Jacobson algorithms make TCP behavior reasonably 
insensitive to the initial parameter choices.

If a retransmitted packet is identical to the original packet (which implies not only that the 
data boundaries have not changed, but also that the window and acknowledgment fields of 
the header have not changed), then the same IP Identification field   may   be used  .

Implementation
Some TCP implementors have chosen to "packetize" the data stream, i.e., to 
pick segment boundaries when segments are originally sent and to queue 
these segments in a "retransmission queue" until they are acknowledged.    
Another design (which may be simpler) is to defer packetizing until each time 
data is transmitted or retransmitted, so there will be no segment 
retransmission queue.
In an implementation with a segment retransmission queue, TCP performance 
may be enhanced by repacketizing the segments awaiting acknowledgment 
when the first retransmission timeout occurs.    That is, the outstanding 
segments that fitted would be combined into one maximum-sized segment, 
with a new IP Identification value.    The TCP would then retain this combined 
segment in the retransmit queue until it was acknowledged. However, if the 
first two segments in the retransmission queue totalled more than one 
maximum- sized segment, the TCP would retransmit only the first segment 
using the original IP Identification field.





RFC-793 Transmission Control Protocol - Data Communication

The Communication of Urgent Information

The objective of the TCP urgent mechanism is to allow the sending user to stimulate the 
receiving user to accept some urgent data and to permit the receiving TCP to indicate to the 
receiving user when all the currently known urgent data has been received by the user. 
This mechanism permits a point in the data stream to be designated as the end of urgent 
information.    Whenever this point is in advance of the receive sequence number (RCV.NXT) 
at the receiving TCP, that TCP must tell the user to go into "urgent mode"; when the receive 
sequence number catches up to the urgent pointer, the TCP must tell user to go into "normal
mode".    If the urgent pointer is updated while the user is in "urgent mode", the update will 
be invisible to the user. 
The method employs a urgent field which is carried in all segments transmitted.    The URG 
control flag indicates that the urgent field is meaningful and must be added to the segment 
sequence number to yield the urgent pointer.    The absence of this flag indicates that there 
is no urgent data outstanding. 
To send an urgent indication the user must also send at least one data octet.    If the sending 
user also indicates a push, timely delivery of the urgent information to the destination 
process is enhanced. 



RFC-793 Transmission Control Protocol - Data Communication

Managing the Window

The window sent in each segment indicates the range of sequence numbers the sender of 
the window (the data receiver) is currently prepared to accept.    There is an assumption that
this is related to the currently available data buffer space available for this connection. 
Indicating a large window encourages transmissions.    If more data arrives than can be 
accepted, it will be discarded.    This will result in excessive retransmissions, adding 
unnecessarily to the load on the network and the TCPs.    Indicating a small window may 
restrict the transmission of data to the point of introducing a round trip delay between each 
new segment transmitted. 
The mechanisms provided allow a TCP to advertise a large window and to subsequently 
advertise a much smaller window without having accepted that much data.    This, so called 
"shrinking the window", is strongly discouraged.    The robustness principle dictates that TCPs
will not shrink the window themselves, but will be prepared for such behavior on the part of 
other TCPs. 
The sending TCP must be prepared to accept from the user and send at least one octet of 
new data even if the send window is zero.    The sending TCP must regularly retransmit to the
receiving TCP even when the window is zero.    Two minutes is recommended for the 
retransmission interval when the window is zero.    This retransmission is essential to 
guarantee that when either TCP has a zero window the re-opening of the window will be 
reliably reported to the other. 
When the receiving TCP has a zero window and a segment arrives it must still send an 
acknowledgment showing its next expected sequence number and current window (zero). 
The sending TCP packages the data to be transmitted into segments which fit the current 
window, and may repackage segments on the retransmission queue.    Such repackaging is 
not required, but may be helpful. 
In a connection with a one-way data flow, the window information will be carried in 
acknowledgment segments that all have the same sequence number so there will be no way
to reorder them if they arrive out of order.    This is not a serious problem, but it will allow the
window information to be on occasion temporarily based on old reports from the data 
receiver.    A refinement to avoid this problem is to act on the window information from 
segments that carry the highest acknowledgment number (that is segments with 
acknowledgment number equal or greater than the highest previously received). 



RFC-793 Transmission Control Protocol - Data Communication

Shrinking the Window

A TCP receiver should NOT shrink the window, i.e., move the right window edge to the left.   
However, a sending TCP must be robust against window shrinking, which may cause the 
"useable window" (see When to Send Data) to become negative.
If this happens, the sender should NOT send new data, but should retransmit normally the 
old unacknowledged data between SND.UNA and SND.UNA+SND.WND.    The sender may 
also retransmit old data beyond SND.UNA+SND.WND, but should NOT time out the 
connection if data beyond the right window edge is not acknowledged.    If the window 
shrinks to zero, the TCP must probe it in the standard way.

Discussion
Many TCP implementations become confused if the window shrinks from the 
right after data has been sent into a larger window.    Note that TCP has a 
heuristic to select the latest window update despite possible datagram 
reordering; as a result, it may ignore a window update with a smaller window 
than previously offered if neither the sequence number nor the 
acknowledgment number is increased.



RFC-793 Transmission Control Protocol - Data Communication

Probing Zero Windows

Probing of zero (offered) windows must be supported.
A TCP may keep its offered receive window closed indefinitely.    As long as the receiving TCP 
continues to send acknowledgments in response to the probe segments, the sending TCP 
must allow the connection to stay open.

Discussion
It is extremely important to remember that ACK (acknowledgment) segments 
that contain no data are not reliably transmitted by TCP.    If zero window 
probing is not supported, a connection may hang forever when an ACK 
segment that re-opens the window is lost.
The delay in opening a zero window generally occurs when the receiving 
application stops taking data from its TCP.    For example, consider a printer 
daemon application, stopped because the printer ran out of paper.

The transmitting host should send the first zero-window probe when a zero window has 
existed for the retransmission timeout period, and should increase exponentially the 
interval between successive probes.

Discussion
This procedure minimizes delay if the zero-window condition is due to a lost 
ACK segment containing a window-opening update.    Exponential backoff is 
recommended, possibly with some maximum interval not specified here.    This
procedure is similar to that of the retransmission algorithm, and it may be 
possible to combine the two procedures in the implementation.



RFC-793 Transmission Control Protocol - Data Communication

Window Management Suggestions
The window management procedure has significant influence on the communication 
performance.    The following comments are suggestions to implementers. 

Allocating a very small window causes data to be transmitted in many small 
segments when better performance is achieved using fewer large segments. 
One suggestion for avoiding small windows is for the receiver to defer 
updating a window until the additional allocation is at least X percent of the 
maximum allocation possible for the connection (where X might be 20 to 40). 
Another suggestion is for the sender to avoid sending small segments by 
waiting until the window is large enough before sending data.    If the the user 
signals a push function then the data must be sent even if it is a small 
segment. 
Note that the acknowledgments should not be delayed or unnecessary 
retransmissions will result.    One strategy would be to send an 
acknowledgment when a small segment arrives (with out updating the window
information), and then to send another acknowledgment with new window 
information when the window is larger. 
The segment sent to probe a zero window may also begin a break up of 
transmitted data into smaller and smaller segments.    If a segment containing 
a single data octet sent to probe a zero window is accepted, it consumes one 
octet of the window now available. If the sending TCP simply sends as much 
as it can whenever the window is non zero, the transmitted data will be broken
into alternating big and small segments.    As time goes on, occasional pauses 
in the receiver making window allocation available will result in breaking the 
big segments into a small and not quite so big pair. And after a while the data 
transmission will be in mostly small segments. 
The suggestion here is that the TCP implementations need to actively attempt 
to combine small window allocations into larger windows, since the 
mechanisms for managing the window tend to lead to many small windows in 
the simplest minded implementations. 



RFC-793 Transmission Control Protocol

Interfaces

There are of course two interfaces of concern:    the user/TCP interface and the TCP/lower-
level interface.    We have a fairly elaborate model of the user/TCP interface, but the interface
to the lower level protocol module is left unspecified here, since it will be specified in detail 
by the specification of the lowel level protocol.    For the case that the lower level is IP we 
note some of the parameter values that TCPs might use. 

User/TCP Interface
TCP User Commands

Open
Passive Open

Send
Receive
Close
Status
Abort

TCP-to-User Messages
TCP/Lower-Level Interface



RFC-793 Transmission Control Protocol - Interfaces

User/TCP Interface

The following functional description of user commands to the TCP is, at best, fictional, since 
every operating system will have different facilities.    Consequently, we must warn readers 
that different TCP implementations may have different user interfaces.    However, all TCPs 
must provide a certain minimum set of services to guarantee that all TCP implementations 
can support the same protocol hierarchy.    This section specifies the functional interfaces 
required of all TCP implementations. 

TCP User Commands
The following sections functionally characterize a USER/TCP interface.    The notation used is 
similar to most procedure or function calls in high level languages, but this usage is not 
meant to rule out trap type service calls (e.g., SVCs, UUOs, EMTs). 
The user commands described below specify the basic functions the TCP must perform to 
support interprocess communication. Individual implementations must define their own 
exact format, and may provide combinations or subsets of the basic functions in single calls. 
In particular, some implementations may wish to automatically OPEN a connection on the 
first SEND or RECEIVE issued by the user for a given connection. 
In providing interprocess communication facilities, the TCP must not only accept commands, 
but must also return information to the processes it serves.    The latter consists of: 

(a) general information about a connection (e.g., interrupts, remote close, 
binding of unspecified foreign socket). 

(b) replies to specific user commands indicating success or various types 
of failure. 



RFC-793 Transmission Control Protocol - User/TCP Interfaces

Open

Format: OPEN (local port, foreign socket, active/passive [, timeout] [, precedence] [, 
security/compartment] [, options]) -> local connection name 

We assume that the local TCP is aware of the identity of the processes it serves and will 
check the authority of the process to use the connection specified.    Depending upon the 
implementation of the TCP, the local network and TCP identifiers for the source address will 
either be supplied by the TCP or the lower level protocol (e.g., IP).    These considerations are
the result of concern about security, to the extent that no TCP be able to masquerade as 
another one, and so on.    Similarly, no process can masquerade as another without the 
collusion of the TCP. 
If the active/passive flag is set to passive, then this is a call to LISTEN for an incoming 
connection.    A passive open may have either a fully specified foreign socket to wait for a 
particular connection or an unspecified foreign socket to wait for any call.    A fully specified 
passive call can be made active by the subsequent execution of a SEND. 
A transmission control block (TCB) is created and partially filled in with data from the OPEN 
command parameters. 
On an active OPEN command, the TCP will begin the procedure to synchronize (i.e., 
establish) the connection at once. 
The timeout, if present, permits the caller to set up a timeout for all data submitted to TCP.    
If data is not successfully delivered to the destination within the timeout period, the TCP will 
abort the connection.    The present global default is five minutes. 
The TCP or some component of the operating system will verify the users authority to open a
connection with the specified precedence or security/compartment.    The absence of 
precedence or security/compartment specification in the OPEN call indicates the default 
values must be used. 
TCP will accept incoming requests as matching only if the security/compartment information 
is exactly the same and only if the precedence is equal to or higher than the precedence 
requested in the OPEN call. 
The precedence for the connection is the higher of the values requested in the OPEN call and
received from the incoming request, and fixed at that value for the life of the 
connection.Implementers may want to give the user control of this precedence negotiation.   
For example, the user might be allowed to specify that the precedence must be exactly 
matched, or that any attempt to raise the precedence be confirmed by the user. 
A local connection name will be returned to the user by the TCP. The local connection name 
can then be used as a short hand term for the connection defined by the <local socket, 
foreign socket> pair. 



RFC-793 Transmission Control Protocol - User/TCP Interfaces

Passive Open Calls

Every passive OPEN call either creates a new connection record in LISTEN state, or it returns 
an error; it must not affect any previously created connection record.
A TCP that supports multiple concurrent users must provide an OPEN call that will 
functionally allow an application to LISTEN on a port while a connection block with the same 
local port is in SYN-SENT or SYN-RECEIVED state.

Discussion
Some applications (e.g., SMTP servers) may need to handle multiple 
connection attempts at about the same time.    The probability of a connection 
attempt failing is reduced by giving the application some means of listening 
for a new connection at the same time that an earlier connection attempt is 
going through the three- way handshake.
Implementation
Acceptable implementations of concurrent opens may permit multiple passive 
OPEN calls, or they may allow "cloning" of LISTEN-state connections from a 
single passive OPEN call.



RFC-793 Transmission Control Protocol - User/TCP Interfaces

Send

Format: SEND (local connection name, buffer address, byte count, PUSH flag, URGENT 
flag [,timeout]) 

This call causes the data contained in the indicated user buffer to be sent on the indicated 
connection.    If the connection has not been opened, the SEND is considered an error.    Some
implementations may allow users to SEND first; in which case, an automatic OPEN would be 
done.    If the calling process is not authorized to use this connection, an error is returned. 
If the PUSH flag is set, the data must be transmitted promptly to the receiver, and the PUSH 
bit will be set in the last TCP segment created from the buffer.    If the PUSH flag is not set, 
the data may be combined with data from subsequent SENDs for transmission efficiency. 
If the URGENT flag is set, segments sent to the destination TCP will have the urgent pointer 
set.    The receiving TCP will signal the urgent condition to the receiving process if the urgent 
pointer indicates that data preceding the urgent pointer has not been consumed by the 
receiving process.    The purpose of urgent is to stimulate the receiver to process the urgent 
data and to indicate to the receiver when all the currently known urgent data has been 
received.    The number of times the sending user's TCP signals urgent will not necessarily be
equal to the number of times the receiving user will be notified of the presence of urgent 
data. 
If no foreign socket was specified in the OPEN, but the connection is established (e.g., 
because a LISTENing connection has become specific due to a foreign segment arriving for 
the local socket), then the designated buffer is sent to the implied foreign socket.    Users 
who make use of OPEN with an unspecified foreign socket can make use of SEND without 
ever explicitly knowing the foreign socket address. 
However, if a SEND is attempted before the foreign socket becomes specified, an error will 
be returned.    Users can use the STATUS call to determine the status of the connection.    In 
some implementations the TCP may notify the user when an unspecified socket is bound. 
If a timeout is specified, the current user timeout for this connection is changed to the new 
one. 
In the simplest implementation, SEND would not return control to the sending process until 
either the transmission was complete or the timeout had been exceeded.    However, this 
simple method is both subject to deadlocks (for example, both sides of the connection might
try to do SENDs before doing any RECEIVEs) and offers poor performance, so it is not 
recommended.    A more sophisticated implementation would return immediately to allow the
process to run concurrently with network I/O, and, furthermore, to allow multiple SENDs to 
be in progress. Multiple SENDs are served in first come, first served order, so the TCP will 
queue those it cannot service immediately. 
We have implicitly assumed an asynchronous user interface in which a SEND later elicits 
some kind of SIGNAL or pseudo-interrupt from the serving TCP.    An alternative is to return a 
response immediately.    For instance, SENDs might return immediate local acknowledgment, 
even if the segment sent had not been acknowledged by the distant TCP.    We could 
optimistically assume eventual success.    If we are wrong, the connection will close anyway 
due to the timeout.    In implementations of this kind (synchronous), there will still be some 
asynchronous signals, but these will deal with the connection itself, and not with specific 
segments or buffers. 
In order for the process to distinguish among error or success indications for different 
SENDs, it might be appropriate for thebuffer address to be returned along with the coded 



response to the SEND request.    TCP-to-user signals are discussed below, indicating the 
information which should be returned to the calling process. 



RFC-793 Transmission Control Protocol - User/TCP Interfaces

Receive

Format: RECEIVE (local connection name, buffer address, byte count) -> byte count, 
urgent flag, push flag 

This command allocates a receiving buffer associated with the specified connection.    If no 
OPEN precedes this command or the calling process is not authorized to use this connection,
an error is returned. 
In the simplest implementation, control would not return to the calling program until either 
the buffer was filled, or some error occurred, but this scheme is highly subject to deadlocks. 
A more sophisticated implementation would permit several RECEIVEs to be outstanding at 
once.    These would be filled as segments arrive.    This strategy permits increased 
throughput at the cost of a more elaborate scheme (possibly asynchronous) to notify the 
calling program that a PUSH has been seen or a buffer filled. 
If enough data arrive to fill the buffer before a PUSH is seen, the PUSH flag will not be set in 
the response to the RECEIVE. The buffer will be filled with as much data as it can hold.    If a 
PUSH is seen before the buffer is filled the buffer will be returned partially filled and 
(optionally) PUSH indicated. 
If there is urgent data the user will have been informed as soon as it arrived via a TCP-to-
user signal.    The receiving user should thus be in "urgent mode".    If the URGENT flag is on, 
additional urgent data remains.    If the URGENT flag is off, this call to RECEIVE has returned 
all the urgent data, and the user may now leave "urgent mode".    Note that data following 
the urgent pointer (non-urgent data) cannot be delivered to the user in the same buffer with 
preceeding urgent data unless the boundary is clearly marked for the user. 
To distinguish among several outstanding RECEIVEs and to take care of the case that a 
buffer is not completely filled, the return code is accompanied by both a buffer pointer and a
byte count indicating the actual length of the data received. 
Alternative implementations of RECEIVE might have the TCP allocate buffer storage, or the 
TCP might share a ring buffer with the user. 



RFC-793 Transmission Control Protocol - User/TCP Interfaces

Close

Format: CLOSE (local connection name)
This command causes the connection specified to be closed.    If the connection is not open 
or the calling process is not authorized to use this connection, an error is returned. Closing 
connections is intended to be a graceful operation in the sense that outstanding SENDs will 
be transmitted (and retransmitted), as flow control permits, until all have been serviced.    
Thus, it should be acceptable to make several SEND calls, followed by a CLOSE, and expect 
all the data to be sent to the destination.    It should also be clear that users should continue 
to RECEIVE on CLOSING connections, since the other side may be trying to transmit the last 
of its data.    Thus, CLOSE means "I have no more to send" but does not mean "I will not 
receive any more."    It may happen (if the user level protocol is not well thought out) that 
the closing side is unable to get rid of all its data before timing out.    In this event, CLOSE 
turns into ABORT, and the closing TCP gives up. 
The user may CLOSE the connection at any time on his own initiative, or in response to 
various prompts from the TCP (e.g., remote close executed, transmission timeout exceeded, 
destination inaccessible). 
Because closing a connection requires communication with the foreign TCP, connections 
may remain in the closing state for a short time.    Attempts to reopen the connection before 
the TCP replies to the CLOSE command will result in error responses. 
Close also implies push function.



RFC-793 Transmission Control Protocol - User/TCP Interfaces

Status

Format: STATUS (local connection name) -> status data
This is an implementation dependent user command and could be excluded without adverse
effect.    Information returned would typically come from the TCB associated with the 
connection. 
This command returns a data block containing the following information: 

local socket, 
foreign socket,
local connection name,
receive window,
send window,
connection state,
number of buffers awaiting acknowledgment,
number of buffers pending receipt,
urgent state,
precedence,
security/compartment,
and transmission timeout.

Depending on the state of the connection, or on the implementation itself, some of this 
information may not be available or meaningful.    If the calling process is not authorized to 
use this connection, an error is returned.    This prevents unauthorized processes from 
gaining information about a connection. 



RFC-793 Transmission Control Protocol - User/TCP Interfaces

Abort

Format: ABORT (local connection name)
This command causes all pending SENDs and RECEIVES to be aborted, the TCB to be 
removed, and a special RESET message to be sent to the TCP on the other side of the 
connection. Depending on the implementation, users may receive abort indications for each 
outstanding SEND or RECEIVE, or may simply receive an ABORT-acknowledgment. 



RFC-793 Transmission Control Protocol - User/TCP Interfaces

TCP-to-User Messages

It is assumed that the operating system environment provides a means for the TCP to 
asynchronously signal the user program.    When the TCP does signal a user program, certain
information is passed to the user.    Often in the specification the information will be an error 
message.    In other cases there will be information relating to the completion of processing a
SEND or RECEIVE or other user call. 
The following information is provided:

Local Connection Name Always
Response String Always
Buffer Address Send & Receive
Byte count (counts bytes received) Receive
Push flag Receive (Optional)
Urgent flag Receive



RFC-793 Transmission Control Protocol - User/TCP Interfaces

TCP/Lower-Level Interface

The TCP calls on a lower level protocol module to actually send and receive information over 
a network.    One case is that of the ARPA internetwork system where the lower level module 
is the Internet Protocol (IP) [2]. 
If the lower level protocol is IP it provides arguments for a type of service and for a time to 
live.    TCP uses the following settings for these parameters: 

Type of Service = Precedence: routine, Delay: normal, Throughput: normal, 
Reliability: normal; or 00000000. 

Time to Live = Configurable, see IP Time-to-Live for Discussion
Note that the assumed maximum segment lifetime is two minutes. 
Here we explicitly ask that a segment be destroyed if it cannot be 
delivered by the internet system within one minute. 

If the lower level is IP (or other protocol that provides this feature) and source routing is 
used, the interface must allow the route information to be communicated.    This is especially
important so that the source and destination addresses used in the TCP checksum be the 
originating source and ultimate destination. It is also important to preserve the return route 
to answer connection requests. 
Any lower level protocol will have to provide the source address, destination address, and 
protocol fields, and some way to determine the "TCP length", both to provide the functional 
equivlent service of IP and to be used in the TCP checksum. 



RFC-793 Transmission Control Protocol

Event Processing

The processing depicted in this section is an example of one possible implementation.    
Other implementations may have slightly different processing sequences, but they should 
differ from those in this section only in detail, not in substance. 
The activity of the TCP can be characterized as responding to events. The events that occur 
can be cast into three categories:    user calls, arriving segments, and timeouts.    This section
describes the processing the TCP does in response to each of the events.    In many cases the
processing required depends on the state of the connection. 
Events that occur:

User Calls
OPEN
SEND
RECEIVE
CLOSE
ABORT
STATUS

Arriving Segments
SEGMENT ARRIVES

Timeouts
USER TIMEOUT
RETRANSMISSION TIMEOUT
TIME-WAIT TIMEOUT

The model of the TCP/user interface is that user commands receive an immediate return and
possibly a delayed response via an event or pseudo interrupt.    In the following descriptions, 
the term "signal" means cause a delayed response. 
Error responses are given as character strings.    For example, user commands referencing 
connections that do not exist receive "error: connection not open". 
Please note in the following that all arithmetic on sequence numbers, acknowledgment 
numbers, windows, et cetera, is modulo 2**32 the size of the sequence number space.    Also
note that "=<" means less than or equal to (modulo 2**32). 
A natural way to think about processing incoming segments is to imagine that they are first 
tested for proper sequence number (i.e., that their contents lie in the range of the expected 
"receive window" in the sequence number space) and then that they are generally queued 
and processed in sequence number order. 
When a segment overlaps other already received segments we reconstruct the segment to 
contain just the new data, and adjust the header fields to be consistent. 
Note that if no state change is mentioned the TCP stays in the same state. 



RFC-793 Transmission Control Protocol - Event Processing

Processing Queued Segments

While it is not strictly required, a TCP should be capable of queueing out-of-order TCP 
segments.    Change the "may" in the last sentence of the first paragraph on page 70 to 
"should".

Discussion
Some small-host implementations have omitted segment queueing because of
limited buffer space.    This omission may be expected to adversely affect TCP 
throughput, since loss of a single segment causes all later segments to appear
to be "out of sequence".

In general, the processing of received segments must be implemented to aggregate ACK 
segments whenever possible. For example, if the TCP is processing a series of queued 
segments, it must process them all before sending any ACK segments.
Acknowledging Queued Segments
A TCP may send an ACK segment acknowledging RCV.NXT when a valid segment arrives that
is in the window but not at the left window edge.

Discussion
RFC-793 was originally ambiguous about whether or not an ACK segment 
should be sent when an out-of-order segment was received, i.e., when 
SEG.SEQ was unequal to RCV.NXT.
One reason for ACKing out-of-order segments might be to support an 
experimental algorithm known as "fast retransmit".      With this algorithm, the 
sender uses the "redundant" ACK's to deduce that a segment has been lost 
before the retransmission timer has expired.    It counts the number of times 
an ACK has been received with the same value of SEG.ACK and with the same 
right window edge.    If more than a threshold number of such ACK's is 
received, then the segment containing the octets starting at SEG.ACK is 
assumed to have been lost and is retransmitted, without awaiting a timeout.    
The threshold is chosen to compensate for the maximum likely segment 
reordering in the Internet.    There is not yet enough experience with the fast 
retransmit algorithm to determine how useful it is.



RFC-793 Transmission Control Protocol - Event Processing

OPEN Call

CLOSED STATE (i.e., TCB does not exist)
Create a new transmission control block (TCB) to hold connection state 
information.    Fill in local socket identifier, foreign socket, precedence, 
security/compartment, and user timeout information.    Note that some parts 
of the foreign socket may be unspecified in a passive OPEN and are to be filled
in by the parameters of the incoming SYN segment.    Verify the security and 
precedence requested are allowed for this user, if not return "error:    
precedence not allowed" or "error:    security/compartment not allowed."    If 
passive enter the LISTEN state and return.    If active and the foreign socket is 
unspecified, return "error: foreign socket unspecified"; if active and the foreign
socket is specified, issue a SYN segment.    An initial send sequence number 
(ISS) is selected.    A SYN segment of the form <SEQ=ISS><CTL=SYN> is sent.
Set SND.UNA to ISS, SND.NXT to ISS+1, enter SYN-SENT state, and return. 
If the caller does not have access to the local socket specified, return "error:    
connection illegal for this process".    If there is no room to create a new 
connection, return "error:    insufficient resources". 

LISTEN STATE
If active and the foreign socket is specified, then change the connection from 
passive to active, select an ISS.    Send a SYN segment, set SND.UNA to ISS, 
SND.NXT to ISS+1.    Enter SYN-SENT state.    Data associated with SEND may 
be sent with SYN segment or queued for transmission after entering 
ESTABLISHED state.    The urgent bit if requested in the command must be 
sent with the data segments sent as a result of this command.    If there is no 
room to queue the request, respond with "error:    insufficient resources". If 
Foreign socket was not specified, then return "error:    foreign socket 
unspecified". 

SYN-SENT STATE
SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Return "error:    connection already exists".



RFC-793 Transmission Control Protocol - Event Processing

SEND Call

CLOSED STATE (i.e., TCB does not exist)
If the user does not have access to such a connection, then return "error:    
connection illegal for this process". 
Otherwise, return "error:    connection does not exist".

LISTEN STATE
If the foreign socket is specified, then change the connection from passive to 
active, select an ISS.    Send a SYN segment, set SND.UNA to ISS, SND.NXT to 
ISS+1.    Enter SYN-SENT state.    Data associated with SEND may be sent with 
SYN segment or queued for transmission after entering ESTABLISHED state.    
The urgent bit if requested in the command must be sent with the data 
segments sent as a result of this command.    If there is no room to queue the 
request, respond with "error:    insufficient resources".    If Foreign socket was 
not specified, then return "error:    foreign socket unspecified". 

SYN-SENT STATE
SYN-RECEIVED STATE

Queue the data for transmission after entering ESTABLISHED state. If no space
to queue, respond with "error:    insufficient resources". 

ESTABLISHED STATE
CLOSE-WAIT STATE

Segmentize the buffer and send it with a piggybacked acknowledgment 
(acknowledgment value = RCV.NXT).    If there is insufficient space to 
remember this buffer, simply return "error: insufficient resources". 
If the urgent flag is set, then SND.UP <- SND.NXT-1 and set the urgent pointer 
in the outgoing segments. 

FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Return "error:    connection closing" and do not service request.



RFC-793 Transmission Control Protocol - Event Processing

RECEIVE Call

CLOSED STATE (i.e., TCB does not exist)
If the user does not have access to such a connection, return "error:    
connection illegal for this process". 
Otherwise return "error:    connection does not exist".

LISTEN STATE
SYN-SENT STATE
SYN-RECEIVED STATE

Queue for processing after entering ESTABLISHED state.    If there is no room 
to queue this request, respond with "error: insufficient resources". 

ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

If insufficient incoming segments are queued to satisfy the request, queue the 
request.    If there is no queue space to remember the RECEIVE, respond with 
"error:    insufficient resources". 
Reassemble queued incoming segments into receive buffer and return to user. 
Mark "push seen" (PUSH) if this is the case. 
If RCV.UP is in advance of the data currently being passed to the user notify 
the user of the presence of urgent data. 
When the TCP takes responsibility for delivering data to the user that fact 
must be communicated to the sender via an acknowledgment.    The formation
of such an acknowledgment is described below in the discussion of processing
an incoming segment. 

CLOSE-WAIT STATE
Since the remote side has already sent FIN, RECEIVEs must be satisfied by 
text already on hand, but not yet delivered to the user.    If no text is awaiting 
delivery, the RECEIVE will get a "error:    connection closing" response.    
Otherwise, any remaining text can be used to satisfy the RECEIVE. 

CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Return "error:    connection closing".



RFC-793 Transmission Control Protocol - Event Processing

CLOSE Call

CLOSED STATE (i.e., TCB does not exist)
If the user does not have access to such a connection, return "error:    
connection illegal for this process". 
Otherwise, return "error:    connection does not exist".

LISTEN STATE
Any outstanding RECEIVEs are returned with "error:    closing" responses.    
Delete TCB, enter CLOSED state, and return. 

SYN-SENT STATE
Delete the TCB and return "error:    closing" responses to any queued SENDs, 
or RECEIVEs. 

SYN-RECEIVED STATE
If no SENDs have been issued and there is no pending data to send, then form
a FIN segment and send it, and enter FIN-WAIT-1 state; otherwise queue for 
processing after entering ESTABLISHED state. 

ESTABLISHED STATE
Queue this until all preceding SENDs have been segmentized, then form a FIN 
segment and send it.    In any case, enter FIN-WAIT-1 state. 

FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

Strictly speaking, this is an error and should receive a "error: connection 
closing" response.    An "ok" response would be acceptable, too, as long as a 
second FIN is not emitted (the first FIN may be retransmitted though). 

CLOSE-WAIT STATE
Queue this request until all preceding SENDs have been segmentized; then 
send a FIN segment, enter LAST-ACK state. 

CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Respond with "error:    connection closing".



RFC-793 Transmission Control Protocol - Event Processing

ABORT Call

CLOSED STATE (i.e., TCB does not exist)
If the user should not have access to such a connection, return "error:    
connection illegal for this process". 
Otherwise return "error:    connection does not exist".

LISTEN STATE
Any outstanding RECEIVEs should be returned with "error: connection reset" 
responses.    Delete TCB, enter CLOSED state, and return. 

SYN-SENT STATE
All queued SENDs and RECEIVEs should be given "connection reset" 
notification, delete the TCB, enter CLOSED state, and return. 

SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE

Send a reset segment:
<SEQ=SND.NXT><CTL=RST>
All queued SENDs and RECEIVEs should be given "connection reset" 
notification; all segments queued for transmission (except for the RST formed 
above) or retransmission should be flushed, delete the TCB, enter CLOSED 
state, and return. 

CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Respond with "ok" and delete the TCB, enter CLOSED state, and return. 



RFC-793 Transmission Control Protocol - Event Processing

STATUS Call

CLOSED STATE (i.e., TCB does not exist)
If the user should not have access to such a connection, return "error:    
connection illegal for this process". 
Otherwise return "error:    connection does not exist".

LISTEN STATE
Return "state = LISTEN", and the TCB pointer.

SYN-SENT STATE
Return "state = SYN-SENT", and the TCB pointer.

SYN-RECEIVED STATE
Return "state = SYN-RECEIVED", and the TCB pointer.

ESTABLISHED STATE
Return "state = ESTABLISHED", and the TCB pointer.

FIN-WAIT-1 STATE
Return "state = FIN-WAIT-1", and the TCB pointer.

FIN-WAIT-2 STATE
Return "state = FIN-WAIT-2", and the TCB pointer.

CLOSE-WAIT STATE
Return "state = CLOSE-WAIT", and the TCB pointer.

CLOSING STATE
Return "state = CLOSING", and the TCB pointer.

LAST-ACK STATE
Return "state = LAST-ACK", and the TCB pointer.

TIME-WAIT STATE
Return "state = TIME-WAIT", and the TCB pointer.



RFC-793 Transmission Control Protocol - Event Processing

SEGMENT ARRIVES

If the state is CLOSED (i.e., TCB does not exist) then
all data in the incoming segment is discarded.    An incoming segment 
containing a RST is discarded.    An incoming segment not containing a RST 
causes a RST to be sent in response.    The acknowledgment and sequence 
field values are selected to make the reset sequence acceptable to the TCP 
that sent the offending segment. 

If the ACK bit is off, sequence number zero is used,
<SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

If the ACK bit is on,
<SEQ=SEG.ACK><CTL=RST>
Return.

If the state is LISTEN then
first check for an RST

An incoming RST should be ignored.    Return.
second check for an ACK

Any acknowledgment is bad if it arrives on a connection still in the LISTEN 
state.    An acceptable reset segment should be formed for any arriving 
ACK-bearing segment.    The RST should be formatted as follows: 

<SEQ=SEG.ACK><CTL=RST>
Return.

third check for a SYN
If the SYN bit is set, check the security.    If the security/compartment on 
the incoming segment does not exactly match the security/compartment 
in the TCB then send a reset and return. 

<SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>
If the SEG.PRC is greater than the TCB.PRC then if allowed by the user and 
the system set TCB.PRC<-SEG.PRC, if not allowed send a reset and return. 

<SEQ=SEG.ACK><CTL=RST>
If the SEG.PRC is less than the TCB.PRC then continue.
Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any other control or 
text should be queued for processing later.    ISS should be selected and a 
SYN segment sent of the form: 

<SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>
SND.NXT is set to ISS+1 and SND.UNA to ISS.    The connection state 
should be changed to SYN-RECEIVED.    Note that any other incoming 
control or data (combined with SYN) will be processed in the SYN-
RECEIVED state, but processing of SYN and ACK should not be repeated.    
If the listen was not fully specified (i.e., the foreign socket was not fully 
specified), then the unspecified fields should be filled in now. 



fourth other text or control
Any other control or text-bearing segment (not containing SYN) must have 
an ACK and thus would be discarded by the ACK processing.    An incoming 
RST segment could not be valid, since it could not have been sent in 
response to anything sent by this incarnation of the connection.    So you 
are unlikely to get here, but if you do, drop the segment, and return. 

If the state is SYN-SENT then
first check the ACK bit

If the ACK bit is set
If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset (unless the 
RST bit is set, if so drop the segment and return) 

    <SEQ=SEG.ACK><CTL=RST>
and discard the segment.    Return.
If SND.UNA =< SEG.ACK =< SND.NXT then the ACK is acceptable.

second check the RST bit
If the RST bit is set

If the ACK was acceptable then signal the user "error: connection 
reset", drop the segment, enter CLOSED state, delete TCB, and return.   
Otherwise (no ACK) drop the segment and return. 

third check the security and precedence
If the security/compartment in the segment does not exactly match the 
security/compartment in the TCB, send a reset 

If there is an ACK
<SEQ=SEG.ACK><CTL=RST>

Otherwise
<SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

If there is an ACK
 The precedence in the segment must match the precedence in the 
TCB, if not, send a reset 

    <SEQ=SEG.ACK><CTL=RST>
If there is no ACK

If the precedence in the segment is higher than the precedence in the 
TCB then if allowed by the user and the system raise the precedence in
the TCB to that in the segment, if not allowed to raise the prec then 
send a reset. 

    <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>
If the precedence in the segment is lower than the precedence in the 
TCB continue. 

If a reset was sent, discard the segment and return.
fourth check the SYN bit

This step should be reached only if the ACK is ok, or there is no ACK, and it
the segment did not contain a RST. 



If the SYN bit is on and the security/compartment and precedence are 
acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to SEG.SEQ.    
SND.UNA should be advanced to equal SEG.ACK (if there is an ACK), and 
any segments on the retransmission queue which are thereby 
acknowledged should be removed. 
If SND.UNA > ISS (our SYN has been ACKed), change the connection state 
to ESTABLISHED, form an ACK segment 

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
and send it.    Set the following variables:

SND.WND = SEG.WND
SND.WL1 = SEG.SEQ
SND.WL2 = SEG.ACK

Data or controls which were queued for transmission may be included.    If 
there are other controls or text in the segment then continue processing at
the sixth step below where the URG bit is checked, otherwise return. 
Otherwise enter SYN-RECEIVED, form a SYN,ACK segment

<SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>
and send it.    If there are other controls or text in the segment, queue 
them for processing after the ESTABLISHED state has been reached, 
return. 

fifth, if neither of the SYN or RST bits is set then drop the segment and return. 
Otherwise,
first check sequence number

SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Segments are processed in sequence.    Initial tests on arrival are used 
to discard old duplicates, but further processing is done in SEG.SEQ 
order.    If a segment's contents straddle the boundary between old and
new, only the new parts should be processed. 
There are four cases for the acceptability test for an incoming 
segment:

Seg  Receive Test
Length Window

0 0 SEG.SEQ = RCV.NXT
0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

>0 0 not acceptable
>0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND or

RCV.NXT =< SEG.SEQ+SEG.LEN-1 <
RCV.NXT+RCV.WND

If the RCV.WND is zero, no segments will be acceptable, but special 



allowance should be made to accept valid ACKs, URGs and RSTs. 
If an incoming segment is not acceptable, an acknowledgment should 
be sent in reply (unless the RST bit is set, if so drop the segment and 
return): 

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
After sending the acknowledgment, drop the unacceptable segment 
and return. 
In the following it is assumed that the segment is the idealized 
segment that begins at RCV.NXT and does not exceed the window. One 
could tailor actual segments to fit this assumption by trimming off any 
portions that lie outside the window (including SYN and FIN), and only 
processing further if the segment then begins at RCV.NXT.    Segments 
with higher begining sequence numbers may be held for later 
processing. 

second check the RST bit,
SYN-RECEIVED STATE

If the RST bit is set
If this connection was initiated with a passive OPEN (i.e., came from
the LISTEN state), then return this connection to LISTEN state and 
return.    The user need not be informed.    If this connection was 
initiated with an active OPEN (i.e., came from SYN-SENT state) then
the connection was refused, signal the user "connection refused".    
In either case, all segments on the retransmission queue should be 
removed.    And in the active OPEN case, enter the CLOSED state 
and delete the TCB, and return. 

ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
CLOSE-WAIT

If the RST bit is set then, any outstanding RECEIVEs and SEND should 
receive "reset" responses.    All segment queues should be flushed.    
Users should also receive an unsolicited general "connection reset" 
signal.    Enter the CLOSED state, delete the TCB, and return. 

CLOSING STATE
LAST-ACK STATE
TIME-WAIT

If the RST bit is set then, enter the CLOSED state, delete the TCB, and 
return. 

third check security and precedence
SYN-RECEIVED

If the security/compartment and precedence in the segment do not 
exactly match the security/compartment and precedence in the TCB 
then send a reset, and return. 

ESTABLISHED STATE
FIN-WAIT-1
FIN-WAIT-2
CLOSE-WAIT
CLOSING



LAST-ACK
TIME-WAIT

If the security/compartment and precedence in the segment do not 
exactly match the security/compartment and precedence in the TCB 
then send a reset, any outstanding RECEIVEs and SEND should receive 
"reset" responses.    All segment queues should be flushed.    Users 
should also receive an unsolicited general "connection reset" signal.    
Enter the CLOSED state, delete the TCB, and return. 

Note this check is placed following the sequence check to prevent a 
segment from an old connection between these ports with a different 
security or precedence from causing an abort of the current connection. 

fourth, check the SYN bit,
SYN-RECEIVED

If the connection was initiated with a passive OPEN, then return this 
connection to the LISTEN state and return, otherwise

ESTABLISHED STATE
FIN-WAIT STATE-1
FIN-WAIT STATE-2
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

If the SYN is in the window it is an error, send a reset, any outstanding 
RECEIVEs and SEND should receive "reset" responses, all segment 
queues should be flushed, the user should also receive an unsolicited 
general "connection reset" signal, enter the CLOSED state, delete the 
TCB, and return. 
If the SYN is not in the window this step would not be reached and an 
ack would have been sent in the first step (sequence number check). 

fifth check the ACK field,
if the ACK bit is off drop the segment and return
if the ACK bit is on

SYN-RECEIVED STATE
If SND.UNA =< SEG.ACK =< SND.NXT then enter ESTABLISHED 
state and continue processing.      Set the following variables:

SND.WND = SEG.WND
SND.WL1 = SEG.SEQ
SND.WL2 = SEG.ACK
If the segment acknowledgment is not acceptable, form a      
reset segment, 

<SEQ=SEG.ACK><CTL=RST>
and send it.

ESTABLISHED STATE
If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- 
SEG.ACK. Any segments on the retransmission queue which are 
thereby entirely acknowledged are removed.    Users should receive 



positive acknowledgments for buffers which have been SENT and 
fully acknowledged (i.e., SEND buffer should be returned with "ok" 
response).    If the ACK is a duplicate (SEG.ACK <= SND.UNA), it can
be ignored.    If the ACK acks something not yet sent (SEG.ACK > 
SND.NXT) then send an ACK, drop the segment, and return. 
If SND.UNA <= SEG.ACK =< SND.NXT, the send window should be 
updated.    If (SND.WL1 < SEG.SEQ or (SND.WL1 = SEG.SEQ and 
SND.WL2 =< SEG.ACK)), set SND.WND <- SEG.WND, set SND.WL1 
<- SEG.SEQ, and set SND.WL2 <- SEG.ACK. 
Note that SND.WND is an offset from SND.UNA, that SND.WL1 
records the sequence number of the last segment used to update 
SND.WND, and that SND.WL2 records the acknowledgment number 
of the last segment used to update SND.WND.    The check here 
prevents using old segments to update the window. 

FIN-WAIT-1 STATE
In addition to the processing for the ESTABLISHED state, if our FIN is
now acknowledged then enter FIN-WAIT-2 and continue processing 
in that state. 

FIN-WAIT-2 STATE
In addition to the processing for the ESTABLISHED state, if the 
retransmission queue is empty, the user's CLOSE can be 
acknowledged ("ok") but do not delete the TCB. 

CLOSE-WAIT STATE
Do the same processing as for the ESTABLISHED state.

CLOSING STATE
In addition to the processing for the ESTABLISHED state, if the ACK 
acknowledges our FIN then enter the TIME-WAIT state, otherwise 
ignore the segment. 

LAST-ACK STATE
The only thing that can arrive in this state is an acknowledgment of
our FIN.    If our FIN is now acknowledged, delete the TCB, enter the 
CLOSED state, and return. 

TIME-WAIT STATE
The only thing that can arrive in this state is a retransmission of the 
remote FIN.    Acknowledge it, and restart the 2 MSL timeout. 

sixth, check the URG bit,
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

If the URG bit is set, RCV.UP <- max(RCV.UP,SEG.UP), and signal the 
user that the remote side has urgent data if the urgent pointer 
(RCV.UP) is in advance of the data consumed.    If the user has already 
been signaled (or is still in the "urgent mode") for this continuous 
sequence of urgent data, do not signal the user again. 

CLOSE-WAIT STATE
CLOSING STATE



LAST-ACK STATE
TIME-WAIT

This should not occur, since a FIN has been received from the remote 
side.    Ignore the URG. 

seventh, process the segment text,
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

Once in the ESTABLISHED state, it is possible to deliver segment text to
user RECEIVE buffers.    Text from segments can be moved into buffers 
until either the buffer is full or the segment is empty.    If the segment 
empties and carries an PUSH flag, then the user is optionally 
informed, when the buffer is returned, that a PUSH has been received. 
When the TCP takes responsibility for delivering the data to the user it 
must also acknowledge the receipt of the data. 
Once the TCP takes responsibility for the data it advances RCV.NXT 
over the data accepted, and adjusts RCV.WND as apporopriate to the 
current buffer availability.    The total of RCV.NXT and RCV.WND should 
not be reduced. 
Please note the window management suggestions.
Send an acknowledgment of the form:

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
This acknowledgment should be piggybacked on a segment being 
transmitted if possible without incurring undue delay. 

CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

This should not occur, since a FIN has been received from the remote 
side.    Ignore the segment text. 

eighth, check the FIN bit,
Do not process the FIN if the state is CLOSED, LISTEN or SYN-SENT since 
the SEG.SEQ cannot be validated; drop the segment and return. 
If the FIN bit is set, signal the user "connection closing" and return any 
pending RECEIVEs with same message, advance RCV.NXT over the FIN, 
and send an acknowledgment for the FIN.    Note that FIN implies PUSH for 
any segment text not yet delivered to the user. 

SYN-RECEIVED STATE
ESTABLISHED STATE

Enter the CLOSE-WAIT state.
FIN-WAIT-1 STATE

If our FIN has been ACKed (perhaps in this segment), then enter 
TIME-WAIT, start the time-wait timer, turn off the other timers; 
otherwise enter the CLOSING state. 

FIN-WAIT-2 STATE



Enter the TIME-WAIT state.    Start the time-wait timer, turn off the 
other timers. 

CLOSE-WAIT STATE
Remain in the CLOSE-WAIT state.

CLOSING STATE
Remain in the CLOSING state.

LAST-ACK STATE
Remain in the LAST-ACK state.

TIME-WAIT STATE
Remain in the TIME-WAIT state.    Restart the 2 MSL time-wait timeout. 

and return.



RFC-793 Transmission Control Protocol - Event Processing

USER TIMEOUT

For any state if the user timeout expires, flush all queues, signal the user "error:    connection
aborted due to user timeout" in general and for any outstanding calls, delete the TCB, enter 
the CLOSED state and return.

Discussion
It would be better to notify the application of the timeout rather than letting 
TCP force the connection closed, see TCP Conneciton Failures.



RFC-793 Transmission Control Protocol - Event Processing

RETRANSMISSION TIMEOUT

For any state if the retransmission timeout expires on a segment in the retransmission 
queue, send the segment at the front of the retransmission queue again, reinitialize the 
retransmission timer, and return. 



RFC-793 Transmission Control Protocol - Event Processing

TIME-WAIT TIMEOUT

If the time-wait timeout expires on a connection delete the TCB, enter the CLOSED state and 
return. 



                                            GLOSSARY

1822
BBN Report 1822, "The Specification of the Interconnection of a Host and an IMP".    The 
specification of interface between a host and the ARPANET. 
ACK
A control bit (acknowledge) occupying no sequence space, which indicates that the 
acknowledgment field of this segment specifies the next sequence number the sender of 
this segment is expecting to receive, hence acknowledging receipt of all previous sequence 
numbers. 
ARPANET message
The unit of transmission between a host and an IMP in the ARPANET.    The maximum size is 
about 1012 octets (8096 bits). 
ARPANET packet
A unit of transmission used internally in the ARPANET between IMPs.    The maximum size is 
about 126 octets (1008 bits). 
connection
A logical communication path identified by a pair of sockets. 
datagram
A message sent in a packet switched computer communications network. 
Destination Address
The destination address, usually the network and host identifiers. 
FIN
A control bit (finis) occupying one sequence number, which indicates that the sender will 
send no more data or control occupying sequence space. 
fragment
A portion of a logical unit of data, in particular an internet fragment is a portion of an 
internet datagram. 
FTP
A file transfer protocol.
header
Control information at the beginning of a message, segment, fragment, packet or block of 
data. 
host
A computer.    In particular a source or destination of messages from the point of view of the 
communication network. 
Identification
An Internet Protocol field.    This identifying value assigned by the sender aids in assembling 
the fragments of a datagram. 
IMP
The Interface Message Processor, the packet switch of the ARPANET. 



internet address
A source or destination address specific to the host level.
internet datagram
The unit of data exchanged between an internet module and the higher level protocol 
together with the internet header.
internet fragment
A portion of the data of an internet datagram with an internet header.
IP
Internet Protocol.
IRS
The Initial Receive Sequence number.    The first sequence number used by the sender on a 
connection.
ISN
The Initial Sequence Number.    The first sequence number used on a connection, (either ISS 
or IRS).    Selected on a clock based procedure.
ISS
The Initial Send Sequence number.    The first sequence number used by the sender on a 
connection.    leader Control information at the beginning of a message or block of data.    In 
particular, in the ARPANET, the control information on an ARPANET message at the host-IMP 
interface.
left sequence
This is the next sequence number to be acknowledged by the data receiving TCP (or the 
lowest currently unacknowledged sequence number) and is sometimes referred to as the left
edge of the send window.
local packet
The unit of transmission within a local network.    module An implementation, usually in 
software, of a protocol or other procedure.
MSL
Maximum Segment Lifetime, the time a TCP segment can exist in the internetwork system.    
Arbitrarily defined to be 2 minutes.
octet
An eight bit byte.
Options
An Option field may contain several options, and each option may be several octets in 
length.    The options are used primarily in testing situations; for example, to carry 
timestamps.    Both the Internet Protocol and TCP provide for options fields.
packet
A package of data with a header which may or may not be logically complete.    More often a 
physical packaging than a logical packaging of data.
port
The portion of a socket that specifies which logical input or output channel of a process is 
associated with the data.



process
A program in execution.    A source or destination of data from the point of view of the TCP or
other host-to-host protocol.
PUSH
A control bit occupying no sequence space, indicating that this segment contains data that 
must be pushed through to the receiving user.
RCV.NXT receive next sequence number
RCV.UP
receive urgent pointer
RCV.WND
receive window    receive next sequence number This is the next sequence number the local 
TCP is expecting to receive.
receive window
This represents the sequence numbers the local (receiving) TCP is willing to receive.    Thus, 
the local TCP considers that segments overlapping the range RCV.NXT to RCV.NXT + 
RCV.WND - 1 carry acceptable data or control. Segments containing sequence numbers 
entirely outside of this range are considered duplicates and discarded.
RST
A control bit (reset), occupying no sequence space, indicating that the receiver should delete
the connection without further interaction.    The receiver can determine, based on the 
sequence number and acknowledgment fields of the incoming segment, whether it should 
honor the reset command or ignore it.    In no case does receipt of a segment containing RST 
give rise to a RST in response.
RTP
Real Time Protocol:    A host-to-host protocol for communication of time critical information.
SEG.ACK
segment acknowledgment
SEG.LEN
segment length
SEG.PRC
segment precedence value
SEG.SEQ
segment sequence
SEG.UP
segment urgent pointer field
SEG.WND
segment window field    segment A logical unit of data, in particular a TCP segment is the 
unit of data transfered between a pair of TCP modules.
segment acknowledgment
The sequence number in the acknowledgment field of the arriving segment.
segment length



The amount of sequence number space occupied by a segment, including any controls 
which occupy sequence space.
segment sequence
The number in the sequence field of the arriving segment.    send sequence This is the next 
sequence number the local (sending) TCP will use on the connection.    It is initially selected 
from an initial sequence number curve (ISN) and is incremented for each octet of data or 
sequenced control transmitted.
send window
This represents the sequence numbers which the remote (receiving) TCP is willing to receive.
It is the value of the window field specified in segments from the remote (data receiving) 
TCP.    The range of new sequence numbers which may be emitted by a TCP lies between 
SND.NXT and SND.UNA + SND.WND - 1. (Retransmissions of sequence numbers between 
SND.UNA and SND.NXT are expected, of course.) 
SND.NXT
send sequence
SND.UNA
left sequence
SND.UP
send urgent pointer
SND.WL1
segment sequence number at last window update
SND.WL2
segment acknowledgment number at last window update
SND.WND
send window
socket
An address which specifically includes a port identifier, that is, the concatenation of an 
Internet Address with a TCP port. 
Source Address
The source address, usually the network and host identifiers.
SYN
A control bit in the incoming segment, occupying one sequence number, used at the 
initiation of a connection, to indicate where the sequence numbering will start. 
TCB
Transmission control block, the data structure that records the state of a connection. 
TCB.PRC
The precedence of the connection.
TCP
Transmission Control Protocol:    A host-to-host protocol for reliable communication in 
internetwork environments. 
TOS



Type of Service, an Internet Protocol field.
Type of Service
An Internet Protocol field which indicates the type of service for this internet fragment. 
URG
A control bit (urgent), occupying no sequence space, used to indicate that the receiving user
should be notified to do urgent processing as long as there is data to be consumed with 
sequence numbers less than the value indicated in the urgent pointer. 
urgent pointer
A control field meaningful only when the URG bit is on.    This field communicates the value 
of the urgent pointer which indicates the data octet associated with the sending user's 
urgent call. 
                                          REFERENCES

[1]    Cerf, V., and R. Kahn, "A Protocol for Packet Network Intercommunication", IEEE 
Transactions on Communications, Vol. COM-22, No. 5, pp 637-648, May 1974. 
[2]    Postel, J. (ed.), "Internet Protocol - DARPA Internet Program Protocol Specification", RFC 
791, USC/Information Sciences Institute, September 1981. 
[3]    Dalal, Y. and C. Sunshine, "Connection Management in Transport Protocols", Computer 
Networks, Vol. 2, No. 6, pp. 454-473, December 1978. 
[4]    Postel, J., "Assigned Numbers", RFC 790, USC/Information Sciences Institute, September
1981. 



RFC-795 Service Mappings
J. Postel

USC/Information Sciences Institute
September 1981

This memo is no longer valid but is included here for historical 
purposes.
This memo describes the relationship between the Internet Protocol (IP) Type of Service and 
the service parameters of specific networks.
The IP Type of Service has the following fields:

Bits 0-2: Precedence.
Bit 3: 0 = Normal Delay,            1 = Low Delay.
Bit 4: 0 = Normal Throughput, 1 = High Throughput.
Bit 5: 0 = Normal Relibility, 1 = High Relibility.
Bit 6-7: Reserved for Future Use.

 
111 - Network Control
110 - Internetwork Control
101 - CRITIC/ECP
100 - Flash Override
011 - Flash
010 - Immediate
001 - Priority
000 - Routine

The individual networks listed here have very different and specific service choices. 
AUTODIN II
ARPANET
PRNET
SATNET



RFC-795 Service Mappings

AUTODIN II

The service choices are in two parts: Traffic Acceptance Catagories, and Application Type.    
The Traffic Acceptance Catagories can be mapped into and out of the IP TOS precedence 
reasonably directly. The    Application types can be mapped into the remaining IP TOS fields 
as follows. 
           TA        DELAY       THROUGHPUT      RELIABILITY  

I/A 1 0 0
Q/R 0 0 0
B1 0 1 0
B2 0 1 1

         DTR          TA  
000 Q/R
001 Q/R
010 B1
011 B2
100 I/A
101 I/A
110 I/A
111 error



RFC-795 Service Mappings

ARPANET

The service choices are in quite limited.    There is one priority bit that can be mapped to the 
high order bit of the IP TOS precedence. The other choices are to use the regular ("Type 0") 
messages vs. the uncontrolled ("Type 3") messages, or to use single packet vs. multipacket 
messages.    The mapping of ARPANET parameters into IP TOS parameters can be as follows. 
         Type        Size       DELAY       THROUGHPUT      RELIABILITY  

0 S 1 0 0
0 M 0 0 0
3 S 1 0 0
3 M not allowed

         DTR        Type        Size  
000 0 M
001 0 M
010 0 M
011 0 M
100 3 S
101 0 S
110 3 S
111 error



RFC-795 Service Mappings

PRNET

There is no priority indication.    The two choices are to use the station routing vs. point-to-
point routing, or to require acknowledgments vs. having no acknowledgments.    The 
mapping of PRNET parameters into IP TOS parameters can be as follows. 
       Routing     Acks      DELAY       THROUGHPUT      RELIABILITY  

ptp no 1 0 0
ptp yes 1 0 1

station no 0 0 0
station yes 0 0 1

         DTR      Routing     Acks  
000 station no
001 station yes
010 station no
011 station yes
100 ptp no
101 ptp yes
110 ptp no
111 ptp yes



RFC-795 Service Mappings

SATNET

There is no priority indication.    The four choices are to use the block vs. stream type, to 
select one of four delay catagories, to select one of two holding time strategies, or to 
request one of three reliability levels.    The mapping of SATNET parameters into IP TOS 
parameters can thus quite complex there being 2*4*2*3=48 distinct possibilities. 



RFC-796 Address Mappings
J. Postel

USC/Information Sciences Institute
September 1981

Internet Addresses
This memo describes the relationship between address fields used in the Internet Protocol 
and several specific networks. 
An internet address is a 32 bit quantity, with several codings as shown below. 
The first type (or class a) of address has a 7-bit network number and a 24-bit local address. 

The second type (or class b) of address has a 14-bit network number and a 16-bit local 
address.

The third type (or class c) of address has a 21-bit network number and a 8-bit local address. 

The local address carries information to address a host in the network identified by the 
network number.    Since each network has a    particular address format and length, the 
following section describes the mapping between internet local addresses and the actual 
address format used in the particular network. 
Internet to Local Net Address Mappings
The following transformations are used to convert internet addresses to local net addresses 
and vice versa: 

AUTODIN II
ARPANET
DCNs
EDN
LCSNET
PRNET
SATNET
WBCNET



RFC-796 Address Mappings - Internet to Local Net Address Mappings

AUTODIN II

The AUTODIN II has 16 bit subscriber addresses which identify either a host or a terminal.    
These addresses may be assigned independent of location.    The 16 bit AUTODIN II address 
is located in the 24 bit internet local address as shown below. 
The network number of the AUTODIN II is 26 (Class A).



RFC-796 Address Mappings - Internet to Local Net Address Mappings

ARPANET

The ARPANET (with 96 bit leaders) has 24 bit addresses.    The 24 bits are assigned to host, 
logical host, and IMP leader fields as illustrated below.    These 24 bit addresses are used 
directly for the 24 bit local address of the internet address.    However, the ARPANET IMPs do 
not yet support this form of logical addressing so the logical host field is set to zero in the 
leader. 
The network number of the ARPANET is 10 (Class A).



RFC-796 Address Mappings - Internet to Local Net Address Mappings

DCNs

The Distributed Computing Networks (DCNs) at COMSAT and UCL use 16 bit addresses 
divided into an 8 bit host identifier (HID), and an 8 bit process identifier (PID).    The format 
locates these 16 bits in the low order 16 bits of the 24 bit internet address, as shown below. 
The network number of the COMSAT-DCN is 29 (Class A), and of the UCL-DCN is 30 (Class A).



RFC-796 Address Mappings - Internet to Local Net Address Mappings

EDN

The Experimental Data Network at the Defense Communication Engineering Center (DCEC) 
uses the same type of addresses as the ARPANET (with 96 bit leaders) and has 24 bit 
addresses. The 24 bits are assigned to host, logical host, and IMP leader fields as illustrated 
below.    These 24 bit addresses are used directly for the 24 bit local address of the internet 
address. However, the IMPs do not yet support this form of logical addressing so the logical 
host field is set to zero in the leader. 
The network number of the EDN is 21 (Class A).



RFC-796 Address Mappings - Internet to Local Net Address Mappings

LCSNET

The LCS NET at MIT's Laboratory for Computer Science uses 32 bit addresses of several 
formats.    The most common format locates the low order 24 bits of the 32 bit LCS NET 
address in the 24 bit internet local address, as shown below. 
The network number of the LCS NET is 18 (Class A).



RFC-796 Address Mappings - Internet to Local Net Address Mappings

PRNET

The Packet Radio networks use 16 bit addresses.    These are independent of location (indeed
the hosts may be mobile).    The 16 bit PRNET addresses are located in the 24 bit internet 
local address as shown below. 
The network numbers of the PRNETs are:

BBN-PR 1 (Class A)
SF-PR-1 2 (Class A)
SILL-PR 5 (Class A)
SF-PR-2 6 (Class A)
BRAGG-PR 9 (Class A)
DC-PR 20 (Class A)



RFC-796 Address Mappings - Internet to Local Net Address Mappings

SATNET

The Atlantic Satellite Packet Network has 16 bit addresses for hosts.    These addresses may 
be assigned independent of location (i.e., ground station).    It is also possible to assign 
several addresses to one physical host, so the addresses are logical addresses.    The 16 bit 
SATNET address is located in the 24 bit internet local address as shown below. 
The network number of the SATNET is 4 (Class A).



RFC-796 Address Mappings - Internet to Local Net Address Mappings

WBCNET

The Wideband Communication Satellite Packet Network (WBCNET) Host Access Protocol 
(HAP) has 16 bit addresses for hosts.    It is possible to assign several addresses to one 
physical host, so the addresses are logical addresses.    The 16 bit WBCNET address is 
divided into a HAP Number field and a Local Address field, and is located in the 24 bit 
internet local address as shown below.
The network number of the WBCNET is 28 (Class A).



RFC-813 Window and Acknowledgement Strategy in TCP
David D. Clark

MIT Laboratory for Computer Science
July 1982

This document describes implementation strategies to deal with two mechanisms in TCP, the
window and the acknowledgement.    These mechanisms are described in the specification 
document, but it is possible, while complying with the specification, to produce 
implementations which yield very bad performance.    Happily, the pitfalls possible in window
and acknowledgement strategies are very easy to avoid.    
It is a much more difficult exercise to verify the performance of a specification than the 
correctness.    Certainly, we have less experience in this area, and we certainly lack any 
useful formal technique.    Nonetheless, it is important to attempt a specification in this area, 
because different implementors might otherwise choose superficially reasonable algorithms 
which interact poorly with each other.    This document presents a particular set of 
algorithms which have received testing in the field, and which appear to work properly with 
each other.    With more experience, these algorithms may become part of the formal 
specification: until such time their use is recommended.

The Mechanisms
Silly Window Syndrome
Improved Window Algorithm
Improved Acknowledgement Algorithm
Conservative vs. Optimistic Windows
Conclusions
Dynamic Calculation of Acknowledgement Delay



RFC-813 Window and Acknowledgement Strategy in TCP

The Mechanisms

The acknowledgement mechanism is at the heart of TCP.    Very simply, when data arrives at 
the recipient, the protocol requires that it send back an acknowledgement of this data.    The 
protocol specifies that the bytes of data are sequentially numbered, so that the recipient can
acknowledge data by naming the highest numbered byte of data it has received, which also 
acknowledges the previous bytes (actually, it identifies the first byte of data which it has not
yet received, but this is a small detail).    The protocol contains only a general assertion that 
data should be acknowledged promptly, but gives no more specific indication as to how 
quickly an acknowledgement must be sent, or how much data should be acknowledged in 
each separate acknowledgement.    
The window mechanism is a flow control tool.    Whenever appropriate, the recipient of data 
returns to the sender a number, which is (more or less) the size of the buffer which the 
receiver currently has available for additional data.    This number of bytes, called the 
window, is the maximum which the sender is permitted to transmit until the receiver returns 
some additional window.    Sometimes, the receiver will have no buffer space available, and 
will return a window value of zero.    Under these circumstances,the protocol requires the 
sender to send a small segment to the receiver now and then, to see if more data is 
accepted.    If the window remains closed at zero for some substantial period, and the sender
can obtain no response from the receiver, the protocol requires the sender to conclude that 
the receiver has failed, and to close the connection.    Again, there is very little performance 
information in the specification, describing under what circumstances the window should be 
increased, and how the sender should respond to such revised information.    
A bad implementation of the window algorithm can lead to extremely poor performance 
overall.    The degradations which occur in throughput and CPU utilizations can easily be 
several factors of ten, not just a fractional increase.    This particular phenomenon is specific 
enough that it has been given the name of Silly Window Syndrome, or SWS.    Happily SWS is
easy to avoid if a few simple rules are observed.    The most important function of this memo
is to describe SWS, so that implementors will understand the general nature of the problem, 
and to describe algorithms which will prevent its occurrence.    This document also describes 
performance enhancing algorithms which relate to acknowledgement, and discusses the 
way acknowledgement and window algorithms interact as part of SWS.    



RFC-813 Window and Acknowledgement Strategy in TCP

Silly Window Syndrome

In order to understand SWS, we must first define two new terms.    Superficially, the window 
mechanism is very simple: there is a number, called "the window", which is returned from 
the receiver to the sender.    However, we must have a more detailed way of talking about 
the meaning of this number.    The receiver of data computes a value which we will call the 
"offered window".    In a simple case, the offered window corresponds to the amount of buffer
space available in the receiver.    This correspondence is not necessarily exact, but is a 
suitable model for the discussion to follow.    It is the offered window which is actually 
transmitted back from the receiver to the sender.    The sender uses the offered window to 
compute a different value, the "usable window", which is the offered window minus the 
amount of outstanding unacknowledged data.    The usable window is less than or equal to 
the offered window, and can be much smaller.    
Consider the following simple example.    The receiver initially provides an offered window of 
1,000.    The sender uses up this window by sending five segments of 200 bytes each.    The 
receiver, on processing the first of these segments, returns an acknowledgement which also 
contains an updated window value.    Let us assume that the receiver of the data has 
removed the first 200 bytes from the buffer, so that the receiver once again has 1,000 bytes 
of available buffer.    Therefore, the receiver would return, as before, an offered window of 
1,000 bytes.    The sender, on receipt of this first acknowledgement, now computes the 
additional number of bytes which may be sent.    In fact, of the 1,000 bytes which the 
recipient is prepared to receive at this time, 800 are already in transit, having been sent in 
response to the previous offered window.    In this case, the usable window is only 200 bytes. 
Let us now consider how SWS arises.    To continue the previous example, assume that at 
some point, when the sender computes a useable window of 200 bytes, it has only 50 bytes 
to send until it reaches a "push" point.    It thus sends 50 bytes in one segment, and 150 
bytes in the next segment.    Sometime later, this 50-byte segment will arrive at the 
recipient, which will process and remove the 50 bytes and once again return an offered 
window of 1,000 bytes.    However, the sender will now compute that there are 950 bytes in 
transit in the network, so that the useable window is now only 50 bytes.    Thus, the sender 
will once again send a 50 byte segment, even though there is no longer a natural boundary 
to force it.    
In fact, whenever the acknowledgement of a small segment comes back, the useable 
window associated with that acknowledgement will cause another segment of the same 
small size to be sent, until some abnormality breaks the pattern.    It is easy to see how small
segments arise, because natural boundaries in the data occasionally cause the sender to 
take a computed useable window and divide it up between two segments.    Once that 
division has occurred, there is no natural way for those useable window allocations to be 
recombined; thus the breaking up of the useable window into small pieces will persist.    
Thus, SWS is a degeneration in the throughput which develops over time, during a long data 
transfer.    If the sender ever stops, as for example when it runs out of data to send, the 
receiver will eventually acknowledge all the outstanding data, so that the useable window 
computed by the sender will equal the full offered window of the receiver.    At this point the 
situation will have healed, and further data transmission over the link will occur efficiently.    
However, in large file transfers, which occur without interruption, SWS can cause appalling 
performance.    The network between the sender and the receiver becomes clogged with 
many small segments, and an equal number of acknowledgements, which in turn causes lost
segments, which triggers massive retransmission.    Bad cases of SWS have been seen in 
which the average segment size was one-tenth of the size the sender and receiver were 
prepared to deal with, and the average number of retransmission per successful segments 



sent was five.    
Happily, SWS is trivial to avoid.    The following sections describe two algorithms, one 
executed by the sender, and one by the receiver, which appear to eliminate SWS completely.
Actually, either algorithm by itself is sufficient to prevent SWS, and thus protect a host from 
a foreign implementation which has failed to deal properly with this problem.    The two 
algorithms taken together produce an additional reduction in CPU consumption, observed in 
practice to be as high as a factor of four.    



RFC-813 Window and Acknowledgement Strategy in TCP

Improved Window Algorithms

The receiver of data can take a very simple step to eliminate SWS.    When it disposes of a 
small amount of data, it can artificially reduce the offered window in subsequent 
acknowledgements, so that the useable window computed by the sender does not permit 
the sending of any further data.      At some later time, when the receiver has processed a 
substantially larger amount of incoming data, the artificial limitation on the offered window 
can be removed all at once, so that the sender computes a sudden large jump rather than a 
sequence of small jumps in the useable window.    
At this level, the algorithm is quite simple, but in order to determine exactly when the 
window should be opened up again, it is necessary to look at some of the other details of the
implementation.    Depending on whether the window is held artificially closed for a short or 
long time, two problems will develop.    The one we have already discussed -- never closing 
the window artificially -- will lead to SWS.    On the other hand, if the window is only opened 
infrequently, the pipeline of data in the network between the sender and the receiver may 
have emptied out while the sender was being held off, so that a delay is introduced before 
additional data arrives from the sender.    This delay does reduce throughput, but it does not 
consume network resources or CPU resources in the process, as does SWS.    Thus, it is in 
this direction that one ought to overcompensate.    For a simple implementation, a rule of 
thumb that seems to work in practice is to artificially reduce the offered window until the 
reduction constitutes one half of the available space, at which point increase the window to 
advertise the entire space again.    In any event, one ought to make the chunk by which the 
window is opened at least permit one reasonably large segment.    (If the receiver is so short 
of buffers that it can never advertise a large enough buffer to permit at least one large 
segment, it is hopeless to expect any sort of high throughput. ) 
Note: The algorithm described below for the sender is obsolete and should not be 

used.    An improved algorithm is given in the section "When to Send     Data  ".
There is an algorithm that the sender can use to achieve the same effect described above: a
very simple and elegant rule first described by Michael Greenwald at MIT.    The sender of the
data uses the offered window to compute a useable window, and then compares the useable
window to the offered window, and refrains from sending anything if the ratio of useable to 
offered is less than a certain fraction.    Clearly, if the computed useable window is small 
compared to the offered window, this means that a substantial amount of previously sent 
information is still in the pipeline from the sender to the receiver, which in turn means that 
the sender can count on being granted a larger useable window in the future.    Until the 
useable window reaches a certain amount, the sender should simply refuse to send 
anything.    
Simple experiments suggest that the exact value of the ratio is not very important, but that 
a value of about 25 percent is sufficient to avoid SWS and achieve reasonable throughput, 
even for machines with a small offered window.    An additional enhancement which might 
help throughput would be to attempt to hold off sending until one can send a maximum size 
segment.    Another enhancement would be to send anyway, even if the ratio is small, if the 
useable window is sufficient to hold the data available up to the next "push point".    
This algorithm at the sender end is very simple.    Notice that it is not necessary to set a 
timer to protect against protocol lockup when postponing the send operation.    Further 
acknowledgements, as they arrive, will inevitably change the ratio of offered to useable 
window.    (To see this, note that when all the data in the catanet pipeline has arrived at the 
receiver, the resulting acknowledgement must yield an offered window and useable window 
that equal each other. ) If the expected acknowledgements do not arrive, the retransmission 



mechanism will come into play to assure that something finally happens.    Thus, to add this 
algorithm to an existing TCP implementation usually requires one line of code.    As part of 
the send algorithm it is already necessary to compute the useable window from the offered 
window.    It is a simple matter to add a line of code which, if the ratio is less than a certain 
percent, sets the useable window to zero.    The results of SWS are so devastating that no 
sender should be without this simple piece of insurance.    



RFC-813 Window and Acknowledgement Strategy in TCP

Improved Acknowledgement Algorithms

In the beginning of this paper, an overly simplistic implementation of TCP was described, 
which led to SWS.    One of the characteristics of this implementation was that the recipient 
of data sent a separate acknowledgement for every segment that it received.    This 
compulsive acknowledgement was one of the causes of SWS, because each 
acknowledgement provided some new useable window, but even if one of the algorithms 
described above is used to eliminate SWS, overly frequent acknowledgement still has a 
substantial problem, which is that it greatly increases the processing time at the sender's 
end.    Measurement of TCP implementations, especially on large operating systems, indicate
that most of the overhead of dealing with a segment is not in the processing at the TCP or IP 
level, but simply in the scheduling of the handler which is required to deal with the segment. 
A steady dribble of acknowledgements causes a high overhead in scheduling, with very little
to show for it.    This waste is to be avoided if possible.    
There are two reasons for prompt acknowledgement.    One is to prevent retransmission.    
We will discuss later how to determine whether unnecessary retransmission is occurring.    
The other reason one acknowledges promptly is to permit further data to be sent.    However,
the previous section makes quite clear that it is not always desirable to send a little bit of 
data, even though the receiver may have room for it.    Therefore, one can state a general 
rule that under normal operation, the receiver of data need not, and for efficiency reasons 
should not, acknowledge the data unless either the acknowledgement is intended to 
produce an increased useable window, is necessary in order to prevent retransmission or is 
being sent as part of a reverse direction segment being sent for some other reason.    We will
consider an algorithm to achieve these goals.    
Only the recipient of the data can control the generation of acknowledgements.    Once an 
acknowledgement has been sent from the receiver back to the sender, the sender must 
process it.    Although the extra overhead is incurred at the sender's end, it is entirely under 
the receiver's control.    Therefore, we must now describe an algorithm which occurs at the 
receiver's end.    Obviously, the algorithm must have the following general form; sometimes 
the receiver of data, upon processing a segment, decides not to send an acknowledgement 
now, but to postpone the acknowledgement until some time in the future, perhaps by 
setting a timer.    The peril of this approach is that on many large operating systems it is 
extremely costly to respond to a timer event, almost as costly as to respond to an incoming 
segment.    Clearly, if the receiver of the data, in order to avoid extra overhead at the sender 
end, spends a great deal of time responding to timer interrupts, no overall benefit has been 
achieved, for efficiency at the sender end is achieved by great thrashing at the receiver end. 
We must find an algorithm that avoids both of these perils.    
The following scheme seems a good compromise.    The receiver of data will refrain from 
sending an acknowledgement under certain circumstances, in which case it must set a timer
which will cause the acknowledgement to be sent later.    However, the receiver should do 
this only where it is a reasonable guess that some other event will intervene and prevent the
necessity of the timer interrupt.    The most obvious event on which to depend is the arrival 
of another segment.    So, if a segment arrives, postpone sending an acknowledgement if 
both of the following conditions hold.    First, the push bit is not set in the segment, since it is 
a reasonable assumption that there is more data coming in a subsequent segment.    Second,
there is no revised window information to be sent back.    
This algorithm will insure that the timer, although set, is seldom used.    The interval of the 
timer is related to the expected inter- segment delay, which is in turn a function of the 
particular network through which the data is flowing.    For the Arpanet, a reasonable interval
seems to be 200 to 300 milliseconds.    Appendix A describes an adaptive algorithm for 



measuring this delay.    
The section on improved window algorithms described both a receiver algorithm and a 
sender algorithm, and suggested that both should be used.    The reason for this is now clear.
While the sender algorithm is extremely simple, and useful as insurance, the receiver 
algorithm is required in order that this improved acknowledgement strategy work.    If the 
receipt of every segment causes a new window value to be returned, then of necessity an 
acknowledgement will be sent for every data segment.    When, according to the strategy of 
the previous section, the receiver determines to artificially reduce the offered window, that 
is precisely the circumstance under which an acknowledgement need not be sent.      When 
the receiver window algorithm and the receiver acknowledgement algorithm are used 
together, it will be seen that sending an acknowledgement will be triggered by one of the 
following events.    First, a push bit has been received.    Second, a temporary pause in the 
data stream is detected.    Third, the offered window has been artificially reduced to one-half 
its actual value.    
In the beginning of this section, it was pointed out that there are two reasons why one must 
acknowledge data.    Our consideration at this point has been concerned only with the first, 
that an acknowledgement must be returned as part of triggering the sending of new data.    
It is also necessary to acknowledge whenever the failure to do so would trigger 
retransmission by the sender.    Since the retransmission interval is selected by the sender, 
the receiver of the data cannot make a precise determination of when the acknowledgement
must be sent.    However, there is a rough rule the sender can use to avoid retransmission, 
provided that the receiver is reasonably well behaved.    
We will assume that sender of the data uses the optional algorithm described in the TCP 
specification, in which the roundtrip delay is measured using an exponential decay 
smoothing algorithm.    Retransmission of a segment occurs if the measured delay for that 
segment exceeds the smoothed average by some factor.    To see how retransmission might 
be triggered, one must consider the pattern of segment arrivals at the receiver.    The goal of
our strategy was that the sender should send off a number of segments in close sequence, 
and receive one acknowledgement for the whole burst.    The acknowledgement will be 
generated by the receiver at the time that the last segment in the burst arrives at the 
receiver.    (To ensure the prompt return of the acknowledgement, the sender could turn on 
the "push" bit in the last segment of the burst. ) The delay observed at the sender between 
the initial transmission of a segment and the receipt of the acknowledgement will include 
both the network transit time, plus the holding time at the receiver.    The holding time will 
be greatest for the first segments in the burst, and smallest for the last segments in the 
burst.    Thus, the smoothing algorithm will measure a delay which is roughly proportional to 
the average roundtrip delay for all the segments in the burst.    Problems will arise if the 
average delay is substantially smaller than the maximum delay and the smoothing 
algorithm used has a very small threshold for triggering retransmission.    The widest 
variation between average and maximum delay will occur when network transit time is 
negligible, and all delay is processing time.    In this case, the maximum will be twice the 
average (by simple algebra) so the threshold that controls retransmission should be 
somewhat more than a factor of two.    
In practice, retransmission of the first segments of a burst has not been a problem because 
the delay measured consists of the network roundtrip delay, as well as the delay due to 
withholding the acknowledgement, and the roundtrip tends to dominate except in very low 
roundtrip time situations (such as when sending to one's self for test purposes).    This low 
roundtrip situation can be covered very simply by including a minimum value below which 
the roundtrip estimate is not permitted to drop.    
In our experiments with this algorithm, retransmission due to faulty calculation of the 
roundtrip delay occurred only once, when the parameters of the exponential smoothing 
algorithm had been misadjusted so that they were only taking into account the last two or 
three segments sent.    Clearly, this will cause trouble since the last two or three segments of



any burst are the ones whose holding time at the receiver is minimal, so the resulting total 
estimate was much lower than appropriate.    Once the parameters of the algorithm had 
been adjusted so that the number of segments taken into account was approximately twice 
the number of segments in a burst of average size, with a threshold factor of 1. 5, no further
retransmission has ever been identified due to this problem, including when sending to 
ourself and when sending over high delay nets.    



RFC-813 Window and Acknowledgement Strategy in TCP

Conservative Vs. Optimistic Windows

According to the TCP specification, the offered window is presumed to have some 
relationship to the amount of data which the receiver is actually prepared to receive.    
However, it is not necessarily an exact correspondence.    We will use the term "conservative 
window" to describe the case where the offered window is precisely no larger than the actual
buffering available.    The drawback to conservative window algorithms is that they can 
produce very low throughput in long delay situations.    It is easy to see that the maximum 
input of a conservative window algorithm is one bufferfull every roundtrip delay in the net, 
since the next bufferfull cannot be launched until the updated window/acknowledgement 
information from the previous transmission has made the roundtrip.    
In certain cases, it may be possible to increase the overall throughput of the transmission by
increasing the offered window over the actual buffer available at the receiver.    Such a 
strategy we will call an "optimistic window" strategy.    The optimistic strategy works if the 
network delivers the data to the recipient sufficiently slowly that it can process the data fast 
enough to keep the buffer from overflowing.    If the receiver is faster than the sender, one 
could, with luck, permit an infinitely optimistic window, in which the sender is simply 
permitted to send full-speed.    If the sender is faster than the receiver, however, and the 
window is too optimistic, then some segments will cause a buffer overflow, and will be 
discarded.    Therefore, the correct strategy to implement an optimistic window is to increase 
the window size until segments start to be lost.    This only works if it is possible to detect 
that the segment has been lost.    In some cases, it is easy to do, because the segment is 
partially processed inside the receiving host before it is thrown away.    In other cases, 
overflows may actually cause the network interface to be clogged, which will cause the 
segments to be lost elsewhere in the net.    It is inadvisable to attempt an optimistic window 
strategy unless one is certain that the algorithm can detect the resulting lost segments.    
However, the increase in throughput which is possible from optimistic windows is quite 
substantial.    Any systems with small buffer space should seriously consider the merit of 
optimistic windows.    
The selection of an appropriate window algorithm is actually more complicated than even 
the above discussion suggests.    The following considerations are not presented with the 
intention that they be incorporated in current implementations of TCP, but as background for
the sophisticated designer who is attempting to understand how his TCP will respond to a 
variety of networks, with different speed and delay characteristics.    The particular pattern of
windows and acknowledgements sent from receiver to sender influences two characteristics 
of the data being sent.    First, they control the average data rate.    Clearly, the average rate 
of the sender cannot exceed the average rate of the receiver, or long-term buffer overflow 
will occur.    Second, they influence the burstiness of the data coming from the sender.    
Burstiness has both advantages and disadvantages.    The advantage of burstiness is that it 
reduces the CPU processing necessary to send the data.    This follows from the observed 
fact, especially on large machines, that most of the cost of sending a segment is not the TCP
or IP processing, but the scheduling overhead of getting started.    
On the other hand, the disadvantage of burstiness is that it may cause buffers to overflow, 
either in the eventual recipient, which was discussed above, or in an intermediate gateway, 
a problem ignored in this paper.    The algorithms described above attempts to strike a 
balance between excessive burstiness, which in the extreme cases can cause delays 
because a burst is not requested soon enough, and excessive fragmentation of the data 
stream into small segments, which we identified as Silly Window Syndrome.    
Under conditions of extreme delay in the network, none of the algorithms described above 
will achieve adequate throughput.    Conservative window algorithms have a predictable 



throughput limit, which is one windowfull per roundtrip delay.    Attempts to solve this by 
optimistic window strategies may cause buffer overflows due to the bursty nature of the 
arriving data.    A very sophisticated way to solve this is for the receiver, having measured by
some means the roundtrip delay and intersegment arrival rate of the actual connection, to 
open his window, not in one optimistic increment of gigantic proportion, but in a number of 
smaller optimistic increments, which have been carefully spaced using a timer so that the 
resulting smaller bursts which arrive are each sufficiently small to fit into the existing 
buffers.    One could visualize this as a number of requests flowing backwards through the 
net which trigger in return a number of bursts which flow back spaced evenly from the 
sender to the receiver.    The overall result is that the receiver uses the window mechanism 
to control the burstiness of the arrivals, and the average rate.    
To my knowledge, no such strategy has been implemented in any TCP.    First, we do not 
normally have delays high enough to require this kind of treatment.    Second, the strategy 
described above is probably not stable unless it is very carefully balanced.    Just as buses on 
a single bus route tend to bunch up, bursts which start out equally spaced could well end up 
piling into each other, and forming the single large burst which the receiver was hoping to 
avoid.    It is important to understand this extreme case, however, in order to understand the 
limits beyond which TCP, as normally implemented, with either conservative or simple 
optimistic windows can be expected to deliver throughput which is a reasonable percentage 
of the actual network capacity.    



RFC-813 Window and Acknowledgement Strategy in TCP

Conclusions

This paper describes three simple algorithms for performance enhancement in TCP, one at 
the sender end and two at the receiver.    The sender algorithm is to refrain from sending if 
the useable window is smaller than 25 percent of the offered window.    The receiver 
algorithms are first, to artificially reduce the offered window when processing new data if the
resulting reduction does not represent more than some fraction, say 50 percent, of the 
actual space available, and second, to refrain from sending an acknowledgment at all if two 
simple conditions hold.    
Either of these algorithms will prevent the worst aspects of Silly Window Syndrome, and 
when these algorithms are used together, they will produce substantial improvement in CPU 
utilization, by eliminating the process of excess acknowledgements.    
Preliminary experiments with these algorithms suggest that they work, and work very well.    
Both the sender and receiver algorithms have been shown to eliminate SWS, even when 
talking to fairly silly algorithms at the other end.    The Multics mailer, in particular, had 
suffered substantial attacks of SWS while sending large mail to a number of hosts.    We 
believe that implementation of the sender side algorithm has eliminated every known case 
of SWS detected in our mailer.    Implementation of the receiver side algorithm produced 
substantial improvements of CPU time when Multics was the sending system.    Multics is a 
typical large operating system, with scheduling costs which are large compared to the actual
processing time for protocol handlers.    Tests were done sending from Multics to a host which
implemented the SWS suppression algorithm, and which could either refrain or not from 
sending acknowledgements on each segment.    As predicted, suppressing the return 
acknowledgements did not influence the throughput for large data transfer at all, since the 
throttling effect was elsewhere.    However, the CPU time required to process the data at the 
Multics end was cut by a factor of four (In this experiment, the bursts of data which were 
being sent were approximately eight segments.    Thus, the number of acknowledgements in 
the two experiments differed by a factor of eight. ) 
An important consideration in evaluating these algorithms is that they must not cause the 
protocol implementations to deadlock.    All of the recommendations in this document have 
the characteristic that they suggest one refrain from doing something even though the 
protocol specification permits one to do it.    The possibility exists that if one refrains from 
doing something now one may never get to do it later, and both ends will halt, even though 
it would appear superficially that the transaction can continue.    
Formally, the idea that things continue to work is referred to as "liveness".    One of the 
defects of ad hoc solutions to performance problems is the possibility that two different 
approaches will interact to prevent liveness.    It is believed that the algorithms described in 
this paper are always live, and that is one of the reasons why there is a strong advantage in 
uniform use of this particular proposal, except in cases where it is explicitly demonstrated 
not to work.    
The argument for liveness in these solutions proceeds as follows.    First, the sender 
algorithm can only be stopped by one thing, a refusal of the receiver to acknowledge sent 
data.    As long as the receiver continues to acknowledge data, the ratio of useable window 
to offered window will approach one, and eventually the sender must continue to send.    
However, notice that the receiver algorithm we have advocated involves refraining from 
acknowledging.    Therefore, we certainly do have a situation where improper operation of 
this algorithm can prevent liveness.    
What we must show is that the receiver of the data, if it chooses to refrain from 
acknowledging, will do so only for a short time, and not forever.    The design of the algorithm



described above was intended to achieve precisely this goal: whenever the receiver of data 
refrained from sending an acknowledgement it was required to set a timer.    The only event 
that was permitted to clear that timer was the receipt of another segment, which essentially 
reset the timer, and started it going again.    Thus, an acknowledgement will be sent as soon 
as no data has been received.    This has precisely the effect desired: if the data flow appears
to be disrupted for any reason, the receiver responds by sending an up-to-date 
acknowledgement.    In fact, the receiver algorithm is designed to be more robust than this, 
for transmission of an acknowledgment is triggered by two events, either a cessation of data
or a reduction in the amount of offered window to 50 percent of the actual value.    This is the
condition which will normally trigger the transmission of this acknowledgement.    



RFC-813 Window and Acknowledgement Strategy in TCP

Appendix A
Dynamic Calculation of Acknowledgement Delay

The text suggested that when setting a timer to postpone the sending of an 
acknowledgement, a fixed interval of 200 to 300 milliseconds would work properly in 
practice.    This has not been verified over a wide variety of network delays, and clearly if 
there is a very slow net which stretches out the intersegment arrival time, a fixed interval 
will fail.    In a sophisticated TCP, which is expected to adjust dynamically (rather than 
manually) to changing network conditions, it would be appropriate to measure this interval 
and respond dynamically.    The following algorithm, which has been relegated to an 
Appendix, because it has not been tested, seems sensible.    Whenever a segment arrives 
which does not have the push bit on in it, start a timer, which runs until the next segment 
arrives.    Average these interarrival intervals, using an exponential decay smoothing 
function tuned to take into account perhaps the last ten or twenty segments that have come
in.    Occasionally, there will be a long interarrival period, even for a segment which is does 
not terminate a piece of data being pushed, perhaps because a window has gone to zero or 
some glitch in the sender or the network has held up the data.    Therefore, examine each 
interarrival interval, and discard it from the smoothing algorithm if it exceeds the current 
estimate by some amount, perhaps a ratio of two or four times.    By rejecting the larger 
intersegment arrival intervals, one should obtain a smoothed estimate of the interarrival of 
segments inside a burst.    The number need not be exact, since the timer which triggers 
acknowledgement can add a fairly generous fudge factor to this without causing trouble with
the sender's estimate of the retransmission interval, so long as the fudge factor is constant.  



RFC-814 Names, Addresses, Ports, and Routes
David D. Clark

MIT Laboratory for Computer Science
July 1982

Introduction
It has been said that the principal function of an operating system is to define a number of 
different names for the same object, so that it can busy itself keeping track of the 
relationship between all of the different names.    Network protocols seem to have somewhat
the same characteristic.      In TCP/IP, there are several ways of referring to things.    At the 
human visible interface, there are character string "names" to identify networks, hosts, and 
services.    Host names are translated into network "addresses", 32-bit values that identify 
the network to which a host is attached, and the location of the host on that net.    Service 
names are translated into a "port identifier", which in TCP is a 16-bit value.      Finally, 
addresses are translated into "routes", which are the sequence of steps a packet must take 
to reach the specified addresses.    Routes show up explicitly in the form of the internet 
routing options, and also implicitly in the address to route translation tables which all hosts 
and gateways maintain.    
This RFC gives suggestions and guidance for the design of the tables and algorithms 
necessary to keep track of these various sorts of identifiers inside a host implementation of 
TCP/IP.
Note: This RFC was written several years before the Domain Naming System was proposed 
and implemented.    Many of the issues raised are addressed by this system which is now a 
recommended standard of the Internet.

The Scope of the Problem
Names
Addresses
Advanced Topics in Addressing and Routing
Ports and Service Identifiers



RFC-814 Names, Addresses, Ports, and Routes

The Scope of the Problem

One of the first questions one can ask about a naming mechanism is how many names one 
can expect to encounter.    In order to answer this, it is necessary to know something about 
the expected maximum size of the internet.    Currently, the internet is fairly small.    It 
contains no more than 25 active networks, and no more than a few hundred hosts.    This 
makes it possible to install tables which exhaustively list all of these elements.    However, 
any implementation undertaken now should be based on an assumption of a much larger 
internet.      The guidelines currently recommended are an upper limit of about 1,000 
networks.    If we imagine an average number of 25 hosts per net, this would suggest a 
maximum number of 25,000 hosts.    It is quite unclear whether this host estimate is high or 
low, but even if it is off by several factors of two, the resulting number is still large enough to
suggest that current table management strategies are unacceptable.    Some fresh 
techniques will be required to deal with the internet of the future.    



RFC-814 Names, Addresses, Ports, and Routes

Names

As the previous section suggests, the internet will eventually have a sufficient number of 
names that a host cannot have a static table which provides a translation from every name 
to its associated address.    There are several reasons other than sheer size why a host would
not wish to have such a table.    First, with that many names, we can expect names to be 
added and deleted at such a rate that an installer might spend all his time just revising the 
table.    Second, most of the names will refer to addresses of machines with which nothing 
will ever be exchanged.    In fact, there may be whole networks with which a particular host 
will never have any traffic.    
To cope with this large and somewhat dynamic environment, the internet is moving from its 
current position in which a single name table is maintained by the NIC and distributed to all 
hosts, to a distributed approach in which each network (or group of networks) is responsible 
for maintaining its own names and providing a "name server" to translate between the 
names and the addresses in that network.      Each host    is    assumed    to store not a 
complete set of name-address translations, but only a cache of recently used names.    When
a name is provided by a user for translation to an address, the host will first examine its 
local cache, and if the name is not found there, will communicate with an appropriate name 
server to obtain the information, which it may then insert into its cache for future reference.  
Unfortunately, the name server mechanism is not totally in place in the internet yet, so for 
the moment, it is necessary to continue to use the old strategy of maintaining a complete 
table of all names in every host.    Implementors, however, should structure this table in such
a way that it is easy to convert later to a name server approach.    In particular, a reasonable 
programming strategy would be to make the name table accessible only through a 
subroutine interface, rather than by scattering direct references to the table all through the 
code.    In this way, it will be possible, at a later date, to replace the subroutine with one 
capable of making calls on remote name servers.    
A problem which occasionally arises in the ARPANET today is that the information in a local 
host table is out of date, because a host has moved, and a revision of the host table has not 
yet been installed from the NIC.    In this case, one attempts to connect to a particular host 
and discovers an unexpected machine at the address obtained from the local table.      If a 
human is directly observing the connection attempt, the error is usually detected 
immediately.      However, for    unattended operations such as the sending of queued mail, 
this sort of problem can lead to a great deal of confusion.    
The nameserver scheme will only make this problem worse, if hosts cache locally the 
address associated with names that have been looked up, because the host has no way of 
knowing when the address has changed and the cache entry should be removed. To solve 
this problem, plans are currently under way to define a simple facility by which a host can 
query a foreign address to determine what name is actually associated with it.    SMTP 
already defines a verification technique based on this approach.    



RFC-814 Names, Addresses, Ports, and Routes

Addresses

The IP layer must know something about addresses.      In particular, when a datagram is 
being sent out from a host, the IP layer must decide where to send it on the immediately 
connected network, based on the internet address.    Mechanically, the IP first tests the 
internet address to see whether the network number of the recipient is the same as the 
network number of the sender.    If so, the packet can be sent directly to the final recipient.    
If not, the datagram must be sent to a gateway for further forwarding.    In this latter case, a 
second decision must be made, as there may be more than one gateway available on the 
immediately attached network.    
When the internet address format was first specified, 8 bits were reserved to identify the 
network.        Early    implementations    thus implemented the above algorithm by means of a 
table with 256 entries, one for each possible net, that specified the gateway of choice for 
that net, with a special case entry for those nets to which the host was immediately 
connected.    Such tables were sometimes statically filled in, which caused confusion and 
malfunctions when gateways and networks moved (or crashed).    
The current definition of the internet address provides three different options for network 
numbering, with the goal of allowing a very large number of networks to be part of the 
internet.    Thus, it is no longer possible to imagine having an exhaustive table to select a 
gateway for any foreign net.    Again, current implementations must use a strategy based on 
a local cache of routing information for addresses currently being used.    
The recommended strategy for address to route translation is as follows.      When the IP 
layer receives an outbound datagram    for transmission, it extracts the network number 
from the destination address, and queries its local table to determine whether it knows a 
suitable gateway to which to send the datagram.    If it does, the job is done.      (But see RFC 
816 on Fault Isolation and Recovery,    for recommendations on how to deal with the possible 
failure of the gateway. ) If there is no such entry in the local table, then select any accessible
gateway at random, insert that as an entry in the table, and use it to send the packet.    
Either the guess will be right or wrong.    If it is wrong, the gateway to which the packet was 
sent will return an ICMP redirect message to report that there is a better gateway to reach 
the net in question.    The arrival of this redirect should cause an update of the local table.    
The number of entries in the local table should be determined by the maximum number of 
active connections which this particular host can support at any one time.    For a large time 
sharing system, one might imagine a table with 100 or more entries.    For a personal 
computer being used to support a single user telnet connection, only one address to 
gateway association need be maintained at once.    
The above strategy actually does not completely solve the problem, but only pushes it down 
one level, where the problem then arises of how a new host, freshly arriving on the internet, 
finds all of its accessible gateways.    Intentionally, this problem is not solved within the 
internetwork architecture.      The reason is that different networks have drastically different 
strategies for allowing a host to find out about other hosts on its immediate network.      
Some nets permit a broadcast mechanism.    In this case, a host can send out a message and
expect an answer back from all of the attached gateways.    In other cases, where a 
particular network is richly provided with tools to support the internet, there may be a 
special network mechanism which a host can invoke to determine where the gateways are.    
In other cases, it may be necessary for an installer to manually provide the name of at least 
one accessible gateway.    Once a host has discovered the name of one gateway, it can build 
up a table of all other available gateways, by keeping track of every gateway that has been 
reported back to it in an ICMP message.    





RFC-814 Names, Addresses, Ports, and Routes

Advanced Topics in Addressing and Routing

The preceding discussion describes the mechanism required in a minimal implementation, 
an implementation intended only to provide operational service access today to the various 
networks that make up the internet.    For any host which will participate in future research, 
as contrasted with service, some additional features are required.    These features will also 
be helpful for service hosts if they wish to obtain access to some of the more exotic 
networks which will become part of the internet over the next few years.    All implementors 
are urged to at least provide a structure into which these features could be later integrated.  
There    are    several features, either already a part of the architecture or now under 
development, which are used to modify or expand the relationships between addresses and 
routes.    The IP source route options allow a host to explicitly direct a datagram through a 
series of gateways to its foreign host.    An alternative form of the ICMP redirect packet has 
been proposed, which would return information specific to a particular destination host, not 
a destination net.    Finally, additional IP options have been proposed to identify particular 
routes within the internet that are unacceptable.    The difficulty with implementing these 
new features is that the mechanisms do not lie entirely within the bounds of IP.    All the 
mechanisms above are designed to apply to a particular connection, so that their use must 
be specified at the TCP level.    Thus, the interface between IP and the layers above it must 
include mechanisms to allow passing this information back and forth, and TCP (or any other 
protocol at this level, such as UDP), must be prepared to store this information.      The 
passing of information between IP and TCP is made more complicated by the fact that some 
of the information, in particular ICMP packets, may arrive at any time.    The normal interface 
envisioned between TCP and IP is one across which packets can be sent or received.    The 
existence of asynchronous ICMP messages implies that there must be an additional channel 
between the two, unrelated to the actual sending and receiving of data.    (In fact, there are 
many other ICMP messages which arrive asynchronously and which must be passed from IP 
up to higher layers.    See RFC 816, Fault Isolation and Recovery. ) 
Source routes are already in use in the internet, and many implementations will wish to be 
able to take advantage of them.      The following sorts of usages should be permitted.    First, 
a user, when initiating a TCP connection, should be able to hand a source route into TCP, 
which in turn must hand the source route to IP with every outgoing datagram.    The user 
might initially obtain the source route by querying a different sort of name server, which 
would return a source route instead of an address, or the user may have fabricated the 
source route manually.      A TCP which is listening for a connection, rather than attempting to
open one, must be prepared to receive a datagram which contains a IP return route, in which
case it must remember this return route, and use it as a source route on all returning 
datagrams.    



RFC-814 Names, Addresses, Ports, and Routes

Ports and Service Identifiers

The IP layer of the architecture contains the address information which specifies the 
destination host to which the datagram is being sent.      In fact, datagrams are not intended 
just for particular hosts, but for particular agents within a host, processes or other entities 
that are the actual source and sink of the data.    IP performs only a very simple dispatching 
once the datagram has arrived at the target host,    it    dispatches it to a particular protocol.   
It is the responsibility of that protocol handler, for example TCP, to finish dispatching the 
datagram to the particular connection for which it is destined.      This next layer of 
dispatching is done using    "port identifiers", which are a part of the header of the higher 
level protocol, and not the IP layer.    
This two-layer dispatching architecture has caused a problem for certain implementations.     
In particular, some implementations have wished to put the IP layer within the kernel of the 
operating system, and the TCP layer as a user domain application program.    Strict 
adherence to this partitioning can lead to grave performance problems, for the datagram 
must first be dispatched from the kernel to a TCP process, which then dispatches the 
datagram to its final destination process.      The overhead of scheduling this dispatch 
process can severely limit the achievable throughput of the implementation.    
As is discussed in RFC 817, Modularity and Efficiency in Protocol Implementations, this 
particular separation between kernel and user leads to other performance problems, even 
ignoring the issue of port level dispatching.      However, there is an acceptable shortcut 
which can be taken to move the higher level dispatching function into the IP layer, if this 
makes the implementation substantially easier.    
In principle, every higher level protocol could have a different dispatching algorithm.      The 
reason for this is discussed below.    However, for the protocols involved in the service 
offering being implemented today, TCP and UDP, the dispatching algorithm is exactly the 
same, and the port field is located in precisely the same place in the header.    Therefore, 
unless one is interested in participating in further protocol research, there is only one higher 
level dispatch algorithm.    This algorithm takes into account the internet level foreign 
address, the protocol number, and the local port and foreign port from the higher level 
protocol header.    This algorithm can be implemented as a sort of adjunct to the IP layer 
implementation, as long as no other higher level protocols are to be implemented.    
(Actually, the above statement is only partially true, in that the UDP dispatch function is 
subset of the TCP dispatch function.    UDP dispatch depends only protocol number and local 
port.    However, there is an occasion within TCP when this exact same subset comes into 
play, when a process wishes to listen for a connection from any foreign host.      Thus, the 
range of mechanisms necessary to support TCP dispatch are also sufficient to support 
precisely the UDP requirement. ) 
The decision to remove port level dispatching from IP to the higher level protocol has been 
questioned by some implementors.    It has been argued that if all of the address structure 
were part of the IP layer, then IP could do all of the packet dispatching function within the 
host, which would lead to a simpler modularity.      Three problems were identified with this.    
First, not all protocol implementors could agree on the size of the port identifier.    TCP 
selected a fairly short port identifier, 16 bits, to reduce header size.      Other protocols being 
designed, however, wanted a larger port identifier, perhaps 32 bits, so that the port 
identifier, if properly selected, could be considered probabilistically unique.      Thus, 
constraining the port id to one particular IP level mechanism would prevent certain fruitful 
lines of research.      Second, ports serve a special function in addition to datagram delivery:   
certain port numbers are reserved to identify particular services.    Thus, TCP port 23 is the 
remote login service.    If ports were implemented at the IP level, then the assignment of well



known ports could not be done on a protocol basis, but would have to be done in a 
centralized manner for all of the IP architecture.    Third, IP was designed with a very simple 
layering role:    IP contained exactly those functions that the gateways must understand.    If 
the port idea had been made a part of the IP layer, it would have suggested that gateways 
needed to know about ports, which is not the case.    
There are, of course, other ways to avoid these problems.      In particular, the "well-known 
port" problem can be solved by devising a second mechanism, distinct from port 
dispatching, to name well-known ports.      Several protocols have settled on the idea of 
including, in the packet which sets up a connection to a particular service, a more general 
service descriptor, such as a character string field.    These special packets, which are 
requesting connection to a particular service, are routed on arrival to a special server, 
sometimes called a "rendezvous server", which examines the service request, selects a 
random port which is to be used for this instance of the service, and then passes the packet 
along to the service itself to commence the interaction.    
For the internet architecture, this strategy had the serious flaw that it presumed all protocols
would fit into the same service paradigm: an initial setup phase, which might contain a 
certain overhead such as indirect routing through a rendezvous server, followed by the 
packets of the interaction itself, which would flow directly to the process providing the 
service.    Unfortunately, not all high level protocols in internet were expected to fit this 
model.    The best example of this is isolated datagram exchange using UDP.    The simplest 
exchange in UDP is one process sending a single datagram to another.    Especially on a local
net, where the net related overhead is very low, this kind of simple single datagram 
interchange can be extremely efficient, with very low overhead in the hosts.    However, 
since these individual packets would not be part of an established connection, if IP 
supported a strategy based on a rendezvous server and service descriptors, every isolated 
datagram would have to be routed indirectly in the receiving host through the rendezvous 
server, which would substantially increase the overhead of processing, and every datagram 
would have to carry the full service request field, which would increase the size of the packet
header.    
In general, if a network is intended for "virtual circuit service", or things similar to that, then 
using a special high overhead mechanism for circuit setup makes sense.    However, current 
directions in research are leading away from this class of protocol, so once again the 
architecture was designed not to    preclude    alternative    protocol structures.      The only 
rational position was that the particular dispatching strategy used should be part of the 
higher level protocol design, not the IP layer.    
This same argument about circuit setup mechanisms also applies to the design of the IP 
address structure.    Many protocols do not transmit a full address field as part of every 
packet, but rather transmit a short identifier which is created as part of a circuit setup from 
source to destination.    If the full address needs to be carried in only the first packet of a 
long exchange, then the overhead of carrying a very long address field can easily be 
justified.    Under these circumstances, one can create truly extravagant address fields, 
which are capable of extending to address almost any conceivable entity.      However, this 
strategy is useable only in a virtual circuit net, where the packets being transmitted are part 
of a established sequence, otherwise this large extravagant address must be transported on 
every packet.    Since Internet explicitly rejected this restriction on the architecture, it was 
necessary to come up with an address field that was compact enough to be sent in every 
datagram, but general enough to correctly route the datagram through the catanet without 
a previous setup phase.    The IP address of 32 bits is the compromise that results.    Clearly it
requires a substantial amount of shoehorning to address all of the interesting places in the 
universe with only 32 bits.    On the other hand, had the address field become much bigger, 
IP would have been susceptible to another criticism, which is that the header had grown 
unworkably large.    Again, the fundamental design decision was that the protocol be 
designed in such a way that it supported research in new and different sorts of protocol 



architectures.    
There are some limited restrictions imposed by the IP design on the port mechanism 
selected by the higher level process.      In particular, when a packet goes awry somewhere 
on the internet, the offending packet is returned, along with an error indication, as part of an
ICMP packet.    An ICMP packet returns only the IP layer, and the next 64 bits of the original 
datagram.    Thus, any higher level protocol which wishes to sort out from which port a 
particular offending datagram came must make sure that the port information is contained 
within the first 64 bits of the next level header.    This also means, in most cases, that it is 
possible to imagine, as part of the IP layer, a port dispatch mechanism which works by 
masking and matching on the first 64 bits of the incoming higher level header.    



RFC-815 IP Datagram Reassembly Algorithms
David D. Clark

MIT Laboratory for Computer Science
July 1982

Introduction
The Algorithm
Fragment Processing Algorithm
Part Two: Managing the Hole Descriptor List
Loose Ends
Options
The Complete Algorithm



RFC-815 IP Datagram Reassembly Algorithms

Introduction

One of the mechanisms of IP is fragmentation and reassembly.    Under certain 
circumstances, a datagram originally transmitted as a single unit will arrive at its final 
destination broken into several fragments.    The IP layer at the receiving host must 
accumulate these fragments until enough have arrived to completely reconstitute the 
original datagram.    The specification document for IP gives a complete description of the 
reassembly mechanism, and contains several examples.    It also provides one possible 
algorithm for reassembly, based on keeping track of arriving fragments in a vector of bits.      
This document describes an alternate approach which should prove more suitable in some 
machines.    
A superficial examination of the reassembly process may suggest that it is rather 
complicated.    First, it is necessary to keep track of all the fragments, which suggests a small
bookkeeping job.    Second, when a new fragment arrives, it may combine with the existing 
fragments in a number of different ways.    It may precisely fill the space between two 
fragments, or it may overlap with existing fragments, or completely duplicate existing 
fragments, or partially fill a space between two fragments without abutting either of them.    
Thus, it might seem that the reassembly process might involve designing a    fairly    
complicated algorithm that tests for a number of different options.    
In fact, the process of reassembly is extremely simple.    This document describes a way of 
dealing with reassembly which reduces the bookkeeping problem to a minimum, which 
requires for storage only one buffer equal in size to the final datagram being reassembled, 
which can reassemble a datagram from any number of fragments arriving in any order with 
any possible pattern of overlap and duplication, and which is appropriate for almost any sort 
of operating system.    
The reader should consult the IP specification document to be sure that he is completely 
familiar with the general concept of reassembly, and the particular header fields and 
vocabulary used to describe the process.    



RFC-815 IP Datagram Reassembly Algorithms

The Algorithm

In order to define this reassembly algorithm, it is necessary to define some terms.    A 
partially reassembled datagram consists of certain sequences of octets that have already 
arrived, and certain areas still to come.      We will refer to these missing areas as "holes".    
Each hole can be characterized by two numbers, hole.first, the number of the first octet in 
the hole, and hole.last, the number of the last octet in the hole.      This pair of numbers we 
will call the "hole descriptor", and we will assume that all of the hole descriptors for a 
particular datagram are gathered together in the "hole descriptor list".    
The general form of the algorithm is as follows.    When a new fragment of the datagram 
arrives, it will possibly fill in one or more of the existing holes.    We will examine each of the 
entries in the hole descriptor list to see whether the hole in question is eliminated by this 
incoming fragment.    If so, we will delete that entry from the list.    Eventually, a fragment 
will arrive which eliminates every entry from the list.      At this point, the datagram has been 
completely reassembled and can be passed to higher protocol levels for further processing.   
The algorithm will be described in two phases.    In the first part, we will show the sequence 
of steps which are executed when a new fragment arrives, in order to determine whether or 
not any of the existing holes are filled by the new fragment.    In the second part of this 
description, we will show a ridiculously simple algorithm for management of the hole 
descriptor list.    



RFC-815 IP Datagram Reassembly Algorithms

Fragment Processing Algorithm

An arriving fragment can fill any of the existing holes in a number of ways.    Most simply, it 
can completely fill a hole.    Alternatively, it may leave some remaining space at either the 
beginning or the end of an existing hole.    Or finally, it can lie in the middle of an existing 
hole, breaking the hole in half and leaving a smaller hole at each end.    Because of these 
possibilities, it might seem that a number of tests must be made when a new fragment 
arrives, leading to a rather complicated algorithm.    In fact, if properly expressed, the 
algorithm can compare each hole to the arriving fragment in only four tests.    
We start the algorithm when the earliest fragment of the datagram arrives.    We begin by 
creating an empty data buffer area and putting one entry in its hole descriptor list, the entry 
which describes the datagram as being completely missing.    In this case, hole.first equals 
zero, and hole.last equals infinity.    (Infinity is presumably implemented by a very large 
integer, greater than 576, of the implementor's choice.) The following eight steps are then 
used to insert each of the arriving fragments into the buffer area where the complete 
datagram is being built up.    The arriving fragment is described by fragment.first, the first 
octet of the fragment, and fragment.last, the last octet of the fragment.    

1. Select the next hole descriptor from the hole descriptor list.    If there are 
no more entries, go to step eight.    

2. If fragment.first is greater than hole.last, go to step one.
3. If fragment.last is less than hole.first, go to step one.
- (If either step two or step three is true, then the newly arrived fragment 

does not overlap with the hole in any way, so we need pay no further 
attention to this hole.    We return to the beginning of the algorithm where 
we select the next hole for examination.) 

4. Delete the current entry from the hole descriptor list.
- (Since neither step two nor step three was true, the newly arrived 

fragment does interact with this hole in some way.      Therefore, the current
descriptor will no longer be valid.    We will destroy it, and in the next two 
steps we will determine whether or not it is necessary to create any new 
hole descriptors.) 

5. If fragment.first is greater than hole.first, then create a new hole descriptor
"new_hole" with new_hole.first equal to hole.first, and new_hole.last equal 
to fragment.first minus one.    

- (If the test in step five is true, then the first part of the original hole is not 
filled by this fragment.    We create a new descriptor for this smaller hole.) 

6. If fragment.last is less than hole.last and fragment.more fragments    is 
true, then create a new hole descriptor "new_hole", with new_hole.first 
equal to fragment.last plus one and new_hole.last equal to hole.last.    

- (This    test is the mirror of step five with one additional feature.    Initially, 
we did not know how long the reassembled datagram would be, and 
therefore we created    a    hole    reaching from zero to infinity.    Eventually, 
we will receive the last fragment of the datagram.      At this point, that hole
descriptor which reaches from the last octet of the buffer to infinity can be 
discarded.    The fragment which contains the last fragment indicates this 
fact by a flag in the internet header called "more fragments".    The test of 
this bit in this statement prevents us from creating a descriptor for the 



unneeded hole which describes the space from the end of the datagram to
infinity.) 

7. Go to step one.
8. If the hole descriptor list is now empty, the datagram is now complete.    

Pass it on to the higher level protocol processor for further handling.    
Otherwise, return.    



RFC-815 IP Datagram Reassembly Algorithms

Part Two: Managing the Hole Descriptor List

The main complexity in the eight step algorithm above is not performing the arithmetical 
tests, but in adding and deleting entries from the hole descriptor list.    One could imagine an
implementation in which the storage management package was many times more 
complicated than the rest of the algorithm, since there is no specified upper limit on the 
number of hole descriptors which will exist for a datagram during reassembly.      There is a 
very simple way to deal with the hole descriptors, however.    Just put each hole descriptor in 
the first octets of the hole itself.      Note that by the definition of the reassembly algorithm, 
the minimum size of a hole is eight octets.      To store hole.first and hole.last will presumably 
require two octets each.    An additional two octets will be required to thread together the 
entries on the hole descriptor list.    This leaves at least two more octets to deal with 
implementation idiosyncrasies.    
There is only one obvious pitfall to this storage strategy.    One must execute the eight step 
algorithm above before copying the data from the fragment into the reassembly buffer.    If 
one were to copy the data first, it might smash one or more hole descriptors.    Once the 
algorithm above has been run, any hole descriptors which are about to be smashed have 
already been rendered obsolete.    



RFC-815 IP Datagram Reassembly Algorithms

Loose Ends

Scattering the hole descriptors throughout the reassembly buffer itself requires that they be 
threaded onto some sort of list so that they can be found.    This in turn implies that there 
must be a pointer to the head of the list.    In many cases, this pointer can be stored in some 
sort of descriptor block which the implementation associates with each reassembly buffer.    
If no such storage is available, a dirty but effective trick is to store the head of the list in a 
part of the internet header in the reassembly buffer which is no longer needed.      An obvious
location is the checksum field.    
When the final fragment of the datagram arrives, the packet length field in the internet 
header should be filled in.    



RFC-815 IP Datagram Reassembly Algorithms

Options

The preceding description made one unacceptable simplification.    It assumed that there 
were no internet options associated with the datagram being reassembled.      The difficulty 
with options is that until one receives the first fragment of the datagram, one cannot tell 
how big the internet header will be.    This is because, while certain options are copied 
identically into every fragment of a datagram, other options, such as "record route", are put 
in the first fragment only.    (The "first fragment" is the fragment containing octet zero of the 
original datagram.) 
Until one knows how big the internet header is, one does not know where to copy the data 
from each fragment into the reassembly buffer.    If the earliest fragment to arrive happens 
to be the first fragment, then this is no problem.    Otherwise, there are two solutions.      First,
one can leave space in the reassembly buffer for the maximum possible internet header.    In 
fact, the maximum size is not very large, 64 octets.      Alternatively, one can simply gamble 
that the first fragment will contain no options.    If, when the first fragment finally arrives, 
there are options, one can then shift the data in the buffer a sufficient distance for allow for 
them.    The only peril in copying the data is that one will trash the pointers that thread the 
hole descriptors together.    It is easy to see how to untrash the pointers.    
The source and record route options have the interesting feature that, since different 
fragments can follow different paths, they may arrive with different return routes recorded in
different fragments.    Normally, this is more information than the receiving Internet module 
needs.    The specified procedure is to take the return route recorded in the first fragment 
and ignore the other versions.    



RFC-815 IP Datagram Reassembly Algorithms

The Complete Algorithm

In addition to the algorithm described above there are two parts to the reassembly process.   
First, when a fragment arrives, it is necessary to find the reassembly buffer associated with 
that fragment.    This requires some mechanism for searching all the existing reassembly 
buffers.      The correct reassembly buffer is identified by an equality of the following fields: 
the foreign and local internet address, the protocol ID, and the identification field.    
The final part of the algorithm is some sort of timer based mechanism which decrements the
time to live field of each partially reassembled datagram, so that incomplete datagrams 
which have outlived their usefulness can be detected and deleted.    One can either create a 
daemon which comes alive once a second and decrements the field in each datagram by 
one, or one can read the clock when each first fragment arrives, and queue some sort of 
timer call, using whatever system mechanism is appropriate, to reap the datagram when its 
time has come.    
An implementation of the complete algorithm comprising all these parts was constructed in 
BCPL as a test.    The complete algorithm took less than one and one-half pages of listing, 
and generated approximately 400 nova machine instructions.    That portion of the algorithm 
actually involved with management of hole descriptors is about 20 lines of code.    
The    version of the algorithm described here is actually a simplification of the author's 
original version, thanks to an insightful observation by Elizabeth Martin at MIT.    



RFC-816 Fault Isolation and Recovery
David D. Clark

MIT Laboratory for Computer Science
July 1982

Introduction
Occasionally, a network or a gateway will go down, and the sequence of    hops    which the 
packet takes from source to destination must change. Fault isolation is that action which    
hosts    and    gateways    collectively take    to    determine    that    something    is    wrong;    
fault    recovery is the identification and selection of an alternative route which will serve to 
reconnect the source to the destination.    In fact, the gateways    perform most    of    the    
functions    of    fault    isolation and recovery.    There are, however, a few actions which hosts 
must take if they wish to    provide    a reasonable    level    of    service.      This document 
describes the portion of fault isolation and recovery which is the responsibility of the host. 

What Gateways Do
Host Algorithms for Fault Recovery
Host Algorithms for Fault Isolation
Higher Level Fault Detection
Knowing When to Give Up



RFC-816 Fault Isolation and Recovery

What Gateways Do

Gateways collectively implement an algorithm which    identifies    the best    route    between   
all pairs of networks.    They do this by exchanging packets    which    contain    each    
gateway's    latest      opinion      about      the operational status of its neighbor networks and 
gateways.    Assuming that this    algorithm is operating properly, one can expect the 
gateways to go through a period of confusion immediately after some network or    gateway 
has    failed,    but    one    can assume that once a period of negotiation has passed, the 
gateways are equipped with a consistent and correct model of the connectivity of the 
internet.    At present this period of negotiation may actually take several minutes, and many
TCP implementations time out within that period, but it is a design goal of    the    eventual    
algorithm    that    the    gateway    should    be    able to reconstruct the topology quickly 
enough that a TCP connection should be able to survive a failure of    the route. 



RFC-816 Fault Isolation and Recovery

Host Algorithm for Fault Recovery

Since    the gateways always attempt to have a consistent and correct model of the 
internetwork topology, the host strategy for fault recovery is very simple.    Whenever the 
host feels that    something    is    wrong,    it asks the gateway for advice, and, assuming the 
advice is forthcoming, it believes    the    advice    completely.    The advice will be wrong only 
during the transient    period    of    negotiation,    which    immediately    follows    an outage, 
but will otherwise be reliably correct. 
In    fact,    it    is    never    necessary    for a host to explicitly ask a gateway for advice, 
because the gateway will provide it as    appropriate. When    a    host    sends    a datagram to 
some distant net, the host should be prepared to receive back either    of    two    advisory    
messages    which    the gateway    may    send.        The    ICMP    "redirect"    message indicates 
that the gateway to which the host sent the    datagram    is    not    longer    the    best gateway
to    reach the net in question.    The gateway will have forwarded the datagram, but the host 
should revise its routing    table    to    have    a different    immediate    address    for    this    net. 
The    ICMP "destination unreachable"    message    indicates    that    as    a result of an outage, 
it is currently impossible to reach the addressed net or host in    any    manner. On    receipt    
of    this    message, a host can either abandon the connection immediately without any 
further retransmission, or resend slowly to    see if the fault is corrected in reasonable time. 
If    a    host    could assume that these two ICMP messages would always arrive when 
something was amiss in the network, then no other action    on the    part    of the host would 
be required in order maintain its tables in an optimal condition.    Unfortunately, there are 
two circumstances    under which    the    messages    will    not    arrive    properly.        First,    
during the transient following a failure, error messages may    arrive    that    do    not correctly 
represent    the    state of the world.    Thus, hosts must take an isolated error message with 
some scepticism.    (This transient period    is discussed    more    fully    below.)        Second,    if 
the host has been sending datagrams to a particular gateway, and that gateway itself 
crashes, then all the other gateways in the internet will    reconstruct    the    topology, but    
the    gateway    in    question will still be down, and therefore cannot provide any advice back 
to the host.    As long as the host    continues    to direct    datagrams at this dead gateway, 
the datagrams will simply vanish off the face of the earth, and nothing will come back in 
return.      Hosts must detect this failure. 
If some gateway many hops away fails, this is not of concern to the host, for then the 
discovery of the failure is the responsibility of the immediate    neighbor gateways, which will
perform this action in a manner invisible to the host.    The    problem    only    arises    if    the    
very    first gateway, the one to which the host is immediately sending the datagrams, fails.    
We thus identify one single task which the host must perform as its part of fault isolation in 
the internet:    the    host    must    use    some strategy    to    detect    that a gateway to which it
is sending datagrams is dead. 
Let us    assume    for    the    moment    that    the    host    implements    some algorithm    to    
detect    failed    gateways; we will return later to discuss what this algorithm might be.    First,
let    us    consider    what    the    host should    do    when it has determined that a gateway is 
down. In fact, with the exception of one small problem, the action the host should    take    is 
extremely    simple.        The host should select some other gateway, and try sending the 
datagram to it.    Assuming that    gateway    is    up,    this    will either    produce    correct    
results, or some ICMP advice.    Since we assume that, ignoring temporary periods 
immediately following    an    outage,    any gateway    is capable of giving correct advice, once
the host has received advice from any gateway, that host is in as good a condition as    it    
can hope to be. 



There is always the unpleasant possibility that when the host tries a different gateway, that 
gateway too will be down.    Therefore, whatever algorithm    the    host    uses to detect a 
dead gateway must continuously be applied, as the host tries every gateway in turn that it 
knows about. 
The only difficult part of this algorithm is to specify    the    means by which the host 
maintains the table of all of the gateways to which it has    immediate    access.        Currently, 
the specification of the internet protocol does not architect any message by which a host 
can    ask    to    be supplied    with    such a table.    The reason is that different networks may 
provide very different mechanisms by which this table can be filled    in. For    example,    if    
the    net is a broadcast net, such as an ethernet or a ringnet, every gateway may simply 
broadcast such a table    from    time    to time,    and    the    host    need do nothing but listen 
to obtain the required information.    Alternatively, the network may provide    the    
mechanism    of logical    addressing,    by    which    a whole set of machines can be provided 
with a single group    address,    to    which    a    request    can    be    sent    for assistance.      
Failing those two schemes, the host can build up its table of neighbor gateways by 
remembering all the gateways from which    it    has ever received a message.    Finally, in 
certain cases, it may be necessary for    this    table,    or    at    least the initial entries in the 
table, to be    constructed manually by a manager or operator at the    site.        In    cases 
where    the    network    in question provides absolutely no support for this kind of host query,
at least some manual intervention will    be    required to    get    started,    so    that    the    host  
can    find out about at least one gateway. 



RFC-816 Fault Isolation and Recovery

Host Algorithms for Fault Isolation

We now return to the question raised above.    What    strategy    should the    host use to 
detect that it is talking to a dead gateway, so that it can know to switch to some other 
gateway in the list. In fact, there are several algorithms which can be used.      All    are    
reasonably    simple    to implement, but they have very different implications for the 
overhead on the    host, the gateway, and the network.    Thus, to a certain extent, the 
algorithm picked must depend on the details of the network    and    of    the host. 

Network Level Detection
Continuous Polling
Triggered Polling
Triggered Reselection



RFC-816 Fault Isolation and Recovery - Host Algorithms for Fault Isolation

Network Level Detection

Many    networks,    particularly    the    Arpanet,    perform precisely the required function 
internal to the network.    If a host sends    a    datagram to    a dead gateway on the Arpanet, 
the network will return a "host dead" message, which is precisely the information the host 
needs    to    know    in order    to    switch    to    another    gateway.      Some early 
implementations of Internet on    the    Arpanet    threw    these    messages    away.        That    is 
an exceedingly poor idea. 



RFC-816 Fault Isolation and Recovery - Host Algorithms for Fault Isolation

Continuous Polling

The    ICMP    protocol    provides an echo mechanism by which a host may solicit a response 
from a gateway.        A    host    could    simply    send    this message    at    a    reasonable    rate, 
to assure itself continuously that the gateway was still up.    This works, but, since the 
message must    be    sent fairly    often    to    detect    a fault in a reasonable time, it can imply 
an unbearable overhead on the host itself, the network,    and    the    gateway. This    strategy 
is    prohibited    except    where    a    specific    analysis has indicated that the overhead is 
tolerable. 



RFC-816 Fault Isolation and Recovery - Host Algorithms for Fault Isolation

Triggered Polling

If the use of polling could be restricted to only those times    when something    seemed    to    
be    wrong,    then    the overhead would be bearable. Provided that one can get the proper    
advice    from    one's    higher    level protocols,    it    is    possible to implement such a strategy.
For example, one could program the TCP level so    that    whenever    it    retransmitted    a 
segment    more    than    once,    it    sent    a    hint down to the IP layer which triggered polling. 
This strategy does not have excessive overhead,    but does    have    the problem that the 
host may be somewhat slow to respond to an error, since only after polling has started will 
the host be able    to confirm    that    something    has    gone wrong, and by then the TCP 
above may have already timed out. 
Both forms of polling suffer from a minor flaw.    Hosts as    well    as gateways respond to 
ICMP echo messages.    Thus, polling cannot be used to detect    the    error    that    a    foreign   
address thought to be a gateway is actually a host.    Such a confusion can arise if the    
physical    addresses of machines are rearranged. 



RFC-816 Fault Isolation and Recovery - Host Algorithms for Fault Isolation

Triggered Reselection

There    is a strategy which makes use of a hint from a higher level, as did the previous    
strategy,    but    which    avoids    polling    altogether. Whenever    a    higher    level    complains 
that    the    service    seems    to    be defective, the Internet layer can pick the next gateway 
from the list of available gateways, and switch to it.    Assuming that this gateway is up, no 
real harm can come of this decision, even if it was    wrong,    for    the worst that will happen 
is a redirect message which instructs the host to return to the gateway originally being used.
If, on the other hand, the original    gateway    was indeed down, then this immediately 
provides a new route, so the period of time until recovery is    shortened.        This    last 
strategy    seems    particularly clever, and is probably the most generally suitable for those 
cases where the network itself does not provide fault isolation.    (Regretably, I have 
forgotten who suggested this idea to me. It is not my invention.) 



RFC-816 Fault Isolation and Recovery

Higher Level Fault Detection

The    previous    discussion    has    concentrated on fault detection and recovery at the IP 
layer.    This section considers what the higher layers such as TCP should do. 
TCP has a single fault recovery action; it repeatedly retransmits a segment until either it gets
an acknowledgement or its connection    timer expires.        As discussed above, it may use 
retransmission as an event to trigger a request for fault recovery to the IP    layer.        In    the  
other direction,    information    may    flow    up from IP, reporting such things as ICMP    
Destination    Unreachable    or    error    messages    from    the    attached network.        The    
only    subtle    question about TCP and faults is what TCP should do when such an error 
message arrives    or    its    connection    timer expires. 
The    TCP    specification discusses the timer.    In the description of the open call, the timeout
is described as an optional    value    that    the client    of    TCP    may    specify; if any segment 
remains unacknowledged for this period, TCP should abort the    connection.        The    default  
for    the timeout    is    30 seconds.    Early TCPs were often implemented with a fixed timeout 
interval, but this    did    not    work    well    in    practice,    as    the following discussion may 
suggest. 
Clients    of    TCP can be divided into two classes:    those running on immediate behalf of a 
human, such as    Telnet,    and    those    supporting    a program, such as a mail sender.    
Humans require a sophisticated response to    errors.        Depending    on    exactly    what went
wrong, they may want to abandon the connection at once, or wait for a long time to see if 
things get    better.      Programs do not have this human impatience, but also lack the power 
to make complex decisions based on details of the exact    error condition.    For them, a 
simple timeout is reasonable. 
Based    on these considerations, at least two modes of operation are needed in TCP.    One,    
for    programs,    abandons    the    connection    without exception    if    the    TCP    timer    
expires.        The other mode, suitable for people, never abandons the connection on its own 
initiative, but reports to the layer above when the timer expires.    Thus, the human user can 
see error messages coming from all the relevant layers, TCP    and    ICMP,    and can request 
TCP to abort as appropriate.    This second mode requires that TCP    be    able to send an 
asynchronous message up to its client to report the timeout, and it requires    that    error    
messages    arriving    at    lower layers similarly flow up through TCP. 
At    levels    above TCP, fault detection is also required.    Either of the following can happen.   
First, the foreign client of    TCP    can    fail, even    though TCP is still running, so data is still 
acknowledged and the timer never expires.    Alternatively, the communication    path    can    
fail, without the TCP timer going off, because the local client has no data to send.    Both of 
these have caused trouble. 
Sending    mail    provides an example of the first case.    When sending mail using SMTP, 
there is an SMTP level acknowledgement that is returned when a piece of mail is 
successfully    delivered.        Several    early    mail receiving programs would crash just at the 
point where they had received all of the mail text (so TCP did not detect a timeout due to 
outstanding unacknowledged    data)    but    before the mail was acknowledged at the SMTP 
level.    This failure would cause early mail senders to wait forever    for the    SMTP level 
acknowledgement.    The obvious cure was to set a timer at the SMTP level, but the first 
attempt to do this did not work, for there was no simple way to    select    the    timer    
interval.        If    the    interval selected    was    short,    it    expired    in normal operational when
sending a large file to a slow host.    An interval of many minutes    was    needed    to prevent  
false timeouts, but that meant that failures were detected only very slowly.    The current 
solution in    several    mailers    is    to    pick    a timeout interval proportional to the size of the 



message. 
Server telnet provides an example of the other kind of failure.    It can    easily    happen that 
the communications link can fail while there is no traffic flowing, perhaps because the user is
thinking.        Eventually, the    user will attempt to type something, at which time he will 
discover that the connection is dead and abort it.      But    the    host    end    of    the 
connection,    having    nothing    to send, will not discover anything wrong, and will remain 
waiting forever.    In some systems there is no way for    a user    in    a    different    process    to 
destroy or take over such a hanging process, so there is no way to recover. 
One solution to this would be to have the host server telnet    query the    user    end now and 
then, to see if it is still up.    (Telnet does not have an explicit query    feature,    but    the    host
could    negotiate    some unimportant      option,      which      should      produce      either    
agreement    or disagreement in    return.)        The    only    problem    with    this    is    that    a 
reasonable    sample interval, if applied to every user on a large system, can    generate    an 
unacceptable amount of traffic and system overhead.    A smart server telnet would use    this
query    only    when    something    seems wrong, perhaps when there had been no user 
activity for some time. 
In    both    these    cases, the general conclusion is that client level error detection is needed, 
and that the details    of    the    mechanism    are very dependent on the application.    
Application programmers must be made aware    of    the    problem    of    failures,    and    must 
understand that error detection at the TCP or lower level cannot solve the whole    problem    
for them. 



RFC-816 Fault Isolation and Recovery

Knowing When to Give Up

It    is    not    obvious,    when error messages such as ICMP Destination Unreachable arrive, 
whether TCP should    abandon    the    connection.        The reason    that    error    messages    
are    difficult    to    interpret is that, as discussed above, after a failure of a gateway or    
network,    there    is    a transient      period      during      which    the    gateways    may    have    
incorrect information,    so    that    irrelevant    or    incorrect    error    messages      may 
sometimes    return.      An isolated ICMP Destination Unreachable may arrive at a host, for 
example, if a packet is sent during the period    when    the gateways    are    trying    to find a 
new route.    To abandon a TCP connection based on such a message arriving would be to 
ignore the valuable feature of the Internet that for many    internal    failures    it    reconstructs 
its function without any disruption of the end points. 
But    if failure messages do not imply a failure, what are they for? In fact, error messages 
serve several important    purposes.        First,    if they    arrive    in response to opening a new 
connection, they probably are caused by opening the connection improperly    (e.g.,    to    a    
non-existent address)    rather    than    by    a    transient    network failure.    Second, they 
provide valuable information, after the TCP timeout has occurred, as    to the    probable    
cause of the failure.    Finally, certain messages, such as ICMP Parameter Problem, imply a 
possible    implementation    problem.        In general, error messages give valuable 
information about what went wrong, but    are    not    to    be    taken as absolutely reliable.    A 
general alerting mechanism, such as the TCP timeout    discussed    above,    provides    a    
good indication    that    whatever    is wrong is a serious condition, but without the advisory 
messages to augment the timer, there    is    no    way    for    the client    to    know    how    to    
respond to the error.    The combination of the timer and the advice from the error messages 
provide a reasonable set of facts for the client layer to have.    It is important that error 
messages from all layers be passed up to    the    client    module    in    a    useful    and 
consistent way. 



RFC-817 Modularity and Efficiency in Protocol Implementation
David D. Clark

MIT Laboratory for Computer Science
July 1982

Introduction
Efficiency Considerations
The Protocol vs. the Operating System
Protocol Layering
Breaking Down the Barriers
Efficiency in Protocol Processing
Conclusions



RFC-817 Modularity and Efficiency in Protocol Implementation

Introduction

Many protocol implementers have made the unpleasant discovery that their packages do 
not run quite as fast as they had hoped.    The blame for this widely observed problem has 
been attributed to a variety of causes, ranging from details in the design of the protocol to 
the underlying structure of the host operating system.    This RFC will discuss some of the 
commonly encountered reasons why protocol implementations seem to run slowly.    
Experience suggests that one of the most important factors in determining the performance 
of an implementation is the manner in which that implementation is modularized and 
integrated into the host operating system.    For this reason, it is useful to discuss the 
question of how an implementation is structured at the same time that we consider how it 
will perform.    In fact, this RFC will argue that modularity is one of the chief villains in 
attempting to obtain good performance, so that the designer is faced with a delicate and 
inevitable tradeoff between good structure and good performance.    Further, the single 
factor which most strongly determines how well this conflict can be resolved is not the 
protocol but the operating system.    



RFC-817 Modularity and Efficiency in Protocol Implementation

Efficiency Considerations

There are many aspects to efficiency.    One aspect is sending data at minimum transmission 
cost, which is a critical aspect of common carrier communications, if not in local area 
network communications.    Another aspect is sending data at a high rate, which may not be 
possible at all if the net is very slow, but which may be the one central design constraint 
when taking advantage of a local net with high raw bandwidth.    The final consideration is 
doing the above with minimum expenditure of computer resources.    This last may be 
necessary to achieve high speed, but in the case of the slow net may be important only in 
that the resources used up, for example cpu cycles, are costly or otherwise needed.    It is 
worth pointing out that these different goals often conflict; for example it is often possible to 
trade off efficient use of the computer against efficient use of the network.    Thus, there may
be no such thing as a successful general purpose protocol implementation.    
The simplest measure of performance is throughput, measured in bits per second.    It is 
worth doing a few simple computations in order to get a feeling for the magnitude of the 
problems involved.    Assume that data is being sent from one machine to another in packets 
of 576 bytes, the maximum generally acceptable internet packet size.    Allowing for header 
overhead, this packet size permits 4288 bits in each packet.    If a useful throughput of 
10,000 bits per second is desired, then a data bearing packet must leave the sending host 
about every 430 milliseconds, a little over two per second.    This is clearly not difficult to 
achieve.    However, if one wishes to achieve 100 kilobits per second throughput, the packet 
must leave the host every 43 milliseconds, and to achieve one megabit per second, which is 
not at all unreasonable on a high-speed local net, the packets must be spaced no more than 
4. 3 milliseconds.    
These latter numbers are a slightly more alarming goal for which to set one's sights.    Many 
operating systems take a substantial fraction of a millisecond just to service an interrupt.    If 
the protocol has been structured as a process, it is necessary to go through a process 
scheduling before the protocol code can even begin to run.    If any piece of a protocol 
package or its data must be fetched from disk, real time delays of between 30 to 100 
milliseconds can be expected.    If the protocol must compete for cpu resources with other 
processes of the system, it may be necessary to wait a scheduling quantum before the 
protocol can run.    Many systems have a scheduling quantum of 100 milliseconds or more.    
Considering these sorts of numbers, it becomes immediately clear that the protocol must be 
fitted into the operating system in a thorough and effective manner if any like reasonable 
throughput is to be achieved.    
There is one obvious conclusion immediately suggested by even this simple analysis.    
Except in very special circumstances, when many packets are being processed at once, the 
cost of processing a packet is dominated by factors, such as cpu scheduling, which are 
independent of the packet size.    This suggests two general rules which any implementation 
ought to obey.    First, send data in large packets.    Obviously, if processing time per packet is
a constant, then throughput will be directly proportional to the packet size.    Second, never 
send an unneeded packet.    Unneeded packets use up just as many resources as a packet 
full of data, but perform no useful function.    RFC 813, "Window and Acknowledgement 
Strategy in TCP", discusses one aspect of reducing the number of packets sent per useful 
data byte.    This document will mention other attacks on the same problem.    
The above analysis suggests that there are two main parts to the problem of achieving good 
protocol performance.    The first has to do with how the protocol implementation is 
integrated into the host operating system.    The second has to do with how the protocol 
package itself is organized internally.    This document will consider each of these topics in 
turn.    





RFC-817 Modularity and Efficiency in Protocol Implementation

The Protocol vs.    the Operating System

There are normally three reasonable ways in which to add a protocol to an operating system.
The protocol can be in a process that is provided by the operating system, or it can be part 
of the kernel of the operating system itself, or it can be put in a separate communications 
processor or front end machine.    This decision is strongly influenced by details of hardware 
architecture and operating system design; each of these three approaches has its own 
advantages and disadvantages.    
The "process" is the abstraction which most operating systems use to provide the execution 
environment for user programs.    A very simple path for implementing a protocol is to obtain
a process from the operating system and implement the protocol to run in it.    Superficially, 
this approach has a number of advantages.    Since modifications to the kernel are not 
required, the job can be done by someone who is not an expert in the kernel structure.    
Since it is often impossible to find somebody who is experienced both in the structure of the 
operating system and the structure of the protocol, this path, from a management point of 
view, is often extremely appealing.    Unfortunately, putting a protocol in a process has a 
number of disadvantages, related to both structure and performance.    First, as was 
discussed above, process scheduling can be a significant source of real-time delay.    There is
not only the actual cost of going through the scheduler, but the problem that the operating 
system may not have the right sort of priority tools to bring the process into execution 
quickly whenever there is work to be done.    
Structurally, the difficulty with putting a protocol in a process is that the protocol may be 
providing services, for example support of data streams, which are normally obtained by 
going to special kernel entry points.    Depending on the generality of the operating system, 
it may be impossible to take a program which is accustomed to reading through a kernel 
entry point, and redirect it so it is reading the data from a process.    The most extreme 
example of this problem occurs when implementing server telnet.    In almost all systems, 
the device handler for the locally attached teletypes is located inside the kernel, and 
programs read and write from their teletype by making kernel calls.    If server telnet is 
implemented in a process, it is then necessary to take the data streams provided by server 
telnet and somehow get them back down inside the kernel so that they mimic the interface 
provided by local teletypes.    It is usually the case that special kernel modification is 
necessary to achieve this structure, which somewhat defeats the benefit of having removed 
the protocol from the kernel in the first place.    
Clearly, then, there are advantages to putting the protocol package in the kernel.    
Structurally, it is reasonable to view the network as a device, and device drivers are 
traditionally contained in the kernel.    Presumably, the problems associated with process 
scheduling can be sidesteped, at least to a certain extent, by placing the code inside the 
kernel.    And it is obviously easier to make the server telnet channels mimic the local 
teletype channels if they are both realized in the same level in the kernel.    
However, implementation of protocols in the kernel has its own set of pitfalls.    First, network
protocols have a characteristic which is shared by almost no other device: they require 
rather complex actions to be performed as a result of a timeout.    The problem with this 
requirement is that the kernel often has no facility by which a program can be brought into 
execution as a result of the timer event.    What is really needed, of course, is a special sort 
of process inside the kernel.    Most systems lack this mechanism.    Failing that, the only 
execution mechanism available is to run at interrupt time.    
There are substantial drawbacks to implementing a protocol to run at interrupt time.    First, 
the actions performed may be somewhat complex and time consuming, compared to the 



maximum amount of time that the operating system is prepared to spend servicing an 
interrupt.    Problems can arise if interrupts are masked for too long.    This is particularly bad 
when running as a result of a clock interrupt, which can imply that the clock interrupt is 
masked.    Second, the environment provided by an interrupt handler is usually extremely 
primitive compared to the environment of a process.    There are usually a variety of system 
facilities which are unavailable while running in an interrupt handler.    The most important of
these is the ability to suspend execution pending the arrival of some event or message.    It 
is a cardinal rule of almost every known operating system that one must not invoke the 
scheduler while running in an interrupt handler.    Thus, the programmer who is forced to 
implement all or part of his protocol package as an interrupt handler must be the best sort of
expert in the operating system involved, and must be prepared for development sessions 
filled with obscure bugs which crash not just the protocol package but the entire operating 
system.    
A final problem with processing at interrupt time is that the system scheduler has no control 
over the percentage of system time used by the protocol handler.    If a large number of 
packets arrive, from a foreign host that is either malfunctioning or fast, all of the time may 
be spent in the interrupt handler, effectively killing the system.    
There are other problems associated with putting protocols into an operating system kernel.  
The simplest problem often encountered is that the kernel address space is simply too small 
to hold the piece of code in question.    This is a rather artificial sort of problem, but it is a 
severe problem none the less in many machines.    It is an appallingly unpleasant experience
to do an implementation with the knowledge that for every byte of new feature put in one 
must find some other byte of old feature to throw out.    It is hopeless to expect an effective 
and general implementation under this kind of constraint.    Another problem is that the 
protocol package, once it is thoroughly entwined in the operating system, may need to be 
redone every time the operating system changes.    If the protocol and the operating system 
are not maintained by the same group, this makes maintenance of the protocol package a 
perpetual headache.    
The third option for protocol implementation is to take the protocol package and move it 
outside the machine entirely, on to a separate processor dedicated to this kind of task.    
Such a machine is often described as a communications processor or a front-end processor.   
There are several advantages to this approach.    First, the operating system on the 
communications processor can be tailored for precisely this kind of task.    This makes the job
of implementation much easier.    Second, one does not need to redo the task for every 
machine to which the protocol is to be added.    It may be possible to reuse the same front-
end machine on different host computers.    Since the task need not be done as many times, 
one might hope that more attention could be paid to doing it right.    Given a careful 
implementation in an environment which is optimized for this kind of task, the resulting 
package should turn out to be very efficient.    Unfortunately, there are also problems with 
this approach.    There is, of course, a financial problem associated with buying an additional 
computer.    In many cases, this is not a problem at all since the cost is negligible compared 
to what the programmer would cost to do the job in the mainframe itself.    More 
fundamentally, the communications processor approach does not completely sidestep any of
the problems raised above.    The reason is that the communications processor, since it is a 
separate machine, must be attached to the mainframe by some mechanism.    Whatever that
mechanism, code is required in the mainframe to deal with it.    It can be argued that the 
program to deal with the communications processor is simpler than the program to 
implement the entire protocol package.    Even if that is so, the communications processor 
interface package is still a protocol in nature, with all of the same structural problems.    
Thus, all of the issues raised above must still be faced.    In addition to those problems, there 
are some other, more subtle problems associated with an outboard implementation of a 
protocol.    We will return to these problems later.    
There is a way of attaching a communications processor to a mainframe host which 



sidesteps all of the mainframe implementation problems, which is to use some preexisting 
interface on the host machine as the port by which a communications processor is attached. 
This strategy is often used as a last stage of desperation when the software on the host 
computer is so intractable that it cannot be changed in any way.    Unfortunately, it is almost 
inevitably the case that all of the available interfaces are totally unsuitable for this purpose, 
so the result is unsatisfactory at best.    The most common way in which this form of 
attachment occurs is when a network connection is being used to mimic local teletypes.    In 
this case, the front-end processor can be attached to the mainframe by simply providing a 
number of wires out of the front-end processor, each corresponding to a connection, which 
are plugged into teletype ports on the mainframe computer.    (Because of the appearance of
the physical configuration which results from this arrangement, Michael Padlipsky has 
described this as the "milking machine" approach to computer networking. ) This strategy 
solves the immediate problem of providing remote access to a host, but it is extremely 
inflexible.    The channels being provided to the host are restricted by the host software to 
one purpose only, remote login.    It is impossible to use them for any other purpose, such as 
file transfer or sending mail, so the host is integrated into the network environment in an 
extremely limited and inflexible manner.    If this is the best that can be done, then it should 
be tolerated.    Otherwise, implementors should be strongly encouraged to take a more 
flexible approach.    



RFC-817 Modularity and Efficiency in Protocol Implementation

Protocol Layering

The previous discussion suggested that there was a decision to be made as to where a 
protocol ought to be implemented.    In fact, the decision is much more complicated than 
that, for the goal is not to implement a single protocol, but to implement a whole family of 
protocol layers, starting with a device driver or local network driver at the bottom, then IP 
and TCP, and eventually reaching the application specific protocol, such as Telnet, FTP and 
SMTP on the top.    Clearly, the bottommost of these layers is somewhere within the kernel, 
since the physical device driver for the net is almost inevitably located there.    Equally 
clearly, the top layers of this package, which provide the user his ability to perform the 
remote login function or to send mail, are not entirely contained within the kernel.    Thus, 
the question is not whether the protocol family shall be inside or outside the kernel, but how 
it shall be sliced in two between that part inside and that part outside.    
Since protocols come nicely layered, an obvious proposal is that one of the layer interfaces 
should be the point at which the inside and outside components are sliced apart.    Most 
systems have been implemented in this way, and many have been made to work quite 
effectively.    One obvious place to slice is at the upper interface of TCP.    Since TCP provides 
a bidirectional byte stream, which is somewhat similar to the I/O facility provided by most 
operating systems, it is possible to make the interface to TCP almost mimic the interface to 
other existing devices.    Except in the matter of opening a connection, and dealing with 
peculiar failures, the software using TCP need not know that it is a network connection, 
rather than a local I/O stream that is providing the communications function.    This approach
does put TCP inside the kernel, which raises all the problems addressed above.    It also 
raises the problem that the interface to the IP layer can, if the programmer is not careful, 
become excessively buried inside the kernel.    It must be remembered that things other than
TCP are expected to run on top of IP.    The IP interface must be made accessible, even if TCP 
sits on top of it inside the kernel.    
Another obvious place to slice is above Telnet.    The advantage of slicing above Telnet is that
it solves the problem of having remote login channels emulate local teletype channels.    The 
disadvantage of putting Telnet into the kernel is that the amount of code which has now 
been included there is getting remarkably large.    In some early implementations, the size of
the network package, when one includes protocols at the level of Telnet, rivals the size of the
rest of the supervisor.    This leads to vague feelings that all is not right.    
Any attempt to slice through a lower layer boundary, for example between internet and TCP,
reveals one fundamental problem.    The TCP layer, as well as the IP layer, performs a 
demultiplexing function on incoming datagrams.    Until the TCP header has been examined, 
it is not possible to know for which user the packet is ultimately destined.    Therefore, if TCP, 
as a whole, is moved outside the kernel, it is necessary to create one separate process 
called the TCP process, which performs the TCP multiplexing function, and probably all of the
rest of TCP processing as well.    This means that incoming data destined for a user process 
involves not just a scheduling of the user process, but scheduling the TCP process first.    
This suggests an alternative structuring strategy which slices through the protocols, not 
along an established layer boundary, but along a functional boundary having to do with 
demultiplexing.    In this approach, certain parts of IP and certain parts of TCP are placed in 
the kernel.    The amount of code placed there is sufficient so that when an incoming 
datagram arrives, it is possible to know for which process that datagram is ultimately 
destined.    The datagram is then routed directly to the final process, where additional IP and 
TCP processing is performed on it.    This removes from the kernel any requirement for timer 
based actions, since they can be done by the process provided by the user.    This structure 
has the additional advantage of reducing the amount of code required in the kernel, so that 



it is suitable for systems where kernel space is at a premium.    The RFC 814, titled "Names, 
Addresses, Ports, and Routes," discusses this rather orthogonal slicing strategy in more 
detail.    
A related discussion of protocol layering and multiplexing can be found in Cohen and Postel 
[1].    



RFC-817 Modularity and Efficiency in Protocol Implementation

Breaking Down the Barriers

In fact, the implementor should be sensitive to the possibility of even more peculiar slicing 
strategies in dividing up the various protocol layers between the kernel and the one or more 
user processes.    The result of the strategy proposed above was that part of TCP should 
execute in the process of the user.    In other words, instead of having one TCP process for 
the system, there is one TCP process per connection.    Given this architecture, it is not 
longer necessary to imagine that all of the TCPs are identical.    One TCP could be optimized 
for high throughput applications, such as file transfer.    Another TCP could be optimized for 
small low delay applications such as Telnet.    In fact, it would be possible to produce a TCP 
which was somewhat integrated with the Telnet or FTP on top of it.    Such an integration is 
extremely important, for it can lead to a kind of efficiency which more traditional structures 
are incapable of producing.    Earlier, this paper pointed out that one of the important rules to
achieving efficiency was to send the minimum number of packets for a given amount of 
data.    The idea of protocol layering interacts very strongly (and poorly) with this goal, 
because independent layers have independent ideas about when packets should be sent, 
and unless these layers can somehow be brought into cooperation, additional packets will 
flow.    The best example of this is the operation of server telnet in a character at a time 
remote echo mode on top of TCP.    When a packet containing a character arrives at a server 
host, each layer has a different response to that packet.    TCP has an obligation to 
acknowledge the packet.    Either server telnet or the application layer above has an 
obligation to echo the character received in the packet.    If the character is a Telnet control 
sequence, then Telnet has additional actions which it must perform in response to the 
packet.    The result of this, in most implementations, is that several packets are sent back in 
response to the one arriving packet.    Combining all of these return messages into one 
packet is important for several reasons.    First, of course, it reduces the number of packets 
being sent over the net, which directly reduces the charges incurred for many common 
carrier tariff structures.    Second, it reduces the number of scheduling actions which will 
occur inside both hosts, which, as was discussed above, is extremely important in improving 
throughput.    
The way to achieve this goal of packet sharing is to break down the barrier between the 
layers of the protocols, in a very restrained and careful manner, so that a limited amount of 
information can leak across the barrier to enable one layer to optimize its behavior with 
respect to the desires of the layers above and below it.    For example, it would represent an 
improvement if TCP, when it received a packet, could ask the layer above whether or not it 
would be worth pausing for a few milliseconds before sending an acknowledgement in order 
to see if the upper layer would have any outgoing data to send.    Dallying before sending the
acknowledgement produces precisely the right sort of optimization if the client of TCP is 
server Telnet.    However, dallying before sending an acknowledgement is absolutely 
unacceptable if TCP is being used for file transfer, for in file transfer there is almost never 
data flowing in the reverse direction, and the delay in sending the acknowledgement 
probably translates directly into a delay in obtaining the next packets.    Thus, TCP must 
know a little about the layers above it to adjust its performance as needed.    
It would be possible to imagine a general purpose TCP which was equipped with all sorts of 
special mechanisms by which it would query the layer above and modify its behavior 
accordingly.    In the structures suggested above, in which there is not one but several TCPs, 
the TCP can simply be modified so that it produces the correct behavior as a matter of 
course.    This structure has the disadvantage that there will be several implementations of 
TCP existing on a single machine, which can mean more maintenance headaches if a 
problem is found where TCP needs to be changed.    However, it is probably the case that 
each of the TCPs will be substantially simpler than the general purpose TCP which would 



otherwise have been built.    There are some experimental projects currently under way 
which suggest that this approach may make designing of a TCP, or almost any other layer, 
substantially easier, so that the total effort involved in bringing up a complete package is 
actually less if this approach is followed.    This approach is by no means generally accepted, 
but deserves some consideration.    
The general conclusion to be drawn from this sort of consideration is that a layer boundary 
has both a benefit and a penalty.    A visible layer boundary, with a well specified interface, 
provides a form of isolation between two layers which allows one to be changed with the 
confidence that the other one will not stop working as a result.    However, a firm layer 
boundary almost inevitably leads to inefficient operation.    This can easily be seen by 
analogy with other aspects of operating systems.    Consider, for example, file systems.    A 
typical operating system provides a file system, which is a highly abstracted representation 
of a disk.    The interface is highly formalized, and presumed to be highly stable.    This makes
it very easy for naive users to have access to disks without having to write a great deal of 
software.    The existence of a file system is clearly beneficial.    On the other hand, it is clear 
that the restricted interface to a file system almost inevitably leads to inefficiency.    If the 
interface is organized as a sequential read and write of bytes, then there will be people who 
wish to do high throughput transfers who cannot achieve their goal.    If the interface is a 
virtual memory interface, then other users will regret the necessity of building a byte stream
interface on top of the memory mapped file.    The most objectionable inefficiency results 
when a highly sophisticated package, such as a data base management package, must be 
built on top of an existing operating system.    Almost inevitably, the implementors of the 
database system attempt to reject the file system and obtain direct access to the disks.    
They have sacrificed modularity for efficiency.    
The same conflict appears in networking, in a rather extreme form.    The concept of a 
protocol is still unknown and frightening to most naive programmers.    The idea that they 
might have to implement a protocol, or even part of a protocol, as part of some application 
package, is a dreadful thought.    And thus there is great pressure to hide the function of the 
net behind a very hard barrier.    On the other hand, the kind of inefficiency which results 
from this is a particularly undesirable sort of inefficiency, for it shows up, among other 
things, in increasing the cost of the communications resource used up to achieve the 
application goal.    In cases where one must pay for one's communications costs, they usually
turn out to be the dominant cost within the system.    Thus, doing an excessively good job of 
packaging up the protocols in an inflexible manner has a direct impact on increasing the cost
of the critical resource within the system.    This is a dilemma which will probably only be 
solved when programmers become somewhat less alarmed about protocols, so that they are
willing to weave a certain amount of protocol structure into their application program, much 
as application programs today weave parts of database management systems into the 
structure of their application program.    
An extreme example of putting the protocol package behind a firm layer boundary occurs 
when the protocol package is relegated to a front- end processor.    In this case the interface 
to the protocol is some other protocol.    It is difficult to imagine how to build close 
cooperation between layers when they are that far separated.    Realistically, one of the 
prices which must be associated with an implementation so physically modularized is that 
the performance will suffer as a result.    Of course, a separate processor for protocols could 
be very closely integrated into the mainframe architecture, with interprocessor co-ordination
signals, shared memory, and similar features.    Such a physical modularity might work very 
well, but there is little documented experience with this closely coupled architecture for 
protocol support.    



RFC-817 Modularity and Efficiency in Protocol Implementation

Efficiency of Protocol Processing

To this point, this document has considered how a protocol package should be broken into 
modules, and how those modules should be distributed between free standing machines, the
operating system kernel, and one or more user processes.    It is now time to consider the 
other half of the efficiency question, which is what can be done to speed the execution of 
those programs that actually implement the protocols.    We will make some specific 
observations about TCP and IP, and then conclude with a few generalities.    
IP is a simple protocol, especially with respect to the processing of normal packets, so it 
should be easy to get it to perform efficiently.    The only area of any complexity related to 
actual packet processing has to do with fragmentation and reassembly.    The reader is 
referred to RFC 815, titled "IP Datagram Reassembly Algorithms", for specific consideration 
of this point.    
Most costs in the IP layer come from table look up functions, as opposed to packet 
processing functions.    An outgoing packet requires two translation functions to be 
performed.    The internet address must be translated to a target gateway, and a gateway 
address must be translated to a local network number (if the host is attached to more than 
one network).    It is easy to build a simple implementation of these table look up functions 
that in fact performs very poorly.    The programmer should keep in mind that there may be 
as many as a thousand network numbers in a typical configuration.    Linear searching of a 
thousand entry table on every packet is extremely unsuitable.    In fact, it may be worth 
asking TCP to cache a hint for each connection, which can be handed down to IP each time a
packet is sent, to try to avoid the overhead of a table look up.    
TCP is a more complex protocol, and presents many more opportunities for getting things 
wrong.    There is one area which is generally accepted as causing noticeable and substantial
overhead as part of TCP processing.    This is computation of the checksum.    It would be nice
if this cost could be avoided somehow, but the idea of an end- to-end checksum is 
absolutely central to the functioning of TCP.    No host implementor should think of omitting 
the validation of a checksum on incoming data.    
Various clever tricks have been used to try to minimize the cost of computing the checksum. 
If it is possible to add additional microcoded instructions to the machine, a checksum 
instruction is the most obvious candidate.    Since computing the checksum involves picking 
up every byte of the segment and examining it, it is possible to combine the operation of 
computing the checksum with the operation of copying the segment from one location to 
another.    Since a number of data copies are probably already required as part of the 
processing structure, this kind of sharing might conceivably pay off if it didn't cause too 
much trouble to the modularity of the program.    Finally, computation of the checksum 
seems to be one place where careful attention to the details of the algorithm used can make
a drastic difference in the throughput of the program.    The Multics system provides one of 
the best case studies of this, since Multics is about as poorly organized to perform this 
function as any machine implementing TCP.    Multics is a 36-bit word machine, with four 9-bit
bytes per word.    The eight-bit bytes of a TCP segment are laid down packed in memory, 
ignoring word boundaries.    This means that when it is necessary to pick up the data as a set
of 16-bit units for the purpose of adding them to compute checksums, horrible masking and 
shifting is required for each 16-bit value.    An early version of a program using this strategy 
required 6 milliseconds to checksum a 576-byte segment.    Obviously, at this point, 
checksum computation was becoming the central bottleneck to throughput.    A more careful 
recoding of this algorithm reduced the checksum processing time to less than one 
millisecond.    The strategy used was extremely dirty.    It involved adding up carefully 
selected words of the area in which the data lay, knowing that for those particular words, the



16-bit values were properly aligned inside the words.    Only after the addition had been done
were the various sums shifted, and finally added to produce the eventual checksum.    This 
kind of highly specialized programming is probably not acceptable if used everywhere within
an operating system.    It is clearly appropriate for one highly localized function which can be 
clearly identified as an extreme performance bottleneck.    
Another area of TCP processing which may cause performance problems is the overhead of 
examining all of the possible flags and options which occur in each incoming packet.    One 
paper, by Bunch and Day [2], asserts that the overhead of packet header processing is 
actually an important limiting factor in throughput computation.    Not all measurement 
experiments have tended to support this result.    To whatever extent it is true, however, 
there is an obvious strategy which the implementor ought to use in designing his program.    
He should build his program to optimize the expected case.    It is easy, especially when first 
designing a program, to pay equal attention to all of the possible outcomes of every test.    In
practice, however, few of these will ever happen.    A TCP should be built on the assumption 
that the next packet to arrive will have absolutely nothing special about it, and will be the 
next one expected in the sequence space.    One or two tests are sufficient to determine that 
the expected set of control flags are on.    (The ACK flag should be on; the Push flag may or 
may not be on.    No other flags should be on. ) One test is sufficient to determine that the 
sequence number of the incoming packet is one greater than the last sequence number 
received.    In almost every case, that will be the actual result.    Again, using the Multics 
system as an example, failure to optimize the case of receiving the expected sequence 
number had a detectable effect on the performance of the system.    The particular problem 
arose when a number of packets arrived at once.    TCP attempted to process all of these 
packets before awaking the user.    As a result, by the time the last packet arrived, there was 
a threaded list of packets which had several items on it.    When a new packet arrived, the 
list was searched to find the location into which the packet should be inserted. Obviously, 
the list should be searched from highest sequence number to lowest sequence number, 
because one is expecting to receive a packet which comes after those already received. By 
mistake, the list was searched from front to back, starting with the packets with the lowest 
sequence number. The amount of time spent searching this list backwards was easily 
detectable in the metering measurements. 
Other data structures can be organized to optimize the action which is normally taken on 
them. For example, the retransmission queue is very seldom actually used for 
retransmission, so it should not be organized to optimize that action. In fact, it should be 
organized to optimized the discarding of things from it when the acknowledgement arrives. 
In many cases, the easiest way to do this is not to save the packet at all, but to reconstruct 
it only if it needs to be retransmitted, starting from the data as it was originally buffered by 
the user. 
There is another generality, at least as important as optimizing the common case, which is 
to avoid copying data any more times than necessary. One more result from the Multics TCP 
may prove enlightening here. Multics takes between two and three milliseconds within the 
TCP layer to process an incoming packet, depending on its size. For a 576- byte packet, the 
three milliseconds is used up approximately as follows. One millisecond is used computing 
the checksum. Six hundred microseconds is spent copying the data. (The data is copied 
twice, at .3 milliseconds a copy.) One of those copy operations could correctly be included as
part of the checksum cost, since it is done to get the data on a known word boundary to 
optimize the checksum algorithm. However, the copy also performs another necessary 
transfer at the same time. Header processing and packet resequencing takes .7 
milliseconds. The rest of the time is used in miscellaneous processing, such as removing 
packets from the retransmission queue which are acknowledged by this packet. Data 
copying is the second most expensive single operation after data checksuming. Some 
implementations, often because of an excessively layered modularity, end up copying the 
data around a great deal. Other implementations end up copying the data because there is 
no shared memory between processes, and the data must be moved from process to 



process via a kernel operation. Unless the amount of this activity is kept strictly under 
control, it will quickly become the major performance bottleneck. 



RFC-817 Modularity and Efficiency in Protocol Implementation

Conclusions

This document has addressed two aspects of obtaining performance from a protocol 
implementation, the way in which the protocol is layered and integrated into the operating 
system, and the way in which the detailed handling of the packet is optimized. It would be 
nice if one or the other of these costs would completely dominate, so that all of one's 
attention could be concentrated there. Regrettably, this is not so. Depending on the 
particular sort of traffic one is getting, for example, whether Telnet one-byte packets or file 
transfer maximum size packets at maximum speed, one can expect to see one or the other 
cost being the major bottleneck to throughput. Most implementors who have studied their 
programs in an attempt to find out where the time was going have reached the 
unsatisfactory conclusion that it is going equally to all parts of their program. With the 
possible exception of checksum processing, very few people have ever found that their 
performance problems were due to a single, horrible bottleneck which they could fix by a 
single stroke of inventive programming. Rather, the performance was something which was 
improved by painstaking tuning of the entire program. 
Most discussions of protocols begin by introducing the concept of layering, which tends to 
suggest that layering is a fundamentally wonderful idea which should be a part of every 
consideration of protocols. In fact, layering is a mixed blessing. Clearly, a layer interface is 
necessary whenever more than one client of a particular layer is to be allowed to use that 
same layer. But an interface, precisely because it is fixed, inevitably leads to a lack of 
complete understanding as to what one layer wishes to obtain from another. This has to lead
to inefficiency. Furthermore, layering is a potential snare in that one is tempted to think that 
a layer boundary, which was an artifact of the specification procedure, is in fact the proper 
boundary to use in modularizing the implementation. Again, in certain cases, an architected 
layer must correspond to an implemented layer, precisely so that several clients can have 
access to that layer in a reasonably straightforward manner. In other cases, cunning 
rearrangement of the implemented module boundaries to match with various functions, 
such as the demultiplexing of incoming packets, or the sending of asynchronous outgoing 
packets, can lead to unexpected performance improvements compared to more traditional 
implementation strategies. Finally, good performance is something which is difficult to 
retrofit onto an existing program. Since performance is influenced, not just by the fine detail,
but by the gross structure, it is sometimes the case that in order to obtain a substantial 
performance improvement, it is necessary to completely redo the program from the bottom 
up. This is a great disappointment to programmers, especially those doing a protocol 
implementation for the first time. Programmers who are somewhat inexperienced and 
unfamiliar with protocols are sufficiently concerned with getting their program logically 
correct that they do not have the capacity to think at the same time about the performance 
of the structure they are building. Only after they have achieved a logically correct program 
do they discover that they have done so in a way which has precluded real performance. 
Clearly, it is more difficult to design a program thinking from the start about both logical 
correctness and performance. With time, as implementors as a group learn more about the 
appropriate structures to use for building protocols, it will be possible to proceed with an 
implementation project having more confidence that the structure is rational, that the 
program will work, and that the program will work well. Those of us now implementing 
protocols have the privilege of being on the forefront of this learning process. It should be no
surprise that our programs sometimes suffer from the uncertainty we bring to bear on them.





Citations
[1] Cohen and Postel, "On Protocol Multiplexing", Sixth Data Communications Symposium, 
ACM/IEEE, November 1979.
[2] Bunch and Day, "Control Structure Overhead in TCP", Trends and Applications: Computer 
Networking, NBS Symposium, May 1980. 



 RFC-821 SIMPLE MAIL TRANSFER PROTOCOL
Jonathan B. Postel

August 1982
Information Sciences Institute

University of Southern California

Introduction
The SMTP Model
The SMTP Procedure

The SMTP Specifications

Appendix A:    TCP
Appendix B:    NCP
Appendix C:    NITS
Appendix D:    X.25
Appendix E:    Theory of Reply Codes
Appendix F:    Scenarios

Glossary



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

INTRODUCTION
The objective of Simple Mail Transfer Protocol (SMTP) is to transfer mail reliably and 
efficiently.

SMTP is independent of the particular transmission subsystem and requires only a reliable 
ordered data stream channel.    Appendices A, B, C, and D describe the use of SMTP with 
various transport services.    A Glossary provides the definitions of terms as used in this 
document.

An important feature of SMTP is its capability to relay mail across transport service 
environments.    A transport service provides an interprocess communication environment 
(IPCE).    An IPCE may cover one network, several networks, or a subset of a network.    It is 
important to realize that transport systems (or IPCEs) are not one-to-one with networks.    A 
process can communicate directly with another process through any mutually known IPCE.    
Mail is an application or use of interprocess communication.    Mail can be communicated 
between processes in different IPCEs by relaying through a process connected to two (or 
more) IPCEs.    More specifically, mail can be relayed between hosts on different transport 
systems by a host on both transport systems.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

The SMTP Model
Mail is sent by a series of request/response transactions between a client, the "sender-
SMTP," and a server, the "receiver-SMTP".    These transactions pass (1) the message proper,
which is composed of header and body, and (2) SMTP source and destination addresses, 
referred to as the "envelope".

The SMTP programs are analogous to Message Transfer Agents (MTAs) of X.400.    There will 
be another level of protocol software, closer to the end user, that is responsible for 
composing and analyzing RFC-822 message headers; this component is known as the "User 
Agent" in X.400, and we use that term in this document.    There is a clear logical distinction 
between the User Agent and the SMTP implementation, since they operate on different 
levels of protocol.    Note, however, that this distinction is may not be exactly reflected the 
structure of typical implementations of Internet mail.    Often there is a program known as 
the "mailer" that implements SMTP and also some of the User Agent functions; the rest of 
the User Agent functions are included in a user interface used for entering and reading mail.

The SMTP envelope is constructed at the originating site, typically by the User Agent when 
the message is first queued for the Sender-SMTP program.    The envelope addresses may be
derived from information in the message header, supplied by the user interface (e.g., to 
implement a bcc: request), or derived from local configuration information (e.g., expansion 
of a mailing list).    The SMTP envelope cannot in general be re-derived from the header at a 
later stage in message delivery, so the envelope is transmitted separately from the message
itself using the MAIL and RCPT commands of SMTP.

With the advent of the domain system and of mail routing using mail-exchange (MX) 
resource records, implementors should now think of delivering mail to a user at a domain, 
which may or may not be a particular host.    This does not change the fact that SMTP is a 
host-to-host mail exchange protocol.

The SMTP design is based on the following model of communication:    as the result of a user 
mail request, the sender-SMTP establishes a two-way transmission channel to a receiver-
SMTP.    The receiver-SMTP may be either the ultimate destination or an intermediate.    SMTP 
commands are generated by the sender-SMTP and sent to the receiver-SMTP.    SMTP replies 
are sent from the receiver-SMTP to the sender-SMTP in response to the commands.

Once the transmission channel is established, the SMTP-sender sends a MAIL command 
indicating the sender of the mail.    If the SMTP-receiver can accept mail it responds with an 
OK reply.    The SMTP-sender then sends a RCPT command identifying a recipient of the mail.  
If the SMTP-receiver can accept mail for that recipient it responds with an OK reply; if not, it 
responds with a reply rejecting that recipient (but not the whole mail transaction).    The 
SMTP-sender and SMTP-receiver may negotiate several recipients.    When the recipients 
have been negotiated the SMTP-sender sends the mail data, terminating with a special 
sequence.    If the SMTP-receiver successfully processes the mail data it responds with an OK 
reply.    The dialog is purposely lock-step, one-at-a-time.



The SMTP provides mechanisms for the transmission of mail; directly from the sending user's
host to the receiving user's host when the two host are connected to the same transport 
service, or via one or more relay SMTP-servers when the source and destination hosts are 
not connected to the same transport service.

To be able to provide the relay capability the SMTP-server must be supplied with the name of
the ultimate destination host as well as the destination mailbox name.

The argument to the MAIL command is a reverse-path, which specifies who the mail is from.  
The argument to the RCPT command is a forward-path, which specifies who the mail is to.    
The forward-path s a source route, while the reverse-path is a return route (which may be 
used to return a message to the sender when an error occurs with a relayed message).

When the same message is sent to multiple recipients the SMTP encourages the 
transmission of only one copy of the data for all the recipients at the same destination host.

The mail commands and replies have a rigid syntax.    Replies also have a numeric code.    In 
the following, examples appear which use actual commands and replies.    The complete lists
of commands and replies appears in the section on specifications.

Commands and replies are not case sensitive.    That is, a command or reply word may be 
upper case, lower case, or any mixture of upper and lower case.    Note that this is not true of
mailbox user names.    For some hosts the user name is case sensitive, and SMTP 
implementations must take case to preserve the case of user names as they appear in 
mailbox arguments.    Host names are not case sensitive.

Commands and replies are composed of characters from the ASCII character set.    When the 
transport service provides an 8-bit byte (octet) transmission channel, each 7-bit character is 
transmitted right justified in an octet with the high order bit cleared to zero.

When specifying the general form of a command or reply, an argument (or special symbol) 
will be denoted by a meta-linguistic variable (or constant), for example, "<string>" or 
"<reverse-path>".    Here the angle brackets indicate these are meta-linguistic variables.    
However, some arguments use the angle brackets literally.    For example, an actual reverse-
path is enclosed in angle brackets, i.e., "<John.Smith@USC-ISI.ARPA>" is an instance of 
<reverse-path> (the angle brackets are actually transmitted in the command or reply).    
Scenarios are presented in Appendix F.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

The SMTP Procedure
Mail  
Forwarding  
Verifying and Expanding  
Sending and Mailing  
Opening and Closing  
Relaying  
Domains  
Changing Roles  



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

MAIL
There are three steps to SMTP mail transactions.    The transaction is started with a MAIL 
command which gives the sender identification.    A series of one or more RCPT commands 
follows giving the receiver information.    Then a DATA command gives the mail data.    And 
finally, the end of mail data indicator confirms the transaction.

Canonicalization
The domain names that a Sender-SMTP sends in MAIL and RCPT commands must have been
"canonicalized," i.e., they must be fully-qualified principal names or domain literals, not 
nicknames or domain abbreviations.    A canonicalized name either identifies a host directly 
or is an MX name; it cannot be a CNAME.

The first step in the procedure is the MAIL command.    The <reverse-path> contains the 
source mailbox.

MAIL <SP> FROM:<reverse-path> <CRLF>

This command tells the SMTP-receiver that a new mail transaction is starting and to reset all 
its state tables and buffers, including any recipients or mail data.    It gives the reverse-path 
which can be used to report errors.    If accepted, the receiver-SMTP returns a 250 OK reply.

The <reverse-path> can contain more than just a mailbox.    The <reverse-path> is a 
reverse source routing list of hosts and source mailbox.    The first host in the <reverse-
path> should be the host sending this command.

The second step in the procedure is the RCPT command.

RCPT <SP> TO:<forward-path> <CRLF>

This command gives a forward-path identifying one recipient.    If accepted, the receiver-
SMTP returns a 250 OK reply, and stores the forward-path.    If the recipient is unknown the 
receiver-SMTP returns a 550 Failure reply.    This second step of the procedure can be 
repeated any number of times.

The <forward-path> can contain more than just a mailbox.    The <forward-path> is a 
source routing list of hosts and the destination mailbox.    The first host in the <forward-
path> should be the host receiving this command.

The third step in the procedure is the DATA command.

DATA <CRLF>

If accepted, the receiver-SMTP returns a 354 Intermediate reply and considers all succeeding
lines to be the message text.    When the end of text is received and stored the SMTP-
receiver sends a 250 OK reply.

Since the mail data is sent on the transmission channel the end of the mail data must be 
indicated so that the command and reply dialog can be resumed.    SMTP indicates the end of
the mail data by sending a line containing only a period.    A transparency procedure is used 
to prevent this from interfering with the user's text.



Please note that the mail data includes the memo header items such as Date, Subject, To, 
Cc, From (RFC-822).

The end of mail data indicator also confirms the mail transaction and tells the receiver-SMTP 
to now process the stored recipients and mail data.    If accepted, the receiver-SMTP returns a
250 OK reply.    The DATA command should fail only if the mail transaction was incomplete 
(for example, no recipients), or if resources are not available.

The above procedure is an example of a mail transaction.    These commands must be used 
only in the order discussed above.    The example below illustrates the use of these 
commands in a mail transaction.

Example of the SMTP Procedure

This SMTP example shows mail sent by Smith at host Alpha.ARPA, to Jones, Green, and 
Brown at host Beta.ARPA.    Here we assume that host Alpha contacts host Beta directly.

S: MAIL FROM:<Smith@Alpha.ARPA>
R: 250 OK

S: RCPT TO:<Jones@Beta.ARPA>
R: 250 OK

S: RCPT TO:<Green@Beta.ARPA>
R: 550 No such user here

S: RCPT TO:<Brown@Beta.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: <CRLF>.<CRLF>
R: 250 OK

The mail has now been accepted for Jones and Brown.    Green did not have a mailbox at host
Beta.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Forwarding
There are some cases where the destination information in the <forward-path> is incorrect, 
but the receiver-SMTP knows the correct destination.    In such cases, one of the following 
replies should be used to allow the sender to contact the correct destination.

251 User not local; will forward to <forward-path>

This reply indicates that the receiver-SMTP knows the user's mailbox is on another host and 
indicates the correct forward-path to use in the future.    Note that either the host or user or 
both may be different.    The receiver takes responsibility for delivering the message.

551 User not local; please try <forward-path>

This reply indicates that the receiver-SMTP knows the user's mailbox is on another host and 
indicates the correct forward-path to use.    Note that either the host or user or both may be 
different.    The receiver refuses to accept mail for this user, and the sender must either 
redirect the mail according to the information provided or return an error response to the 
originating user.

Example of Forwarding

Either

S: RCPT TO:<Postel@USC-ISI.ARPA>
R: 251 User not local; will forward to <Postel@USC-ISIF.ARPA>

Or

S: RCPT TO:<Paul@USC-ISIB.ARPA>
R: 551 User not local; please try <Mockapetris@USC-ISIF.ARPA>



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Verifying And Expanding
SMTP provides as additional features, commands to verify a user name or expand a mailing 
list.    This is done with the VRFY and EXPN commands, which have character string 
arguments.    For the VRFY command, the string is a user name, and the response may 
include the full name of the user and must include the mailbox of the user.    For the EXPN 
command, the string identifies a mailing list, and the multiline response may include the full 
name of the users and must give the mailboxes on the mailing list.

"User name" is a fuzzy term and used purposely.    When a host implements the VRFY or 
EXPN commands then at least local mailboxes must be recognized as "user names".    If a 
host chooses to recognize other strings as "user names" that is allowed.

A receiver-SMTP must implement VRFY and should implement EXPN.    However, there may 
be configuration information to disableVRFY and EXPN in a particular installation; this might 
even allow EXPN to be disabled for selected lists.

Discussion
SMTP users and administrators make regular use of these commands for 
diagnosing mail delivery problems.    With the increasing use of multi-level 
mailing list expansion (sometimes more than two levels), EXPN has been 
increasingly important for diagnosing inadvertent mail loops.    On the other 
hand, some feel that EXPN represents a significant privacy, and perhaps even 
a security, exposure.

In some hosts the distinction between a mailing list and an alias for a single mailbox is a bit 
fuzzy, since a common data structure may hold both types of entries, and it is possible to 
have mailing lists of one mailbox.    If a request is made to verify a mailing list a positive 
response can be given if on receipt of a message so addressed it will be delivered to 
everyone on the list, otherwise an error should be reported (e.g., "550 That is a mailing list, 
not a user").    If a request is made to expand a user name a positive response can be formed
by returning a list containing one name, or an error can be reported (e.g., "550 That is a user
name, not a mailing list").

In the case of a multiline reply (normal for EXPN) exactly one mailbox is to be specified on 
each line of the reply.    In the case of an ambiguous request, for example, "VRFY Smith", 
where there are two Smith's the response must be "553 User ambiguous".

The case of verifying a user name is straightforward as shown in the example below.

Example of Verifying a User Name

Either

S: VRFY Smith
R: 250 Fred Smith <Smith@USC-ISIF.ARPA>

Or

S: VRFY Smith
R: 251 User not local; will forward to <Smith@USC-ISIQ.ARPA>



Or

S: VRFY Jones
R: 550 String does not match anything.

Or

S: VRFY Jones
R: 551 User not local; please try <Jones@USC-ISIQ.ARPA>

Or

S: VRFY Gourzenkyinplatz
R: 553 User ambiguous.

The case of expanding a mailbox list requires a multiline reply as shown in the following 
example.

Example of Expanding a Mailing List

Either

S: EXPN Example-People
R: 250-Jon Postel <Postel@USC-ISIF.ARPA>
R: 250-Fred Fonebone <Fonebone@USC-ISIQ.ARPA>
R: 250-Sam Q. Smith <SQSmith@USC-ISIQ.ARPA>
R: 250-Quincy Smith <@USC-ISIF.ARPA:Q-Smith@ISI-VAXA.ARPA>
R: 250-<joe@foo-unix.ARPA>
R: 250 <xyz@bar-unix.ARPA>

Or

S: EXPN Executive-Washroom-List
R: 550 Access Denied to You.

The character string arguments of the VRFY and EXPN commands cannot be further 
restricted due to the variety of implementations of the user name and mailbox list concepts. 
On some systems it may be appropriate for the argument of the EXPN command to be a file 
name for a file containing a mailing list, but again there is a variety of file naming 
conventions in the Internet.

The EXPN command is not included in the minimum implementation , and is not required to 
work across relays when it is implemented.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Sending and Mailing
The main purpose of SMTP is to deliver messages to user's mailboxes.    A very similar 
service provided by some hosts is to deliver messages to user's terminals (provided the user
is active on the host).    The delivery to the user's mailbox is called "mailing", the delivery to 
the user's terminal is called "sending".    Because in many hosts the implementation of 
sending is nearly identical to the implementation of mailing these two functions are 
combined in SMTP.    However the sending commands are not included in the required 
minimum implementation.    Users should have the ability to control the writing of messages 
on their terminals.    Most hosts permit the users to accept or refuse such messages.

Discussion
It has been suggested that the use of mail relaying through an MX record is 
inconsistent with the intent of SEND to deliver a message immediately and 
directly to a user's terminal.    However, an SMTP receiver that is unable to 
write directly to the user terminal can return a "251 User Not Local" reply to 
the RCPT following a SEND, to inform the originator of possibly deferred 
delivery.

The following three command are defined to support the sending options.    These are used 
in the mail transaction instead of the MAIL command and inform the receiver-SMTP of the 
special semantics of this transaction:

SEND <SP> FROM:<reverse-path> <CRLF>

The SEND command requires that the mail data be delivered to the user's terminal.    If the 
user is not active (or not accepting terminal messages) on the host a 450 reply may 
returned to a RCPT command.    The mail transaction is successful if the message is delivered
the terminal.

SOML <S> FROM:<reverse-path> <CRLF>

The Send Or MaiL command requires that the mail data be delivered to the user's terminal if 
the user is active (and accepting terminal messages) on the host.    If the user is not active 
(or not accepting terminal messages) then the mail data is entered into the user's mailbox.    
The mail transaction is successful if the message is delivered either to the terminal or the 
mailbox.

SAML <SP> FROM:<reverse-path> <CRLF>

The Send And MaiL command requires that the mail data be delivered to the user's terminal 
if the user is active (and accepting terminal messages) on the host.    In any case the mail 
data is entered into the user's mailbox.    The mail transaction is successful if the message is 
delivered the mailbox.

The same reply codes that are used for the MAIL commands are used for these commands.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Opening and Closing
At the time the transmission channel is opened there is an exchange to ensure that the 
hosts are communicating with the hosts they think they are.

The following two commands are used in transmission channel opening and closing:

HELO <SP> <domain> <CRLF>

QUIT <CRLF>

In the HELO command the host sending the command identifies itself; the command may be
interpreted as saying "Hello, I am <domain>".

Example of Connection Opening

         R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready
         S: HELO USC-ISIF.ARPA
         R: 250 BBN-UNIX.ARPA

Example of Connection Closing

         S: QUIT
         R: 221 BBN-UNIX.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Relaying
We distinguish three types of mail (store-and-) forwarding:

(1) A simple forwarder or "mail exchanger" forwards a message using 
private knowledge about the recipient; see section on Forwarding.

(2) An SMTP mail "relay" forwards a message within an SMTP mail 
environment as the result of an explicit source route as defined in 
below).    The SMTP relay function uses the "@...:" form of source route 
from RFC- 822 (see Explicit Path Specification).

(3) A mail "gateway" passes a message between different environments.

An Internet host that is forwarding a message but is not a gateway to a different mail 
environment (i.e., it falls under (1) or (2)) should not alter any existing header fields, 
although the host will add an appropriate Received: line as required in DATA Command.

A Sender-SMTP should not send a RCPT TO: command containing an explicit source route 
using the "@...:" address form.    Thus, the relay function defined in below should not be 
used.

Discussion
The intent is to discourage all source routing and to abolish explicit source 
routing for mail delivery within the Internet environment.    Source-routing is 
unnecessary; the simple target address "user@domain" should always suffice. 
This is the result of an explicit architectural decision to use universalnaming 
rather than source routing for mail.    Thus, SMTP provides end-to-end 
connectivity, and the DNS provides globally-unique, location-independent 
names.    MXrecords handle the major case where source routing might 
otherwise be needed.

A receiver-SMTP must accept the explicit source route syntax in the envelope, but it may 
implement the relay function as defined below.    If it does not implement the relay function, 
it should attempt to deliver the message directly to the host to the right of the right-most 
"@" sign.

Discussion
For example, suppose a host that does not implement the relay function 
receives a message with the SMTP command: "RCPT 
TO:<@ALPHA,@BETA:joe@GAMMA>", where ALPHA, BETA, and GAMMA 
represent domain names.    Rather than immediately refusing the message 
with a 550 error reply as suggested in the example below, the host should try 
to forward the message to GAMMA directly, using: "RCPT TO:<joe@GAMMA>". 
Since this host does not support relaying, it is not required to update the 
reverse path.

Some have suggested that source routing may be needed occasionally for 
manually routing mail around failures; however, the reality and importance of 
this need is controversial.    The use of explicit SMTP mail relaying for this 
purpose is discouraged, and in fact it may not be successful, as many host 
systems do not support it.    Some have used the "%-hack" (see Balancing 



Local Part and Domain) for this purpose.

The forward-path may be a source route of the form "@ONE,@TWO:JOE@THREE", where ONE, 
TWO, and THREE are hosts.    This form is used to emphasize the distinction between an 
address and a route.    The mailbox is an absolute address, and the route is information 
about how to get there.    The two concepts should not be confused.

Conceptually the elements of the forward-path are moved to the reverse-path as the 
message is relayed from one server-SMTP to another.    The reverse-path is a reverse source 
route, (i.e., a source route from the current location of the message to the originator of the 
message).    When a server-SMTP deletes its identifier from the forward-path and inserts it 
into the reverse-path, it must use the name it is known by in the environment it is sending 
into, not the environment the mail came from, in case the server-SMTP is known by different 
names in different environments.

If when the message arrives at an SMTP the first element of the forward-path is not the 
identifier of that SMTP the element is not deleted from the forward-path and is used to 
determine the next SMTP to send the message to.    In any case, the SMTP adds its own 
identifier to the reverse-path.

Using source routing the receiver-SMTP receives mail to be relayed to another server-SMTP    
The receiver-SMTP may accept or reject the task of relaying the mail in the same way it 
accepts or rejects mail for a local user.    The receiver-SMTP transforms the command 
arguments by moving its own identifier from the forward-path to the beginning of the 
reverse-path.    The receiver-SMTP then becomes a sender-SMTP, establishes a transmission 
channel to the next SMTP in the forward-path, and sends it the mail.

The first host in the reverse-path should be the host sending the SMTP commands, and the 
first host in the forward-path should be the host receiving the SMTP commands.

Notice that the forward-path and reverse-path appear in the SMTP commands and replies, 
but not necessarily in the message.    That is, there is no need for these paths and especially 
this syntax to appear in the "To:" , "From:", "CC:", etc. fields of the message header.

If a server-SMTP has accepted the task of relaying the mail and later finds that the forward-
path is incorrect or that the mail cannot be delivered for whatever reason, then it must 
construct an "undeliverable mail" notification message and send it to the originator of the 
undeliverable mail (as indicated by the reverse-path).

This notification message must be from the server-SMTP at this host.    Of course, server-
SMTPs should not send notification messages about problems with notification messages.    
One way to prevent loops in error reporting is to specify a null reverse-path in the MAIL 
command of a notification message.    When such a message is relayed it is permissible to 
leave the reverse-path null.    A MAIL command with a null reverse-path appears as follows:

MAIL FROM:<>

An undeliverable mail notification message is shown in the example below.    This notification
is in response to a message originated by JOE at HOSTW and sent via HOSTX to HOSTY with 
instructions to relay it on to HOSTZ.    What we see in the example is the transaction 
between HOSTY and HOSTX, which is the first step in the return of the notification message.

Example Undeliverable Mail Notification Message



S: MAIL FROM:<>
R: 250 ok
S: RCPT TO:<@HOSTX.ARPA:JOE@HOSTW.ARPA>
R: 250 ok
S: DATA
R: 354 send the mail data, end with .
S: Date: 23 Oct 81 11:22:33
S: From: SMTP@HOSTY.ARPA
S: To: JOE@HOSTW.ARPA
S: Subject: Mail System Problem
S:
S:   Sorry JOE, your message to SAM@HOSTZ.ARPA lost.
S:   HOSTZ.ARPA said this:
S:    "550 No Such User"
S: .
R: 250 ok



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Domains
Domains are a recently introduced concept in the ARPA Internet mail system.    The use of 
domains changes the address space from a flat global space of simple character string host 
names to a hierarchically structured rooted tree of global addresses.    The host name is 
replaced by a domain and host designator which is a sequence of domain element strings 
separated by periods with the understanding that the domain elements are ordered from the
most specific to the most general.

For example, "USC-ISIF.ARPA", "Fred.Cambridge.UK", and "PC7.LCS.MIT.ARPA" might be 
host-and-domain identifiers.

Whenever domain names are used in SMTP only the official names are used, the use of 
nicknames or aliases is not allowed.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Changing Roles
The TURN command may be used to reverse the roles of the two programs communicating 
over the transmission channel.

If program-A is currently the sender-SMTP and it sends the TURN command and receives an 
ok reply (250) then program-A becomes the receiver-SMTP.

If program-B is currently the receiver-SMTP and it receives the TURN command and sends an
ok reply (250) then program-B becomes the sender-SMTP.

To refuse to change roles the receiver sends the 502 reply.

Please note that this command is optional.    It would not normally be used in situations 
where the transmission channel is TCP.    However, when the cost of establishing the 
transmission channel is high, this command may be quite useful.    For example, this 
command may be useful in supporting be mail exchange using the public switched 
telephone system as a transmission channel, especially if some hosts poll other hosts for 
mail exchanges.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Specifications

SMTP Command Semantics
SMTP Commands  
SMTP Command Syntax  
SMTP Replies  
            Reply Codes by Function Group  
            Reply Codes in Numeric Order  
Sequencing of Commands and Replies  
State Diagrams  
Details
            Minimum Implementation  
            Transparency  
            Sizes  



RFC-821--SMTP Specifications

Command Semantics
The SMTP commands define the mail transfer or the mail system function requested by the 
user.    SMTP commands are character strings terminated by <CRLF>.    The command codes 
themselves are alphabetic characters terminated by <SP> if parameters follow and <CRLF>
otherwise.    The syntax of mailboxes must conform to receiver site conventions.    The SMTP 
commands are discussed below.    The SMTP replies are discussed in a separate section of 
SMTP Specifications.

A mail transaction involves several data objects which are communicated as arguments to 
different commands.    The reverse-path is the argument of the MAIL command, the forward-
path is the argument of the RCPT command, and the mail data is the argument of the DATA 
command.    These arguments or data objects must be transmitted and held pending the 
confirmation communicated by the end of mail data indication which finalizes the 
transaction.    The model for this is that distinct buffers are provided to hold the types of data
objects, that is, there is a reverse-path buffer, a forward-path buffer, and a mail data buffer.   
Specific commands cause information to be appended to a specific buffer, or cause one or 
more buffers to be cleared.

There are restrictions on the order in which these command may be used.

The first command in a session must be the HELO command.    The HELO command may be 
used later in a session as well.    If the HELO command argument is not acceptable a 501 
failure reply must be returned and the receiver-SMTP must stay in the same state.

The NOOP, HELP, EXPN, and VRFY commands can be used at any time during a session.

The MAIL, SEND, SOML, or SAML commands begin a mail transaction.    Once started a mail 
transaction consists of one of the transaction beginning commands, one or more RCPT 
commands, and a DATA command, in that order.    A mail transaction may be aborted by the 
RSET command.    There may be zero or more transactions in a session.

If the transaction beginning command argument is not acceptable a 501 failure reply must 
be returned and the receiver-SMTP must stay in the same state.    If the commands in a 
transaction are out of order a 503 failure reply must be returned and the receiver-SMTP must
stay in the same state.

The last command in a session must be the QUIT command.    The QUIT command can not be
used at any other time in a session.



RFC-821--SMTP Specifications

Commands
HELLO (HELO)
MAIL (MAIL)
RECIPIENT (RCPT)
DATA (DATA)
SEND (SEND)
SEND OR MAIL (SOML)
SEND AND MAIL (SAML)
RESET (RSET)
VERIFY (VRFY)
EXPAND (EXPN)
HELP (HELP)
NOOP (NOOP)
QUIT (QUIT)
TURN (TURN)



RFC-821--SMTP Specifications: Commands

HELLO (HELO)
This command is used to identify the sender-SMTP to the receiver-SMTP.    The argument field
contains the host name of the sender-SMTP.

The receiver-SMTP identifies itself to the sender-SMTP in the connection greeting reply, and 
in the response to this command.

This command and an OK reply to it confirm that both the sender-SMTP and the receiver-
SMTP are in the initial state, that is, there is no transaction in progress and all state tables 
and buffers are cleared.

The sender-SMTP must ensure that the <domain> parameter in a HELO command is a valid 
principal host domain name for the client host.    As a result, the receiver-SMTP will not have 
to perform MX resolution on this name in order to validate the HELO parameter.

The HELO receiver may verify that the HELO parameter really corresponds to the IP address 
of the sender.    However, the receiver must not refuse to accept a message, even if the 
sender's HELO command fails verification.

Discussion
Verifying the HELO parameter requires a domain name lookup and may 
therefore take considerable time.    An alternative tool for tracking bogus mail 
sources is suggested below (see "DATA Command").

Note also that the HELO argument is still required to have valid <domain> 
syntax, since it will appear in a Received: line; otherwise, a 501 error is to be 
sent.

Implementation
When HELO parameter validation fails, a suggested procedure is to insert a 
note about the unknown authenticity of the sender into the message header 
(e.g., in the "Received:" line).



RFC-821--SMTP Specifications: Commands

MAIL (MAIL)
This command is used to initiate a mail transaction in which the mail data is delivered to one
or more mailboxes.    The argument field contains a reverse-path.

The reverse-path consists of an optional list of hosts and the sender mailbox.    When the list 
of hosts is present, it is a "reverse" source route and indicates that the mail was relayed 
through each host on the list (the first host in the list was the most recent relay).    This list is
used as a source route to return non-delivery notices to the sender.    As each relay host adds
itself to the beginning of the list, it must use its name as known in the IPCE to which it is 
relaying the mail rather than the IPCE from which the mail came (if they are different).    In 
some types of error reporting messages (for example, undeliverable mail notifications) the 
reverse-path may be null (see example under Relaying).

This command clears the reverse-path buffer, the forward-path buffer, and the mail data 
buffer; and inserts the reverse-path information from this command into the reverse-path 
buffer.



RFC-821--SMTP Specifications: Commands

RECIPIENT (RCPT)
This command is used to identify an individual recipient of the mail data; multiple recipients 
are specified by multiple use of this command.

The forward-path consists of an optional list of hosts and a required destination mailbox.    
When the list of hosts is present, it is a source route and indicates that the mail must be 
relayed to the next host on the list.    If the receiver-SMTP does not implement the relay 
function it may user the same reply it would for an unknown local user (550).

A host that supports a receiver-SMTP must support the reserved mailbox "Postmaster".

The receiver-SMTP may verify RCPT parameters as they arrive; however, RCPT responses 
must not be delayed beyond a reasonable time.

Therefore, a "250 OK" response to a RCPT does not necessarily imply that the delivery 
address(es) are valid.    Errors found after message acceptance will be reported by mailing a 
notification message to an appropriate address (see Reliable Mail Receipt).

Discussion
The set of conditions under which a RCPT parameter can be validated 
immediately is an engineering design choice.    Reporting destination mailbox 
errors to the Sender-SMTP before mail is transferred is generally desirable to 
save time and network bandwidth, but this advantage is lost if RCPT 
verification islengthy.

For example, the receiver can verify immediately any simple local reference, 
such as a single locally- registered mailbox.    On the other hand, the 
"reasonable time" limitation generally implies deferring verification of a 
mailing list until after the message has been transferred and accepted, since 
verifying a large mailing list can take a very long time.    An implementation 
might or might not choose to defer validation of addresses that are non-local 
and therefore require a DNS lookup.    If a DNS lookup is performed but a soft 
domain system error (e.g., timeout) occurs, validity must be assumed.

When mail is relayed, the relay host must remove itself from the beginning forward-path and
put itself at the beginning of the reverse-path.    When mail reaches its ultimate destination 
(the forward-path contains only a destination mailbox), the receiver-SMTP inserts it into the 
destination mailbox in accordance with its host mail conventions.

For example, mail received at relay host A with arguments

FROM:<USERX@HOSTY.ARPA>
TO:<@HOSTA.ARPA,@HOSTB.ARPA:USERC@HOSTD.ARPA>

will be relayed on to host B with arguments

FROM:<@HOSTA.ARPA:USERX@HOSTY.ARPA>
TO:<@HOSTB.ARPA:USERC@HOSTD.ARPA>.

This command causes its forward-path argument to be appended to the forward-path buffer.



RFC-821--SMTP Specifications: Commands

DATA (DATA)
The receiver treats the lines following the command as mail data from the sender.    This 
command causes the mail data from this command to be appended to the mail data buffer.   
The mail data may contain any of the 128 ASCII character codes.

The mail data is terminated by a line containing only a period, that is the character 
sequence "<CRLF>.<CRLF>" (see the section on Transparency).    This is the end of mail 
data indication.

The end of mail data indication requires that the receiver must now process the stored mail 
transaction information.    This processing consumes the information in the reverse-path 
buffer, the forward-path buffer, and the mail data buffer, and on the completion of this 
command these buffers are cleared.    If the processing is successful the receiver must send 
an OK reply.    If the processing fails completely the receiver must send a failure reply.

Every receiver-SMTP must insert, at the beginning of the mail data,    a "Received:" line, also
called a time stamp line, with the followng characteristics:

o The FROM field should contain both (1) the name of the source host as
presented in the HELO command and (2) a domain literal containing 
the IP address of the source, determined from the TCP connection.

o The ID field may contain an "@", but this is not required.

o The FOR field may contain a list of <path> entries when multiple RCPT
commands have been given.

An Internet mail program must not change a Received: line that was previously added to 
the message header.

Discussion
Including both the source host and the IP source address in the Received: line 
may provide enough information for tracking illicit mail sources and eliminate 
a need to explicitly verify the HELO parameter.

Received: lines are primarily intended for humans tracing mail routes, 
primarily for diagnosis of faults.

When the receiver-SMTP makes "final delivery" of a message, then it must pass the MAIL 
FROM: address from the SMTP envelope with the message, for use if an error notification 
message must be sent later (see Reliable Mail Receipt).    There is an analogous requirement 
when gatewaying from the Internet into a different mail environment.

Discussion
Note that the final reply to the DATA command depends only upon the 
successful transfer and storage of the message.    Any problem with the 
destination address(es) must either (1) have been reported in an SMTP error 
reply to the RCPT command(s), or (2) be reported in a later error message 
mailed to the originator.



Implementation
The MAIL FROM: information may be passed as a parameter or in a Return-
Path: line inserted at the beginning of the message.

When the receiver-SMTP makes the "final delivery" of a message it inserts at the beginning 
of the mail data a return path line.    The return path line preserves the information in the 
<reverse-path> from the MAIL command.    Here, final delivery means the message leaves 
the SMTP world.    Normally, this would mean it has been delivered to the destination user, 
but in some cases it may be further processed and transmitted by another mail system.

It is possible for the mailbox in the return path be different from the actual sender's mailbox,
for example, if error responses are to be delivered a special error handling mailbox rather 
than the message senders.

The preceding two paragraphs imply that the final mail data will begin with a return path 
line, followed by one or more time stamp lines.    These lines will be followed by the mail data
header and body (RFC-822).    See the example below.

Special mention is needed of the response and further action required when the processing 
following the end of mail data indication is partially successful.    This could arise if after 
accepting several recipients and the mail data, the receiver-SMTP finds that the mail data 
can be successfully delivered to some of the recipients, but it cannot be to others (for 
example, due to mailbox space allocation problems).    In such a situation, the response to 
the DATA command must be an OK reply.    But, the receiver-SMTP must compose and send 
an "undeliverable mail" notification message to the originator of the message.    Either a 
single notification which lists all of the recipients that failed to get the message, or separate 
notification messages must be sent for each failed recipient (see example under Relaying).    
All undeliverable mail notification messages are sent using the MAIL command (even if they 
result from processing a SEND, SOML, or SAML command).

Example of Return Path and Received Time Stamps

Return-Path:
<@GHI.ARPA,@DEF.ARPA,@ABC.ARPA:JOE@ABC.ARPA>
Received: from GHI.ARPA by JKL.ARPA ; 27 Oct 81 15:27:39 PST
Received: from DEF.ARPA by GHI.ARPA ; 27 Oct 81 15:15:13 PST
Received: from ABC.ARPA by DEF.ARPA ; 27 Oct 81 15:01:59 PST
Date: 27 Oct 81 15:01:01 PST
From: JOE@ABC.ARPA
Subject: Improved Mailing System Installed To: SAM@JKL.ARPA

This is to inform you that ...



RFC-821--SMTP Specifications: Commands

SEND (SEND)
This command is used to initiate a mail transaction in which the mail data is delivered to one
or more terminals.    The argument field contains a reverse-path.    This command is 
successful if the message is delivered to a terminal.

The reverse-path consists of an optional list of hosts and the sender mailbox.    When the list 
of hosts is present, it is a "reverse" source route and indicates that the mail was relayed 
through each host on the list (the first host in the list was the most recent relay).    This list is
used as a source route to return non-delivery notices to the sender.    As each relay host adds
itself to the beginning of the list, it must use its name as known in the IPCE to which it is 
relaying the mail rather than the IPCE from which the mail came (if they are different).

This command clears the reverse-path buffer, the forward-path buffer, and the mail data 
buffer; and inserts the reverse-path information from this command into the reverse-path 
buffer.



RFC-821--SMTP Specifications: Commands

SEND OR MAIL (SOML)
This command is used to initiate a mail transaction in which the mail data is delivered to one
or more terminals or mailboxes. For each recipient the mail data is delivered to the 
recipient's terminal if the recipient is active on the host (and accepting terminal messages), 
otherwise to the recipient's mailbox.    The argument field contains a reverse-path.    This 
command is successful if the message is delivered to a terminal or the mailbox.

The reverse-path consists of an optional list of hosts and the sender mailbox.    When the list 
of hosts is present, it is a "reverse" source route and indicates that the mail was relayed 
through each host on the list (the first host in the list was the most recent relay).    This list is
used as a source route to return non-delivery notices to the sender.    As each relay host adds
itself to the beginning of the list, it must use its name as known in the IPCE to which it is 
relaying the mail rather than the IPCE from which the mail came (if they are different).

This command clears the reverse-path buffer, the forward-path buffer, and the mail data 
buffer; and inserts the reverse-path information from this command into the reverse-path 
buffer.



RFC-821--SMTP Specifications: Commands

SEND AND MAIL (SAML)
This command is used to initiate a mail transaction in which the mail data is delivered to one
or more terminals and mailboxes. For each recipient the mail data is delivered to the 
recipient's terminal if the recipient is active on the host (and accepting terminal messages), 
and for all recipients to the recipient's mailbox.    The argument field contains a reverse-path.
This command is successful if the message is delivered to the mailbox.

The reverse-path consists of an optional list of hosts and the sender mailbox.    When the list 
of hosts is present, it is a "reverse" source route and indicates that the mail was relayed 
through each host on the list (the first host in the list was the most recent relay).    This list is
used as a source route to return non-delivery notices to the sender.    As each relay host adds
itself to the beginning of the list, it must use its name as known in the IPCE to which it is 
relaying the mail rather than the IPCE from which the mail came (if they are different).

This command clears the reverse-path buffer, the forward-path buffer, and the mail data 
buffer; and inserts the reverse-path information from this command into the reverse-path 
buffer.



RFC-821--SMTP Specifications: Commands

RESET (RSET)
This command specifies that the current mail transaction is to be aborted.    Any stored 
sender, recipients, and mail data must be discarded, and all buffers and state tables cleared.
The receiver must send an OK reply.



RFC-821--SMTP Specifications: Commands

VERIFY (VRFY)
This command asks the receiver to confirm that the argument identifies a user.    If it is a 
user name, the full name of the user (if known) and the fully specified mailbox are returned.

This command has no effect on any of the reverse-path buffer, the forward-path buffer, or 
the mail data buffer.



RFC-821--SMTP Specifications: Commands

EXPAND (EXPN)
This command asks the receiver to confirm that the argument identifies a mailing list, and if 
so, to return the membership of that list.    The full name of the users (if known) and the fully 
specified mailboxes are returned in a multiline reply.

This command has no effect on any of the reverse-path buffer, the forward-path buffer, or 
the mail data buffer.



RFC-821--SMTP Specifications: Commands

HELP (HELP)
This command causes the receiver to send helpful information to the sender of the HELP 
command.    The command may take an argument (e.g., any command name) and return 
more specific information as a response.

This command has no effect on any of the reverse-path buffer, the forward-path buffer, or 
the mail data buffer.



RFC-821--SMTP Specifications: Commands

NOOP (NOOP)
This command does not affect any parameters or previously entered commands.    It 
specifies no action other than that the receiver send an OK reply.

This command has no effect on any of the reverse-path buffer, the forward-path buffer, or 
the mail data buffer.



RFC-821--SMTP Specifications: Commands

QUIT (QUIT)
This command specifies that the receiver must send an OK reply, and then close the 
transmission channel.

The receiver should not close the transmission channel until it receives and replies to a QUIT
command (even if there was an error).    The sender should not close the transmission 
channel until it send a QUIT command and receives the reply (even if there was an error 
response to a previous command).    If the connection is closed prematurely the receiver 
should act as if a RSET command had been received (canceling any pending transaction, but
not undoing any previously completed transaction), the sender should act as if the 
command or transaction in progress had received a temporary error (4xx).



RFC-821--SMTP Specifications: Commands

TURN (TURN)
This command specifies that the receiver must either (1) send an OK reply and then take on 
the role of the sender-SMTP, or (2) send a refusal reply and retain the role of the receiver-
SMTP.

If program-A is currently the sender-SMTP and it sends the TURN command and receives an 
OK reply (250) then program-A becomes the receiver-SMTP.    Program-A is then in the initial 
state as if the transmission channel just opened, and it then sends the 220 service ready 
greeting.

If program-B is currently the receiver-SMTP and it receives the TURN command and sends an
OK reply (250) then program-B becomes the sender-SMTP.    Program-B is then in the initial 
state as if the transmission channel just opened, and it then expects to receive the 220 
service ready greeting.

To refuse to change roles the receiver sends the 502 reply.



RFC-821--SMTP Specifications: Commands

Command Syntax
The commands consist of a command code followed by an argument field.    Command codes
are four alphabetic characters.    Upper and lower case alphabetic characters are to be 
treated identically.    Thus, any of the following may represent the mail command:

MAIL    Mail    mail    MaIl    mAIl

This also applies to any symbols representing parameter values, such as "TO" or "to" for the 
forward-path.    Command codes and the argument fields are separated by one or more 
spaces.    However, within the reverse-path and forward-path arguments case is important.    
In particular, in some hosts the user "smith" is different from the user "Smith".

The argument field consists of a variable length character string ending with the character 
sequence <CRLF>.    The receiver is to take no action until this sequence is received.

Square brackets denote an optional argument field.    If the option is not taken, the 
appropriate default is implied.

The following are the SMTP commands:

HELO <SP> <domain> <CRLF>

MAIL <SP> FROM:<reverse-path> <CRLF>

RCPT <SP> TO:<forward-path> <CRLF>

DATA <CRLF>

RSET <CRLF>

SEND <SP> FROM:<reverse-path> <CRLF>

SOML <SP> FROM:<reverse-path> <CRLF>

SAML <SP> FROM:<reverse-path> <CRLF>

VRFY <SP> <string> <CRLF>

EXPN <SP> <string> <CRLF>

HELP [<SP> <string>] <CRLF>

NOOP <CRLF>

QUIT <CRLF>

TURN <CRLF>

The syntax of the above argument fields (using BNF notation where applicable) is given 
below.    The "..." notation indicates that a field may be repeated one or more times.



<reverse-path> ::= <path>
Note:    The reverse-path may be empty (null), when    server-SMTPs need to send 
notification messages about problems with notification messages.    A null reverse-path is 
one way to prevent loops in error reporting.

<forward-path> ::= <path>

<path> ::= "<" [ <a-d-l> ":" ] <mailbox> ">"

<a-d-l> ::= <at-domain> | <at-domain> "," <a-d-l>

<at-domain> ::= "@" <domain>

<domain> ::=  <element> | <element> "." <domain>

<element> ::= <name> | "#" <number> | "[" <dotnum> "]"

<mailbox> ::= <local-part> "@" <domain>

<local-part> ::= <dot-string> | <quoted-string>

<name> ::= <a> <ldh-str> <let-dig>

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig> ::= <a> | <d>

<let-dig-hyp> ::= <a> | <d> | "-"

<dot-string> ::= <string> | <string> "." <dot-string>

<string> ::= <char> | <char> <string>

<quoted-string> ::=  """ <qtext> """

<qtext> ::=  "\" <x> | "\" <x> <qtext> | <q> | <q> <qtext>

<char> ::= <c> | "\" <x>

<dotnum> ::= <snum> "." <snum> "." <snum> "." <snum>

<number> ::= <d> | <d> <number>

<CRLF> ::= <CR> <LF>

<CR> ::= the carriage return character (ASCII code 13)

<LF> ::= the line feed character (ASCII code 10)

<SP> ::= the space character (ASCII code 32)

<snum> ::= one, two, or three digits representing a decimal
          integer value in the range 0 through 255

<a> ::= any one of the 52 alphabetic characters A through Z



          in upper case and a through z in lower case

<c> ::= any one of the 128 ASCII characters, but not any
          <special> or <SP>

<d> ::= any one of the ten digits 0 through 9

<q> ::= any one of the 128 ASCII characters except <CR>,
          <LF>, quote ("), or backslash (\)

<x> ::= any one of the 128 ASCII characters (no exceptions)

<special> ::= "<" | ">" | "(" | ")" | "[" | "]" | "\" | "."
          | "," | ";" | ":" | "@"  """ | the control
                    characters (ASCII codes 0 through 31 inclusive and
                    127)

Note that the backslash, "\", is a quote character, which is used to indicate that the next 
character is to be used literally (instead of its normal interpretation).    For example, 
"Joe\,Smith" could be used to indicate a single nine character user field with comma being 
the fourth character of the field.

Hosts are generally known by names which are translated to addresses in each host.    Note 
that the name elements of domains are the official names -- no use of nicknames or aliases 
is allowed.

Sometimes a host is not known to the translation function and communication is blocked.    
To bypass this barrier two numeric forms are also allowed for host "names".    One form is a 
decimal integer prefixed by a pound sign, "#", which indicates the number is the address of 
the host.    Another form is four small decimal integers separated by dots and enclosed by 
brackets, e.g., "[123.255.37.2]", which indicates a 32-bit ARPA Internet Address in four 8-
bit fields.

The time stamp line and the return path line are formally defined as follows:

<return-path-line> ::= "Return-Path:" <SP><reverse-path><CRLF>

<time-stamp-line> ::= "Received:" <SP> <stamp> <CRLF>

   <stamp> ::= <from-domain> <by-domain> <opt-info> ";"
             <daytime>

   <from-domain> ::= "FROM" <SP> <domain> <SP>

   <by-domain> ::= "BY" <SP> <domain> <SP>

   <opt-info> ::= [<via>] [<with>] [<id>] [<for>]

   <via> ::= "VIA" <SP> <link> <SP>

   <with> ::= "WITH" <SP> <protocol> <SP>

   <id> ::= "ID" <SP> <string> <SP>

   <for> ::= "FOR" <SP> <path> <SP>



   <link> ::= The standard names for links are registered with
             the Network Information Center.

   <protocol> ::= The standard names for protocols are
             registered with the Network Information Center.

   <daytime> ::= <SP> <date> <SP> <time>

   <date> ::= <dd> <SP> <mon> <SP> <yy>

   <time> ::= <hh> ":" <mm> ":" <ss> <SP> <zone>

   <dd> ::= the one or two decimal integer day of the month in
             the range 1 to 31.

   <mon> ::= "JAN" | "FEB" | "MAR" | "APR" | "MAY" | "JUN" |
             "JUL" | "AUG" | "SEP" | "OCT" | "NOV" | "DEC"

   <yy> ::= the two decimal integer year of the century in the
             range 00 to 99.

   <hh> ::= the two decimal integer hour of the day in the
             range 00 to 24.

   <mm> ::= the two decimal integer minute of the hour in the
             range 00 to 59.

   <ss> ::= the two decimal integer second of the minute in the
             range 00 to 59.

   <zone> ::= "UT" for Universal Time (the default) or other
             time zone designator (as in RFC-822).

Return Path Example

Return-Path:
<@CHARLIE.ARPA,@BAKER.ARPA:JOE@ABLE.ARPA>

Time Stamp Line Example

Received: FROM ABC.ARPA BY XYZ.ARPA ; 22 OCT 81 09:23:59 PDT

Received: from ABC.ARPA by XYZ.ARPA via TELENET with X25
id M12345 for Smith@PDQ.ARPA ; 22 OCT 81 09:23:59 PDT



RFC-821--SMTP Specifications

SMTP Replies
Replies to SMTP commands are devised to ensure the synchronization of requests and 
actions in the process of mail transfer, and to guarantee that the sender-SMTP always knows
the state of the receiver-SMTP.    Every command must generate exactly one reply.

The details of the command-reply sequence are made explicit in the section on Sequencing 
and State Diagrams.

A receiver-SMTP should send only the reply codes listed in Reply Codes in Numeric Order or 
other standard RFCs.    A receiver-SMTP should use the text shown in with these codes 
whenever appropriate.

A sender-SMTP must determine its actions only by the reply code, not by the text (except 
for 251 and 551 replies); any text, including no text at all, must be acceptable.    The space 
(blank) following the reply code is considered part of the text.    Whenever possible, a sender-
SMTP should test only the first digit of the reply code, as specified in Appendix E.

Discussion
Interoperability problems have arisen with SMTP systems using reply codes 
that are not listed explicitly in standard RFCs, but are legal according to the 
theory of reply codes explained in Appendix E.

An SMTP reply consists of a three digit number (transmitted as three alphanumeric 
characters) followed by some text.    The number is intended for use by automata to 
determine what state to enter next; the text is meant for the human user.    It is intended 
that the three digits contain enough encoded information that the sender-SMTP need not 
examine the text and may either discard it or pass it on to the user, as appropriate.    In 
particular, the text may be receiver-dependent and context dependent, so there are likely to 
be varying texts for each reply code.    A discussion of the theory of reply codes is given in 
Appendix E.    Formally, a reply is defined to be the sequence:    a three-digit code, <SP>, one
line of text, and <CRLF>, or a multiline reply (as defined in Appendix E).    Only the EXPN and
HELP commands are expected to result in multiline replies in normal circumstances, however
multiline replies are allowed for any command.



RFC-821--SMTP Specifications

Reply Codes By Function Groups
500 Syntax error, command unrecognized    [This may include errors such 

as command line too long]
501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command parameter not implemented

211 System status, or system help reply
214 Help message

[Information on how to use the receiver or the meaning of a 
particular non-standard command; this reply is useful only to the 
human user]

220 <domain> Service ready
221 <domain> Service closing transmission channel
421 <domain> Service not available, closing transmission channel    [This 

may be a reply to any command if the service knows it must shut 
down]

250 Requested mail action okay, completed
251 User not local; will forward to <forward-path>
252 Cannot VRFY user (e.g., info is not local), but will take message for 

this user and attempt delivery.
450 Requested mail action not taken: mailbox unavailable [E.g., mailbox 

busy]
550 Requested action not taken: mailbox unavailable        [E.g., Mailbox not

found, no access]
451 Requested action aborted: error in processing
551 User not local; please try <forward-path>
452 Requested action not taken: insufficient system storage
552 Requested mail action aborted: exceeded storage allocation
553 Requested action not taken: mailbox name not allowed [E.g., mailbox

syntax incorrect]
354 Start mail input; end with <CRLF>.<CRLF>
554 Transaction failed



RFC-821--SMTP Specifications

Numeric Order List Of Reply Codes
211 System status, or system help reply
214 Help message    [Information on how to use the receiver or the 

meaning of a particular non-standard command; this reply is useful 
only to the human user]

220 <domain> Service ready
221 <domain> Service closing transmission channel
250 Requested mail action okay, completed
251 User not local; will forward to <forward-path>
252 Cannot VRFY user (e.g., info is not local), but will take message for 

this user and attempt delivery.

354 Start mail input; end with <CRLF>.<CRLF>

421 <domain> Service not available, closing transmission channel.      
[This may be a reply to any command if the service knows it must 
shut down]

450 Requested mail action not taken: mailbox unavailable [E.g., mailbox 
busy]

451 Requested action aborted: local error in processing
452 Requested action not taken: insufficient system storage

500 Syntax error, command unrecognized    [This may include errors such 
as command line too long]

501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command parameter not implemented
550 Requested action not taken: mailbox unavailable

[E.g., mailbox not found, no access]
551 User not local; please try <forward-path>
552 Requested mail action aborted: exceeded storage allocation
553 Requested action not taken: mailbox name not allowed [E.g., mailbox

syntax incorrect]
554 Transaction failed



RFC-821--SMTP Specifications

Sequencing Of Commands and Replies
The communication between the sender and receiver is intended to be an alternating 
dialogue, controlled by the sender.    As such, the sender issues a command and the receiver 
responds with a reply.    The sender must wait for this response before sending further 
commands.

One important reply is the connection greeting.    Normally, a receiver will send a 220 
"Service ready" reply when the connection is completed.    The sender should wait for this 
greeting message before sending any commands.

Note: all the greeting type replies have the official name of the server host as the first word 
following the reply code.

For example,

220 <SP> USC-ISIF.ARPA <SP> Service ready <CRLF>

The table below lists alternative success and failure replies for each command.    These must 
be strictly adhered to; a receiver may substitute text in the replies, but the meaning and 
action implied by the code numbers and by the specific command reply sequence cannot be 
altered.

COMMAND-REPLY SEQUENCES

Each command is listed with its possible replies.    The prefixes used before the possible 
replies are "P" for preliminary (not used in SMTP), "I" for intermediate, "S" for success, "F" for
failure, and "E" for error.    The 421 reply (service not available, closing transmission channel)
may be given to any command if the SMTP-receiver knows it must shut down.    This listing 
forms the basis for the State Diagrams.

CONNECTION ESTABLISHMENT
S: 220
F: 421 HELO
               S: 250
               E: 500, 501, 504, 421
MAIL
               S: 250
               F: 552, 451, 452
               E: 500, 501, 421

RCPT
               S: 250, 251
               F: 550, 551, 552, 553, 450, 451, 452
               E: 500, 501, 503, 421
DATA
               I: 354 -> data -> S: 250
                                 F: 552, 554, 451, 452
               F: 451, 554
               E: 500, 501, 503, 421
RSET
               S: 250
               E: 500, 501, 504, 421



SEND
               S: 250
               F: 552, 451, 452
               E: 500, 501, 502, 421
SOML
               S: 250
               F: 552, 451, 452
               E: 500, 501, 502, 421
SAML
               S: 250
               F: 552, 451, 452
               E: 500, 501, 502, 421
VRFY
               S: 250, 251
               F: 550, 551, 553
               E: 500, 501, 502, 504, 421
EXPN

               S: 250
               F: 550
               E: 500, 501, 502, 504, 421
HELP
               S: 211, 214
               E: 500, 501, 502, 504, 421
NOOP
               S: 250
               E: 500, 421
QUIT
               S: 221
               E: 500
TURN
               S: 250
               F: 502
               E: 500, 503



RFC-821--SMTP Specifications

State Diagrams
Following are state diagrams for a simple-minded SMTP implementation.    Only the first digit 
of the reply codes is used.    There is one state diagram for each group of SMTP commands.    
The command groupings were determined by constructing a model for each command and 
then collecting together the commands with structurally identical models.

For each command there are three possible outcomes:    "success" (S), "failure" (F), and 
"error" (E). In the state diagrams below we use the symbol B for "begin", and the symbol W 
for "wait for reply".

First, the diagram that represents most of the SMTP commands:

This diagram models the commands:

HELO, MAIL, RCPT, RSET, SEND, SOML, SAML, VRFY, EXPN, HELP,
NOOP, QUIT, TURN.

A more complex diagram models the DATA command:

Note that the "data" here is a series of lines sent from the sender to the receiver with no 
response expected until the last line is sent.



RFC-821--SMTP Specifications:    Details

Minimum Implementation
In order to make SMTP workable, the following minimum implementation is required for all 
receivers:

COMMANDS -- HELO
MAIL
RCPT
DATA
RSET
NOOP
QUIT
VRFY



RFC-821--SMTP Specifications:    Details

Transparency
Without some provision for data transparency the character sequence "<CRLF>.<CRLF>" 
ends the mail text and cannot be sent by the user.    In general, users are not aware of such 
"forbidden" sequences.    To allow all user composed text to be transmitted transparently the 
following procedures are used.

1. Before sending a line of mail text the sender-SMTP checks the first 
character of the line.    If it is a period, one additional period is inserted 
at the beginning of the line.

2. When a line of mail text is received by the receiver-SMTP it checks the 
line.    If the line is composed of a single period it is the end of mail.    If 
the first character is a period and there are other characters on the 
line, the first character is deleted.

Implementors must be sure that their mail systems always add and delete periods to ensure
message transparency.

The mail data may contain any of the 128 ASCII characters.    All characters are to be 
delivered to the recipient's mailbox including format effectors and other control characters.   
If the transmission channel provides an 8-bit byte (octets) data stream, the 7-bit ASCII codes
are transmitted right justified in the octets with the high order bits cleared to zero.

In some systems it may be necessary to transform the data as it is received and stored.    
This may be necessary for hosts that use a different character set than ASCII as their local 
character set, or that store data in records rather than strings.    If such transforms are 
necessary, they must be reversible -- especially if such transforms are applied to mail being 
relayed.



RFC-821--SMTP Specifications

Sizes
There are several objects that have required minimum maximum sizes.    That is, every 
implementation must be able to receive objects of at least these sizes, but must not send 
objects larger than these sizes.

          ****************************************************
          *                                                  *
          *  TO THE MAXIMUM EXTENT POSSIBLE, IMPLEMENTATION  *
          *  TECHNIQUES WHICH IMPOSE NO LIMITS ON THE LENGTH *
          *  OF THESE OBJECTS SHOULD BE USED.                *
          *                                                  *
          ****************************************************

user

The maximum total length of a user name is 64 characters.

domain

The maximum total length of a domain name or number is 64 characters.

path

The maximum total length of a reverse-path or forward-path is 256 characters (including the
punctuation and element separators).

command line

The maximum total length of a command line including the command word and the <CRLF>
is 512 characters.

reply line

The maximum total length of a reply line including the reply code and the <CRLF> is 512 
characters.

text line

The maximum total length of a text line including the <CRLF> is 1000 characters (but not 
counting the leading dot duplicated for transparency).

recipients buffer

The maximum total number of recipients that must be buffered is 100 recipients.

Errors due to exceeding these limits may be reported by using the reply codes, for example:

500 Line too long.

501 Path too long



552 Too many recipients.

552 Too much mail data.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Appendix A:    TCP Transport Service
The Transmission Control Protocol is used in the ARPA Internet, and in any network following 
the US DoD standards for internetwork protocols.

Connection Establishment

The SMTP transmission channel is a TCP connection established between the sender process 
port U and the receiver process port L.    This single full duplex connection is used as the 
transmission channel.    This protocol is assigned the service port 25 (31 octal), that is L=25.

Data Transfer

The TCP connection supports the transmission of 8-bit bytes.    The SMTP data is 7-bit ASCII 
characters.    Each character is transmitted as an 8-bit byte with the high-order bit cleared to
zero.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Appendix B:    NCP Transport Service
The ARPANET Host-to-Host Protocol (implemented by the Network Control Program) may be 
used in the ARPANET.

Connection Establishment

The SMTP transmission channel is established via NCP between the sender process socket U 
and receiver process socket L.    The Initial Connection Protocol is followed resulting in a pair 
of simplex connections.    This pair of connections is used as the transmission channel.    This 
protocol is assigned the contact socket 25 (31 octal), that is L=25.

Data Transfer

The NCP data connections are established in 8-bit byte mode.    The SMTP data is 7-bit ASCII 
characters.    Each character is transmitted as an 8-bit byte with the high-order bit cleared to
zero.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Appendix C:    NITS
The Network Independent Transport Service may be used.

Connection Establishment

The SMTP transmission channel is established via NITS between the sender process and 
receiver process.    The sender process executes the CONNECT primitive, and the waiting 
receiver process executes the ACCEPT primitive.

Data Transfer

The NITS connection supports the transmission of 8-bit bytes.    The SMTP data is 7-bit ASCII 
characters.    Each character is transmitted as an 8-bit byte with the high-order bit cleared to
zero.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Appendix D:    X.25 Transport Service
It may be possible to use the X.25 service as provided by the Public Data Networks directly, 
however, it is suggested that a reliable end-to-end protocol such as TCP be used on top of 
X.25 connections.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Appendix E:    Theory Of Reply Codes
The three digits of the reply each have a special significance.    The first digit denotes 
whether the response is good, bad or incomplete.    An unsophisticated sender-SMTP will be 
able to determine its next action (proceed as planned, redo, retrench, etc.) by simply 
examining this first digit.    A sender-SMTP that wants to know approximately what kind of 
error occurred (e.g., mail system error, command syntax error) may examine the second 
digit, reserving the third digit for the finest gradation of information.

There are five values for the first digit of the reply code:

1yz      Positive Preliminary reply

The command has been accepted, but the requested action is being held in 
abeyance, pending confirmation of the information in this reply.    The sender-SMTP 
should send another command specifying whether to continue or abort the action.

[Note: SMTP does not have any commands that allow this type of reply, and so does 
not have the continue or abort commands.]

2yz      Positive Completion reply

The requested action has been successfully completed.    A new request may be 
initiated.

3yz      Positive Intermediate reply

The command has been accepted, but the requested action is being held in 
abeyance, pending receipt of further information.    The sender-SMTP should send 
another command specifying this information.    This reply is used in command 
sequence groups.

4yz      Transient Negative Completion reply

The command was not accepted and the requested action did not occur.    However, 
the error condition is temporary and the action may be requested again.    The sender
should return to the beginning of the command sequence (if any).    It is difficult to 
assign a meaning to "transient" when two different sites (receiver- and sender- 
SMTPs) must agree on the interpretation.    Each reply in this category might have a 
different time value, but the sender-SMTP is encouraged to try again.    A rule of 
thumb to determine if a reply fits into the 4yz or the 5yz category (see below) is that 
replies are 4yz if they can be repeated without any change in command form or in 
properties of the sender or receiver.    (E.g., the command is repeated identically and 
the receiver does not put up a new implementation.)

5yz      Permanent Negative Completion reply

The command was not accepted and the requested action did not occur.    The 
sender-SMTP is discouraged from repeating the exact request (in the same 
sequence).    Even some "permanent" error conditions can be corrected, so the 
human user may want to direct the sender-SMTP to reinitiate the command sequence
by direct action at some point in the future (e.g., after the spelling has been changed,
or the user has altered the account status).



The second digit encodes responses in specific categories:

x0z      Syntax -- These replies refer to syntax errors, syntactically correct commands that 
don't fit any functional category, and unimplemented or superfluous commands.

x1z      Information --    These are replies to requests for information, such as status or help.

x2z      Connections -- These are replies referring to the transmission channel.

x3z      Unspecified as yet.

x4z      Unspecified as yet.

x5z      Mail system -- These replies indicate the status of the receiver mail system vis-a-vis 
the requested transfer or other mail system action.

The third digit gives a finer gradation of meaning in each category specified by the second 
digit.    The list of replies illustrates this.    Each reply text is recommended rather than 
mandatory, and may even change according to the command with which it is associated.    
On the other hand, the reply codes must strictly follow the specifications in this section.    
Receiver implementations should not invent new codes for slightly different situations from 
the ones described here, but rather adapt codes already defined.

For example, a command such as NOOP whose successful execution does not offer the 
sender-SMTP any new information will return a 250 reply.    The response is 502 when the 
command requests an unimplemented non-site-specific action.    A refinement of that is the 
504 reply for a command that is implemented, but that requests an unimplemented 
parameter.

The reply text may be longer than a single line; in these cases the complete text must be 
marked so the sender-SMTP knows when it can stop reading the reply.    This requires a 
special format to indicate a multiple line reply.

The format for multiline replies requires that every line, except the last, begin with the reply 
code, followed immediately by a hyphen, "-" (also known as minus), followed by text.    The 
last line will begin with the reply code, followed immediately by <SP>, optionally some text, 
and <CRLF>.

For example:
123-First line
123-Second line
123-234 text beginning with numbers
123 The last line

In many cases the sender-SMTP then simply needs to search for the reply code followed by 
<SP> at the beginning of a line, and ignore all preceding lines.    In a few cases, there is 
important data for the sender in the reply "text".    The sender will know these cases from the
current context.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Appendix F:    Scenarios
This section presents complete scenarios of several types of SMTP sessions.

A Typical SMTP Transaction Scenario
Aborted SMTP Transaction Scenario
Relayed Mail Scenario
Verifying and Sending Scenario
Sending and Mailing Scenario
More Efficient Sending and Mailing Scenario
Mailing List Scenario
Simple Forwarding Scenario
Complex Forwarding Scenario
Too Many Recipients Scenario



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

A Typical SMTP Transaction Scenario
This SMTP example shows mail sent by Smith at host USC-ISIF, to Jones, Green, and Brown at
host BBN-UNIX.    Here we assume that host USC-ISIF contacts host BBN-UNIX directly.    The 
mail is accepted for Jones and Brown.    Green does not have a mailbox at host BBN-UNIX.

R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready
S: HELO USC-ISIF.ARPA
R: 250 BBN-UNIX.ARPA

S: MAIL FROM:<Smith@USC-ISIF.ARPA>
R: 250 OK

S: RCPT TO:<Jones@BBN-UNIX.ARPA>
R: 250 OK

S: RCPT TO:<Green@BBN-UNIX.ARPA>
R: 550 No such user here

S: RCPT TO:<Brown@BBN-UNIX.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 BBN-UNIX.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Aborted SMTP Transaction Scenario
R: 220 MIT-Multics.ARPA Simple Mail Transfer Service Ready
S: HELO ISI-VAXA.ARPA
R: 250 MIT-Multics.ARPA

S: MAIL FROM:<Smith@ISI-VAXA.ARPA>
R: 250 OK

S: RCPT TO:<Jones@MIT-Multics.ARPA>
R: 250 OK

S: RCPT TO:<Green@MIT-Multics.ARPA>
R: 550 No such user here

S: RSET
R: 250 OK

S: QUIT
R: 221 MIT-Multics.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Relayed Mail Scenario

Step 1    --    Source Host to Relay Host

R: 220 USC-ISIE.ARPA Simple Mail Transfer Service Ready
S: HELO MIT-AI.ARPA
R: 250 USC-ISIE.ARPA

S: MAIL FROM:<JQP@MIT-AI.ARPA>
R: 250 OK

S: RCPT TO:<@USC-ISIE.ARPA:Jones@BBN-VAX.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Date: 2 Nov 81 22:33:44
S: From: John Q. Public <JQP@MIT-AI.ARPA>
S: Subject:  The Next Meeting of the Board
S: To: Jones@BBN-Vax.ARPA
S:
S: Bill:
S: The next meeting of the board of directors will be
S: on Tuesday.
S:                                              John.
S: .
R: 250 OK

S: QUIT
R: 221 USC-ISIE.ARPA Service closing transmission channel

Step 2    --    Relay Host to Destination Host

R: 220 BBN-VAX.ARPA Simple Mail Transfer Service Ready
S: HELO USC-ISIE.ARPA
R: 250 BBN-VAX.ARPA

S: MAIL FROM:<@USC-ISIE.ARPA:JQP@MIT-AI.ARPA>
R: 250 OK

S: RCPT TO:<Jones@BBN-VAX.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Received: from MIT-AI.ARPA by USC-ISIE.ARPA ;
   2 Nov 81 22:40:10 UT
S: Date: 2 Nov 81 22:33:44
S: From: John Q. Public <JQP@MIT-AI.ARPA>
S: Subject:  The Next Meeting of the Board
S: To: Jones@BBN-Vax.ARPA



S:
S: Bill:
S: The next meeting of the board of directors will be
S: on Tuesday.
S:                                              John.
S: .
R: 250 OK

S: QUIT
R: 221 USC-ISIE.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Verifying and Sending Scenario
R: 220 SU-SCORE.ARPA Simple Mail Transfer Service Ready
S: HELO MIT-MC.ARPA
R: 250 SU-SCORE.ARPA

S: VRFY Crispin
R: 250 Mark Crispin <Admin.MRC@SU-SCORE.ARPA>

S: SEND FROM:<EAK@MIT-MC.ARPA>
R: 250 OK

S: RCPT TO:<Admin.MRC@SU-SCORE.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 SU-SCORE.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Sending and Mailing Scenario
First the user's name is verified, then    an attempt is made to send to the user's terminal.    
When that fails, the messages is mailed to the user's mailbox.

R: 220 SU-SCORE.ARPA Simple Mail Transfer Service Ready
S: HELO MIT-MC.ARPA
R: 250 SU-SCORE.ARPA

S: VRFY Crispin
R: 250 Mark Crispin <Admin.MRC@SU-SCORE.ARPA>

S: SEND FROM:<EAK@MIT-MC.ARPA>
R: 250 OK

S: RCPT TO:<Admin.MRC@SU-SCORE.ARPA>
R: 450 User not active now

S: RSET
R: 250 OK

S: MAIL FROM:<EAK@MIT-MC.ARPA>
R: 250 OK

S: RCPT TO:<Admin.MRC@SU-SCORE.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 SU-SCORE.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

More Efficient Sending and Mailing Scenario
A more efficient way to do the preceding scenario.

R: 220 SU-SCORE.ARPA Simple Mail Transfer Service Ready
S: HELO MIT-MC.ARPA
R: 250 SU-SCORE.ARPA

S: VRFY Crispin
R: 250 Mark Crispin <Admin.MRC@SU-SCORE.ARPA>

S: SOML FROM:<EAK@MIT-MC.ARPA>
R: 250 OK

S: RCPT TO:<Admin.MRC@SU-SCORE.ARPA>
R: 250 User not active now, so will do mail.

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 SU-SCORE.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Mailing List Scenario
First each of two mailing lists are expanded in separate sessions with different hosts.    Then 
the message is sent to everyone that appeared on either list (but no duplicates) via a relay 
host.

Step 1    --    Expanding the First List

R: 220 MIT-AI.ARPA Simple Mail Transfer Service Ready
S: HELO SU-SCORE.ARPA
R: 250 MIT-AI.ARPA

S: EXPN Example-People
R: 250-<ABC@MIT-MC.ARPA>
R: 250-Fred Fonebone <Fonebone@USC-ISIQ.ARPA>
R: 250-Xenon Y. Zither <XYZ@MIT-AI.ARPA>
R: 250-Quincy Smith <@USC-ISIF.ARPA:Q-Smith@ISI-VAXA.ARPA>
R: 250-<joe@foo-unix.ARPA>
R: 250 <xyz@bar-unix.ARPA>

S: QUIT
R: 221 MIT-AI.ARPA Service closing transmission channel

Step 2    --    Expanding the Second List

R: 220 MIT-MC.ARPA Simple Mail Transfer Service Ready
S: HELO SU-SCORE.ARPA
R: 250 MIT-MC.ARPA

S: EXPN Interested-Parties
R: 250-Al Calico <ABC@MIT-MC.ARPA>
R: 250-<XYZ@MIT-AI.ARPA>
R: 250-Quincy Smith <@USC-ISIF.ARPA:Q-Smith@ISI-VAXA.ARPA>
R: 250-<fred@BBN-UNIX.ARPA>
R: 250 <xyz@bar-unix.ARPA>

S: QUIT
R: 221 MIT-MC.ARPA Service closing transmission channel

Step 3    --    Mailing to All via a Relay Host

R: 220 USC-ISIE.ARPA Simple Mail Transfer Service Ready
S: HELO SU-SCORE.ARPA
R: 250 USC-ISIE.ARPA

S: MAIL FROM:<Account.Person@SU-SCORE.ARPA>
R: 250 OK
S: RCPT TO:<@USC-ISIE.ARPA:ABC@MIT-MC.ARPA>
R: 250 OK
S: RCPT TO:<@USC-ISIE.ARPA:Fonebone@USC-ISIQA.ARPA>



R: 250 OK
S: RCPT TO:<@USC-ISIE.ARPA:XYZ@MIT-AI.ARPA>
R: 250 OK
S: RCPT
    TO:<@USC-ISIE.ARPA,@USC-ISIF.ARPA:Q-Smith@ISI- VAXA.ARPA>
R: 250 OK
S: RCPT TO:<@USC-ISIE.ARPA:joe@FOO-UNIX.ARPA>
R: 250 OK
S: RCPT TO:<@USC-ISIE.ARPA:xyz@BAR-UNIX.ARPA>
R: 250 OK
S: RCPT TO:<@USC-ISIE.ARPA:fred@BBN-UNIX.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 USC-ISIE.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Simple Forwarding Scenario
R: 220 USC-ISIF.ARPA Simple Mail Transfer Service Ready
S: HELO LBL-UNIX.ARPA
R: 250 USC-ISIF.ARPA

S: MAIL FROM:<mo@LBL-UNIX.ARPA>
R: 250 OK

S: RCPT TO:<fred@USC-ISIF.ARPA>
R: 251 User not local; will forward to <Jones@USC-ISI.ARPA>

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 USC-ISIF.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Complex Forwarding Scenario
Step 1    --    Trying the Mailbox at the First Host

R: 220 USC-ISIF.ARPA Simple Mail Transfer Service Ready
S: HELO LBL-UNIX.ARPA
R: 250 USC-ISIF.ARPA

S: MAIL FROM:<mo@LBL-UNIX.ARPA>
R: 250 OK

S: RCPT TO:<fred@USC-ISIF.ARPA>
R: 251 User not local; will forward to <Jones@USC-ISI.ARPA>

S: RSET
R: 250 OK

S: QUIT
R: 221 USC-ISIF.ARPA Service closing transmission channel

Step 2    --    Delivering the Mail at the Second Host

R: 220 USC-ISI.ARPA Simple Mail Transfer Service Ready
S: HELO LBL-UNIX.ARPA
R: 250 USC-ISI.ARPA

S: MAIL FROM:<mo@LBL-UNIX.ARPA>
R: 250 OK

S: RCPT TO:<Jones@USC-ISI.ARPA>
R: OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 USC-ISI.ARPA Service closing transmission channel



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

Too Many Recipients Scenario
R: 220 BERKELEY.ARPA Simple Mail Transfer Service Ready
S: HELO USC-ISIF.ARPA
R: 250 BERKELEY.ARPA

S: MAIL FROM:<Postel@USC-ISIF.ARPA>
R: 250 OK

S: RCPT TO:<fabry@BERKELEY.ARPA>
R: 250 OK

S: RCPT TO:<eric@BERKELEY.ARPA>
R: 552 Recipient storage full, try again in another transaction

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: MAIL FROM:<Postel@USC-ISIF.ARPA>
R: 250 OK

S: RCPT TO:<eric@BERKELEY.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 BERKELEY.ARPA Service closing transmission channel

Note that a real implementation must handle as many recipients as specified in the 
Specification of Sizes section.



RFC-821--SIMPLE MAIL TRANSFER PROTOCOL

GLOSSARY
ASCII
Command
Domain
End Of Mail Data Indication
Host
Line
Mail Data
Mailbox
Receiver-Smtp Process
Reply
Sender-Smtp Process
Session
Transaction 
Transmission 
Transport
User
Word
<CRLF>
<SP>



American Standard Code for Information Interchange.



A request for a mail service action sent by the sender-SMTP to the receiver-SMTP.



The hierarchially structured global character string address of a host computer in the mail 
system.



A special sequence of characters that indicates the end of the mail data.    In particular, the 
five characters carriage return, line feed, period, carriage return, line feed, in that order.



A computer in the internetwork environment on which mailboxes or SMTP processes reside.



A a sequence of ASCII characters ending with a <CRLF>.



A sequence of ASCII characters of arbitrary length, which conforms to the standard set in the
Standard for the Format of ARPA Internet Text Messages (RFC-822).



A character string (address) which identifies a user to whom mail is to be sent.    Mailbox 
normally consists of the host and user specifications.    The standard mailbox naming 
convention is defined to be "user@domain".    Additionally, the "container" in which mail is 
stored.



A process which transfers mail in cooperation with a sender-SMTP process.    It waits for a 
connection to be established via the transport service.    It receives SMTP commands from 
the sender-SMTP, sends replies, and performs the specified operations.



A reply is an acknowledgment (positive or negative) sent from receiver to sender via the 
transmission channel in response to a command.    The general form of a reply is a 
completion code (including error codes) followed by a text string.    The codes are for use by 
programs and the text is usually intended for human users.



A process which transfers mail in cooperation with a receiver-SMTP process.    A local 
language may be used in the user interface command/reply dialogue.    The sender-SMTP 
initiates the transport service connection.    It initiates SMTP commands, receives replies, and
governs the transfer of mail.



The set of exchanges that occur while the transmission channel is open.



The set of exchanges required for one message to be transmitted for one or more recipients.



A full-duplex communication path between a sender-SMTP and a receiver-SMTP for the 
exchange of commands, replies, and mail text.



Any reliable stream-oriented data communication services.    For example, NCP, TCP, NITS.



A human being (or a process on behalf of a human being) wishing to obtain mail transfer 
service.    In addition, a recipient of computer mail.



A sequence of printing characters.



The characters carriage return and line feed (in that order).



The space character.



ASCII, "USA Code for Information Interchange", United States of America Standards Institute,
X3.4, 1968.    Also in:    Feinler, E.    and J. Postel, eds., "ARPANET Protocol Handbook", NIC 
7104, for the Defense Communications Agency by SRI International, Menlo Park, California, 
Revised January 1978.



Postel, J., ed., "Transmission Control Protocol - DARPA Internet Program Protocol 
Specification", RFC 793, USC/Information Sciences Institute, NTIS AD Number A111091, 
September 1981.    Also in:    Feinler, E. and J. Postel, eds., "Internet Protocol Transition 
Workbook", SRI International, Menlo Park, California, March 1982.



McKenzie,A., "Host/Host Protocol for the ARPA Network", NIC 8246, January 1972.    Also in:    
Feinler, E. and J. Postel, eds., "ARPANET Protocol Handbook", NIC 7104, for the Defense 
Communications Agency by SRI International, Menlo Park, California, Revised January 1978.



Postel, J., "Official Initial Connection Protocol", NIC 7101, 11 June 1971.    Also in:    Feinler, E. 
and J. Postel, eds., "ARPANET Protocol Handbook", NIC 7104, for the Defense 
Communications Agency by SRI International, Menlo Park, California, Revised January 1978.



PSS/SG3, "A Network Independent Transport Service", Study Group 3, The Post Office PSS 
Users Group, February 1980.    Available from the DCPU, National Physical Laboratory, 
Teddington, UK.



CCITT, "Recommendation X.25 - Interface Between Data Terminal Equipment (DTE) and Data
Circuit-terminating Equipment (DCE) for Terminals Operating in the Packet Mode on Public 
Data Networks," CCITT Orange Book, Vol. VIII.2, International Telephone and Telegraph 
Consultative Committee, Geneva, 1976.
_



RFC-822 STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT
MESSAGES (Obsoletes: RFC-733)

David H.    Crocker
August 13, 1982

Dept.    of Electrical Engineering
University of Delaware, Newark, DE 19711

Network: DCrocker@UDel-Relay

Preface
Introduction
Scope  
Communication Framework  
Notational Conventions
Lexical Analysis Of Messages
Message Specification
Date And Time Specification
Syntax  
Semantics  
Address Specification

Appendix A.    Examples
Appendix B.    Simple Field Parsing
Appendix C.    Differences From RFC-733
Appendix D.    Alphabetical Listing Of Syntax Rules



RFC-822    Standard for ARPA Internet Text Messages

Preface
By 1977, the Arpanet employed several informal standards for the text messages (mail) sent
among its host computers.    It was felt necessary to codify these practices and provide for 
those features that seemed imminent.    The result of that effort was Request for Comments 
RFC-733, "Standard for the Format of ARPA Network Text Message", by Crocker, Vittal, 
Pogran, and Henderson.    The specification attempted to avoid major changes in existing 
software, while permitting several new features.

This document revises the specifications in RFC-733, in order to serve the needs of the 
larger and more complex ARPA Internet.    Some of RFC-733's features failed to gain 
adequate acceptance.    In order to simplify the standard and the software that follows it, 
these features have been removed.    A different addressing scheme is used, to handle the 
case of inter-network mail; and the concept of re-transmission has been introduced.

This specification is intended for use in the ARPA Internet.    However, an attempt has been 
made to free it of any dependence on that environment, so that it can be applied to other 
network text message systems.

The specification of RFC-733 took place over the course of one year, using the ARPANET mail
environment, itself, to provide an on-going forum for discussing the capabilities to be 
included.    More than twenty individuals, from across the country, participated in the original
discussion.    The development of this revised specification has, similarly, utilized network 
mail-based group discussion.    Both specification efforts greatly benefited from the 
comments and ideas of the participants.

The syntax of the standard, in RFC-733, was originally specified in the Backus-Naur Form 
(BNF) meta-language Ken L.    Harrenstien, of SRI International, was responsible for re-coding 
the BNF into an augmented BNF that makes the representation smaller and easier to 
understand.



RFC-822    Standard for ARPA Internet Text Messages: Introduction

Scope
This standard specifies a syntax for text messages that are sent among computer users, 
within the framework of "electronic mail".    The standard supersedes the one specified in 
ARPANET Request for Comments 733, "Standard for the Format of ARPA Network Text 
Messages".

In this context, messages are viewed as having an envelope and contents.    The envelope 
contains whatever information is needed to accomplish transmission and delivery.    The 
contents compose the object to be delivered to the recipient.    This standard applies only to 
the format and some of the semantics of message contents.    It contains no specification of 
the information in the envelope.

However, some message systems may use information from the contents to create the 
envelope.    It is intended that this standard facilitate the acquisition of such information by 
programs.

Some message systems may store messages in formats that differ from the one specified in 
this standard.    This specification is intended strictly as a definition of what message content
format is to be passed BETWEEN hosts.

Note: This standard is NOT intended to dictate the internal formats used by sites, the 
specific message system features that they are expected to support, or any of the 
characteristics of user interface programs that create or read messages.

A distinction should be made between what the specification REQUIRES and what it ALLOWS.
Messages can be made complex and rich with formally-structured components of 
information or can be kept small and simple, with a minimum of such information.    Also, the
standard simplifies the interpretation of differing visual formats in messages; only the visual 
aspect of a message is affected and not the interpretation of information within it.    
Implementors may choose to retain such visual distinctions.

The formal definition is divided into four levels.    The bottom level describes the meta-
notation used in this document.    The second level describes basic lexical analyzers that 
feed tokens to higher-level parsers.    Next is an overall specification for messages; it permits
distinguishing individual fields.    Finally, there is definition of the contents of several 
structured fields.



RFC-822    Standard for ARPA Internet Text Messages: Introduction

Communication Framework
Messages consist of lines of text.    No special provisions are made for encoding drawings, 
facsimile, speech, or structured text.    No significant consideration has been given to 
questions of data compression or to transmission and storage efficiency, and the standard 
tends to be free with the number of bits consumed.    For example, field names are specified 
as free text, rather than special terse codes.

A general "memo" framework is used.    That is, a message consists of some information in a 
rigid format, followed by the main part of the message, with a format that is not specified in 
this document.    The syntax of several fields of the rigidly-formated ("headers") section is 
defined in this specification; some of these fields must be included in all messages.

The syntax that distinguishes between header fields is specified separately from the internal
syntax for particular fields.    This separation is intended to allow simple parsers to operate 
on the general structure of messages, without concern for the detailed structure of 
individual header fields.    Appendix B is provided to facilitate construction of these parsers.

In addition to the fields specified in this document, it is expected that other fields will gain 
common use.    As necessary, the specifications for these "extension-fields" will be published 
through the same mechanism used to publish this document.    Users may also wish to 
extend the set of fields that they use privately.    Such "user-defined fields" are permitted.

The framework severely constrains document tone and appearance and is primarily useful 
for most intra-organization communications and well-structured inter-organization 
communication.    It also can be used for some types of inter-process communication, such as
simple file transfer and remote job entry.    A more robust framework might allow for multi-
font, multi-color, multi-dimension encoding of information.    A less robust one, as is present 
in most single-machine message systems, would more severely constrain the ability to add 
fields and the decision to include specific fields.    In contrast with paper-based 
communication, it is interesting to note that the RECEIVER of a message can exercise an 
extraordinary amount of control over the message's appearance.    The amount of actual 
control available to message receivers is contingent upon the capabilities of their individual 
message systems.



RFC-822    Standard for ARPA Internet Text Messages

Notational Conventions
This specification uses an augmented Backus-Naur Form (BNF) notation.    The differences 
from standard BNF involve naming rules and indicating repetition and "local" alternatives.

Rule Naming

Angle brackets ("<", ">") are not used, in general.    The name of a rule is simply the name 
itself, rather than "<name>".    Quotation-marks enclose literal text (which may be upper 
and/or lower case).    Certain basic rules are in uppercase, such as SPACE, TAB, CRLF, DIGIT, 
ALPHA, etc.    Angle brackets are used in rule definitions, and in the rest of this document, 
whenever their presence will facilitate discerning the use of rule names.

Rule1 / Rule2: Alternatives

Elements separated by slash ("/") are alternatives.    Therefore "foo / bar" will accept foo or 
bar.

(Rule1 Rule2): Local Alternatives

Elements enclosed in parentheses are treated as a single element.    Thus, "(elem (foo / bar) 
elem)" allows the token sequences "elem foo elem" and "elem bar elem".

*Rule: Repetition

The character "*" preceding an element indicates repetition.    The full form is:

<l>*<m>element

indicating at least <l> and at most <m> occurrences of element.    Default values are 0 and 
infinity so that "*(element)" allows any number, Including zero; "1*element" requires at least
one; and "1*2element" allows one or two.

[Rule]: Optional

Square brackets enclose optional elements; "[foo bar]" is equivalent to "*1(foo bar)".

Nrule: Specific Repetition

"<n>(element)" is equivalent to "<n>*<n>(element)"; that is, exactly <n> occurrences of 
(element).    Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three alphabetic 
characters.

 #Rule: Lists



A construct "#" is defined, similar to "*", as follows:

<l>#<m>element

indicating at least <l> and at most <m> elements, each separated by one or more commas 
(",").    This makes the usual form of lists very easy; a rule such as '(element *("," element))' 
can be shown as "1#element".    Wherever this construct is used, null elements are allowed, 
but do not contribute to the count of elements present.    That is, "(element),,(element)" is 
permitted, but counts as only two elements.    Therefore, where at least one element is 
required, at least one non-null element must be present.    Default values are 0 and infinity 
so that "#(element)" allows any number, including zero; "1#element" requires at least one; 
and "1#2element" allows one or two.

Comments

A semi-colon, set off some distance to the right of rule text, starts a comment that continues
to the end of line.    This is a simple way of including useful notes in parallel with the 
specifications.



RFC-822    Standard for ARPA Internet Text Messages:

Lexical Analysis Of Messages
General Description  
Header Field Definitions  
Lexical Tokens  
Clarifications  



RFC-822    Standard for ARPA Internet Text Messages:

Lexical Analysis Of Messages:    General Description
A message consists of header fields and, optionally, a body.    The body is simply a sequence 
of lines containing ASCII characters.    It is separated from the headers by a null line (i.e., a 
line with nothing preceding the CRLF).

Long Header Fields
Structure of Header Fields
Unstructured Field Bodies
Structured Field Bodies



RFC-822    Standard for ARPA Internet Text Messages: Lexical Analysis

Long Header Fields
Each header field can be viewed as a single, logical line of ASCII characters, comprising a 
field-name and a field-body.    For convenience, the field-body portion of this conceptual 
entity can be split into a multiple-line representation; this is called "folding".    The general 
rule is that wherever there may be linear-white-space (NOT simply LWSP-chars), a CRLF 
immediately followed by AT LEAST one LWSP-char may instead be inserted.    Thus, the single
line

To: "Joe & J.  Harvey" <ddd @Org>, JJV @ BBN

can be represented as:

To: "Joe & J.  Harvey" <ddd @ Org>,
JJV@BBN

and

To: "Joe & J.  Harvey"
<ddd@ Org>, JJV
@BBN

and

To: "Joe &
J.  Harvey" <ddd @ Org>, JJV @ BBN

The process of moving from this folded multiple-line representation of a header field to its 
single line representation is called "unfolding".    Unfolding is accomplished byregarding CRLF
immediately followed by a LWSP-char as equivalent to the LWSP-char.

Note: While the standard permits folding wherever linear-white-space is permitted, it is 
recommended that structured fields, such as those containing addresses, limit folding to 
higher-level syntactic breaks.    For address fields, it is recommended that such folding occur 
between addresses, after the separating comma.



RFC-822    Standard for ARPA Internet Text Messages: Lexical Analysis

Structure Of Header Fields
Once a field has been unfolded, it may be viewed as being composed of a field-name 
followed by a colon (":"), followed by a field-body, and terminated by a carriage-return/line-
feed.    The field-name must be composed of printable ASCII characters (i.e., characters that 
have values between 33.    and 126., decimal, except colon).    The field-body may be 
composed of any ASCII characters, except CR or LF.    (While CR and/or LF may be present in 
the actual text, they are removed by the action of unfolding the field.)

Certain field-bodies of headers may be interpreted according to an internal syntax that some
systems may wish to parse.    These fields are called "structured fields".    Examples include 
fields containing dates and addresses.    Other fields, such as "Subject" and "Comments", are
regarded simply as strings of text.

Note: Any field which has a field-body that is defined as other than simply <text> is to be 
treated as a structured field.

Field-names, unstructured field bodies and structured field bodies each are scanned by their 
own, independent "lexical" analyzers.



RFC-822    Standard for ARPA Internet Text Messages: Lexical Analysis

Unstructured Field Bodies
For some fields, such as "Subject" and "Comments", no structuring is assumed, and they are
treated simply as <text>s, as in the message body.    Rules of folding apply to these fields, 
so that such field bodies which occupy several lines must therefore have the second and 
successive lines indented by at least one LWSP-char.



RFC-822    Standard for ARPA Internet Text Messages: Lexical Analysis

Structured Field Bodies
To aid in the creation and reading of structured fields, the free insertion of linear-white-space
(which permits folding by inclusion of CRLFs) is allowed between lexical tokens.    Rather than
obscuring the syntax specifications for these structured fields with explicit syntax for this 
linear-white-space, the existence of another "lexical" analyzer is assumed.    This analyzer 
does not apply for unstructured field bodies that are simply strings of text, as described 
above.    The analyzer provides an interpretation of the unfolded text composing the body of 
the field as a sequence of lexical symbols.

These symbols are:

o individual special characters
o quoted-strings
o domain-literals
o comments
o atoms

The first four of these symbols are self-delimiting.    Atoms are not; they are delimited by the 
self-delimiting symbols and by linear-white-space.    For the purposes of regenerating 
sequences of atoms and quoted-strings, exactly one SPACE is assumed to exist, and should 
be used, between them.    (Also, in the "Clarifications" section on "White Space", below, note 
the rules about treatment of multiple contiguous LWSP-chars.)

So, for example, the folded body of an address field

":sysmail"@ Some-Group.  Some-Org,
Muhammed.(I am the greatest) Ali @(the)Vegas.WBA

is analyzed into the following lexical symbols and types:

:sysmail quoted string
@ special
Some-Group atom
. special
Some-Org atom
, special
Muhammed atom
. special
(I am the greatest) comment
Ali atom
@ atom
(the) comment
Vegas atom
. special
WBA atom

The canonical representations for the data in these addresses are the following strings:

":sysmail"@Some-Group.Some-Org

and



Muhammed.Ali@Vegas.WBA

Note: For purposes of display, and when passing such structured information to other 
systems, such as mail protocol services, there must be NO linear-white-space between 
<word>s that are separated by period (".") or at-sign ("@") and exactly one SPACE between 
all other <word>s.    Also, headers should be in a folded form.



RFC-822    Standard for ARPA Internet Text Messages: Lexical Analysis

Header Field Definitions
These show a field meta-syntax, without regard for the particular type or internal syntax.    
Their purpose is to permit detection of fields; also, they present to higher-level parsers an 
image of each field as fitting on one line.

field    = field-name ":" [ field-body ] CRLF

field-name = 1*<any CHAR, excluding CTLs, SPACE, and ":">

field-body = field-body-contents
[CRLF LWSP-char field-body]

field-body-contents =<the ASCII characters making up the field-body, as 
defined in the following sections, and consisting of combinations of 
atom, quoted-string, and specials tokens, or else consisting of texts>



RFC-822    Standard for ARPA Internet Text Messages: Lexical Analysis

Lexical Tokens
The following rules are used to define an underlying lexical analyzer, which feeds tokens to 
higher level parsers.    See the ANSI bibliographic references.

                         ; ( Octal, Decimal.)
   CHAR    = <any ASCII character>    ; ( 0-177, 0.-127.)
   ALPHA    = <any ASCII alphabetic character>
                         ; (101-132, 65.- 90.)
                         ; (141-172, 97.-122.)
   DIGIT    = <any ASCII decimal digit>  ; ( 60- 71, 48.- 57.)
   CTL     = <any ASCII control      ; ( 0- 37, 0.- 31.)
           character and DEL>     ; (  177,   127.)
   CR     = <ASCII CR, carriage return> ; (   15,   13.)
   LF     = <ASCII LF, linefeed>     ; (   12,   10.)
   SPACE    = <ASCII SP, space>      ; (   40,   32.)
   HTAB    = <ASCII HT, horizontal-tab>  ; (   11,    9.)
   <">     = <ASCII quote mark>      ; (   42,   34.)
   CRLF    = CR LF

   LWSP-char  = SPACE / HTAB         ; semantics = SPACE

   linear-white-space = 1*([CRLF] LWSP-char) ; semantics = SPACE
                         ; CRLF => folding

   specials  = "(" / ")" / "<" / ">" / "@" ; Must be in quoted-
         / "," / ";" / ":" / "\" / <"> ; string, to use
         / "." / "[" / "]"       ; within a word.

   delimiters = specials / linear-white-space / comment

   text    = <any CHAR, including bare  ; => atoms, specials,
           CR & bare LF, but NOT    ; comments and
           including CRLF>       ; quoted-strings are
                         ; NOT recognized.

   atom    = 1*<any CHAR except specials, SPACE and CTLs>

   quoted-string = <"> *(qtext/quoted-pair) <">; Regular qtext or
                         ;  quoted chars.

   qtext    = <any CHAR excepting <">,   ; => may be folded
           "\" & CR, and including
           linear-white-space>

   domain-literal = "[" *(dtext / quoted-pair) "]"

   dtext    = <any CHAR excluding "[",   ; => may be folded
           "]", "\" & CR, & including
           linear-white-space>

   comment   = "(" *(ctext / quoted-pair / comment) ")"

   ctext    = <any CHAR excluding "(",   ; => may be folded



           ")", "\" & CR, & including
           linear-white-space>

   quoted-pair = "\" CHAR           ; may quote any char

   phrase   = 1*word            ; Sequence of words

   word    = atom / quoted-string



RFC-822    Standard for ARPA Internet Text Messages: Lexical Analysis

Clarifications

Quoting
White Space
Comments
Delimiting And Quoting Characters
Quoted-Strings
Bracketing Characters
Case Independence
Folding Long Header Fields
Backspace Characters
Network-Specific Transformations



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

Quoting
Some characters are reserved for special interpretation, such as delimiting lexical tokens.    
To permit use of these characters as uninterpreted data, a quoting mechanism is provided.    
To quote a character, precede it with a backslash ("\").

This mechanism is not fully general.    Characters may be quoted only within a subset of the 
lexical constructs.    In particular, quoting is limited to use within:

o quoted-string
o domain-literal
o comment

Within these constructs, quoting is REQUIRED for CR and "\" and for the character(s) that 
delimit the token (e.g., "(" and ")" for a comment).    However, quoting is PERMITTED for 
any character.

Note: In particular, quoting is NOT permitted within atoms.    For example when the local-
part of an addr-spec must contain a special character, a quoted string must be used.    
Therefore, a specification such as:

Full\ Name@Domain

is not legal and must be specified as:

"Full Name"@Domain



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

White Space
Note: In structured field bodies, multiple linear space ASCII characters (namely HTABs and 
SPACEs) are treated as single spaces and may freely surround any symbol.    In all header 
fields, the only place in which at least one LWSP-char is REQUIRED is at the beginning of 
continua-
tion lines in a folded field.

When passing text to processes that do not interpret text according to this standard (e.g., 
mail protocol servers), then NO linear-white-space characters should occur between a period
(".") or at-sign ("@") and a <word>.    Exactly ONE SPACE should be used in place of 
arbitrary linear-white-space and comment sequences.

Note: Within systems conforming to this standard, wherever a member of the list of 
delimiters is allowed, LWSP-chars may also occur before and/or after it.

Writers of mail-sending (i.e., header-generating) programs should realize that there is no 
network-wide definition of the effect of ASCII HT (horizontal-tab) characters on the 
appearance of text at another network host; therefore, the use of tabs in message headers, 
though permitted, is discouraged.



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

Comments
A comment is a set of ASCII characters, which is enclosed in matching parentheses and 
which is not within a quoted-string The comment construct permits message originators to 
add text which will be useful for human readers, but which will be ignored by the formal 
semantics.    Comments should be retained while the message is subject to interpretation 
according to this standard.    However, comments must NOT be included in other cases, such
as during protocol exchanges with mail servers.

Comments nest, so that if an unquoted left parenthesis occurs in a comment string, there 
must also be a matching right parenthesis.    When a comment acts as the delimiter between
a sequence of two lexical symbols, such as two atoms, it is lexically equivalent with a single 
SPACE, for the purposes of regenerating the sequence, such as when passing the sequence 
onto a mail protocol server.    Comments are detected as such only within field-bodies of 
structured fields.

If a comment is to be "folded" onto multiple lines, then the syntax for folding must be 
adhered to.    (See the "Lexical Analysis of Messages" section on "Folding Long Header 
Fields", and the section on "Case Independence" below.) Note that the official semantics 
therefore do not "see" any unquoted CRLFs that are in comments, although particular 
parsing programs may wish to note their presence.    For these programs, it would be 
reasonable to interpret a "CRLF LWSP-char" as being a CRLF that is part of the comment; i.e.,
the CRLF is kept and the LWSP-char is discarded.    Quoted CRLFs (i.e., a backslash followed 
by a CR followed by a LF) still must be followed by at least one LWSP-char.



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

Delimiting And Quoting Characters
The quote character (backslash) and characters that delimit syntactic units are not, 
generally, to be taken as data that are part of the delimited or quoted unit(s).    In particular, 
the quotation-marks that define a quoted-string, the parentheses that define a comment and
the backslash that quotes a following character are NOT part of the quoted-string, comment
or quoted character.    A quotation-mark that is to be part of a quoted-string, a parenthesis 
that is to be part of a comment and a backslash that is to be part of either must each be 
preceded by the quote-character backslash ("\").    Note that the syntax allows any character 
to be quoted within a quoted-string or comment; however only certain characters MUST be 
quoted to be included as data.    These characters are the ones that are not part of the 
alternate text group (i.e., ctext or qtext).

The one exception to this rule is that a single SPACE is assumed to exist between 
contiguous words in a phrase, and this interpretation is independent of the actual number of 
LWSP-chars that the creator places between the words.    To include more than one SPACE, 
the creator must make the LWSP-chars be part of a quoted-string.

Quotation marks that delimit a quoted string and backslashes that quote the following 
character should NOT accompany the quoted-string when the string is passed to processes 
that do not interpret data according to this specification (e.g., mail protocol servers).



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

Quoted-Strings
Where permitted (i.e., in words in structured fields) quoted-strings are treated as a single 
symbol.    That is, a quoted- string is equivalent to an atom, syntactically.    If a quoted-string 
is to be "folded" onto multiple lines, then the syntax for folding must be adhered to.    (See 
the "Lexical Analysis of Messages" section on "Folding Long Header Fields", and the section 
on "Case Independence" below.) 

Therefore, the official semantics do not "see" any bare CRLFs that are in quoted-strings; 
however particular parsing programs may wish to note their presence.    For such programs, 
it would be reasonable to interpret a "CRLF LWSP-char" as being a CRLF which is part of the 
quoted-string; i.e., the CRLF is kept and the LWSP-char is discarded.    Quoted CRLFs (i.e., a 
backslash followed by a CR followed by a LF) are also subject to rules of folding, but the 
presence of the quoting character (backslash) explicitly indicates that the CRLF is data to 
the quoted string.    Stripping off the first following LWSP-char is also appropriate when 
parsing quoted CRLFs.



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

Bracketing Characters
There is one type of bracket which must occur in matched pairs and may have pairs nested 
within each other:

o Parentheses ("(" and ")") are used to indicate comments.

There are three types of brackets which must occur in matched pairs, and which may NOT 
be nested:

o Colon/semi-colon (":" and ";") are used in address specifications to indicate 
that the included list of addresses are to be treated as a group.

o Angle brackets ("<" and ">") are generally used to indicate the presence of a 
one machine-usable reference (e.g., delimiting mailboxes), possibly including 
source-routing to the machine.

o Square brackets ("[" and "]") are used to indicate the presence of a domain-
literal, which the appropriate name-domain is to use directly, bypassing 
normal name-resolution mechanisms.



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

Case Independence
Except as noted, alphabetic strings may be represented in any combination of upper and 
lower case.    The only syntactic units which requires preservation of case information are:

o text
o qtext
o dtext
o ctext
o quoted-pair
o local-part, except "Postmaster"

When matching any other syntactic unit, case is to be ignored.    For example, the field-
names "From", "FROM", "from", and even "FroM" are semantically equal and should all be 
treated identically.

 When generating these units, any mix of upper and lower case alphabetic characters may 
be used.    The case shown in this specification is suggested for message-creating processes.

Note: The reserved local-part address unit, "Postmaster", is an exception.    When the value 
"Postmaster" is being interpreted, it must be accepted in any mixture of case, including 
"POSTMASTER", and "postmaster".

 



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

Folding Long Header Fields
Each header field may be represented on exactly one line consisting of the name of the field 
and its body, and terminated by a CRLF; this is what the parser sees.    For readability, the 
field-body portion of long header fields may be "folded" onto multiple lines of the actual 
field.    "Long" is commonly interpreted to mean greater than 65 or 72 characters.    The 
former length serves as a limit, when the message is to be viewed on most simple terminals 
which use simple display software; however, the limit is not imposed by this standard.

Note: Some display software often can selectively fold lines, to suit the display terminal.    In
such cases, sender-provided folding can interfere with the display software.



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

Backspace Characters
ASCII BS characters (Backspace, decimal 8) may be included in texts and quoted-strings to 
effect overstriking.    However, any use of backspaces which effects an overstrike to the left 
of the beginning of the text or quoted-string is prohibited.



RFC-822    Standard for ARPA Internet Text Messages: Clarifications

Network-Specific Transformations
During transmission through heterogeneous networks, it may be necessary to force data to 
conform to a network's local conventions.    For example, it may be required that a CR be 
followed either by LF, making a CRLF, or by <null>, if the CR is to stand alone).    Such 
transformations are reversed, when the message exits that network.

When crossing network boundaries, the message should be treated as passing through two 
modules.    It will enter the first module containing whatever network-specific 
transformations that were necessary to permit migration through the current" network.    It 
then passes through the modules:

o Transformation Reversal

The "current" network's idiosyncracies are removed and the message is returned to the 
canonical form specified in this standard.

o Transformation

The "next" network's local idiosyncracies are imposed on the message.



RFC-822    Standard for ARPA Internet Text Messages

Message Specification
Syntax
Forwarding
Trace Fields
Originator Fields
Receiver Fields
Reference Fields
Other Fields



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Syntax
Note: Due to an artifact of the notational conventions, the syntax indicates that, when 
present, some fields, must be in a particular order.    Header fields are NOT required to occur 
in any particular order, except that the message body must occur AFTER the headers.    It is 
recommended that, if present, headers be sent in the order "Return-Path", "Received", 
"Date", "From", "Subject", "Sender", "To", "cc", etc.

This specification permits multiple occurrences of most fields.    Except as noted, their 
interpretation is not specified here, and their use is discouraged.

The following syntax for the bodies of various fields should be thought of as describing each 
field body as a single long string (or line).    The "Lexical Analysis of Message" section on 
"Long Header Fields" indicates how such long strings can be represented on more than one 
line in the actual transmitted message.

 message = fields *( CRLF *text ) ; Everything after
    ; first null line
    ; is message body

 fields = dates  ; Creation time,
  source  ; author id & one
  1*destination ; address required
  *optional-field  ; others optional

 source = [ trace ]   ; net traversals
   originator   ; original mail
   [ resent ]   ; forwarded

 trace = return   ; path to sender
   1*received   ; receipt tags

 return = "Return-path" ":" route-addr ; return address
   / "Return-path" ":" "<" ">"

 received = "Received" ":"  ; one per relay
   ["from" domain]  ; sending host
   ["by" domain]  ; receiving host
   ["via" atom]  ; physical path
   *("with" atom)  ; link/mail protocol
   ["id" msg-id]  ; receiver msg id
   ["for" addr-spec] ; initial form
   ";" date-time  ; time received

 originator = authentic   ; authenticated addr
   [ "Reply-To" ":" 1#address] )

 authentic = "From" ":" mailbox ; Single author
   / ( "Sender" ":" mailbox ; Actual submittor
   "From" ":" 1#mailbox) ; Multiple authors
       ; or not sender

 resent = resent-authentic



   [ "Resent-Reply-To" ":" 1#address] )

 resent-authentic =
   = "Resent-From" ":" mailbox
   / ( "Resent-Sender" ":" mailbox
   "Resent-From" ":" 1#mailbox )

 dates = orig-date   ; Original
   [ resent-date ]  ; Forwarded

 orig-date = "Date" ":" date-time

 resent-date = "Resent-Date" ":" date-time

 destination = "To"  ":" 1#address ; Primary
   / "Resent-To" ":" 1#address
   / "cc"  ":" 1#address ; Secondary
   / "Resent-cc" ":" 1#address
   / "bcc"  ":" #address ; Blind carbon
   / "Resent-bcc" ":" #address

 optional-field =
   / "Message-ID" ":" msg-id
   / "Resent-Message-ID" ":" msg-id
   / "In-Reply-To" ":" *(phrase / msg-id)
   / "References" ":" *(phrase / msg-id)
   / "Keywords"  ":" #phrase
   / "Subject"  ":" *text
   / "Comments"  ":" *text
   / "Encrypted"  ":" 1#2word
   / "Content-Type" ":" = type [";" ver-num [";" 1#resource-ref]] [comment]

(for details see RFC-1049)
   / extension-field  ; To be defined
   / user-defined-field  ; May be pre-empted

 msg-id = "<" addr-spec ">"  ; Unique message id

 extension-field =
   <Any field which is defined in a document
   published as a formal extension to this
   specification; none will have names beginning
   with the string "X-">

 user-defined-field =
   <Any field which has not been defined
   in this specification or published as an
   extension to this specification; names for
   such fields must be unique and may be
   pre-empted by published extensions>



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

FORWARDING
Some systems permit mail recipients to forward a message, retaining the original headers, 
by adding some new fields.    This standard supports such a service, through the "Resent-" 
prefix to field names.

Whenever the string "Resent-" begins a field name, the field has the same semantics as a 
field whose name does not have the prefix.    However, the message is assumed to have 
been forwarded by an original recipient who attached the "Resent-" field.    This new field is 
treated as being more recent than the equivalent, original field.    For example, the "Resent-
From", indicates the person that forwarded the message, whereas the "From" field indicates 
the original author.

Use of such precedence information depends upon participants' communication needs.    For 
example, this standard does not dictate when a "Resent-From:" address should receive 
replies, in lieu of sending them to the "From:" address.

Note: In general, the "Resent-" fields should be treated as containing a set of information 
that is independent of the set of original fields.    Information for one set should not 
automatically be taken from the other.    The interpretation of multiple "Resent-" fields, of the
same type, is undefined.

In the remainder of this specification, occurrence of legal "Resent-" fields are treated 
identically with the occurrence of fields whose names do not contain this prefix.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Trace Fields
Trace information is used to provide an audit trail of message handling.    In addition, it 
indicates a route back to the sender of the message.

The list of known "via" and "with" values are registered with the Network Information Center,
SRI International, Menlo Park, California.

Return Path
Received



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Return-Path
This field is added by the final transport system that delivers the message to its recipient.    
The field is intended to contain definitive information about the address and route back to 
the message's originator.

Note: The "Reply-To" field is added by the originator and serves to direct replies, whereas 
the "Return-Path" field is used to identify a path back to the originator.

While the syntax indicates that a route specification is optional, every attempt should be 
made to provide that information in this field.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Received
A copy of this field is added by each transport service that relays the message.    The 
information in the field can be quite useful for tracing transport problems.

The names of the sending and receiving hosts and time-of-receipt may be specified.    The 
"via" parameter may be used, to indicate what physical mechanism the message was sent 
over, such as Arpanet or Phonenet, and the "with" parameter may be used to indicate the 
mail-, or connection-, level protocol that was used, such as the SMTP mail protocol, or X.25 
transport protocol.

Note: Several "with" parameters may be included, to fully specify the set of protocols that 
were used.

Some transport services queue mail; the internal message identifier that is assigned to the 
message may be noted, using the "id" parameter.    When the sending host uses a 
destination address specification that the receiving host reinterprets, by expansion or 
transformation, the receiving host may wish to record the original specification, using the 
"for" parameter.    For example, when a copy of mail is sent to the member of a distribution 
list, this parameter may be used to record the original address that was used to specify the 
list.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Originator Fields
The standard allows only a subset of the combinations possible with the From, Sender, Reply-
To, Resent-From, Resent-Sender, and Resent-Reply-To fields.    The limitation is intentional.

From / Resent-From
Sender / Resent-Sender
Reply-To / Resent-Reply-To
Automatic Use Of From / Sender / Reply-To



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

From / Resent-From
This field contains the identity of the person(s) who wished this message to be sent.    The 
message-creation process should default this field to be a single, authenticated machine 
address, indicating the AGENT (person, system or process) entering the message.    If this is 
not done, the "Sender" field MUST be present.    If the "From" field IS defaulted this way, the 
"Sender" field is optional and is redundant with the "From" field.    In all cases, addresses in 
the "From" field must be machine-usable (addr-specs) and may not contain named lists 
(groups).



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Sender / Resent-Sender
This field contains the authenticated identity of the AGENT (person, system or process) that 
sends the message.    It is intended for use when the sender is not the author of the 
message, or to indicate who among a group of authors actually sent the message.    If the 
contents of the "Sender" field would be completely redundant with the "From" field, then the
"Sender" field need not be present and its use is discouraged
(though still legal).    In particular, the "Sender" field MUST be present if it is NOT the same 
as the "From" Field.

The Sender mailbox specification includes a word sequence which must correspond to a 
specific agent (i.e., a human user or a computer program) rather than a standard address.    
This indicates the expectation that the field will identify the single AGENT (person, system, 
or process) responsible for sending the mail and not simply include the name of a mailbox 
from which the mail was sent.    For example in the case of a shared login name, the name, 
by itself, would not be adequate.    The local-part address unit, which refers to this agent, is 
expected to be a computer system term, and not (for example) a generalized person 
reference which can be used outside the network text message context.

Since the critical function served by the "Sender" field is identification of the agent 
responsible for sending mail and since computer programs cannot be held accountable for 
their behavior, it is strongly recommended that when a computer program generates a 
message, the HUMAN who is responsible for that program be referenced as part of the 
"Sender" field mailbox specification.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Reply-To / Resent-Reply-To
This field provides a general mechanism for indicating any mailbox(es) to which responses 
are to be sent.    Three typical uses for this feature can be distinguished.    In the first case, 
the author(s) may not have regular machine-based mailboxes and therefore wish(es) to 
indicate an alternate machine address.    In the second case, an author may wish additional 
persons to be made aware of, or responsible for, replies.    A somewhat different use may be 
of some help to "text message teleconferencing" groups equipped with automatic 
distribution services: include the address of that service in the "Reply-To" field of all 
messages submitted to the teleconference; then participants can "reply" to conference 
submissions to guarantee the correct distribution of any submission of their own.

Note: The "Return-Path" field is added by the mail transport service, at the time of final 
deliver.    It is intended to identify a path back to the orginator of the message.    The "Reply-
To" field is added by the message originator and is intended to direct replies.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Automatic Use Of From / Sender / Reply-To
For systems which automatically generate address lists for replies to messages, the 
following recommendations are made:

o The "Sender" field mailbox should be sent notices of any problems in transport
or delivery of the original messages.    If there is no "Sender" field, then the 
"From" field mailbox should be used.

o The "Sender" field mailbox should NEVER be used automatically, in a 
recipient's reply message.

o If the "Reply-To" field exists, then the reply should go to the addresses 
indicated in that field and not to the address(es) indicated in the "From" field.

o If there is a "From" field, but no "Reply-To" field, the reply should be sent to the
address(es) indicated in the "From" field.

Sometimes, a recipient may actually wish to communicate with the person that initiated the 
message transfer.    In such cases, it is reasonable to use the "Sender" address.

This recommendation is intended only for automated use of originator-fields and is not 
intended to suggest that replies may not also be sent to other recipients of messages.    It is 
up to the respective mail-handling programs to decide what additional facilities will be 
provided.

Examples are provided in Appendix A.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Receiver Fields
To / Resent-To
CC / Resent-CC
BCC / Resent-BCC



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

To / Resent-To
This field contains the identity of the primary recipients of the message.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

CC / Resent-CC
This field contains the identity of the secondary (informational) recipients of the message.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

BCC / Resent-BCC
This field contains the identity of additional recipients of the message.    The contents of this 
field are not included in copies of the message sent to the primary and secondary recipients.
Some systems may choose to include the text of the "BCC" field only in the author(s)'s copy,
while others may also include it in the text sent to all those indicated in the "BCC" list.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Reference Fields

Message-ID / Resent-Message-ID
In-Reply-To
References
Keywords



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Message-ID / Resent-Message-ID
This field contains a unique identifier (the local-part address unit) which refers to THIS 
version of THIS message.    The uniqueness of the message identifier is guaranteed by the 
host which generates it.    This identifier is intended to be machine readable and not 
necessarily meaningful to humans.    A message identifier pertains to exactly one 
instantiation of a particular message; subsequent revisions to the message should each 
receive new message identifiers.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

In-Reply-To
The contents of this field identify previous correspondence which this message answers.    
Note that if message identifiers are used in this field, they must use the msg-id specification 
format.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

References
The contents of this field identify other correspondence which this message references.    
Note that if message identifiers are used, they must use the msg-id specification format.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Keywords
This field contains keywords or phrases, separated by commas.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Other Fields
Subject
Comments
Encrypted
Extension-Field
User-Defined-Field



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Subject
This is intended to provide a summary, or indicate the nature, of the message.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Comments
Permits adding text comments onto the message without disturbing the contents of the 
message's body.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Encrypted
Sometimes, data encryption is used to increase the privacy of message contents.    If the 
body of a message has been encrypted, to keep its contents private, the "Encrypted" field 
can be used to note the fact and to indicate the nature of the encryption.    The first <word> 
parameter indicates the software used to encrypt the body, and the second, optional 
<word> is intended to aid the recipient in selecting the proper decryption key.    This code 
word may be viewed as an index to a table of keys held by the recipient.

Note: Unfortunately, headers must contain envelope, as well as contents, information.    
Consequently, it is necessary that they remain unencrypted, so that mail transport services 
may access them.    Since names, addresses, and "Subject" field contents may contain 
sensitive information, this requirement limits total message privacy.

Names of encryption software are registered with the Network Information Center, SRI 
International, Menlo Park, California.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

Extension-Field
A limited number of common fields have been defined in this document.    As network mail 
requirements dictate, additional fields may be standardized.    To provide user-defined fields 
with a measure of safety, in name selection, such extension-fields will never have names 
that begin with the string "X-".

Names of Extension-fields are registered with the Network Information Center, SRI 
International, Menlo Park, California.



RFC-822    Standard for ARPA Internet Text Messages: Message Specification

User-Defined-Field
Individual users of network mail are free to define and use additional header fields.    Such 
fields must have names which are not already used in the current specification or in any 
definitions of extension-fields, and the overall syntax of these user-defined-fields must 
conform to this specification's rules for delimiting and folding fields.    Due to the extension-
field publishing process, the name of a user-defined-field may be pre-empted

Note: The prefatory string "X-" will never be used in the names of Extension-fields.    This 
provides user-defined fields with a protected set of names.



RFC-822    Standard for ARPA Internet Text Messages: Date and Time

Syntax
All mail software should use 4-digit years in dates, to ease the transition to the next 
century.

There is a strong trend towards the use of numeric time zone indicators, and 
implementations should use numeric timezones instead of timezone names.    However, all 
implementations must accept either notation.    If timezone names are used, they must be 
exactly as defined below.

NOTE: The military time zones are specified incorrectly in RFC-822: they count the wrong 
way from UT (the signs are reversed).    As a result, military time zones in RFC-822 headers 
carry no information.

 date-time = [ day "," ] date time ; dd mm yy
       ; hh:mm:ss zzz

 day  = "Mon" / "Tue" / "Wed" / "Thu"
   / "Fri" / "Sat" / "Sun"

 date = 1*2DIGIT month 2*4DIGIT ; day month year
       ; e.g.  20 Jun 82

 month = "Jan" / "Feb" / "Mar" / "Apr"
   / "May" / "Jun" / "Jul" / "Aug"
   / "Sep" / "Oct" / "Nov" / "Dec"

 time = hour zone   ; ANSI and Military

 hour = 2DIGIT ":" 2DIGIT [":" 2DIGIT]
       ; 00:00:00 - 23:59:59

 zone = "UT" / "GMT"  ; Universal Time
       ; North American : UT
   / "EST" / "EDT"  ; Eastern: - 5/ - 4
   / "CST" / "CDT"  ; Central: - 6/ - 5
   / "MST" / "MDT"  ; Mountain: - 7/ - 6
   / "PST" / "PDT"  ; Pacific: - 8/ - 7
   / 1ALPHA   ; Military: Z = UT;
       ; A:-1; (J not used)
       ; M:-12; N:+1; Y:+12
   / ( ("+" / "-") 4DIGIT ) ; Local differential
       ; hours+min.  (HHMM)



RFC-822    Standard for ARPA Internet Text Messages: Date and Time

Semantics
If included, day-of-week must be the day implied by the date specification.

Time zone may be indicated in several ways.    "UT" is Universal Time (formerly 
called "Greenwich Mean Time"); "GMT" is permitted as a reference to Universal 
Time.    The military standard uses a single character for each zone.    "Z" is 
Universal Time.    "A" indicates one hour earlier, and "M" indicates 12 hours 
earlier; "N" is one hour later, and "Y" is 12 hours later.    The letter "J" is not used.   
The other remaining two forms are taken from ANSI standard X3.51-1975.    One 
allows explicit indication of the amount of offset from UT; the other uses common 
3-characterstrings for indicating time zones in North America.



RFC-822    Standard for ARPA Internet Text Messages

Address Specification
Syntax
Semantics
Common Address Formatting Errors
Reserved Address



RFC-822    Standard for ARPA Internet Text Messages: Address Specification

Syntax
 address = mailbox   ; one addressee
   / group   ; named list

 group = phrase ":" [#mailbox] ";"

 mailbox = addr-spec   ; simple address
   / [phrase] route-addr  ; name & addr-spec

 route-addr = "<" [route] addr-spec ">"

 route = 1#("@" domain) ":"  ; path-relative

 addr-spec = local-part "@" domain ; global address

 local-part = word *("." word)  ; uninterpreted
       ; case-preserved

 domain = sub-domain *("." sub-domain)

 sub-domain = domain-ref / domain-literal

 domain-ref = atom    ; symbolic reference



RFC-822    Standard for ARPA Internet Text Messages: Address Specification

Semantics
A mailbox receives mail.    It is a conceptual entity which does not necessarily pertain to file 
storage.    For example, some sites may choose to print mail on their line printer and deliver 
the output to the addressee's desk.

A mailbox specification comprises a person, system or process name reference, a domain-
dependent string, and a name-domain reference.    The name reference is optional and is 
usually used to indicate the human name of a recipient.    The name-domain reference 
specifies a sequence of sub-domains.    The domain-dependent string is uninterpreted, 
except by the final sub-domain; the rest of the mail service merely transmits it as a literal 
string.

The basic mailbox address specification has the form: "local-part@domain".    Here "local-
part", sometimes called the "left- hand side" of the address, is domain-dependent.

A host that is forwarding the message but is not the destination host implied by the right-
hand side "domain" must not interpret or modify the "local-part" of the address.

When mail is to be gatewayed from the Internet mail environment into a foreign mail 
environment, routing information for that foreign environment may be embedded within the 
"local-part" of the address.    The gateway will then interpret this local part appropriately for 
the foreign mail environment.    See Discussion section for further information.

Domains
Abbreviated Domain Specification
Domain Terms
Domain-Dependent Local String
Balancing Local-Part And Domain
Multiple Mailboxes
Explicit Path Specification



RFC-822    Standard for ARPA Internet Text Messages: Address Specification

Discussion
Although source routes are discouraged within the Internet (see Mail Relay), there are non-
Internet mail environments whose delivery mechanisms do depend upon source routes.    
Source routes for extra-Internet environments can generally be buried in the "local-part" 
of the address (see Balancing Local-Part And Domain) while mail traverses the Internet.    
When the mail reaches the appropriate Internet mail gateway, the gateway will interpret the 
local-part and build the necessary address or route for the target mail environment.

For example, an Internet host might send mail to: "a!b!c!user@gateway-domain".    The 
complex local part "a!b!c!user" would be uninterpreted within the Internet domain, but 
could be parsed and understood by the specified mail gateway.

An embedded source route is sometimes encoded in the "local-part" using "%" as a right-
binding routing operator.    For example, in:

user%domain%relay3%relay2@relay1

the "%" convention implies that the mail is to be routed from "relay1" through "relay2", 
"relay3", and finally to "user" at "domain".    This is commonly known as the "%- hack".    It 
is suggested that "%" have lower precedence than any other routing operator (e.g., "!") 
hidden in the local-part; for example, "a!b%c" would be interpreted as "(a!b)%c".

Only the target host (in this case, "relay1") is permitted to analyze the local-part "user
%domain%relay3%relay2".



RFC-822    Standard for ARPA Internet Text Messages: Address Semantics

Domains
A name-domain is a set of registered (mail) names.    A name-domain specification resolves 
to a subordinate name-domain specification or to a terminal domain-dependent string.    
Hence, domain specification is extensible, permitting any number of registration levels.

Name-domains model a global, logical, hierarchical addressing scheme.    The model is 
logical, in that an address specification is related to name registration and is not necessarily 
tied to transmission path.    The model's hierarchy is a directed graph, called an in-tree, such 
that there is a single path from the root of the tree to any node in the hierarchy.    If more 
than one path actually exists, they are considered to be different addresses.

The root node is common to all addresses; consequently, it is not referenced.    Its children 
constitute "top-level" name-domains.    Usually, a service has access to its own full domain 
specification and to the names of all top-level name-domains.

The "top" of the domain addressing hierarchy -- a child of the root -- is indicated by the right-
most field, in a domain specification.    Its child is specified to the left, its child to the left, and
so on.

Some groups provide formal registration services; these constitute name-domains that are 
independent logically of specific machines.    In addition, networks and machines implicitly 
compose name-domains, since their membership usually is registered in name tables.

In the case of formal registration, an organization implements a (distributed) data base 
which provides an address-to-route mapping service for addresses of the form:

       person@registry.organization

Note that "organization" is a logical entity, separate from any particular communication 
network.

A mechanism for accessing "organization" is universally available.    That mechanism, in turn,
seeks an instantiation of the registry; its location is not indicated in the address 
specification.    It is assumed that the system which operates under the name "organization" 
knows how to find a subordinate registry.    The registry will then use the "person" string to 
determine where to send the mail specification.

The latter, network-oriented case permits simple, direct, attachment-related address 
specification, such as:

        user@host.network

Once the network is accessed, it is expected that a message will go directly to the host and 
that the host will resolve the user name, placing the message in the user's mailbox.



RFC-822    Standard for ARPA Internet Text Messages: Address Semantics

Abbreviated Domain Specification
Since any number of levels is possible within the domain hierarchy, specification of a fully 
qualified address can become inconvenient.    This standard permits abbreviated domain 
specification, in a special case:

For the address of the sender, call the left-most sub-domain Level N.    In a header address, if
all of the sub-domains above (i.e., to the right of) Level N are the same as those of the 
sender, then they do not have to appear in the specification.    Otherwise, the address must 
be fully qualified.

This feature is subject to approval by local sub-domains.    Individual sub-domains may 
require their member systems, which originate mail, to provide full domain specification 
only.    When permitted, abbreviations may be present only while the message stays within 
the sub-domain of the sender.

Use of this mechanism requires the sender's sub-domain to reserve the names of all top-
level domains, so that full specifications can be distinguished from abbreviated 
specifications.

For example, if a sender's address is:

     sender@registry-A.registry-1.organization-X

and one recipient's address is:

    recipient@registry-B.registry-1.organization-X

and another's is:

    recipient@registry-C.registry-2.organization-X

then ".registry-1.organization-X" need not be specified in the the message, but 
"registry-C.registry-2" DOES have to be specified.    That is, the first two addresses may
be abbreviated, but the third address must be fully specified.

When a message crosses a domain boundary, all addresses must be specified in the full 
format, ending with the top-level name-domain in the right-most field.    It is the 
responsibility of mail forwarding services to ensure that addresses conform with this 
requirement.    In the case of abbreviated addresses, the relaying service must make the 
necessary expansions.    It should be noted that it often is difficult for such a service to locate
all occurrences of address abbreviations.    For example, it will not be possible to find such 
abbreviations within the body of the message.    The "Return-Path" field can aid recipients in 
recovering from these errors.

Note: When passing any portion of an addr-spec onto a process which does not interpret 
data according to this standard (e.g., mail protocol servers).    There must be NO LWSP-chars 
preceding or following the at-sign or any delimiting period ("."), such as shown in the above 
examples, and only ONE SPACE between contiguous <word>s.



RFC-822    Standard for ARPA Internet Text Messages: Address Semantics

Domain Terms
A domain-ref must be THE official name of a registry, network, or host.    It is a symbolic 
reference, within a name sub-domain.    At times, it is necessary to bypass standard 
mechanisms for resolving such references, using more primitive information, such as a 
network host address rather than its associated host name.

To permit such references, this standard provides the domain-literal construct.    Its contents 
must conform with the needs of the sub-domain in which it is interpreted.

A mailer must be able to accept and parse an Internet domain literal whose content ("dtext"
in Lexical Tokens) is a dotted- decimal host address.    This satisfies the requirement of Rule 
Naming under Notational Conventions for the case of mail.

An SMTP must accept and recognize a domain literal for any of its own IP addresses.

Domain-literals which refer to domains within the ARPA Internet specify 32-bit Internet 
addresses, in four 8-bit fields noted in decimal, as described in RFC-820, "Assigned 
Numbers."    For example:

         [10.0.3.19]

Note: THE USE OF DOMAIN-LITERALS IS STRONGLY DISCOURAGED.    It is permitted 
only as a means of bypassing temporary system limitations, such as name tables which are 
not complete.

The names of "top-level" domains, and the names of domains under in the ARPA Internet, 
are registered with the Network Information Center, SRI International, Menlo Park, California.



RFC-822    Standard for ARPA Internet Text Messages: Address Semantics

Domain-Dependent Local String
The local-part of an addr-spec in a mailbox specification (i.e., the host's name for the 
mailbox) is understood to be whatever the receiving mail protocol server allows.    For 
example, some systems do not understand mailbox references of the form "P.  D.  Q.  
Bach", but others do.

This specification treats periods (".") as lexical separators.    Hence, their presence in local-
parts which are not quoted-strings, is detected.    However, such occurrences carry NO 
semantics.    That is, if a local-part has periods within it, an address parser will divide the 
local-part into several tokens, but the sequence of tokens will be treated as one 
uninterpreted unit.    The sequence will be re-assembled, when the address is passed outside
of the system such as to a mail protocol service.

For example, the address:

       First.Last@Registry.Org

is legal and does not require the local-part to be surrounded with quotation-marks.    
(However, "First Last" DOES require quoting.) The local-part of the address, when passed 
outside of the mail system, within the Registry.Org domain, is "First.Last", again without 
quotation marks.



RFC-822    Standard for ARPA Internet Text Messages: Address Semantics

Balancing Local-Part and Domain
In some cases, the boundary between local-part and domain can be flexible.    The local-part 
may be a simple string, which is used for the final determination of the recipient's mailbox.    
All other levels of reference are, therefore, part of the domain.

For some systems, in the case of abbreviated reference to the local and subordinate sub-
domains, it may be possible to specify only one reference within the domain part and place 
the other, subordinate name-domain references within the local-part.    This would appear as:

      mailbox.sub1.sub2@this-domain

Such a specification would be acceptable to address parsers which conform to RFC-733, but 
do not support this newer Internet standard.    While contrary to the intent of this standard, 
the form is legal.

Also, some sub-domains have a specification syntax which does not conform to this 
standard.    For example:

      sub-net.mailbox@sub-domain.domain

uses a different parsing sequence for local-part than for domain.

Note: As a rule, the domain specification should contain fields which are encoded according 
to the syntax of this standard and which contain generally-standardized information.    The 
local-part specification should contain only that portion of the address which deviates from 
the form or intention of the domain field.



RFC-822    Standard for ARPA Internet Text Messages: Address Semantics

Multiple Mailboxes
An individual may have several mailboxes and wish to receive mail at whatever mailbox is 
convenient for the sender to access.    This standard does not provide a means of specifying 
"any member of" a list of mailboxes.

A set of individuals may wish to receive mail as a single unit (i.e., a distribution list).    The 
<group> construct permits specification of such a list.    Recipient mailboxes are specified 
within the bracketed part (":" - ";").    A copy of the transmitted message is to be sent to 
each mailbox listed.    This standard does not permit recursive specification of groups within 
groups.

While a list must be named, it is not required that the contents of the list be included.    In 
this case, the <address> serves only as an indication of group distribution and would 
appear in the form:

         name:;

Some mail services may provide a group-list distribution facility, accepting a single mailbox 
reference, expanding it to the full distribution list, and relaying the mail to the list's 
members.    This standard provides no additional syntax for indicating such a service.    Using 
the <group> address alternative, while listing one mailbox in it, can mean either that the 
mailbox reference will be expanded to a list or that there is a group with one member.



RFC-822    Standard for ARPA Internet Text Messages: Address Semantics

Explicit Path Specification
At times, a message originator may wish to indicate the transmission path that a message 
should follow.    This is called source routing.    The normal addressing scheme, used in an 
addr-spec, is carefully separated from such information; the <route> portion of a route-addr
is provided for such occasions.    It specifies the sequence of hosts and/or transmission 
services that are to be traversed.    Both domain-refs and domain-literals may be used.

The use of source routing is discouraged.    Unless the sender has special need of path 
restriction, the choice of transmission route should be left to the mail transport service.

Note: Internet host software should not create an RFC-822 header containing an address 
with an explicit source route, but must accept such headers for compatibility with earlier 
systems.

Discussion
Many hosts implemented RFC-822 source routes incorrectly, so the syntax 
cannot be used unambiguously in practice.    Many users feel the syntax is 
ugly.    Explicit source routes are not needed in the mail envelope for delivery; 
see Mail Relaying.    For all these reasons, explicit source routes using the RFC-
822 notations are not to be used in Internet mail headers.

As stated in Local-part, it is necessary to allow an explicit source route to be 
buried in the local-part of an address, e.g., using the "%-hack", in order to 
allow mail to be gatewayed into another environment in which explicit source 
routing is necessary.    The vigilant will observe that there is no way for a User 
Agent to detect and prevent the use of such implicit source routing when the 
destination is within the Internet.    We can only discourage source routing of 
any kind within the Internet, as unnecessary and undesirable.



RFC-822    Standard for ARPA Internet Text Messages

Common Address Formatting Errors
Errors in formatting or parsing 822 addresses are unfortunately common.    This section 
mentions only the most common errors.    A User Agent must accept all valid RFC-822 
address formats, and must not generate illegal address syntax.

o A common error is to leave out the semicolon after a group identifier.

o Some systems fail to fully-qualify domain names in messages they generate.    
The right-hand side of an "@" sign in a header address field must be a fully-
qualified domain name.

For example, some systems fail to fully-qualify the From: address; this 
prevents a "reply" command in the user interface from automatically 
constructing a return address.

Discussion
Although RFC-822 allows the local use of abbreviated domain names within a 
domain, the application of RFC-822 in Internet mail does not allow this.    The 
intent is that an Internet host must not send an SMTP message header 
containing an abbreviated domain name in an address field.    This allows the 
address fields of the header to be passed without alteration across the 
Internet, as required in Mail Relaying.

o Some systems mis-parse multiple-hop explicit source routes such as:

@relay1,@relay2,@relay3:user@domain.

o Some systems over-qualify domain names by adding a trailing dot to some or 
all domain names in addresses or message-ids.    This violates RFC-822 syntax.



RFC-822    Standard for ARPA Internet Text Messages

Reserved Address
It often is necessary to send mail to a site, without knowing any of its valid addresses.    For 
example, there may be mail system dysfunctions, or a user may wish to find out a person's 
correct address, at that site.

This standard specifies a single, reserved mailbox address (local-part) which is to be valid at 
each site.    Mail sent to that address is to be routed to a person responsible for the site's 
mail system or to a person with responsibility for general site operation.    The name of the 
reserved local-part address is:

        Postmaster

so that "Postmaster@domain" is required to be valid.

Note: This reserved local-part must be matched without sensitivity to alphabetic case, so 
that "POSTMASTER", "postmaster", and even "poStmASteR" is to be accepted.



RFC-822    Standard for ARPA Internet Text Messages

Bibliography

ANSI.    "USA Standard Code for Information Interchange," X3.4.    American National 
Standards Institute: New York (1968).    Also in: Feinler, E.    and J.    Postel, eds., "ARPANET 
Protocol Handbook", NIC 7104.

ANSI.    "Representations of Universal Time, Local Time Differentials, and United States Time 
Zone References for Information Interchange," X3.51-1975.    American National Standards 
Institute: New York (1975).

Bemer, R.W., "Time and the Computer." In: Interface Age (Feb.1979).

Bennett, C.J.    "JNT Mail Protocol".    Joint Network Team, Rutherford and Appleton Laboratory: 
Didcot, England.

Bhushan, A.K., Pogran, K.T., Tomlinson, R.S., and White, J.E. "Standardizing Network Mail 
Headers," ARPANET Request for Comments No.    561, Network Information Center No.    
18516; SRI International: Menlo Park (September 1973).

Birrell, A.D., Levin, R., Needham, R.M., and Schroeder, M.D. "Grapevine: An Exercise in 
Distributed Computing," Communications of the ACM 25, 4 (April 1982), 260-274.

Crocker, D.H., Vittal, J.J., Pogran, K.T., Henderson, D.A. "Standard for the Format of ARPA 
Network Text Message," ARPANET Request for Comments No.    733, Network Information 
Center No.    41952.    SRI International: Menlo Park (November 1977).

Feinler, E.J.    and Postel, J.B.    ARPANET Protocol Handbook, Network Information Center No.    
7104 (NTIS AD A003890).    SRI International: Menlo Park (April 1976).

Harary, F.    "Graph Theory".    Addison-Wesley: Reading, Mass. (1969).

Levin, R.    and Schroeder, M.    "Transport of Electronic Messages through a Network," 
TeleInformatics 79, pp.    29-33.    North Holland (1979).    Also as Xerox Palo Alto Research 
Center Technical Report CSL-79-4.

Myer, T.H.    and Henderson, D.A.    "Message Transmission Protocol," ARPANET Request for 
Comments, No.    680, Network Information Center No.    32116.    SRI International: Menlo 
Park (1975).

NBS.    "Specification of Message Format for Computer Based Message Systems, 
Recommended Federal Information Processing Standard." National Bureau of Standards: 
Gaithersburg, Maryland (October 1981).

NIC.    Internet Protocol Transition Workbook.    Network Information Center, SRI-International, 
Menlo Park, California (March 1982).

Oppen, D.C.    and Dalal, Y.K.    "The Clearinghouse: A Decentralized Agent for Locating 
Named Objects in a Distributed Environment," OPD-T8103.    Xerox Office Products Division: 
Palo Alto, CA.    (October 1981).

Postel, J.B.    "Assigned Numbers," ARPANET Request for Comments, No.    820.    SRI 



International: Menlo Park (August 1982).

Postel, J.B.    "Simple Mail Transfer Protocol," ARPANET Request for Comments, No.    821.    SRI
International: Menlo Park (August 1982).

Shoch, J.F.    "Internetwork naming, addressing and routing," in Proc.    17th IEEE Computer 
Society International Conference, pp.72-79, Sept.    1978, IEEE Cat.    No.    78 CH 1388-8C.

Su, Z.    and Postel, J.    "The Domain Naming Convention for Internet User Applications," 
ARPANET Request for Comments, No.    819. SRI International: Menlo Park (August 1982).



RFC-822    Standard for ARPA Internet Text Messages: Appendix A

Examples
Addresses
Originator Items
Complete Headers



RFC-822    Standard for ARPA Internet Text Messages: Appendix A

Addresses
1.  Alfred Neuman <Neuman@BBN-TENEXA>
2.  Neuman@BBN-TENEXA

These two "Alfred Neuman" examples have identical semantics, as far as the 
operation of the local host's mail sending (distribution) program (also sometimes 
called its "mailer") and the remote host's mail protocol server are concerned.    In the 
first example, the "Alfred Neuman" is ignored by the mailer, as "Neuman@BBN-TENEXA"
completely specifies the recipient.    The second example contains no superfluous 
information, and, again, "Neuman@BBN-TENEXA" is the intended recipient.

Note: When the message crosses name-domain boundaries, then these 
specifications must be changed, so as to indicate the remainder of the hierarchy, 
starting with the top level.

3.  "George, Ted" <Shared@Group.Arpanet>
This form might be used to indicate that a single mailbox is shared by several users.   
The quoted string is ignored by the originating host's mailer, because 
"Shared@Group.Arpanet" completely specifies the destination mailbox.

4.  Wilt .  (the Stilt) Chamberlain@NBA.US
The "(the Stilt)" is a comment, which is NOT included in the destination mailbox 
address handed to the originating system's mailer.    The local-part of the address is 
the string "Wilt.Chamberlain", with NO space between the first and second words.

5.  Address Lists
Gourmets: Pompous Person <WhoZiWhatZit@Cordon-Bleu>,

Childs@WGBH.Boston, Galloping Gourmet@
ANT.Down-Under (Australian National Television),
Cheapie@Discount-Liquors;,

Cruisers: Port@Portugal, Jones@SEA;,
Another@Somewhere.SomeOrg

This group list example points out the use of comments and the mixing of addresses and 
groups.



RFC-822    Standard for ARPA Internet Text Messages: Appendix A

Originator Items
1.  Author-sent

George Jones logs into his host as "Jones".    He sends mail himself.

   From: Jones@Group.Org

or

   From: George Jones <Jones@Group.Org>

2.  Secretary-sent
George Jones logs in as Jones on his host.    His secretary, who logs in as Secy sends 
mail for him.    Replies to the mail should go to George.

   From: George Jones <Jones@Group>
   Sender: Secy@Other-Group

3.  Secretary-sent, for user of shared directory
George Jones' secretary sends mail for George.    Replies should go to George.

   From:  George Jones<Shared@Group.Org>
   Sender: Secy@Other-Group

Note that there need not be a space between "Jones" and the "<", but adding a space
enhances readability (as is the case in other examples.

4.  Committee activity, with one author
George is a member of a committee.    He wishes to have any replies to his message 
go to all committee members.

   From:  George Jones <Jones@Host.Net>
   Sender: Jones@Host
   Reply-To: The Committee: Jones@Host.Net,
          Smith@Other.Org,
          Doe@Somewhere-Else;

Note that if George had not included himself in the enumeration of The Committee, 
he would not have gotten an implicit reply; the presence of the "Reply-to" field 
SUPERSEDES the sending of a reply to the person named in the "From" field.

5.  Secretary acting as full agent of author
George Jones asks his secretary (Secy@Host) to send a message for him in his 
capacity as Group.    He wants his secretary to handle all replies.

   From:  George Jones <Group@Host>
   Sender: Secy@Host
   Reply-To: Secy@Host



6.  Agent for user without online mailbox
A friend of George's, Sarah, is visiting.    George's secretary sends some mail to a 
friend of Sarah in computerland.    Replies should go to George, whose mailbox is 
Jones at Registry.

      From:   Sarah Friendly <Secy@Registry>
      Sender:  Secy-Name <Secy@Registry>
      Reply-To: Jones@Registry.

7.  Agent for member of a committee
George's secretary sends out a message which was authored jointly by all the 
members of a committee.    Note that the name of the committee cannot be specified,
since <group> names are not permitted in the From field.

From: Jones@Host,
Smith@Other-Host,
Doe@Somewhere-Else

Sender: Secy@SHost
Standard for ARPA Internet Text Messages



RFC-822    Standard for ARPA Internet Text Messages: Appendix A

Complete Headers
1.    Minimum required

     Date:     26 Aug 76 1429 EDT        Date:     26 Aug 76 1429 EDT
     From:     Jones@Registry.Org   or   From:     Jones@Registry.Org
     Bcc:                                To:       Smith@Registry.Org

Note that the "Bcc" field may be empty, while the "To" field is required to have at least one 
address.

2.    Using some of the additional fields

     Date:     26 Aug 76 1430 EDT
     From:     George Jones<Group@Host>
     Sender:   Secy@SHOST
     To:       "Al Neuman"@Mad-Host,
               Sam.Irving@Other-Host
     Message-ID:  <some.string@SHOST>

3.    About as complex as you're going to get

    Date     :  27 Aug 76 0932 PDT
     From     :  Ken Davis <KDavis@This-Host.This-net>
     Subject  :  Re: The Syntax in the RFC
     Sender   :  KSecy@Other-Host
     Reply-To :  Sam.Irving@Reg.Organization
     To       :  George Jones <Group@Some-Reg.An-Org>,
                 Al.Neuman@MAD.Publisher
     cc       :  Important folk:
                   Tom Softwood <Balsa@Tree.Root>,
                   "Sam Irving"@Other-Host;,
                 Standard Distribution:
                   /main/davis/people/standard@Other-Host,
                   "<Jones>standard.dist.3"@Tops-20-Host>;
     Comment  :  Sam is away on business. He asked me to handle
                 his mail for him.  He'll be able to provide  a
                 more  accurate  explanation  when  he  returns
                 next week.
     In-Reply-To: <some.string@DBM.Group>, George's message
     X-Special-action:  This is a sample of user-defined field-
                 names.  There could also be a field-name
                 "Special-action", but its name might later be
                 preempted
     Message-ID: <4231.629.XYzi-What@Other-Host>



RFC-822    Standard for ARPA Internet Text Messages: Appendix B

Simple Field Parsing
Some mail-reading software systems may wish to perform only minimal processing, ignoring 
the internal syntax of structured field-bodies and treating them the same as unstructured-
field-bodies.    Such software will need only to distinguish:

o Header fields from the message body,

o Beginnings of fields from lines which continue fields,

o Field-names from field-contents.

The abbreviated set of syntactic rules which follows will suffice for this purpose.    It 
describes a limited view of messages and is a subset of the syntactic rules provided in the 
main part of this specification.    One small exception is that the contents of field-bodies 
consist only of text:

Syntax

      message     =  *field *(CRLF *text)

   field      =  field-name ":" [field-body] CRLF

   field-name   = 1*<any CHAR, excluding CTLs, SPACE, and ":">

   field-body   =  *text [CRLF LWSP-char field-body]

Semantics

Headers occur before the message body and are terminated by a null line (i.e., two 
contiguous CRLFs).

A line which continues a header field begins with a SPACE or HTAB character, while a line 
beginning a field starts with aprintable character which is not a colon.

A field-name consists of one or more printable characters (excluding colon, space, and 
control-characters).    A field-name MUST be contained on one line.    Upper and lower case 
are not distinguished when comparing field-names.



RFC-822    Standard for ARPA Internet Text Messages: Appendix C

Differences From RFC-733
The following summarizes the differences between this standard and the one specified in 
Arpanet Request for Comments #733 "Standard for the Format of ARPA Network Text 
Messages".    The differences are listed in the order of their occurrence in the current 
specification.

1. FIELD DEFINITIONS

Field Names

These now must be a sequence of printable characters.    They may not contain any 
LWSP-chars.

2.    LEXICAL TOKENS

Specials

The characters period ("."), left-square bracket ("["), and right-square bracket ("]") 
have been added.    For presentation purposes, and when passing a specification to a 
system that does not conform to this standard, periods are to be contiguous with 
their surrounding lexical tokens.    No linear-white-space is permitted between them.    
The presence of one LWSP-char between other tokens is still directed.

Atom

Atoms may not contain SPACE.

Special Text

ctext and qtext have had backslash ("\") added to the list of prohibited characters.

Domains

The lexical tokens <domain-literal> and <dtext> have been added.

3.    MESSAGE SPECIFICATION

Trace

The "Return-path:" and "Received:" fields have been specified.

From

The "From" field must contain machine-usable addresses (addr-spec).    Multiple 
addresses may be specified, but named-lists (groups) may not.

Resent

The meta-construct of prefacing field names with the string "Resent-" has been 
added, to indicate that a message has been forwarded by an intermediate recipient.



Destination

A message must contain at least one destination address field.    "To" and "CC" are 
required to contain at least one address.

In-Reply-To

The field-body is no longer a comma-separated list, although a sequence is still 
permitted.

Reference

The field-body is no longer a comma-separated list, although a sequence is still 
permitted.

Encrypted

A field has been specified that permits senders to indicate that the body of a 
message has been encrypted.

Extension-Field

Extension fields are prohibited from beginning with the characters "X-".

4.    DATE AND TIME SPECIFICATION

Simplification

Fewer optional forms are permitted and the list of three-letter time zones has been 
shortened.

5.    ADDRESS SPECIFICATION

Address

The use of quoted-string, and the ":"-atom-":" construct, have been removed.    An 
address now is either a single mailbox reference or is a named list of addresses.    The
latter indicates a group distribution.

Groups

Group lists are now required to to have a name.    Group lists may not be nested.

Mailbox

A mailbox specification may indicate a person's name, as before.    Such a named list 
no longer may specify multiple ailboxes and may not be nested.

Route Addressing

Addresses now are taken to be absolute, global specifications, independent of 
transmission paths.    The <route> construct has been provided, to permit explicit 
specification of transmission path.    RFC #733's use of multiple at-signs ("@") was 
intended as a general syntax for indicating routing and/or hierarchical addressing.    
The current standard separates these specifications and only one at-sign is 



permitted.

At-Sign

The string " at " no longer is used as an address delimiter.    Only at-sign ("@") serves 
the function.

Domains

Hierarchical, logical name-domains have been added.

Reserved Address

The local-part "Postmaster" has been reserved, so that users can be guaranteed at 
least one valid address at a site.



RFC-822    Standard for ARPA Internet Text Messages: Appendix D

Alphabetical Listing Of Syntax Rules
     ALPHA       =  <any ASCII alphabetic character>
                                                 ; (101-132, 65.- 90.)
                                                 ; (141-172, 97.-122.)
     atom        =  1*<any CHAR except specials, SPACE and CTLs>
     authentic   =   "From"       ":"   mailbox  ; Single author
                 / ( "Sender"     ":"   mailbox  ; Actual submittor
                     "From"       ":" 1#mailbox) ; Multiple authors
                                                 ;  or not sender
     CHAR        =  <any ASCII character>        ; (  0-177,  0.-127.)
     comment     =  "(" *(ctext / quoted-pair / comment) ")"
     CR          =  <ASCII CR, carriage return>  ; (     15,      13.)
     CRLF        =  CR LF
     ctext       =  <any CHAR excluding "(",     ; => may be folded
                     ")", "\" & CR, & including
                     linear-white-space>
     CTL         =  <any ASCII control           ; (  0- 37,  0.- 31.)
                     character and DEL>          ; (    177,     127.)
     date        =  1*2DIGIT month 2DIGIT        ; day month year
                                                 ;  e.g. 20 Jun 82
     dates       =   orig-date                   ; Original
                   [ resent-date ]               ; Forwarded
     date-time   =  [ day "," ] date time        ; dd mm yy
                                                 ;  hh:mm:ss zzz
     day         =  "Mon"  / "Tue" /  "Wed"  / "Thu"
                 /  "Fri"  / "Sat" /  "Sun"
     delimiters  =  specials / linear-white-space / comment
     destination =  "To"          ":" 1#address  ; Primary
                 /  "Resent-To"   ":" 1#address
                 /  "cc"          ":" 1#address  ; Secondary
                 /  "Resent-cc"   ":" 1#address
                 /  "bcc"         ":"  #address  ; Blind carbon
                 /  "Resent-bcc"  ":"  #address
     DIGIT       =  <any ASCII decimal digit>    ; ( 60- 71, 48.- 57.)
     domain      =  sub-domain *("." sub-domain)
     domain-literal =  "[" *(dtext / quoted-pair) "]"
     domain-ref  =  atom                         ; symbolic reference
     dtext       =  <any CHAR excluding "[",     ; => may be folded
                     "]", "\" & CR, & including
                     linear-white-space>
     extension-field =
                   <Any field which is defined in a document
                    published as a formal extension to this
                    specification; none will have names beginning
                    with the string "X-">
     field       =  field-name ":" [ field-body ] CRLF
     fields      =    dates                      ; Creation time,
                      source                     ;  author id & one
                    1*destination                ;  address required
                     *optional-field             ;  others optional
     field-body  =  field-body-contents
                    [CRLF LWSP-char field-body]
     field-body-contents =



                   <the ASCII characters making up the field-body, as
                    defined in the following sections, and consisting
                    of combinations of atom, quoted-string, and
                    specials tokens, or else consisting of texts>
     field-name  =  1*<any CHAR, excluding CTLs, SPACE, and ":">
     group       =  phrase ":" [#mailbox] ";"
     hour        =  2DIGIT ":" 2DIGIT [":" 2DIGIT]
                                                 ; 00:00:00 - 23:59:59
     HTAB        =  <ASCII HT, horizontal-tab>   ; (     11,       9.)
     LF          =  <ASCII LF, linefeed>         ; (     12,      10.)
     linear-white-space =  1*([CRLF] LWSP-char)  ; semantics = SPACE
                                                 ; CRLF => folding
     local-part  =  word *("." word)             ; uninterpreted
                                                 ; case-preserved
     LWSP-char   =  SPACE / HTAB                 ; semantics = SPACE
     mailbox     =  addr-spec                    ; simple address
                 /  phrase route-addr            ; name & addr-spec
     message     =  fields *( CRLF *text )       ; Everything after
                                                 ;  first null line
                                                 ;  is message body
     month       =  "Jan"  /  "Feb" /  "Mar"  /  "Apr"
                 /  "May"  /  "Jun" /  "Jul"  /  "Aug"
                 /  "Sep"  /  "Oct" /  "Nov"  /  "Dec"
     msg-id      =  "<" addr-spec ">"            ; Unique message id
     optional-field =
                 /  "Message-ID"        ":"   msg-id
                 /  "Resent-Message-ID" ":"   msg-id
                 /  "In-Reply-To"       ":"  *(phrase / msg-id)
                 /  "References"        ":"  *(phrase / msg-id)
                 /  "Keywords"          ":"  #phrase
                 /  "Subject"           ":"  *text
                 /  "Comments"          ":"  *text
                 /  "Encrypted"         ":" 1#2word
                 /  extension-field              ; To be defined
                 /  user-defined-field           ; May be pre-empted
     orig-date   =  "Date"        ":"   date-time
     originator  =   authentic                   ; authenticated addr
                   [ "Reply-To"   ":" 1#address] )
     phrase      =  1*word                       ; Sequence of words
     qtext       =  <any CHAR excepting <">,     ; => may be folded
                     "\" & CR, and including
                     linear-white-space>
     quoted-pair =  "\" CHAR                     ; may quote any char
     quoted-string = <"> *(qtext/quoted-pair) <">; Regular qtext or
                                                 ;   quoted chars.
     received    =  "Received"    ":"            ; one per relay
                       ["from" domain]           ; sending host
                       ["by"   domain]           ; receiving host
                       ["via"  atom]             ; physical path
                      *("with" atom)             ; link/mail protocol
                       ["id"   msg-id]           ; receiver msg id
                       ["for"  addr-spec]        ; initial form
                        ";"    date-time         ; time received

     resent      =   resent-authentic
                   [ "Resent-Reply-To"  ":" 1#address] )
     resent-authentic =



                 =   "Resent-From"      ":"   mailbox
                 / ( "Resent-Sender"    ":"   mailbox
                     "Resent-From"      ":" 1#mailbox  )
     resent-date =  "Resent-Date" ":"   date-time
     return      =  "Return-path" ":" route-addr ; return address
     route       =  1#("@" domain) ":"           ; path-relative
     route-addr  =  "<" [route] addr-spec ">"
     source      = [  trace ]                    ; net traversals
                      originator                 ; original mail
                   [  resent ]                   ; forwarded
     SPACE       =  <ASCII SP, space>            ; (     40,      32.)
     specials    =  "(" / ")" / "<" / ">" / "@"  ; Must be in quoted-
                 /  "," / ";" / ":" / "\" / <">  ;  string, to use
                 /  "." / "[" / "]"              ;  within a word.
     sub-domain  =  domain-ref / domain-literal
     text        =  <any CHAR, including bare    ; => atoms, specials,
                     CR & bare LF, but NOT       ;  comments and
                     including CRLF>             ;  quoted-strings are
                                                 ;  NOT recognized.
     time        =  hour zone                    ; ANSI and Military
     trace       =    return                     ; path to sender
                    1*received                   ; receipt tags
     user-defined-field =
                   <Any field which has not been defined
                    in this specification or published as an
                    extension to this specification; names for
                    such fields must be unique and may be
                    pre-empted by published extensions>
     word        =  atom / quoted-string
     zone        =  "UT"  / "GMT"                ; Universal Time
                                                 ; North American : UT
                 /  "EST" / "EDT"                ;  Eastern:  - 5/ - 4
                 /  "CST" / "CDT"                ;  Central:  - 6/ - 5
                 /  "MST" / "MDT"                ;  Mountain: - 7/ - 6
                 /  "PST" / "PDT"                ;  Pacific:  - 8/ - 7
                 /  1ALPHA                       ; Military: Z = UT;
     <">         =  <ASCII quote mark>           ; (     42,      34.)



RFC-826 Address Resolution Protocol
or

Converting Network Protocol Addresses
to 48 bit Ethernet Addresses

for Transmission on
Ethernet Hardware

David C. Plummer
November 1982

This version of RFC-826 incorporates changes and additions made since its original 
publication.

Abstract
Notes
The Problem
Motivation
Definitions
Packet Format
Packet Generation
Packet Reception
Why is it done this way ?
Network Monitoring and Debugging
An Example
Cache Validation

Implementation



RFC-826 Address Resolution Protocol

Abstract

The implementation of protocol P on a sending host S decides, through protocol P's routing 
mechanism, that it wants to transmit to a target host T located some place on a connected 
piece of 10Mbit Ethernet cable.    To actually transmit the Ethernet packet a 48.bit Ethernet 
address must be generated.    The addresses of hosts within protocol P are not always 
compatible with the corresponding Ethernet address (being different lengths or values).    
Presented here is a protocol that allows dynamic distribution of the information needed to 
build tables to translate an address A in protocol P's address space into a 48.bit Ethernet 
address. 
Generalizations have been made which allow the protocol to be used for non-10Mbit 
Ethernet hardware.    Some packet radio networks are examples of such hardware. 
The protocol proposed here is the result of a great deal of discussion with several other 
people, most notably J. Noel Chiappa, Yogen Dalal, and James E. Kulp, and helpful comments 
from David Moon. 



RFC-826 Address Resolution Protocol

Notes

This protocol was originally designed for the DEC/Intel/Xerox 10Mbit Ethernet.    It has been 
generalized to allow it to be used for other types of networks.    Much of the discussion will 
be directed toward the 10Mbit Ethernet.    Generalizations, where applicable, will follow the 
Ethernet-specific discussion. 

DOD Internet Protocol will be referred to as Internet.
Numbers here are in the Ethernet standard, which is high byte first.    This is 
the opposite of the byte addressing of machines such as PDP-11s and VAXes.   
Therefore, special care must be taken with the opcode field (ar$op) described 
below. 
An agreed upon authority is needed to manage hardware name space values 
(see below).    Until an official authority exists, requests should be submitted to
David C. Plummer
Symbolics, Inc.
243 Vassar Street
Cambridge, Massachusetts    02139
Alternatively, network mail can be sent to DCP@MIT-MC.



RFC-826 Address Resolution Protocol

The Problem

The world is a jungle in general, and the networking game contributes many animals.    At 
nearly every layer of a network architecture there are several potential protocols that could 
be used.    For example, at a high level, there is TELNET and SUPDUP for remote login.    
Somewhere below that there is a reliable byte stream protocol, which might be CHAOS 
protocol, DOD TCP, Xerox BSP or DECnet.    Even closer to the hardware is the logical 
transport layer, which might be CHAOS, DOD Internet, Xerox PUP, or DECnet.    The 10Mbit 
Ethernet allows all of these protocols (and more) to coexist on a single cable by means of a 
type field in the Ethernet packet header.    However, the 10Mbit Ethernet requires 48.bit 
addresses on the physical cable, yet most protocol addresses are not 48.bits long, nor do 
they necessarily have any relationship to the 48.bit Ethernet address of the hardware.    For 
example, CHAOS addresses are 16.bits, DOD Internet addresses are 32.bits, and Xerox PUP 
addresses are 8.bits.    A protocol is needed to dynamically distribute the correspondences 
between a <protocol, address> pair and a 48.bit Ethernet address. 



RFC-826 Address Resolution Protocol

Motivation

Use of the 10Mbit Ethernet is increasing as more manufacturers supply interfaces that 
conform to the specification published by DEC, Intel and Xerox.    With this increasing 
availability, more and more software is being written for these interfaces.    There are two 
alternatives: (1) Every implementor invents his/her own method to do some form of address 
resolution, or (2) every implementor uses a standard so that his/her code can be distributed 
to other systems without need for modification.    This proposal attempts to set the standard.



RFC-826 Address Resolution Protocol

Definitions

Define the following for referring to the values put in the TYPE field of the Ethernet packet 
header: 

ether_type$XEROX_PUP (200H),
ether_type$DOD_INTERNET (800H),
ether_type$CHAOS (804H), 

and a new one:
ether_type$ADDRESS_RESOLUTION (806H).    

Also define the following values (to be discussed later):
ares_op$REQUEST (= 1, high byte transmitted first) and
ares_op$REPLY      (= 2), 

and
ares_hrd$Ethernet (= 1).

Other hardware types are defined in Assigned Numbers RFC-1060.



RFC-826 Address Resolution Protocol

Packet format

To communicate mappings from <protocol, address> pairs to 48.bit Ethernet addresses, a 
packet format that embodies the Address Resolution protocol is needed.    The format of the 
packet follows. 

Ethernet transmission layer (not necessarily accessible to the user):
48.bit: Ethernet address of destination
48.bit: Ethernet address of sender
16.bit: Protocol type = ether_type$ADDRESS_RESOLUTION

Ethernet packet data:
16.bit: (ar$hrd) Hardware address space (e.g., Ethernet, Packet Radio Net.)
16.bit: (ar$pro) Protocol address space.    For Ethernet hardware, this is from the set 

of type fields ether_typ$<protocol>.
 8.bit: (ar$hln) byte length of each hardware address
 8.bit: (ar$pln) byte length of each protocol address
16.bit: (ar$op) opcode (ares_op$REQUEST | ares_op$REPLY)
nbytes: (ar$sha) Hardware address of sender of this packet, n from the ar$hln 

field.
mbytes: (ar$spa) Protocol address of sender of this packet, m from the ar$pln 

field.
nbytes: (ar$tha) Hardware address of target of this packet (if known).
mbytes: (ar$tpa) Protocol address of target.



RFC-826 Address Resolution Protocol

Packet Generation

As a packet is sent down through the network layers, routing determines the protocol 
address of the next hop for the packet and on which piece of hardware it expects to find the 
station with the immediate target protocol address.    In the case of the 10Mbit Ethernet, 
address resolution is needed and some lower layer (probably the hardware driver) must 
consult the Address Resolution module (perhaps implemented in the Ethernet support 
module) to convert the <protocol type, target protocol address> pair to a 48.bit Ethernet 
address.    The Address Resolution module tries to find this pair in a table.    If it finds the pair,
it gives the corresponding 48.bit Ethernet address back to the caller (hardware driver) which 
then transmits the packet.    If it does not, it probably informs the caller that it is throwing the
packet away (on the assumption the packet will be retransmitted by a higher network layer),
and generates an Ethernet packet with a type field of ether_type$ADDRESS_RESOLUTION.    
The Address Resolution module then sets the ar$hrd field to ares_hrd$Ethernet, ar$pro to 
the protocol type that is being resolved, ar$hln to 6 (the number of bytes in a 48.bit Ethernet
address), ar$pln to the length of an address in that protocol, ar$op to ares_op$REQUEST, 
ar$sha with the 48.bit ethernet address of itself, ar$spa with the protocol address of itself, 
and ar$tpa with the protocol address of the machine that is trying to be accessed.    It does 
not set ar$tha to anything in particular, because it is this value that it is trying to determine. 
It could set ar$tha to the broadcast address for the hardware (all ones in the case of the 
10Mbit Ethernet) if that makes it convenient for some aspect of the implementation.    It then
causes this packet to be broadcast to all stations on the Ethernet cable originally determined
by the routing mechanism. 



RFC-826 Address Resolution Protocol

Packet Reception

When an address resolution packet is received, the receiving Ethernet module gives the 
packet to the Address Resolution module which goes through an algorithm similar to the 
following. Negative conditionals indicate an end of processing and a discarding of the 
packet. 
?Do I have the hardware type in ar$hrd?
Yes: (almost definitely)

[optionally check the hardware length ar$hln]
?Do I speak the protocol in ar$pro?
Yes:
[optionally check the protocol length ar$pln]
Merge_flag := false
If the pair <protocol type, sender protocol address> is already in my translation table, 
update the sender hardware address field of the entry with the new information in the 
packet and set Merge_flag to true. 
?Am I the target protocol address?
Yes:

If Merge_flag is false, add the triplet <protocol type, sender protocol address, sender 
hardware address> to the translation table.
?Is the opcode ares_op$REQUEST?    (NOW look at the opcode!!)
Yes:

Swap hardware and protocol fields, putting the local hardware and protocol 
addresses in the sender fields.
Set the ar$op field to ares_op$REPLY
Send the packet to the (new) target hardware address on the same hardware on 
which the request was received.

Notice that the <protocol type, sender protocol address, sender hardware address> triplet is
merged into the table before the opcode is looked at.    This is on the assumption that 
communcation is bidirectional; if A has some reason to talk to B, then B will probably have 
some reason to talk to A.    Notice also that if an entry already exists for the <protocol type, 
sender protocol address> pair, then the new hardware address supersedes the old one.    
Related Issues gives some motivation for this. 
Generalization:    The ar$hrd and ar$hln fields allow this protocol and packet format to be 
used for non-10Mbit Ethernets.    For the 10Mbit Ethernet <ar$hrd, ar$hln> takes on the 
value <1, 6>.    For other hardware networks, the ar$pro field may no longer correspond to 
the Ethernet type field, but it should be associated with the protocol whose address 
resolution is being sought. 



RFC-826 Address Resolution Protocol

Why is it done this way??

Periodic broadcasting is definitely not desired.    Imagine 100 workstations on a single 
Ethernet, each broadcasting address resolution information once per 10 minutes (as one 
possible set of parameters).    This is one packet every 6 seconds.    This is almost 
reasonable, but what use is it?    The workstations aren't generally going to be talking to 
each other (and therefore have 100 useless entries in a table); they will be mainly talking to 
a mainframe, file server or bridge, but only to a small number of other workstations (for 
interactive conversations, for example). The protocol described in this paper distributes 
information as it is needed, and only once (probably) per boot of a machine. 
This format does not allow for more than one resolution to be done in the same packet.    
This is for simplicity.    If things were multiplexed the packet format would be considerably 
harder to digest, and much of the information could be gratuitous.    Think of a bridge that 
talks four protocols telling a workstation all four protocol addresses, three of which the 
workstation will probably never use. 
This format allows the packet buffer to be reused if a reply is generated; a reply has the 
same length as a request, and several of the fields are the same. 
The value of the hardware field (ar$hrd) is taken from a list for this purpose.    Currently the 
only defined value is for the 10Mbit Ethernet (ares_hrd$Ethernet = 1).    There has been talk 
of using this protocol for Packet Radio Networks as well, and this will require another value 
as will other future hardware mediums that wish to use this protocol. 
For the 10Mbit Ethernet, the value in the protocol field (ar$pro) is taken from the set 
ether_type$.    This is a natural reuse of the assigned protocol types.    Combining this with 
the opcode (ar$op) would effectively halve the number of protocols that can be resolved 
under this protocol and would make a monitor/debugger more complex (see Network 
Monitoring and Debugging below).    It is hoped that we will never see 32768 protocols, but 
Murphy made some laws which don't allow us to make this assumption. 
In theory, the length fields (ar$hln and ar$pln) are redundant, since the length of a protocol 
address should be determined by the hardware type (found in ar$hrd) and the protocol type 
(found in ar$pro).    It is included for optional consistency checking, and for network 
monitoring and debugging (see below).    
The opcode is to determine if this is a request (which may cause a reply) or a reply to a 
previous request.    16 bits for this is overkill, but a flag (field) is needed. 
The sender hardware address and sender protocol address are absolutely necessary.    It is 
these fields that get put in a translation table. 



 The target protocol address is necessary in the request form of the packet so that a 
machine can determine whether or not to enter the sender information in a table or to send 
a reply.    It is not necessarily needed in the reply form if one assumes a reply is only 
provoked by a request.    It is included for completeness, network monitoring, and to simplify 
the suggested processing algorithm described above (which does not look at the opcode 
until AFTER putting the sender information in a table). 
The target hardware address is included for completeness and network monitoring.    It has 
no meaning in the request form, since it is this number that the machine is requesting.    Its 
meaning in the reply form is the address of the machine making the request. In some 
implementations (which do not get to look at the 14.byte ethernet header, for example) this 
may save some register shuffling or stack space by sending this field to the hardware driver 
as the hardware destination address of the packet. 
There are no padding bytes between addresses.    The packet data should be viewed as a 
byte stream in which only 3 byte pairs are defined to be words (ar$hrd, ar$pro and ar$op) 
which are sent most significant byte first (Ethernet/PDP-10 byte style).      



RFC-826 Address Resolution Protocol

Network Monitoring and Debugging

The above Address Resolution protocol allows a machine to gain knowledge about the higher
level protocol activity (e.g., CHAOS, Internet, PUP, DECnet) on an Ethernet cable.    It can 
determine which Ethernet protocol type fields are in use (by value) and the protocol 
addresses within each protocol type.    In fact, it is not necessary for the monitor to speak 
any of the higher level protocols involved.    It goes something like this: 
When a monitor receives an Address Resolution packet, it always enters the <protocol type, 
sender protocol address, sender hardware address> in a table.    It can determine the length 
of the hardware and protocol address from the ar$hln and ar$pln fields of the packet.    If the 
opcode is a REPLY the monitor can then throw the packet away.    If the opcode is a REQUEST 
and the target protocol address matches the protocol address of the monitor, the monitor 
sends a REPLY as it normally would.    The monitor will only get one mapping this way, since 
the REPLY to the REQUEST will be sent directly to the requesting host.    The monitor could 
try sending its own REQUEST, but this could get two monitors into a REQUEST sending loop, 
and care must be taken. 
Because the protocol and opcode are not combined into one field, the monitor does not need
to know which request opcode is associated with which reply opcode for the same higher 
level protocol.    The length fields should also give enough information to enable it to "parse" 
a protocol addresses, although it has no knowledge of what the protocol addresses mean. 
A working implementation of the Address Resolution protocol can also be used to debug a 
non-working implementation.    Presumably a hardware driver will successfully broadcast a 
packet with Ethernet type field of ether_type$ADDRESS_RESOLUTION.    The format of the 
packet may not be totally correct, because initial implementations may have bugs, and table
management may be slightly tricky.    Because requests are broadcast a monitor will receive 
the packet and can display it for debugging if desired. 



RFC-826 Address Resolution Protocol

An Example

Let there exist machines X and Y that are on the same 10Mbit Ethernet cable.    They have 
Ethernet address EA(X) and EA(Y) and DOD Internet addresses IPA(X) and IPA(Y) .    Let the 
Ethernet type of Internet be ET(IP).    Machine X has just been started, and sooner or later 
wants to send an Internet packet to machine Y on the same cable.    X knows that it wants to 
send to IPA(Y) and tells the hardware driver (here an Ethernet driver) IPA(Y).    The driver 
consults the Address Resolution module to convert <ET(IP), IPA(Y)> into a 48.bit Ethernet 
address, but because X was just started, it does not have this information.    It throws the 
Internet packet away and instead creates an ADDRESS RESOLUTION packet with 

(ar$hrd) = ares_hrd$Ethernet
(ar$pro) = ET(IP)
(ar$hln) = length(EA(X))
(ar$pln) = length(IPA(X))
(ar$op)    = ares_op$REQUEST
(ar$sha) = EA(X)
(ar$spa) = IPA(X)
(ar$tha) = don't care
(ar$tpa) = IPA(Y)

and broadcasts this packet to everybody on the cable.
Machine Y gets this packet, and determines that it understands the hardware type 
(Ethernet), that it speaks the indicated protocol (Internet) and that the packet is for it 
((ar$tpa)=IPA(Y)).    It enters (probably replacing any existing entry) the information that 
<ET(IP), IPA(X)> maps to EA(X).    It then notices that it is a request, so it swaps fields, 
putting EA(Y) in the new sender Ethernet address field (ar$sha), sets the opcode to reply, 
and sends the packet directly (not broadcast) to EA(X).    At this point Y knows how to send to
X, but X still doesn't know how to send to Y. 
Machine X gets the reply packet from Y, forms the map from <ET(IP), IPA(Y)> to EA(Y), 
notices the packet is a reply and throws it away.    The next time X's Internet module tries to 
send a packet to Y on the Ethernet, the translation will succeed, and the packet will 
(hopefully) arrive.    If Y's Internet module then wants to talk to X, this will also succeed since 
Y has remembered the information from X's request for Address Resolution. 



RFC-826 Address Resolution Protocol

Cache Validation

An implementation of the Address Resolution Protocol (ARP) [LINK:2] must provide a 
mechanism to flush out-of-date cache entries.    If this mechanism involves a timeout, it 
should be possible to configure the timeout value.
A mechanism to prevent ARP flooding (repeatedly sending an ARP Request for the same IP 
address, at a high rate) must be included.    The recommended maximum rate is 1 per 
second per destination.    (See Implementation).

Discussion
The ARP specification [LINK:2] suggests but does not require a timeout 
mechanism to invalidate cache entries when hosts change their Ethernet 
addresses.    The prevalence of proxy ARP (see Section 2.4 of [INTRO:2]) has 
significantly increased the likelihood that cache entries in hosts will become 
invalid, and therefore some ARP-cache invalidation mechanism is now 
required for hosts.    Even in the absence of proxy ARP, a long- period cache 
timeout is useful in order to automatically correct any bad ARP data that 
might have been cached.



RFC-826 Address Resolution Protocol

Cache Validation
Implementation

Four mechanisms have been used, sometimes in combination, to flush out-of-date cache 
entries.

(1)    Timeout Periodically time out cache entries, even if they are in use.    Note that 
this timeout should be restarted when the cache entry is "refreshed" 
(by observing the source fields, regardless of target address, of an ARP 
broadcast from the system in question).    For proxy ARP situations, the 
timeout needs to be on the order of a minute.

(2)    Unicast Poll Actively poll the remote host by periodically sending a point-to-point 
ARP Request to it, and delete the entry if no ARP Reply is received from
N successive polls.    Again, the timeout should be on the order of a 
minute, and typically N is 2.

(3)    Link-Layer Advice If the link-layer driver detects a delivery problem, flush the 
corresponding ARP cache entry.

(4)    Higher-layer Advice Provide a call from the Internet layer to the link layer to indicate
a delivery problem.    The effect of this call would be to invalidate the 
corresponding cache entry. This call would be analogous to the 
"ADVISE_DELIVPROB()" call from the transport layer to the Internet 
layer (See Internet/Transport Layer Interface), and in fact the 
ADVISE_DELIVPROB routine might in turn call the link-layer advice 
routine to invalidate the ARP cache entry.

Approaches (1) and (2) involve ARP cache timeouts on the order of a minute or less.    In the 
absence of proxy ARP, a timeout this short could create noticeable overhead traffic on a very
large Ethernet.    Therefore, it may be necessary to configure a host to lengthen the ARP 
cache timeout.



RFC-854 Telnet Protocol Specification
J. Postel & J. Reynolds

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
are expected to adopt and implement this standard.      A number of additional options and 
extensions have been defined since this RFC was originally published; All of these additions 
have been incorporated into this version.

Introduction
General Considerations

Option Negotiation
The Network Virtual Terminal
Data Entry Terminals
Telnet Command Structure

Option Requirements
Option Initiation
Linemode Option

Connection Establishment
Port Assignment

Character Set Transparancy
User Telnet Capabilities



RFC-854 Telnet Protocol Specification

Introduction

The purpose of the Telnet Protocol is to provide a fairly general, bi-directional, eight-bit byte 
oriented communications facility.    Its primary goal is to allow a standard method of 
interfacing terminal devices and terminal-oriented processes to each other.    It is envisioned 
that the protocol may also be used for terminal-terminal communication ("linking") and 
process-process communication (distributed computation). 



RFC-854 Telnet Protocol Specification

General Considerations

A Telnet connection is a Transmission Control Protocol (TCP) connection used to transmit 
data with interspersed Telnet control information. 
The Telnet Protocol is built upon three main ideas:    first, the concept of a "Network Virtual 
Terminal"; second, the principle of negotiated options; and third, a symmetric view of 
terminals and processes. 

1. When a Telnet connection is first established, each end is assumed to 
originate and terminate at a "Network Virtual Terminal", or NVT.    An NVT is an 
imaginary device which provides a standard, network-wide, intermediate 
representation of a canonical terminal. This eliminates the need for "server" 
and "user" hosts to keep information about the characteristics of each other's 
terminals and terminal handling conventions.    All hosts, both user and server,
map their local device characteristics and conventions so as to appear to be 
dealing with an NVT over the network, and each can assume a similar 
mapping by the other party.    The NVT is intended to strike a balance between 
being overly restricted (not providing hosts a rich enough vocabulary for 
mapping into their local character sets), and being overly inclusive (penalizing
users with modest terminals). 

NOTE:    The "user" host is the host to which the physical terminal is 
normally attached, and the "server" host is the host which is normally 
providing some service.    As an alternate point of view,    applicable even in
terminal-to-terminal or process-to-process communications, the "user" 
host is the host which initiated the communication. 

2. The principle of negotiated options takes cognizance of the fact that many 
hosts will wish to provide additional services over and above those available 
within an NVT, and many users will have sophisticated terminals and would 
like to have elegant, rather than minimal, services.    Independent of, but 
structured within the Telnet Protocol are various "options" that will be 
sanctioned and may be used with the "DO, DON'T, WILL, WON'T" structure 
(discussed below) to allow a user and server to agree to use a more elaborate 
(or perhaps just different) set of conventions for their Telnet connection.    Such
options could include changing the character set, the echo mode, etc. 
The basic strategy for setting up the use of options is to have either party (or 
both) initiate a request that some option take effect.    The other party may 
then either accept or reject the        request.    If the request is accepted the 
option immediately takes effect; if it is rejected the associated aspect of the 
connection remains as specified for an NVT.    Clearly, a party may always 
refuse a request to enable, and must never refuse a request to disable some 
option since all parties must be prepared to support the NVT. 
The syntax of option negotiation has been set up so that if both parties 
request an option simultaneously, each will see the other's request as the 
positive acknowledgment of its own. 

3. The symmetry of the negotiation syntax can potentially lead to 
nonterminating acknowledgment loops -- each party seeing the incoming 
commands not as acknowledgments but as new requests which must be 
acknowledged.    To prevent such loops, the following rules prevail: 
a. Parties may only request a change in option status; i.e., a party may not 



send out a "request" merely to announce what mode it is in. 
b. If a party receives what appears to be a request to enter some mode it is 

already in, the request should not be acknowledged. This non-response is 
essential to prevent endless loops in the negotiation.    It is required that a 
response be sent to requests for a change of mode -- even if the mode is 
not changed. 

c. Whenever one party sends an option command to a second party, whether
as a request or an acknowledgment, and use of the option will have any 
effect on the processing of the data being sent from the first party to the 
second, then the command must be inserted in the data stream at the 
point where it is desired that it take effect.    (It should be noted that some 
time will elapse between the transmission of a request and the receipt of 
an acknowledgment, which may be negative.    Thus, a host may wish to 
buffer data, after requesting an option, until it learns whether the request 
is accepted or rejected, in order to hide the "uncertainty period" from the 
user.) 



RFC-854 Telnet Protocol Specification

Option Negotiation
Option requests are likely to flurry back and forth when a Telnet connection is first 
established, as each party attempts to get the best possible service from the other party.    
Beyond that, however, options can be used to dynamically modify the characteristics of the 
connection to suit changing local conditions.    For example, the NVT, as will be explained 
later, uses a transmission discipline well suited to the many "line at a time" applications 
such as BASIC, but poorly suited to the many "character at a time" applications such as NLS. 
A server might elect to devote the extra processor overhead required for a "character at a 
time" discipline when it was suitable for the local process and would negotiate an 
appropriate option. However, rather than then being permanently burdened with the extra 
processing overhead, it could switch (i.e., negotiate) back to NVT when the detailed control 
was no longer necessary. 
It is possible for requests initiated by processes to stimulate a nonterminating request loop if
the process responds to a rejection by merely re-requesting the option.    To prevent such 
loops from occurring, rejected requests should not be repeated until something changes.    
Operationally, this can mean the process is running a different program, or the user has 
given another command, or whatever makes sense in the context of the given process and 
the given option. A good rule of thumb is that a re-request should only occur as a result of 
subsequent information from the other end of the connection or when demanded by local 
human intervention. 
Option designers should not feel constrained by the somewhat limited syntax available for 
option negotiation.    The intent of the simple syntax is to make it easy to have options -- 
since it is correspondingly easy to profess ignorance about them.    If some particular option 
requires a richer negotiation structure than possible within "DO, DON'T, WILL, WON'T", the 
proper tack is to use "DO, DON'T, WILL, WON'T" to establish that both parties understand 
the option, and once this is accomplished a more exotic syntax can be used freely.    For 
example, a party might send a request to alter (establish) line length.    If it is accepted, then
a different syntax can be used for actually negotiating the line length -- such a "sub-
negotiation" might include fields for minimum allowable, maximum allowable and desired 
line lengths.    The important concept is that such expanded negotiations should never begin 
until some prior (standard) negotiation has established that both parties are capable of 
parsing the expanded syntax. 
In summary, WILL XXX is sent, by either party, to indicate that party's desire (offer) to begin 
performing option XXX, DO XXX and DON'T XXX being its positive and negative 
acknowledgments; similarly, DO XXX is sent to indicate a desire (request) that the other 
party (i.e., the recipient of the DO) begin performing option XXX, WILL XXX and WON'T XXX 
being the positive and negative acknowledgments.    Since the NVT is what is left when no 
options are enabled, the DON'T and WON'T responses are guaranteed to leave the 
connection in a state which both ends can handle.    Thus, all hosts may implement their 
Telnet processes to be totally unaware of options that are not supported, simply returning a 
rejection to (i.e., refusing) any option request that cannot be understood.
For options that require a more information than a single option code a subnegotiation 
mechanism is provided.
As much as possible, the Telnet protocol has been made server-user symmetrical so that it 
easily and naturally covers the user-user (linking) and server-server (cooperating processes) 
cases.    It is hoped, but not absolutely required, that options will further this intent.    In any 
case, it is explicitly acknowledged that symmetry is an operating principle rather than an 
ironclad rule. 
A companion document, "Telnet Option Specification," (RFC-855) should be consulted for 



information about the procedure for establishing new options. 



RFC-854 Telnet Protocol Specification

The Network Virtual Terminal

The Network Virtual Terminal (NVT) is a bi-directional character device.    The NVT has a 
printer and a keyboard.    The printer responds to incoming data and the keyboard produces 
outgoing data which is sent over the Telnet connection and, if "echoes" are desired, to the 
NVT's printer as well.    "Echoes" will not be expected to traverse the network (although 
options exist to enable a "remote" echoing mode of operation, no host is required to 
implement this option).    The code set is seven-bit USASCII in an eight-bit field, except as 
modified herein.    Any code conversion and timing considerations are local problems and do 
not affect the NVT. 

Transmission of Data
Go-Ahead Function

Standard Representation of Control Functions
The Telnet "SYNCH" Signal

Flushing Output
The NVT Printer and Keyboard
End-of-Line Convention

Discussion
Implementation



RFC-854 Telnet Protocol Specification - The Network Virtual Terminal

Transmission Of Data

Although a Telnet connection through the network is intrinsically full duplex, the NVT is to be
viewed as a half-duplex device operating in a line-buffered mode.    That is, unless and until 
options are negotiated to the contrary, the following default conditions pertain to the 
transmission of data over the Telnet connection: 

1) Insofar as the availability of local buffer space permits, data should be 
accumulated in the host where it is generated until a complete line of data is 
ready for transmission, or until some locally-defined explicit signal to transmit 
occurs. This signal could be generated either by a process or by a human user.
The motivation for this rule is the high cost, to some hosts, of processing 
network input interrupts, coupled with the default NVT specification that 
"echoes" do not traverse the network.    Thus, it is reasonable to buffer some 
amount of data at its source.    Many systems take some processing action at 
the end of each input line (even line printers or card punches frequently tend 
to work this way), so the transmission should be triggered at the end of a line. 
On the other hand, a user or process may sometimes find it necessary or 
desirable to provide data which does not terminate at the end of a line; 
therefore implementers are cautioned to provide methods of locally signaling 
that all buffered data should be transmitted immediately. 

2) When a process has completed sending data to an NVT printer and has no 
queued input from the NVT keyboard for further processing (i.e., when a 
process at one end of a Telnet connection cannot proceed without input from 
the other end), the process must transmit the Telnet     Go Ahead   (GA) 
command. 
This rule is not intended to require that the Telnet GA command be sent from a
terminal at the end of each line, since server hosts do not normally require a 
special signal (in addition to end-of-line or other locally-defined characters) in 
order to commence processing.    Rather, the Telnet GA is designed to help a 
user's local host operate a physically half duplex terminal which has a 
"lockable" keyboard such as the IBM 2741.    A description of this type of 
terminal may help to explain the proper use of the GA command. 
The terminal-computer connection is always under control of either the user or
the computer.    Neither can unilaterally seize control from the other; rather the
controlling end must relinguish its control explicitly.    At the terminal end, the 
hardware is constructed so as to relinquish control each time that a "line" is 
terminated (i.e., when the "New Line" key is typed by the user).    When this 
occurs, the attached (local) computer processes the input data, decides if 
output should be generated, and if not returns control to the terminal.    If 
output should be generated, control is retained by the computer until all 
output has been transmitted. 
The difficulties of using this type of terminal through the network should be 
obvious.    The "local" computer is no longer able to decide whether to retain 
control after seeing an end-of-line signal or not; this decision can only be 
made by the "remote" computer which is processing the data.    Therefore, the 
Telnet GA command provides a mechanism whereby the "remote" (server) 
computer can signal the "local" (user) computer that it is time to pass control 
to the user of the terminal.    It should be transmitted at those times, and only 
at those times, when the user should be given control of the terminal.    Note 



that premature transmission of the GA command may result in the blocking of 
output, since the user is likely to assume that the transmitting system has 
paused, and therefore he will fail to turn the line around manually. 

The foregoing, of course, does not apply to the user-to-server direction of communication.    
In this direction, GAs may be sent at any time, but need not ever be sent.    Also, if the Telnet
connection is being used for process-to-process communication, GAs need not be sent in 
either direction.    Finally, for terminal-to-terminal communication, GAs may be required in 
neither, one, or both directions.    If a host plans to support terminal-to-terminal 
communication it is suggested that the host provide the user with a means of manually 
signaling that it is time for a GA to be sent over the Telnet connection; this, however, is not a
requirement on the implementer of a Telnet process. 
Note that the symmetry of the Telnet model requires that there is an NVT at each end of the 
Telnet connection, at least conceptually. 



RFC-854 Telnet Protocol Specification - Transmission of Data

Telnet Go-Ahead Function

On a host that never sends the Telnet command Go Ahead (GA), the Telnet Server must 
attempt to negotiate the Suppress Go Ahead option (i.e., send "WILL Suppress Go Ahead").    
A User or Server Telnet must always accept negotiation of the Suppress Go Ahead option.
When it is driving a full-duplex terminal for which GA has no meaning, a User Telnet 
implementation MAY ignore GA commands.

Discussion
Half-duplex ("locked-keyboard") line-at-a-time terminals for which the Go-
Ahead mechanism was designed have largely disappeared from the scene.    
Itturned out to be difficult to implement sending the Go-Ahead signal in many 
operating systems, even some systems that support native half-duplex 
terminals.    The difficulty is typically that the Telnet server code does not have
access to information about whether the user process is blocked awaiting 
input from the Telnet connection, i.e., it cannot reliably determine when to 
send a GA command.    Therefore, most Telnet Server hosts do not send GA 
commands.
The effect of the rules in this section is to allow either end of a Telnet 
connection to veto the use of GA commands.
There is a class of half-duplex terminals that is still commercially important: 
"data entry terminals," which interact in a full-screen manner.    However, 
supporting data entry terminals using the Telnet protocol does not require the 
Go Ahead signal; see Data Entry Terminals.



RFC-854 Telnet Protocol Specification - The Network Virtual Terminal

Standard Representation Of Control Functions

As stated in the Introduction to this document, the primary goal of the Telnet protocol is the 
provision of a standard interfacing of terminal devices and terminal-oriented processes 
through the network.    Early experiences with this type of interconnection have shown that 
certain functions are implemented by most servers, but that the methods of invoking these 
functions differ widely.    For a human user who interacts with several server systems, these 
differences are highly frustrating.    Telnet, therefore, defines a standard representation for 
five of these functions, as described below.    These standard representations have standard, 
but not required, meanings (with the exception that the Interrupt Process (IP) function may 
be required by other protocols which use Telnet); that is, a system which does not provide 
the function to local users need not provide it to network users and may treat the standard 
representation for the function as a No-operation.    On the other hand, a system which does 
provide the function to a local user is obliged to provide the same function to a network user
who transmits the standard representation for the function. 
Interrupt Process (IP)
Many systems provide a function which suspends, interrupts, aborts, or terminates the 
operation of a user process.    This function is frequently used when a user believes his 
process is in an unending loop, or when an unwanted process has been inadvertently 
activated.    IP is the standard representation for invoking this function.    A server Telnet is 
required to support the Telnet IP function even if the server host has an equivalent in-stream
function (e.g., Control-C in many systems).    The Telnet IP function may be stronger than an 
in-stream interrupt command, because of the out-of-band effect of TCP urgent data.
It should be noted by implementers that IP may be required by other protocols which use 
Telnet, and therefore should be implemented if these other protocols are to be supported. 
A User Telnet should have the capability of flushing output when it sends a Telnet IP.
Abort Output (AO)
Many systems provide a function which allows a process, which is generating output, to run 
to completion (or to reach the same stopping point it would reach if running to completion) 
but without sending the output to the user's terminal. Further, this function typically clears 
any output already produced but not yet actually printed (or displayed) on the user's 
terminal.    AO is the standard representation for invoking this function.    For example, some 
subsystem might normally accept a user's command, send a long text string to the user's 
terminal in response, and finally signal readiness to accept the next command by sending a 
"prompt" character (preceded by <CR><LF>) to the user's terminal.    If the AO were 
received during the transmission of the text string, a reasonable implementation would be to
suppress the remainder of the text string, but transmit the prompt character and the 
preceding <CR><LF>.    (This is possibly in distinction to the action which might be taken if 
an IP were received; the IP might cause suppression of the text string and an exit from the 
subsystem.) 
It should be noted, by server systems which provide this function, that there may be buffers 
external to the system (in the network and the user's local host) which should be cleared; 
the appropriate way to do this is to transmit the "Synch" signal (described below) to the user
system. 
Are You There (AYT)
Many systems provide a function which provides the user with some visible (e.g., printable) 
evidence that the system is still up and running.    This function may be invoked by the user 
when the system is unexpectedly "silent" for a long time, because of the unanticipated (by 
the user) length of a computation, an unusually heavy system load, etc.    AYT is the standard



representation for invoking this function. 
Erase Character (EC)
Many systems provide a function which deletes the last preceding undeleted character or 
"print position"* from the stream of data being supplied by the user.    This function is 
typically used to edit keyboard input when typing mistakes are made.    EC is the standard 
representation for invoking this function. 

*NOTE:    A "print position" may contain several characters which are the result
of overstrikes, or of sequences such as <char1> BS <char2>... 

Erase Line (EL)
Many systems provide a function which deletes all the data in the current "line" of input.    
This function is typically used to edit keyboard input.    EL is the standard representation for 
invoking this function. 
End-of-Record(EOR)
The EOR control function may be used to delimit the stream.    An important application is 
data entry terminal support.



RFC-854 Telnet Protocol Specification

The Telnet "Synch" Signal

Most time-sharing systems provide mechanisms which allow a terminal user to regain 
control of a "runaway" process; the IP and AO functions described above are examples of 
these mechanisms. Such systems, when used locally, have access to all of the signals 
supplied by the user, whether these are normal characters or special "out of band" signals 
such as those supplied by the teletype "BREAK" key or the IBM 2741 "ATTN" key.    This is not
necessarily true when terminals are connected to the system through the network; the 
network's flow control mechanisms may cause such a signal to be buffered elsewhere, for 
example in the user's host. 
To counter this problem, the Telnet "Synch" mechanism is introduced.    A Synch signal 
consists of a TCP Urgent notification, coupled with the Telnet command DATA MARK.    The 
Urgent notification, which is not subject to the flow control pertaining to the Telnet 
connection, is used to invoke special handling of the data stream by the process which 
receives it.    In this mode, the data stream is immediately scanned for "interesting" signals 
as defined below, discarding intervening data.    The Telnet command DATA MARK (DM) is the
synchronizing mark in the data stream which indicates that any special signal has already 
occurred and the recipient can return to normal processing of the data stream. 

The Synch is sent via the TCP send operation with the Urgent flag set and the 
DM as the last (or only) data octet. 

When several Synchs are sent in rapid succession, the Urgent notifications may be merged.   
It is not possible to count Urgents since the number received will be less than or equal the 
number sent.    When in normal mode, a DM is a no operation; when in urgent mode, it 
signals the end of the urgent processing. 

If TCP indicates the end of Urgent data before the DM is found, Telnet should 
continue the special handling of the data stream until the DM is found. 
If TCP indicates more Urgent data after the DM is found, it can only be 
because of a subsequent Synch.    Telnet should continue the special handling 
of the data stream until another DM is found. 

"Interesting" signals are defined to be:    the Telnet standard representations of IP, AO, and 
AYT (but not EC or EL); the local analogs of these standard representations (if any); all other 
Telnet commands; other site-defined signals which can be acted on without delaying the 
scan of the data stream. 
Since one effect of the SYNCH mechanism is the discarding of essentially all characters 
(except Telnet commands) between the sender of the Synch and its recipient, this 
mechanism is specified as the standard way to clear the data path when that is desired. For 
example, if a user at a terminal causes an AO to be transmitted, the server which receives 
the AO (if it provides that function at all) should return a Synch to the user. 
Finally, just as the TCP Urgent notification is needed at the Telnet level as an out-of-band 
signal, so other protocols which make use of Telnet may require a Telnet command which 
can be viewed as an out-of-band signal at a different level. 
By convention the sequence [IP, Synch] is to be used as such a signal.    For example, 
suppose that some other protocol, which uses Telnet, defines the character string STOP 
analogously to the Telnet command AO.    Imagine that a user of this protocol wishes a server
to process the STOP string, but the connection is blocked because the server is processing 
other commands.    The user should instruct his system to: 

1. Send the Telnet IP character;



2. Send the Telnet SYNC sequence, that is:
Send the Data Mark (DM) as the only character in a TCP urgent mode send 
operation. 

3. Send the character string STOP; and
4. Send the other protocol's analog of the Telnet DM, if any.

The user (or process acting on his behalf) must transmit the Telnet SYNCH sequence of step 
2 above to ensure that the Telnet IP gets through to the server's Telnet interpreter. 

The Urgent should wake up the Telnet process; the IP should wake up the next 
higher level process. 

When it receives a Telnet AO command, a Server Telnet must send a Telnet "Synch" 
sequence back to the user, to flush the output stream.



RFC-854 Telnet Protocol Specification

Flushing Output

A User Telnet program should provide the user the ability to specify whether or not output 
should be flushed when an IP is sent.
For any output flushing scheme that causes the User Telnet to flush output locally until a 
Telnet signal is received from the Server, there should be a way for the user to manually 
restore normal output, in case the Server fails to send the expected signal.
There are three possible ways for a User Telnet to flush the stream of server output data:

(1) Send AO after IP.
This will cause the server host to send a "flush-buffered-output" signal to its 
operating system.    However, the AO may not take effect locally, i.e., stop 
terminal output at the User Telnet end, until the Server Telnet has received 
and processed the AO and has sent back a "Synch".

(2) Send DO TIMING-MARK [TELNET:7] after IP, and discard all output locally until 
a WILL/WONT TIMING-MARK is received from the Server Telnet.
Since the DO TIMING-MARK will be processed after the IP at the server, the 
reply to it should be in the right place in the output data stream.    However, 
the TIMING-MARK will not send a "flush buffered output" signal to the server 
operating system.    Whether or not this is needed is dependent upon the 
server system.

(3) Do both.
The best method is not entirely clear, since it must accommodate a number of existing 
server hosts that do not follow the Telnet standards in various ways.    The safest approach is 
probably to provide a user-controllable option to select (1), (2), or (3).



RFC-854 Telnet Protocol Specification

The NVT Printer and Keyboard

The NVT printer has an unspecified carriage width and page length and can produce 
representations of all 95 USASCII graphics (codes 32 through 126).    Of the 33 USASCII 
control codes (0 through 31 and 127), and the 128 uncovered codes (128 through 255), the 
following have specified meaning to the NVT printer: 

Name Code Meaning
NULL (NUL) 0 No Operation

Line Feed (LF) 10 Moves the printer to the next print line, keeping the same 
horizontal position.

Carriage Return (CR)13 Moves the printer to the left margin of the current line.
In addition, the following codes shall have defined, but not required, effects on the NVT 
printer.    Neither end of a Telnet connection may assume that the other party will take, or 
will have taken, any particular action upon receipt or transmission of these: 

BELL (BEL) 7 Produces an audible or visible signal (which does NOT 
move the print head).

Back Space (BS) 8 Moves the print head one character position towards the 
left margin.

Horizontal Tab (HT) 9 Moves the printer to the next horizontal tab stop. It 
remains unspecified how either party determines or 
establishes where such tab stops are located.

Vertical Tab (VT) 11 Moves the printer to the next vertical tab stop.    It remains
unspecified how either party determines or establishes 
where such tab stops are located.

Form Feed (FF) 12 Moves the printer to the top of the next page, keeping the 
same horizontal position.

All remaining codes do not cause the NVT printer to take any action. 
The sequence "CR LF", as defined, will cause the NVT to be positioned at the left margin of 
the next print line (as would, for example, the sequence "LF CR").    However, many systems 
and terminals do not treat CR and LF independently, and will have to go to some effort to 
simulate their effect.    (For example, some terminals do not have a CR independent of the 
LF, but on such terminals it may be possible to simulate a CR by backspacing.) Therefore, 
the sequence "CR LF" must be treated as a single "new line" character and used whenever 
their combined action is intended; the sequence "CR NUL" must be used where a carriage 
return alone is actually desired; and the CR character must be avoided in other contexts.    
This rule gives assurance to systems which must decide whether to perform a "new line" 
function or a multiple-backspace that the Telnet stream contains a character following a CR 
that will allow a rational decision. 

Note that "CR LF" or "CR NUL" is required in both directions (in the default 
ASCII mode), to preserve the symmetry of the NVT model.    Even though it 
may be known in some situations (e.g., with remote echo and suppress go 
ahead options in effect) that characters are not being sent to an actual 
printer, nonetheless, for the sake of consistency, the protocol requires that a 
NUL be inserted following a CR not followed by a LF in the data stream.    The 
converse of this is that a NUL received in the data stream after a CR (in the 
absence of options negotiations which explicitly specify otherwise) should be 
stripped out prior to applying the NVT to local character set mapping. 



The NVT keyboard has keys, or key combinations, or key sequences, for generating all 128 
USASCII codes.    Note that although many have no effect on the NVT printer, the NVT 
keyboard is capable of generating them. 
In addition to these codes, the NVT keyboard shall be capable of generating the following 
additional codes which, except as noted, have defined, but not reguired, meanings.    The 
actual code assignments for these "characters" are in the Telnet Command section, because 
they are viewed as being, in some sense, generic and should be available even when the 
data stream is interpreted as being some other character set. 

Synch
This key allows the user to clear his data path to the other party.    The 
activation of this key causes a DM (see command section) to be sent in the 
data stream and a TCP Urgent notification is associated with it.    The pair DM-
Urgent is to have required meaning as defined previously. 
Break (BRK)
This code is provided because it is a signal outside the USASCII set which is 
currently given local meaning within many systems.    It is intended to indicate 
that the Break Key or the Attention Key was hit.    Note, however, that this is 
intended to provide a 129th code for systems which require it, not as a 
synonym for the IP standard representation. 
Interrupt Process (IP)
Suspend, interrupt, abort or terminate the process to which the NVT is 
connected.    Also, part of the out-of-band signal for other protocols which use 
Telnet. 
Abort Output (AO)
Allow the current process to (appear to) run to completion, but do not send its 
output to the user.    Also, send a Synch to the user. 
Are You There (AYT)
Send back to the NVT some visible (i.e., printable) evidence that the AYT was 
received. 
Erase Character (EC)
The recipient should delete the last preceding undeleted character or "print 
position" from the data stream. 
Erase Line (EL)
The recipient should delete characters from the data stream back to, but not 
including, the last "CR LF" sequence sent over the Telnet connection. 

The spirit of these "extra" keys, and also the printer format effectors, is that they should 
represent a natural extension of the mapping that already must be done from "NVT" into 
"local". Just as the NVT data byte 68 (104 octal) should be mapped into whatever the local 
code for "uppercase D" is, so the EC character should be mapped into whatever the local 
"Erase Character" function is.    Further, just as the mapping for 124 (174 octal) is somewhat 
arbitrary in an environment that has no "vertical bar" character, the EL character may have 
a somewhat arbitrary mapping (or none at all) if there is no local "Erase Line" facility. 
Similarly for format effectors:    if the terminal actually does have a "Vertical Tab", then the 
mapping for VT is obvious, and only when the terminal does not have a vertical tab should 
the effect of VT be unpredictable. 
In NVT mode, a Telnet should not send characters with the high-order bit 1, and must not 
send it as a parity bit.    Implementations that pass the high-order bit to applications should 
negotiate binary mode

Discussion
Implementors should be aware that a strict reading of the above specification 



allows a client or server expecting NVT ASCII to ignore characters with the 
high-order bit set.    In general, binary mode is expected to be used for 
transmission of an extended (beyond 7-bit) character set with Telnet.
However, there exist applications that really need an 8- bit NVT mode, which 
is currently not defined, and these existing applications do set the high-order 
bit during part or all of the life of a Telnet connection.    Note that binary mode 
is not the same as 8-bit NVT mode, since binary mode turns off end-of-line 
processing.    For this reason, the requirements on the high-order bit are stated
as should, not must.
The specification defines a minimal set of properties of a "network virtual 
terminal" or NVT; this is not meant to preclude additional features in a real 
terminal.    A Telnet connection is fully transparent to all 7-bit ASCII characters, 
including arbitrary ASCII control characters.

For example, a terminal might support full-screen commands coded as ASCII escape 
sequences; a Telnet implementation would pass these sequences as uninterpreteddata.    
Thus, an NVT should not be conceived as a terminal type of a highly-restricted device..



RFC-854 Telnet Protocol Specification

Telnet End-of-Line Convention

The Telnet protocol defines the sequence CR LF to mean "end-of-line".    For terminal input, 
this corresponds to a command- completion or "end-of-line" key being pressed on a user 
terminal; on an ASCII terminal, this is the CR key, but it may also be labelled "Return" or 
"Enter".
When a Server Telnet receives the Telnet end-of-line sequence CR LF as input from a remote 
terminal, the effect must be the same as if the user had pressed the"end-of-line" key on a 
local terminal.    On server hosts that use ASCII, in particular, receipt of the Telnet sequence 
CR LF must cause the same effect as a local user pressing the CR key on a local terminal.    
Thus, CR LF and CR NUL must have the same effect on an ASCII server host when received 
as input over a Telnetconnection.
A User Telnet must be able to send any of the forms: CR LF, CR NUL, and LF.    A User Telnet 
on an ASCII host should have a user-controllable mode to send eitherCR LF or CR NUL when 
the user presses the "end-of-line" key, and CR LF should be the default.
The Telnet end-of-line sequence CR LF must be used to send Telnet data that is not terminal-
to-computer (e.g., for Server Telnet sending output, or the Telnet protocol incorporated 
another application protocol).



RFC-854 Telnet Protocol Specification - End-of-Line Convention

Discussion
To allow interoperability between arbitrary Telnet clients and servers, the Telnet protocol 
defined a standard representation for a line terminator.    Since the ASCII character set 
includes no explicit end-of-line character, systems have chosen various representations, e.g.,
CR, LF, and the sequence CR LF.The Telnet protocol chose the CR LF sequence as the 
standard for network transmission.
Unfortunately, the Telnet protocol specification has turned out to be somewhat ambiguous 
on what character(s) should be sent from clientto server for the "end-of-line" key.    The result
has been a massive and continuing interoperability headache, made worse by various faulty 
implementations of both User and Server Telnets.
Although the Telnet protocol is based on a perfectly symmetric model, in a remote login 
session the role of the user at a terminal differs from the role of the server host.    For 
example, the original specification defines the meaning of CR, LF, and CR LF as output from 
the server, but does not specify what the User Telnet should send when the user presses the 
"end-of-line" key on the terminal; this turns out to be the point at issue.
When a user presses the "end-of-line" key, some User Telnet implementations send CR LF, 
while others send CR NUL.    These will be equivalent for a correctly-implemented ASCII 
server host, as discussed above.    For other servers, a mode in the User Telnet is needed.
The existence of User Telnets that send only CR NUL when CR is pressed creates a dilemma 
for non-ASCII hosts: they can either treat CR NUL as equivalent to CR LF in input, thus 
precluding the possibility of entering a "bare" CR, or else lose complete interworking.
Suppose a user on host A uses Telnet to log into a server host B, and then execute B's User 
Telnet program to log into server host C.    It is desirable for the Server/User Telnet 
combination on B to be as transparent as possible, i.e., to appear as if A were connected 
directly to C.    In particular, correct implementation will make B transparent to Telnet end-of-
line sequences, except that CR LF may be translated to CR NUL or vice versa.



RFC-854 Telnet Protocol Specification - End-of-Line Convention

Implementation

To understand Telnet end-of-line issues, one must have at least a general model of the 
relationship of Telnet to the local operating system.    The Server Telnet process is typically 
coupled into the terminal driver software of the operating system as a pseudo-terminal.    A 
Telnet end-of- line sequence received by the Server Telnet must have the same effect as 
pressing the end-of-line key on a real locally-connected terminal.
Operating systems that support interactive character-at- a-time applications (e.g., editors) 
typically have two internal modes for their terminal I/O: a formatted mode, in which local 
conventions for end-of-line and other formatting rules have been applied to the data stream,
and a "raw" mode, in which the application has direct access to every character as it was 
entered.    A Server Telnet must be implemented in such a way that these modes have the 
same effect for remote as for local terminals.    For example, suppose a CR LF or CR NUL is 
received by the Server Telnet on an ASCII host.    In raw mode, a CR character is passed to 
theapplication; in formatted mode, the local system's end-of-line convention is used.



RFC-854 Telnet Protocol Specification

Data Entry Terminals

In addition to the line-oriented and character-oriented ASCII terminals for which Telnet was 
designed, there are several families of video display terminals that are sometimes known as 
"data entry terminals" or DETs.    The IBM 3270 family is a well-known example.
Two Internet protocols have been designed to support generic DETs: SUPDUP Protocol and 
SUPDUP Option [RFC-734, RFC-736], and the DET option [RFC-732].    The DET option drives 
a data entry terminal over a Telnet connection using (sub-) negotiation.    SUPDUP is a 
completely separate terminal protocol, which can be entered from Telnet by negotiation.    
Although both SUPDUP and the DET option have been used successfully in particular 
environments, neither has gained general acceptance or wide implementation.
A different approach to DET interaction has been developed for supporting the IBM 3270 
family through Telnet, although the same approach would be applicable toany DET.    The 
idea is to enter a "native DET" mode, in which the native DET input/output stream is sent as 
binary data.    The Telnet EOR command is used to delimit logical records (e.g., "screens") 
within this binary stream.

Implementation
The rules for entering and leaving native DET mode are as follows:

o The Server uses the Terminal-Type option (RFC-1091) to learn that the client is 
a DET.

o It is conventional, but not required, that both ends negotiate the EOR option 
[RFC-885].

o Both ends negotiate the Binary option [RFC-856] to enter native DET mode.
o When either end negotiates out of binary mode, the other end does too, and 

the mode then reverts to normal NVT.



RFC-854 Telnet Protocol Specification

Telnet Command Structure

All Telnet commands consist of at least a two byte sequence:    the "Interpret as Command" 
(IAC) escape character followed by the code for the command.    The commands dealing with
option negotiation are three byte sequences, the third byte being the code for the option 
referenced.    This format was chosen so that as more comprehensive use of the "data space"
is made -- by negotiations from the basic NVT, of course -- collisions of data bytes with 
reserved command values will be minimized, all such collisions requiring the inconvenience, 
and inefficiency, of "escaping" the data bytes into the stream.    With the current set-up, only
the IAC need be doubled to be sent as data, and the other 255 codes may be passed 
transparently. 
The following are the defined Telnet commands.    Note that these codes and code sequences
have the indicated meaning only when immediately preceded by an IAC.
Note: Each Option was originally specified in a separate RFC.    The format of these RFCs 
followed the guidelines of RFC-855 "Telnet Option Specification".    Some of the text of the 
original specifications has been dropped from the references that follow.

Name Code Meaning
Binary 0 Transmit Binary
Echo 1 Perform Local Echoing

Reconnect 2 Negotiate Process Reconnection
Suppress GA 3 Suppress sending Go-Ahead commands
Message Size 4 Approximate Message Size

Status 5 Request Status of Connection
TM 6 Timing-Mark

Remote 7 Remote Controlled Transmit and Echo
Line Width 8
Page Size 9
CR Disp 10 Carriage-Return Disposition
HT Stops 11 Horizontal Tab Stops
HT Disp 12 Horizontal Tab Disposition
FF Disp 13 Form Feed Disposition

VT Stops 14 Verical Tab Stops
VT Disp 15 Vertical Tab Disposition
LF Disp 16 Linefeed Disposition

Ext ASCII 17 Extended ASCII character set
Logout 18 End Remote Session

Byte Macro 19 Byte Macro Option
DET 20 Data Entry Terminal

SUPDUP 21 SUPDUP Protocol
SUPDUP-Output 22 SUPDUP-Output Option

Send Loc 23 Send Location
T-Type 24 Terminal Type
EOR 25 End-of-Record

TACACS 26 TACACS User Indentification
Output Mark 27 Output Marking
Terminal Loc 28 Terminal Location Number

X.3 Pad 30 X.3 Pad Option
Negotiate Window 31 Negotiate Window Size Option
Terminal Speed 32 Negotiate Terminal Speed
Remote Flow Ctl 33 Negotiate Remote Flow Control



Linemode 34 Linemode Option
X Display Location 35 X Display    Location Option

SE 240 End of subnegotiation parameters.
NOP 241 No operation.

Data Mark 242 The data stream portion of a Synch.    This should always 
be accompanied by a TCP Urgent notification.

Break 243 NVT character BRK.
Interrupt Process 244 The function IP.

Abort output 245 The function AO.
Are You There 246 The function AYT.

Erase character 247 The function EC.
Erase Line 248 The function EL.
Go ahead 249 The GA signal.

SB 250 Indicates that what follows is subnegotiation of the 
indicated option.

WILL (option code) 251 Indicates the desire to begin performing, or confirmation 
that you are now performing, the indicated option.

WON'T (option code)252 Indicates the refusal to perform, or continue performing, 
the indicated option.

DO (option code) 253 Indicates the request that the other party perform, or 
confirmation that you are expecting the other party to 
perform, the indicated option.

DON'T (option code)254 Indicates the demand that the other party stop 
performing, or confirmation that you are no longer 
expecting the other party to perform, the indicated option.

IAC or EXOPL 255 Data Byte 255.



RFC-854 Telnet Protocol Specification

Option Requirements

Every Telnet implementation must support the Binary option [RFC-856] and the Suppress Go
Ahead option [RFC-858], and should support the Echo [RFC-857], Status [RFC-859], End-of- 
Record [RFC-885], and Extended Options List [RFC-861] options.
A User or Server Telnet should support the Window Size Option [RFC-1073] if the local 
operating system provides the corresponding capability.

Discussion
Note that the End-of-Record option only signifies that a Telnet can receive a 
Telnet EOR without crashing; therefore, every Telnet ought to be willing to 
accept negotiation of the End-of-Record option.



RFC-854 Telnet Protocol Specification

Option Initiation

When the Telnet protocol is used in a client/server situation, the server should initiate 
negotiation of the terminal interaction mode it expects.

Discussion
The Telnet protocol was defined to be perfectly symmetrical, but its 
application is generally asymmetric.    Remote login has been known to fail 
because neither side initiated negotiation of the required non-default 
terminal modes.    It is generally the server that determines the preferred 
mode, so the server needs to initiate the negotiation; since the negotiation is 
symmetric, the user can also initiate it.

A client (User Telnet) should provide a means for users to enable and disable the initiation 
of option negotiation.

Discussion
A user sometimes needs to connect to an application service (e.g., FTP or 
SMTP) that uses Telnet for its control stream but does not support Telnet 
options.    User Telnet may be used for this purpose if initiation of option 
negotiation is disabled.



RFC-854 Telnet Protocol Specification

Linemode Option

An important new Telnet option, Linemode [RFC-1116], has been proposed.    The Linemode 
option provides a standard way for a User Telnet and a Server Telnet to agree that the client 
rather than the server will perform terminal character processing.    When the client has 
prepared a complete line of text, it will send it to the server in (usually) one TCP packet.    
This option will greatly decrease the packet cost of Telnet sessions and will also give much 
better user response over congested or long- delay networks.

The Linemode option allows dynamic switching between local and remote 
character processing.    For example, the Telnet connection will automatically 
negotiate into single- character mode while a full screen editor is running, and
then return to linemode when the editor is finished.
We expect that when this RFC is released, hosts should implement the client 
side of this option, and may implement the server side of this option.    To 
properlyimplement the server side, the server needs to be able to tell the local
system not to do any input character processing, but to remember its current 
terminal state and notify the Server Telnet process whenever the state 
changes.    This will allow password echoing and full screen editors to be 
handled properly, for example.



RFC-854 Telnet Protocol Specification

Connection Establishment

The Telnet TCP connection is established between the user's port U and the server's port L.    
The server listens on its well known port L for such connections.    Since a TCP connection is 
full duplex and identified by the pair of ports, the server can engage in many simultaneous 
connections involving its port L and different user ports U. 



RFC-854 Telnet Protocol Specification - Connection Establishment

Port Assignment

When used for remote user access to service hosts (i.e., remote terminal access) this 
protocol is assigned server port 23 (27 octal).    That is L=23. 



RFC-854 Telnet Protocol Specification

Character Set Transparency

User Telnet implementations should be able to send or receive any 7-bit ASCII character.    
Where possible, any special character interpretations by the user host's operating system 
should be bypassed so that these characters can conveniently be sent and received on the 
connection.
Some character value must be reserved as "escape to command mode"; conventionally, 
doubling this character allows it to be entered as data.    The specific character used should 
be user selectable.
On binary-mode connections, a User Telnet program MAY provide an escape mechanism for 
entering arbitrary 8-bit values, if the host operating system doesn't allow them to be entered
directly from the keyboard.

Implementation
The transparency issues are less pressing on servers, but implementors 
should take care in dealing with issues like: masking off parity bits (sent by an 
older, non-conforming client) before they reach programs that expect only 
NVT ASCII, and properly handling programs that request 8-bit data streams.



RFC-854 Telnet Protocol Specification

User Telnet Capabilities

A User Telnet program should allow the user to optionally specify a non-standard contact 
port number at the Server Telnet host.
A User Telnet program must provide a user the capability of entering any of the Telnet 
control functions IP, AO, or AYT, and should provide the capability of entering EC, EL, and 
Break.
A User Telnet program should report to the user any TCP errors that are reported by the 
transport layer (see TCP/Application Layer Interface).



Abort Output -- Allow the current process to (appear to) run to completion, but do not send
its output to the user.    Also, send a SYNCH to the user.



Are You There -- Send back to the NVT some visible (i.e. printable) evidence that the AYT 
was received.



Break -- This code is provided because it is a signal outside the USASCII set which is 
currently given local meaning within many systems.    It is intended to indicate that the 
Break Key or the Attention Key was hit.    Note, however, that this is intended to provide a 
129th code for systems which require it, not as a synonym forthe IP standard representation.



Data Mark -- The data stream portion of a Synch.    This should always be accompanied by a
TCP Urgent notification.



Erase Character -- Invoke the system specific function to delete the last preceding 
undeleted character or "print position".



Erase Line -- Invoke the system specific funtion to delete all the data in the current "line" of
input.



Interrupt Process -- Suspend, interrupt, abort or terminate the process to which the NVT is
connected.    Also, part of the out-of-band signal for other protocols which use TELNET.



Subnegotiation Begin -- Indicates that what follows is subnegotiation of the indicated 
option.



Subnegotiation End -- Indicates the end of subnegotiation parameters.



RFC-855 Telnet Option Specifications
J. Postel & J. Reynolds

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
are expected to adopt and implement this standard. 
The intent of providing for options in the TELNET Protocol is to permit hosts to obtain more 
elegant solutions to the problems of communication between dissimilar devices than is 
possible within the framework provided by the Network Virtual Terminal (NVT).    It should be 
possible for hosts to invent, test, or discard options at will.    Nevertheless, it is envisioned 
that options which prove to be generally useful will eventually be supported by many hosts; 
therefore it is desirable that options should be carefully documented and well publicized.    In
addition, it is necessary to insure that a single option code is not used for several different 
options. 
This document specifies a method of option code assignment and standards for 
documentation of options.    The individual responsible for assignment of option codes may 
waive the requirement for complete documentation for some cases of experimentation, but 
in general documentation will be required prior to code assignment.    Options will be 
publicized by publishing their documentation as RFCs; inventors of options may, of course, 
publicize them in other ways as well. 

Option codes will be assigned by:
Jonathan B. Postel
University of Southern California
Information Sciences Institute (USC-ISI)
4676 Admiralty Way
Marina Del Rey, California 90291
(213) 822-1511

Mailbox = POSTEL@ISI.EDU

Documentation of options should contain at least the following sections:
Section 1 - Command Name and Option Code
Section 2 - Command Meanings

The meaning of each possible TELNET command relevant to this option 
should be described.    Note that for complex options, where 
"subnegotiation" is required, there may be a larger number of possible 
commands.    

Section 3 - Default Specification
The default assumptions for hosts which do not implement, or use, the 
option must be described. 

Section 4 - Motivation
A detailed explanation of the motivation for inventing a particular option, 
or for choosing a particular form for the option, is extremely helpful to 
those who are not faced (or don't realize that they are faced) by the 
problem that the option is designed to solve. 

Section 5 - Description (or Implementation Rules)



Merely defining the command meanings and providing a statement of 
motivation are not always sufficient to insure that two implementations of 
an option will be able to communicate. Therefore, a more complete 
description should be furnished in most cases.    This description might 
take the form of text, a sample implementation, hints to implementers, 
etc. 



RFC-855 Telnet Option Specifications

A Note on "Subnegotiation"

Some options will require more information to be passed between hosts than a single option 
code.    For example, any option which requires a parameter is such a case.    The strategy to 
be used consists of two steps:    first, both parties agree to "discuss" the parameter(s) and, 
second, the "discussion" takes place. 
The first step, agreeing to discuss the parameters, takes place in the normal manner; one 
party proposes use of the option by sending a DO (or WILL) followed by the option code, and
the other party accepts by returning a WILL (or DO) followed by the option code.    Once both
parties have agreed to use the option, subnegotiation takes place by using the command 
SB, followed by the option code, followed by the parameter(s), followed by the command SE.
Each party is presumed to be able to parse the parameter(s), since each has indicated that 
the option is supported (via the initial exchange of WILL and DO).    On the other hand, the 
receiver may locate the end of a parameter string by searching for the SE command (i.e., 
the string IAC SE), even if the receiver is unable to parse the parameters.    Of course, either 
party may refuse to pursue further subnegotiation at any time by sending a WON'T or DON'T
to the other party. 
Thus, for option "ABC", which requires subnegotiation, the formats of the TELNET commands
are: 

IAC WILL ABC
Offer to use option ABC (or favorable acknowledgment of other party's 
request) 

IAC DO ABC
Request for other party to use option ABC (or favorable acknowledgment 
of other party's offer) 

IAC SB ABC <parameters> IAC SE
One step of subnegotiation, used by either party.

Designers of options requiring "subnegotiation" must take great care to avoid unending 
loops in the subnegotiation process.    For example, if each party can accept any value of a 
parameter, and both parties suggest parameters with different values, then one is likely to 
have an infinite oscillation of "acknowledgments" (where each receiver believes it is only 
acknowledging the new proposals of the other). Finally, if parameters in an option 
"subnegotiation" include a byte with a value of 255, it is necessary to double this byte in 
accordance the general TELNET rules. 



RFC-856 Telnet Binary Transmission
J. Postel & J. Reynolds

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
are expected to adopt and implement this standard. 
Command Name and Code

TRANSMIT-BINARY 0
Default

WON'T TRANSMIT-BINARY
DON'T TRANSMIT-BINARY
The connection is not operated in binary mode.

Command Meanings
Motivation
Description
Implementation Suggestions



RFC-856 Telnet Binary Option

Command Meanings

IAC WILL TRANSMIT-BINARY
The sender of this command REQUESTS permission to begin transmitting, or 
confirms that it will now begin transmitting characters which are to be 
interpreted as 8 bits of binary data by the receiver of the data. 

IAC WON'T TRANSMIT-BINARY
If the connection is already being operated in binary transmission mode, the 
sender of this command DEMANDS to begin transmitting data characters 
which are to be interpreted as standard NVT ASCII characters by the receiver 
of the data.    If the connection is not already being operated in binary 
transmission mode, the sender of this command REFUSES to begin 
transmitting characters which are to be interpreted as binary characters by 
the receiver of the data (i.e., the sender of the data demands to continue 
transmitting characters in its present mode). 
A connection is being operated in binary transmission mode only when one 
party has requested it and the other has acknowledged it. 

IAC DO TRANSMIT-BINARY
The sender of this command REQUESTS that the sender of the data start 
transmitting, or confirms that the sender of data is expected to transmit, 
characters which are to be interpreted as 8 bits of binary data (i.e., by the 
party sending this command). 

IAC DON'T TRANSMIT-BINARY
If the connection is already being operated in binary transmission mode, the 
sender of this command DEMANDS that the sender of the data start 
transmitting characters which are to be interpreted as standard NVT ASCII 
characters by the receiver of the data (i.e., the party sending this command).   
If the connection is not already being operated in binary transmission mode, 
the sender of this command DEMANDS that the sender of data continue 
transmitting characters which are to be interpreted in the present mode. 
A connection is being operated in binary transmission mode only when one 
party has requested it and the other has acknowledged it. 



RFC-856 Telnet Binary Option

Motivation for the Option

It is sometimes useful to have available a binary transmission path within TELNET without 
having to utilize one of the more efficient, higher level protocols providing binary 
transmission (such as the File Transfer Protocol).    The use of the IAC prefix within the basic 
TELNET protocol provides the option of binary transmission in a natural way, requiring only 
the addition of a mechanism by which the parties involved can agree to INTERPRET the 
characters transmitted over a TELNET connection as binary data. 



RFC-856 Telnet Binary Option

Description of the Option

With the binary transmission option in effect, the receiver should interpret characters 
received from the transmitter which are not preceded with IAC as 8 bit binary data, with the 
exception of IAC followed by IAC which stands for the 8 bit binary data with the decimal 
value 255.    IAC followed by an effective TELNET command (plus any additional characters 
required to complete the command) is still the command even with the binary transmission 
option in effect.    IAC followed by a character which is not a defined TELNET command has 
the same meaning as IAC followed by NOP, although an IAC followed by an undefined 
command should not normally be sent in this mode. 



RFC-856 Telnet Binary Option

Implementation Suggestions

It is foreseen that implementations of the binary transmission option will choose to refuse 
some other options (such as the EBCDIC transmission option) while the binary transmission 
option is in effect.    However, if a pair of hosts can understand being in binary transmission 
mode simultaneous with being in, for example, echo mode, then it is all right if they 
negotiate that combination. 
It should be mentioned that the meanings of WON'T and DON'T are dependent upon whether
the connection is presently being operated in binary mode or not.    Consider a connection 
operating in, say, EBCDIC mode which involves a system which has chosen not to implement
any knowledge of the binary command.    If this system were to receive a DO TRANSMIT-
BINARY, it would not recognize the TRANSMIT-BINARY option and therefore would return a 
WON'T TRANSMIT-BINARY.    If the default for the WON'T TRANSMIT-BINARY were always NVT 
ASCII, the sender of the DO TRANSMIT-BINARY would expect the recipient to have switched 
to NVT ASCII, whereas the receiver of the DO TRANSMIT-BINARY would not make this 
interpretation. 
Thus, we have the rule that when a connection is not presently operating in binary mode, 
the default (i.e., the interpretation of WON'T and DON'T) is to continue operating in the 
current mode, whether that is NVT ASCII, EBCDIC, or some other mode.    This rule, however, 
is not applied once a connection is operating in a binary mode (as agreed to by both ends); 
this would require each end of the connection to maintain a stack, containing all of the 
encoding-method transitions which had previously occurred on the connection, in order to 
properly interpret a WON'T or DON'T.    Thus, a WON'T or DON'T received after the 
connection is operating in binary mode causes the encoding method to revert to NVT ASCII. 
It should be remembered that a TELNET connection is a two way communication channel.    
The binary transmission mode must be negotiated separately for each direction of data flow,
if that is desired. 
Implementation of the binary transmission option, as is the case with implementations of all 
other TELNET options, must follow the loop preventing rules given in the General 
Considerations section of the TELNET Protocol Specification. 
Consider now some issues of binary transmission both to and from both a process and a 
terminal: 

a. Binary transmission from a terminal.
The implementer of the binary transmission option should consider how (or 
whether) a terminal transmitting over a TELNET connection with binary 
transmission in effect is allowed to generate all eight bit characters, ignoring 
parity considerations, etc., on input from the terminal. 

b. Binary transmission to a process.
The implementer of the binary transmission option should consider how (or 
whether) all characters are passed to a process receiving over a connection 
with binary transmission in effect.    As an example of the possible problem, 
TOPS-20 intercepts certain characters (e.g., ETX, the terminal control-C) at 
monitor level and does not pass them to the process. 

c. Binary transmission from a process.
The implementer of the binary transmission option should consider how (or 
whether) a process transmitting over a connection with binary transmission in 
effect is allowed to send all eight bit characters with no characters intercepted



by the monitor and changed to other characters.    An example of such a 
conversion may be found in the TOPS-20 system where certain non-printing 
characters are normally converted to a Circumflex (up-arrow) followed by a 
printing character. 

d. Binary transmission to a terminal.
The implementer of the binary transmission option should consider how (or 
whether) all characters received over a connection with binary transmission in
effect are sent to a local terminal.    At issue may be the addition of timing 
characters normally inserted locally, parity calculations, and any normal code 
conversion. 



RFC-857 Telnet Echo Option
J. Postel & J. Reynolds

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
are expected to adopt and implement this standard. 
Command Name and Code

ECHO 1
Default

WON'T ECHO
DON'T ECHO
No echoing is done over the TELNET connection.

Command Meanings
Motivation
Description
Sample Implementation



RFC-857 Telnet Echo Option

Command Meanings

IAC WILL ECHO
The sender of this command REQUESTS to begin, or confirms that it will now 
begin, echoing data characters it receives over the TELNET connection back to
the sender of the data characters. 

IAC WON'T ECHO
The sender of this command DEMANDS to stop, or refuses to start, echoing 
the data characters it receives over the TELNET connection back to the sender
of the data characters. 

IAC DO ECHO
The sender of this command REQUESTS that the receiver of this command 
begin echoing, or confirms that the receiver of this command is expected to 
echo, data characters it receives over the TELNET connection back to the 
sender. 

IAC DON'T ECHO
The sender of this command DEMANDS the receiver of this command stop, or 
not start, echoing data characters it receives over the TELNET connection. 



RFC-857 Telnet Echo Option

Motivation for the Option

The NVT has a printer and a keyboard which are nominally interconnected so that "echoes" 
need never traverse the network; that is to say, the NVT nominally operates in a mode 
where characters typed on the keyboard are (by some means) locally turned around and 
printed on the printer.    In highly interactive situations it is appropriate for the remote 
process (command language interpreter, etc.) to which the characters are being sent to 
control the way they are echoed on the printer.    In order to support such interactive 
situations, it is necessary that there be a TELNET option to allow the parties at the two ends 
of the TELNET connection to agree that characters typed on an NVT keyboard are to be 
echoed by the party at the other end of the TELNET connection. 



RFC-857 Telnet Echo Option

Description of the Option

When the echoing option is in effect, the party at the end performing the echoing is 
expected to transmit (echo) data characters it receives back to the sender of the data 
characters.    The option does not require that the characters echoed be exactly the 
characters received (for example, a number of systems echo the ASCII ESC character with 
something other than the ESC character).    When the echoing option is not in effect, the 
receiver of data characters should not echo them back to the sender; this, of course, does 
not prevent the receiver from responding to data characters received. 
The normal TELNET connection is two way.    That is, data flows in each direction on the 
connection independently; and neither, either, or both directions may be operating 
simultaneously in echo mode.    There are five reasonable modes of operation for echoing on 
a connection pair: 

            
This option provides the capability to decide on whether or not either end will echo for the 
other.    It does not, however, provide any control over whether or not an end echoes for 
itself;    this decision must be left to the sole discretion of the systems at each end (although 
they may use information regarding the state of "remote" echoing negotiations in making 
this decision). 
It should be noted that if BOTH hosts enter the mode of echoing characters transmitted by 
the other host, then any character transmitted in either direction will be "echoed" back and 
forth indefinitely.    Therefore, care should be taken in each implementation that if one site is 
echoing, echoing is not permitted to be turned on at the other. 
As discussed in the TELNET Protocol Specification, both parties to a full-duplex TELNET 
connection initially assume each direction of the connection is being operated in the default 
mode which is non-echo (non-echo is not using this option, and the same as DON'T ECHO, 



WON'T ECHO). 
If either party desires himself to echo characters to the other party or for the other party to 
echo characters to him, that party gives the appropriate command (WILL ECHO or DO ECHO)
and waits (and hopes) for acceptance of the option.    If the request to operate the 
connection in echo mode is refused, then the connection continues to operate in non-echo 
mode.    If the request to operate the connection in echo mode is accepted, the connection is
operated in echo mode. 
After a connection has been changed to echo mode, either party may demand that it revert 
to non-echo mode by giving the appropriate DON'T ECHO or WON'T ECHO command (which 
the other party must confirm thereby allowing the connection to operate in non-echo mode). 
Just as each direction of the TELNET connection may be put in remote echoing mode 
independently, each direction of the TELNET connection must be removed from remote 
echoing mode separately. 
Implementations of the echo option, as implementations of all other TELNET options, must 
follow the loop preventing rules given in the General Considerations section of the TELNET 
Protocol Specification. Also, so that switches between echo and non-echo mode can be made
with minimal confusion (momentary double echoing, etc.), switches in mode of operation 
should be made at times precisely coordinated with the reception and transmission of echo 
requests and demands.    For instance, if one party responds to a DO ECHO with a WILL 
ECHO, all data characters received after the DO ECHO should be echoed and the WILL ECHO 
should immediately precede the first of the echoed characters. 
The echoing option alone will normally not be sufficient to effect what is commonly 
understood to be remote computer echoing of characters typed on a terminal keyboard--the 
SUPPRESS-GO AHEAD option will normally have to be invoked in conjunction with the ECHO 
option to effect character-at-a-time remote echoing. 



RFC-857 Telnet Echo Option

A Sample Implementation of the Option

The following is a description of a possible implementation for a simple user system called 
"UHOST". 
A possible implementation could be that for each user terminal, the UHOST would keep three
state bits: whether the terminal echoes for itself (UHOST ECHO always) or not (ECHO mode 
possible), whether the (human) user prefers to operate in ECHO mode or in non-ECHO mode,
and whether the connection from this terminal to the server is in ECHO or non-ECHO mode.   
We will call these three bits P(hysical), D(esired), and A(ctual). 
When a terminal dials up the UHOST the P-bit is set appropriately, the D-bit is set equal to it,
and the A-bit is set to non-ECHO.    The P-bit and D-bit may be manually reset by direct 
commands if the user so desires.    For example, a user in Hawaii on a "full-duplex" terminal, 
would choose not to operate in ECHO mode, regardless of the preference of a mainland 
server.    He should direct the UHOST to change his D-bit from ECHO to non-ECHO. 
When a connection is opened from the UHOST terminal to a server, the UHOST would send 
the server a DO ECHO command if the MIN (with non-ECHO less than ECHO) of the P- and D-
bits is different from the A-bit.    If a WON'T ECHO or WILL ECHO arrives from the server, the 
UHOST will set the A-bit to the MIN of the received request, the P-bit, and the D-bit.    If this 
changes the state of the A-bit, the UHOST will send off the appropriate acknowledgment; if it
does not, then the UHOST will send off the appropriate refusal if not changing meant that it 
had to deny the request (i.e., the MIN of the P-and D-bits was less than the received A-
request). 
If while a connection is open, the UHOST terminal user changes either the P-bit or D-bit, the 
UHOST will repeat the above tests and send off a DO ECHO or DON'T ECHO, if necessary.    
When the connection is closed, the UHOST would reset the A-bit to indicate UHOST echoing. 
While the UHOST's implementation would not involve DO ECHO or DON'T ECHO commands 
being sent to the server except when the connection is opened or the user explicitly 
changes his echoing mode, bigger hosts might invoke such mode switches quite frequently.   
For instance, while a line-at-a-time system were running, the server might attempt to put 
the user in local echo mode by sending the WON'T ECHO command to the user; but while a 
character-at-a-time system were running, the server might attempt to invoke remote 
echoing for the user by sending the WILL ECHO command to the user.    Furthermore, while 
the UHOST will never send a WILL ECHO command and will only send a WON'T ECHO to 
refuse a server sent DO ECHO command, a server host might often send the WILL and 
WON'T ECHO commands. 



RFC-858 Telnet Suppress Go-Ahead Option
J. Postel & J. Reynolds

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
are expected to adopt and implement this standard. 
Command Name and Code

SUPPRESS-GO-AHEAD 3
Default

WON'T SUPPRESS-GO-AHEAD
DON'T SUPPRESS-GO-AHEAD
Go aheads are transmitted.

Command Meanings
Motivation
Description
Implementation Considerations



RFC-858 Telnet Suppress Go-Ahead Option

Command Meanings

IAC WILL SUPPRESS-GO-AHEAD
The sender of this command requests permission to begin suppressing 
transmission of the TELNET GO AHEAD (GA) character when transmitting data 
characters, or the sender of this command confirms it will now begin 
suppressing transmission of GAs with transmitted data characters. 

IAC WON'T SUPPRESS-GO-AHEAD
The sender of this command demands to begin transmitting, or to continue 
transmitting, the GA character when transmitting data characters. 

IAC DO SUPPRESS-GO-AHEAD
The sender of this commannd requests that the sender of data start 
suppressing GA when transmitting data, or the sender of this command 
confirms that the sender of data is expected to suppress transmission of GAs. 

IAC DON'T SUPPRESSS-GO-AHEAD
The sender of this command demands that the receiver of the command start 
or continue transmitting GAs when transmitting data. 



RFC-858 Telnet Suppress Go-Ahead Option

Motivation for the Option

While the NVT nominally follows a half duplex protocol complete with a GO AHEAD signal, 
there is no reason why a full duplex connection between a full duplex terminal and a host 
optimized to handle full duplex terminals should be burdened with the GO AHEAD signal. 
Therefore, it is desirable to have a TELNET option with which parties involved can agree that 
one or the other or both should suppress transmission of GO AHEADS. 



RFC-858 Telnet Suppress Go-Ahead Option

Description of the Option

When the SUPPRESS-GO-AHEAD option is in effect on the connection between a sender of 
data and the receiver of the data, the sender need not transmit GAs. 
It seems probable that the parties to the TELNET connection will suppress GO AHEAD in both
directions of the TELNET connection if GO AHEAD is suppressed at all;    but, nonetheless, it 
must be suppressed in both directions independently. 
With the SUPPRESS-GO-AHEAD option in effect, the IAC GA command should be treated as a 
NOP if received, although IAC GA should not normally be sent in this mode. 



RFC-858 Telnet Suppress Go-Ahead Option

Implementation Considerations

As the SUPRESS-GO-AHEAD option is sort of the opposite of a line at a time mode, the 
sender of data which is suppressing GO AHEADs should attempt to actually transmit 
characters as soon as possible (i.e., with minimal buffering) consistent with any other 
agreements which are in effect. 
In many TELNET implementations it will be desirable to couple the SUPPRESS-GO-AHEAD 
option to the echo option so that when the echo option is in effect, the SUPPRESS-GO-AHEAD
option is in effect simultaneously:    both of these options will normally have to be in effect 
simultaneously to effect what is commonly understood to be character at a time echoing by 
the remote computer. 



RFC-859 Telnet Status Option
J. Postel & J. Reynolds

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
are expected to adopt and implement this standard. 
Command Name and Code

STATUS 5
Default

DON'T STATUS
WON'T STATUS
The current status of options will not be discussed.

Command Meanings
Motivation
Description
Example



RFC-859 Telnet Status Option

Command Meanings

This option applies separately to each direction of data flow.
IAC DON'T STATUS

Sender refuses to carry on any further discussion of the current status of 
options. 

IAC WON'T STATUS
Sender refuses to carry on any further discussion of the current status of 
options. 

IAC SB STATUS SEND IAC SE
Sender requests receiver to transmit his (the receiver's) perception of the 
current status of Telnet options. The code for SEND is 1.

IAC SB STATUS IS ... IAC SE
Sender is stating his perception of the current status of Telnet options. The 
code for IS is 0.



RFC-859 Telnet Status Option

Motivation for the Option

This option allows a user/process to verify the current status of TELNET options (e.g., 
echoing) as viewed by the person/process on the other end of the TELNET connection. 
Simply renegotiating options could lead to the nonterminating request loop problem 
discussed in the General Consideration section of the TELNET Specification.    This option fits 
into the normal structure of TELNET options by deferring the actual transfer of status 
information to the SB command. 



RFC-859 Telnet Status Option

Description of the Option

WILL and DO are used only to obtain and grant permission for future discussion. The actual 
exchange of status information occurs within option subcommands (IAC SB STATUS...). 
Once the two hosts have exchanged a WILL and a DO, the sender of the WILL STATUS is free 
to transmit status information, spontaneously or in response to a request from the sender of 
the DO. At worst, this may lead to transmitting the information twice. Only the sender of the 
DO may send requests (IAC SB STATUS SEND IAC SE) and only the sender of the WILL may 
transmit actual status information (within an IAC SB STATUS IS ... IAC SE command). 
IS has the subcommands WILL, DO and SB. They are used EXACTLY as used during the 
actual negotiation of TELNET options, except that SB is terminated with SE, rather than IAC 
SE. Transmission of SE, as a regular data byte, is accomplished by doubling the byte (SE SE).
Options that are not explicitly described are assumed to be in their default states. A single 
IAC SB STATUS IS ... IAC SE describes the condition of ALL options. 



RFC-859 Telnet Status Option

Example

Host1: IAC DO STATUS
Host2: IAC WILL STATUS

(Host2 is now free to send status information at any time. Solicitations from 
Host1 are NOT necessary. This should not produce any dangerous race 
conditions. At worst, two IS's will be sent.) 

Host1 (perhaps): IAC SB STATUS SEND IAC SE
Host2 (the following stream is broken into multiple lines only for readability. No carriage 
returns are implied.): 

IAC SB STATUS IS
WILL ECHO
DO SUPPRESS-GO-AHEAD
WILL STATUS
DO STATUS
IAC SE
Explanation of Host2's perceptions
It is responsible for echoing back the data characters it receives over the 
TELNET connection; it will not send Go-Ahead signals; it will both issue and 
request Status information. 



RFC-860 Telnet Timing Mark Option
J. Postel & J. Reynolds

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA community.    Hosts on the ARPA Internet are 
expected to adopt and implement this standard. 
Command Name and Code

TIMING-MARK 6
Default

WON'T TIMING-MARK
DON'T TIMING-MARK
No explicit attempt is made to synchronize the activities at the two ends of 
the TELNET connection. 

Command Meanings
Motivation
Description



RFC-860 Telnet Timing Mark Option

Command Meanings

IAC DO TIMING-MARK
The sender of this command REQUESTS that the receiver of this command 
return a WILL TIMING-MARK in the data stream at the "appropriate place" as 
defined in Motivation. 

IAC WILL TIMING-MARK
The sender of this command ASSURES the receiver of this command that it is 
inserted in the data stream at the "appropriate place" to insure 
synchronization with a DO TIMING-MARK transmitted by the receiver of this 
command. 

IAC WON'T TIMING-MARK
The sender of this command REFUSES to insure that this command is inserted 
in the data stream at the "appropriate place" to insure synchronization. 

IAC DON'T TIMING-MARK
The sender of this command notifies the receiver of this command that a WILL
TIMING-MARK (previously transmitted by the receiver of this command) has 
been IGNORED. 



RFC-860 Telnet Timing Mark Option

Motivation for the Option

It is sometimes useful for a user or process at one end of a TELNET connection to be sure 
that previously transmitted data has been completely processed, printed, discarded, or 
otherwise disposed of. This option provides a mechanism for doing this.    In addition, even if 
the option request (DO TIMING-MARK) is refused (by WON'T TIMING-MARK) the requester is 
at least assured that the refuser has received (if not processed) all previous data. 
As an example of a particular application, imagine a TELNET connection between a 
physically full duplex terminal and a "full duplex" server system which permits the user to 
"type ahead" while the server is processing previous user input.    Suppose that both sides 
have agreed to Suppress Go Ahead and that the server has agreed to provide echoes.    The 
server now discovers a command which it cannot parse, perhaps because of a user typing 
error.    It would like to throw away all of the user's "type-ahead" (since failure of the parsing 
of one command is likely to lead to incorrect results if subsequent commands are executed), 
send the user an error message, and resume interpretation of commands which the user 
typed after seeing the error message.    If the user were local, the system would be able to 
discard the buffered input; but input may be buffered in the user's host or elsewhere.    
Therefore, the server might send a DO TIMING-MARK and hope to receive a WILL TIMING-
MARK from the user at the "appropriate place" in the data stream. 
The "appropriate place", therefore (in absence of other information) is clearly just before the 
first character which the user typed after seeing the error message.    That is, it should 
appear that the timing mark was "printed" on the user's terminal and that, in response, the 
user typed an answering timing mark. 
Next, suppose that the user in the example above realized that he had misspelled a 
command, realized that the server would send a DO TIMING-MARK, and wanted to start 
"typing ahead" again without waiting for this to occur.    He might then instruct his own 
system to send a WILL TIMING-MARK to the server and then begin "typing ahead" again. 
(Implementers should remember that the user's own system must remember that it sent the
WILL TIMING-MARK so as to discard the DO/DON'T TIMING-MARK when it eventually arrives.)  
Thus, in this case the "appropriate place" for the insertion of the WILL TIMING-MARK is the 
place defined by the user. 
It should be noted, in both of the examples above, that it is the responsibility of the system 
which transmits the DO TIMING-MARK to discard any unwanted characters; the WILL TIMING-
MARK only provides help in deciding which characters are "unwanted". 



RFC-860 Telnet Timing Mark Option

Description of the Option

Suppose that Process A of the figure shown below wishes to synchronize with B. The DO 
TIMING-MARK is sent from A to B.    B can refuse by replying WON'T TIMING-MARK, or agree 
by permitting the timing mark to flow through his "outgoing" buffer, BUF2.    Then, instead of 
delivering it to the terminal, B will enter the mark into his "incoming" buffer BUF1, to flow 
through toward A.    When the mark has propagated through B's incoming buffer, B returns 
the WILL TIMING-MARK over the TELNET connection to A. 

When A receives the WILL TIMING-MARK, he knows that all the information he sent to B 
before sending the timing mark been delivered, and all the information sent from B to A 
before turnaround of the timing mark has been delivered. 

Three typical applications are:
A. Measure round-trip delay between a process and a terminal or another 

process. 
B. Resynchronizing an interaction as described in section 4 above. A is a 

process interpreting commands forwarded from a terminal by B. When 
A sees an illegal command it: 
i. Sends <carriage return>, <line feed>, <question mark>.
ii. Sends DO TIMING-MARK.
iii. Sends an error message.
iv. Starts reading input and throwing it away until it receives a 

WILL TIMING-MARK. 
v. Resumes interpretation of input.
This achieves the effect of flushing all "type ahead" after the erroneous
command, up to the point when the user actually saw the question 
mark. 

C. The dual of B above.    The terminal user wants to throw away 
unwanted output from A. 
i. B sends DO TIMING-MARK, followed by some new command.
ii. B starts reading output from A and throwing it away until it 

receives WILL TIMING-MARK. 
iii. B resumes forwarding A's output to the terminal.
This achieves the effect of flushing all output from A, up to the point 
where A saw the timing mark, but not output generated in response to 
the following command. 





RFC-861 Telnet Extended Options-List Option
J. Postel & J. Reynolds

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
are expected to adopt and implement this standard. 
Command Name and Code

EXTENDED-OPTIONS-LIST (EXOPL) 255
Default

WON'T EXOPL
DON'T EXOPL
Negotiation of options on the "Extended Options List" is not permitted. 

Command Meanings
Motivation
An Abstract Description



RFC-861 Telnet Extended Options-List Option

Command Meanings

IAC DO EXOPL
The sender of this command REQUESTS that the receiver of this command 
begin negotiating, or confirms that the receiver of this command is expected 
to begin negotiating, TELNET options which are on the "Extended Options 
List". 

IAC WILL EXOPL
The sender of this command requests permission to begin negotiating, or 
confirms that it will begin negotiating, TELNET options which are on the 
"Extended Options List". 

IAC WON'T EXOPL
The sender of this command REFUSES to negotiate, or to continue negotiating,
options on the "Extended Options List". 

IAC DON'T EXOPL
The sender of this command DEMANDS that the receiver conduct no further 
negotiation of options on the "Extended Options List". 

IAC SB EXOPL <subcommand>
The subcommand contains information required for the negotiation of an 
option of the "Extended Options List".    The format of the subcommand is 
discussed in the description below. 



RFC-861 Telnet Extended Options-List Option

Motivation for the Option

Eventually, a 257th TELNET option will be needed.    This option will extend the option list for 
another 256 options in a manner which is easy to implement.    The option is proposed now, 
rather than later (probably much later), in order to reserve the option number (255). 



RFC-861 Telnet Extended Options-List Option

An Abstract Description of the Option

The EXOPL option has five subcommand codes:    WILL, WON'T, DO, DON'T, and SB.    They 
have exactly the same meanings as the TELNET commands with the same names, and are 
used in exactly the same way.    For consistency, these subcommand codes will have the 
same values as the TELNET command codes (250-254).    Thus, the format for negotiating a 
specific option on the "Extended Options List" (once both parties have agreed to use it) is: 

IAC SB EXOPL DO/DON'T/WILL/WON'T/<option code> IAC SE
Once both sides have agreed to use the specific option specified by <option code>, 
subnegotiation may be required.    In this case the format to be used is: 

IAC SB EXOPL SB <option code> <parameters> SE IAC SE



RFC-862 Echo Protocol
J. Postel

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
that choose to implement an Echo Protocol are expected to adopt and implement this 
standard. 
A very useful debugging and measurement tool is an echo service.    An echo service simply 
sends back to the originating source any data it receives. 

TCP Based Echo Service
One echo service is defined as a connection based application on TCP. A server
listens for TCP connections on TCP port 7.    Once a connection is established 
any data received is sent back.    This continues until the calling user 
terminates the connection. 

UDP Based Echo Service
Another echo service is defined as a datagram based application on UDP.    A 
server listens for UDP datagrams on UDP port 7.    When a datagram is 
received, the data from it is sent back in an answering datagram. 



RFC-863 Discard Protocol
J. Postel

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
that choose to implement a Discard Protocol are expected to adopt and implement this 
standard. 
A useful debugging and measurement tool is a discard service.    A discard service simply 
throws away any data it receives. 

TCP Based Discard Service
One discard service is defined as a connection based application on TCP.    A 
server listens for TCP connections on TCP port 9.    Once a connection is 
established any data received is thrown away.    No response is sent.    This 
continues until the calling user terminates the connection. 

UDP Based Discard Service
Another discard service is defined as a datagram based application on UDP.    A
server listens for UDP datagrams on UDP port 9.    When a datagram is 
received, it is thrown away.    No response is sent. 



RFC-864 Character Generator Protocol
J. Postel

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
that choose to implement a Character Generator Protocol are expected to adopt and 
implement this standard. 
A useful debugging and measurement tool is a character generator service.    A character 
generator service simply sends data without regard to the input. 

Data Syntax
Example

TCP Based Character Generator Service
One character generator service is defined as a connection based application on TCP.    A 
server listens for TCP connections on TCP port 19.    Once a connection is established a 
stream of data is sent out the connection (and any data received is thrown away).    This 
continues until the calling user terminates the connection. 
It is fairly likely that users of this service will abruptly decide that they have had enough and
abort the TCP connection, instead of carefully closing it.    The service should be prepared for 
either the carfull close or the rude abort. 
The data flow over the connection is limited by the normal TCP flow control mechanisms, so 
there is no concern about the service sending data faster than the user can process it. 

UDP Based Character Generator Service
Another character generator service is defined as a datagram based application on UDP.    A 
server listens for UDP datagrams on UDP port 19.    When a datagram is received, an 
answering datagram is sent containing a random number (between 0 and 512) of characters
(the data in the received datagram is ignored). 
There is no history or state information associated with the UDP version of this service, so 
there is no continuity of data from one answering datagram to another. 
The service only send one datagram in response to each received datagram, so there is no 
concern about the service sending data faster than the user can process it. 



RFC-864 Character Generator Protocol

Data Syntax

The data may be anything.    It is recommended that a recognizable pattern be used in tha 
data. 

One popular pattern is 72 chraracter lines of the ASCII printing characters.    
There are 95 printing characters in the ASCII character set.    Sort the 
characters into an ordered sequence and number the characters from 0 
through 94.    Think of the sequence as a ring so that character number 0 
follows character number 94.    On the first line (line 0) put the characters 
numbered 0 through 71. On the next line (line 1) put the characters numbered
1 through 72.    And so on.    On line N, put characters (0+N mod 95) through 
(71+N mod 95).    End each line with carriage return and line feed. 



RFC-864 Character Generator Protocol

Example

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi
#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij
$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk
%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl
&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklm
'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmn
()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmno
)*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnop
*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopq
+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqr
,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrs
-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrst
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstu
/0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuv
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvw
123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwx
23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxy
3456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz
456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{
56789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|
6789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}
789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
89:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
9:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !
:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"
;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#
<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$
=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%
>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&
?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'(
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()
BCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*
CDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+
DEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,
EFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-
FGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-.
GHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./
HIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./0
IJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./01
JKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./012
KLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./0123
LMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./01234
MNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./012345
NOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./0123456



RFC-865 Quote of the Day Protocol

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
that choose to implement a Quote of the Day Protocol are expected to adopt and implement 
this standard. 
A useful debugging and measurement tool is a quote of the day service. A quote of the day 
service simply sends a short message without regard to the input. 

TCP Based Quote of the Day Service
One quote of the day service is defined as a connection based application on 
TCP.    A server listens for TCP connections on TCP port 17.    Once a connection 
is established a short message is sent out the connection (and any data 
received is thrown away).    The service closes the connection after sending 
the quote. 

UDP Based Quote of the Day Service
Another quote of the day service is defined as a datagram based application 
on UDP.    A server listens for UDP datagrams on UDP port 17.    When a 
datagram is received, an answering datagram is sent containing a quote (the 
data in the received datagram is ignored). 

Quote Syntax
There is no specific syntax for the quote.    It is recommended that it be limited
to the ASCII printing characters, space, carriage return, and line feed.    The 
quote may be just one or up to several lines, but it should be less than 512 
characters. 



RFC-866 Active Users Protocol
J. Postel

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
that choose to implement an Active Users Protocol are expected to adopt and implement 
this standard. 
A useful debugging and measurement tool is an active users service.    An active users 
service simply sends a list of the currently active users on the host without regard to the 
input. 
An active user is one logged in, such as listed in SYSTAT or WHO.

TCP Based Active Users Service
One active users service is defined as a connection based application on TCP.   
A server listens for TCP connections on TCP port 11.    Once a connection is 
established a list of the currently active users is sent out the connection (and 
any data received is thrown away).    The service closes the connection after 
sending the list. 

UDP Based Active Users Service
Another active users service service is defined as a datagram based 
application on UDP.    A server listens for UDP datagrams on UDP port 11.    
When a datagram is received, an answering datagram is sent containing a list 
of the currently active users (the data in the received datagram is ignored). 
If the list does not fit in one datagram then send a sequence of datagrams but
don't break the information for a user (a line) across a datagram.    The user 
side should wait for a timeout for all datagrams to arrive.    Note that they are 
not necessarily in order. 

User List Syntax
There is no specific syntax for the user list.    It is recommended that it be 
limited to the ASCII printing characters, space, carriage return, and line feed.    
Each user should be listed on a separate line. 



RFC-867 Daytime Protocol
J. Postel

USC/Information Sciences Institute
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
that choose to implement a Daytime Protocol are expected to adopt and implement this 
standard. 
A useful debugging and measurement tool is a daytime service.    A daytime service simply 
sends a the current date and time as a character string without regard to the input. 

TCP Based Daytime Service
One daytime service is defined as a connection based application on TCP.    A server listens 
for TCP connections on TCP port 13.    Once a connection is established the current date and 
time is sent out the connection as a ascii character string (and any data received is thrown 
away).    The service closes the connection after sending the string. 

UDP Based Daytime Service
Another daytime service service is defined as a datagram based application on UDP.    A 
server listens for UDP datagrams on UDP port 13.    When a datagram is received, an 
answering datagram is sent containing the current date and time as a ASCII character string 
(the data in the received datagram is ignored). 

Daytime Syntax
There is no specific syntax for the daytime.    It is recommended that it be limited to the 
ASCII printing characters, space, carriage return, and line feed.    The daytime should be just 
one line. 

One popular syntax is:
 Weekday, Month Day, Year Time-Zone

Example:
Tuesday, February 22, 1982 17:37:43-PST

Another popular syntax is that used in SMTP:
dd mmm yy hh:mm:ss zzz

Example:
02 FEB 82 07:59:01 PST

NOTE:For machine useful time use the Time Protocol (RFC-868) or the Network Time 
Protocol (RFC-1119).





Postel                                                                                                                    [Page 2]





RFC-868 Time Protocol
J. Postel - USC/ISI

K. Harrenstien - SRI
May 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
that choose to implement a Time Protocol are expected to adopt and implement this 
standard. 
This protocol provides a site-independent, machine readable date and time.    The Time 
service sends back to the originating source the time in seconds since midnight on January 
first 1900. 
One motivation arises from the fact that not all systems have a date/time clock, and all are 
subject to occasional human or machine error.    The use of time-servers makes it possible to 
quickly confirm or correct a system's idea of the time, by making a brief poll of several 
independent sites on the network. 
This protocol may be used either above the Transmission Control Protocol (TCP) or above the
User Datagram Protocol (UDP). 

When used via TCP the time service works as follows:
S: Listen on port 37 (45 octal).
U: Connect to port 37.
S: Send the time as a 32 bit binary number.
U: Receive the time.
U: Close the connection.
S: Close the connection.

The server listens for a connection on port 37.    When the connection is established, the 
server returns a 32-bit time value and closes the connection.    If the server is unable to 
determine the time at its site, it should either refuse the connection or close it without 
sending anything. 

When used via UDP the time service works as follows:
S: Listen on port 37 (45 octal).
U: Send an empty datagram to port 37.
S: Receive the empty datagram.
S: Send a datagram containing the time as a 32 bit binary number.
U: Receive the time datagram.

The server listens for a datagram on port 37.    When a datagram arrives, the server returns 
a datagram containing the 32-bit time value.    If the server is unable to determine the time 
at its site, it should discard the arriving datagram and make no reply. 

The Time
The time is the number of seconds since 00:00 (midnight) 1 January 1900 GMT, such that 
the time 1 is 12:00:01 am on 1 January 1900 GMT; this base will serve until the year 2036. 
For example:



the time    2,208,988,800 corresponds to 00:00    1 Jan 1970 GMT,
2,398,291,200 corresponds to 00:00    1 Jan 1976 GMT,
2,524,521,600 corresponds to 00:00    1 Jan 1980 GMT,
2,629,584,000 corresponds to 00:00    1 May 1983 GMT,
and -1,297,728,000 corresponds to 00:00 17 Nov 1858 GMT.



RFC-879
The TCP Maximum Segment Size Option

and Related Topics
J. Postel

USC/Information Sciences Institute
November 1983

This memo discusses the TCP Maximum Segment Size Option and related topics.    The 
purposes is to clarify some aspects of TCP and its interaction with IP.    This memo is a 
clarification to the TCP specification, and contains information that may be considered as 
"advice to implementers". 

Introduction
The IP Maximum Datagram Size
The TCP Maximum Segment Size Option
The Relationship of TCP Segments and IP Datagrams
Layering and Modularity
IP Information Requirements
The Relationship between IP Datagram and TCP Segment Sizes
Maximum Packet Size
Source Fragmentation
Gateway Fragmentation
Inter-Layer Communication
What is the Default MSS ?
The Truth
The Consequences



RFC-879 The TCP Maximum Segment Size Option and Related Topics

Introduction

This memo discusses the TCP Maximum Segment Size and its relation to the IP Maximum 
Datagram Size.    TCP is specified in RFC-793.    IP and ICMP are specified in RFC-791 and RFC-
792. 
This discussion is necessary because the current specification of this TCP option is 
ambiguous. 
Much of the difficulty with understanding these sizes and their relationship has been due to 
the variable size of the IP and TCP headers. 
There have been some assumptions made about using other than the default size for 
datagrams with some unfortunate results. 

Hosts must not send datagrams larger than 576 octets unless they 
have specific knowledge that the destination host is prepapred to 
accept larger datagrams. 
This is a long established rule.

To resolve the ambiguity in the TCP Maximum Segment Size option definition the following 
rule is established: 

The TCP maximum segment size is the IP maximum datagram size 
minus forty.
The default IP Maximum Datagram Size is 576.
The default TCP Maximum Segment Size is 536.



RFC-879 The TCP Maximum Segment Size Option and Related Topics

The IP Maximum Datagram Size

Hosts are not required to reassemble infinitely large IP datagrams. The maximum size 
datagram that all hosts are required to accept or reassemble from fragments is 576 octets.    
The maximum size reassembly buffer every host must have is 576 octets.    Hosts are 
allowed to accept larger datagrams and assemble fragments into larger datagrams, hosts 
may have buffers as large as they please. 
Hosts must not send datagrams larger than 576 octets unless they have specific knowledge 
that the destination host is prepared to accept larger datagrams. 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

The TCP Maximum Segment Size Option

TCP provides an option that may be used at the time a connection is established (only) to 
indicate the maximum size TCP segment that can be accepted on that connection.    This 
Maximum Segment Size (MSS) announcement (often mistakenly called a negotiation) is sent 
from the data receiver to the data sender and says "I can accept TCP segments up to size X".
The size (X) may be larger or smaller than the default.    The MSS can be used completely 
independently in each direction of data flow.    The result may be quite different maximum 
sizes in the two directions. 
The MSS counts only data octets in the segment, it does not count the TCP header or the IP 
header. 

A footnote
The MSS value counts only data octets, thus it does not count the TCP SYN 
and FIN control bits even though SYN and FIN do consume TCP sequence 
numbers. 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

The Relationship of TCP Segments and IP Datagrams

TCP segment are transmitted as the data in IP datagrams.    The correspondence between 
TCP segments and IP datagrams must be one to one.    This is because TCP expects to find 
exactly one complete TCP segment in each block of data turned over to it by IP, and IP must 
turn over a block of data for each datagram received (or completely reassembled). 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

Layering and Modularity

TCP is an end to end reliable data stream protocol with error control, flow control, etc.    TCP 
remembers many things about the state of a connection. 
IP is a one shot datagram protocol.    IP has no memory of the datagrams transmitted.    It is 
not appropriate for IP to keep any information about the maximum datagram size a 
particular destination host might be capable of accepting. 
TCP and IP are distinct layers in the protocol architecture, and are often implemented in 
distinct program modules. 
Some people seem to think that there must be no communication between protocol layers or
program modules.    There must be communication between layers and modules, but it 
should be carefully specified and controlled.    One problem in understanding the correct view
of communication between protocol layers or program modules in general, or between TCP 
and IP in particular is that the documents on protocols are not very clear about it.    This is 
often because the documents are about the protocol exchanges between machines, not the 
program architecture within a machine, and the desire to allow many program architectures 
with different organization of tasks into modules. 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

IP Information Requirements

There is no general requirement that IP keep information on a per host basis. 
IP must make a decision about which directly attached network address to send each 
datagram to.    This is simply mapping an IP address into a directly attached network 
address. 
There are two cases to consider:    the destination is on the same network, and the 
destination is on a different network. 

Same Network
For some networks the the directly attached network address can be 
computed from the IP address for destination hosts on the directly attached 
network. 
For other networks the mapping must be done by table look up (however the 
table is initialized and maintained, for example when using the Address 
Resolution Protocol). 
Different Network
The IP address must be mapped to the directly attached network address of a 
gateway.    For networks with one gateway to the rest of the Internet the host 
need only determine and remember the gateway address and use it for 
sending all datagrams to other networks. 
For networks with multiple gateways to the rest of the Internet, the host must 
decide which gateway to use for each datagram sent.    It need only check the 
destination network of the IP address and keep information on which gateway 
to use for each network. 

The IP does, in some cases, keep per host routing information for other hosts on the directly 
attached network.    The IP does, in some cases, keep per network routing information. 

A Special Case
There are two ICMP messages that convey information about particular hosts.  
These are subtypes of the Destination Unreachable and the Redirect ICMP 
messages.    These messages are expected only in very unusual 
circumstances.    To make effective use of these messages the receiving host 
would have to keep information about the specific hosts reported on.    
Because these messages are quite rare it is strongly recommended that this 
be done through an exception mechanism rather than having the IP keep per 
host tables for all hosts. 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

The Relationship between IP Datagram and TCP Segment Sizes

The relationship between the value of the maximum IP datagram size and the maximum TCP
segment size is obscure.    The problem is that both the IP header and the TCP header may 
vary in length.    The TCP Maximum Segment Size option (MSS) is defined to specify the 
maximum number of data octets in a TCP segment exclusive of TCP (or IP) header. 
To notify the data sender of the largest TCP segment it is possible to receive the calculation 
of the MSS value to send is: 
            MSS = MTU - sizeof(TCPHDR) - sizeof(IPHDR)

On receipt of the MSS option the calculation of the size of segment that can be sent is: 
            SndMaxSegSiz = MIN((MTU - sizeof(TCPHDR) - sizeof(IPHDR)), MSS)
where MSS is the value in the option, and MTU is the Maximum Transmission Unit (or the 
maximum packet size) allowed on the directly attached network. 
This begs the question, though.    What value should be used for the "sizeof(TCPHDR)" and 
for the "sizeof(IPHDR)"? 
There are three reasonable positions to take: the conservative, the moderate, and the 
liberal. 

1. The conservative or pessimistic position assumes the worst -- that both
the IP header and the TCP header are maximum size, that is, 60 octets 
each. 
            MSS = MTU - 60 - 60 = MTU - 120
            If MTU is 576 then MSS = 456

2. The moderate position assumes the that the IP is maximum size (60 
octets) and the TCP header is minimum size (20 octets), because there 
are no TCP header options currently defined that would normally be 
sent at the same time as data segments. 
            MSS = MTU - 60 - 20 = MTU - 80
            If MTU is 576 then MSS = 496

3. The liberal or optimistic position assumes the best -- that both the IP 
header and the TCP header are minimum size, that is, 20 octets each. 
            MSS = MTU - 20 - 20 = MTU - 40
            If MTU is 576 then MSS = 536

If nothing is said about MSS, the data sender may cram as much as possible into a 576 octet
datagram, and if the datagram has minimum headers (which is most likely), the result will 
be 536 data octets in the TCP segment.    The rule relating MSS to the maximum datagram 
size ought to be consistent with this. 
A practical point is raised in favor of the liberal position too. Since the use of minimum IP 
and TCP headers is very likely in the very large percentage of cases, it seems wasteful to 
limit the TCP segment data to so much less than could be transmitted at once, especially 
since it is less that 512 octets. 
For comparison:    536/576 is 93% data, 496/576 is 86% data, 456/576 is 79% data. 





RFC-879 The TCP Maximum Segment Size Option and Related Topics

Maximum Packet Size

Each network has some maximum packet size, or maximum transmission unit (MTU).    
Ultimately there is some limit imposed by the technology, but often the limit is an 
engineering choice or even an administrative choice.    Different installations of the same 
network product do not have to use the same maximum packet size.    Even within one 
installation not all host must use the same packet size (this way lies madness, though). 
Some IP implementers have assumed that all hosts on the directly attached network will be 
the same or at least run the same implementation.    This is a dangerous assumption.    It has
often developed that after a small homogeneous set of host have become operational 
additional hosts of different types are introduced into the environment.    And it has often 
developed that it is desired to use a copy of the implementation in a different 
inhomogeneous environment. 
Designers of gateways should be prepared for the fact that successful gateways will be 
copied and used in other situation and installations.    Gateways must be prepared to accept 
datagrams as large as can be sent in the maximum packets of the directly attached 
networks.    Gateway implementations should be easily configured for installation in different 
circumstances. 

A footnote:
The MTUs of some popular networks (note that the actual limit in some 
installations may be set lower by administrative policy): 

            ARPANET, MILNET = 1007
            Ethernet (10Mb) = 1500
            Proteon PRONET    = 2046



RFC-879 The TCP Maximum Segment Size Option and Related Topics

Source Fragmentation

A source host would not normally create datagram fragments.    Under normal circumstances
datagram fragments only arise when a gateway must send a datagram into a network with a
smaller maximum packet size than the datagram.    In this case the gateway must fragment 
the datagram (unless it is marked "don't fragment" in which case it is discarded, with the 
option of sending an ICMP message to the source reporting the problem). 
It might be desirable for the source host to send datagram fragments if the maximum 
segment size (default or negotiated) allowed by the data receiver were larger than the 
maximum packet size allowed by the directly attached network.    However, such datagram 
fragments must not combine to a size larger than allowed by the destination host. 

For example, if the receiving TCP announced that it would accept segments up
to 5000 octets (in cooperation with the receiving IP) then the sending TCP 
could give such a large segment to the sending IP provided the sending IP 
would send it in datagram fragments that fit in the packets of the directly 
attached network. 

There are some conditions where source host fragmentation would be necessary. 
If the host is attached to a network with a small packet size (for example 256 
octets), and it supports an application defined to send fixed sized messages 
larger than that packet size (for example TFTP). 
If the host receives ICMP Echo messages with data it is required to send an 
ICMP Echo-Reply message with the same data.    If the amount of data in the 
Echo were larger than the packet size of the directly attached network the 
following steps might be required: (1) receive the fragments, (2) reassemble 
the datagram, (3) interpret the Echo, (4) create an Echo-Reply, (5) fragment it,
and (6) send the fragments. 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

Gateway Fragmentation

Gateways must be prepared to do fragmentation.    It is not an optional feature for a 
gateway. 
Gateways have no information about the size of datagrams destination hosts are prepared to
accept.    It would be inappropriate for gateways to attempt to keep such information. 
Gateways must be prepared to accept the largest datagrams that are allowed on each of the
directly attached networks, even if it is larger than 576 octets. 
Gateways must be prepared to fragment datagrams to fit into the packets of the next 
network, even if it smaller than 576 octets. 
If a source host thought to take advantage of the local network's ability to carry larger 
datagrams but doesn't have the slightest idea if the destination host can accept larger than 
default datagrams and expects the gateway to fragment the datagram into default size 
fragments, then the source host is misguided.    If indeed, the destination host can't accept 
larger than default datagrams, it probably can't reassemble them either. If the gateway 
either passes on the large datagram whole or fragments into default size fragments the 
destination will not accept it.    Thus, this mode of behavior by source hosts must be 
outlawed. 
A larger than default datagram can only arrive at a gateway because the source host knows 
that the destination host can handle such large datagrams (probably because the 
destination host announced it to the source host in an TCP MSS option).    Thus, the gateway 
should pass on this large datagram in one piece or in the largest fragments that fit into the 
next network. 
An interesting footnote is that even though the gateways may know about know the 576 
rule, it is irrelevant to them. 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

Inter-Layer Communication

The Network Driver (ND) or interface should know the Maximum Transmission Unit (MTU) of 
the directly attached network. 
The IP should ask the Network Driver for the Maximum Transmission Unit. 
The TCP should ask the IP for the Maximum Datagram Data Size (MDDS). This is the MTU 
minus the IP header length (MDDS = MTU - IPHdrLen). 
When opening a connection TCP can send an MSS option with the value equal MDDS - 
TCPHdrLen. 
TCP should determine the Maximum Segment Data Size (MSDS) from either the default or 
the received value of the MSS option. 
TCP should determine if source fragmentation is possible (by asking the IP) and desirable. 

If so TCP may hand to IP segments (including the TCP header) up to MSDS + 
TCPHdrLen. 
If not TCP may hand to IP segments (including the TCP header) up to the lesser
of (MSDS + TCPHdrLen) and MDDS. 

IP checks the length of data passed to it by TCP.    If the length is less than or equal MDDS, IP 
attached the IP header and hands it to the ND.    Otherwise the IP must do source 
fragmentation. 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

What is the Default MSS ?

Another way of asking this question is "What transmitted value for MSS has exactly the 
same effect of not transmitting the option at all?". 
In terms of the previous section:

The default assumption is that the Maximum Transmission Unit is 576 octets. 
MTU = 576

The Maximum Datagram Data Size (MDDS) is the MTU minus the IP header 
length. 

MDDS = MTU - IPHdrLen = 576 - 20 = 556
When opening a connection TCP can send an MSS option with the value equal MDDS - 
TCPHdrLen. 

MSS = MDDS - TCPHdrLen = 556 - 20 = 536
TCP should determine the Maximum Segment Data Size (MSDS) from either the default or 
the received value of the MSS option. 

Default MSS = 536, then MSDS = 536
TCP should determine if source fragmentation is possible and desirable. 
If so TCP may hand to IP segments (including the TCP header) up to MSDS + TCPHdrLen (536
+ 20 = 556). 
If not TCP may hand to IP segments (including the TCP header) up to the lesser of (MSDS + 
TCPHdrLen (536 + 20 = 556)) and MDDS (556). 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

The Truth

The rule relating the maximum IP datagram size and the maximum TCP segment size is: 
TCP Maximum Segment Size = IP Maximum Datagram Size - 40

The rule must match the default case.
If the TCP Maximum Segment Size option is not transmitted then the data 
sender is allowed to send IP datagrams of maximum size (576) with a 
minimum IP header (20) and a minimum TCP header (20) and thereby be able 
to stuff 536 octets of data into each TCP segment. 

The definition of the MSS option can be stated:
The maximum number of data octets that may be received by the sender of 
this TCP option in TCP segments with no TCP header options transmitted in IP 
datagrams with no IP header options. 



RFC-879 The TCP Maximum Segment Size Option and Related Topics

The Consequences

When TCP is used in a situation when either the IP or TCP headers are not minimum and yet 
the maximum IP datagram that can be received remains 576 octets then the TCP Maximum 
Segment Size option must be used to reduce the limit on data octets allowed in a TCP 
segment. 

For example, if the IP Security option (11 octets) were in use and the IP 
maximum datagram size remained at 576 octets, then the TCP should send 
the MSS with a value of 525 (536-11). 



RFC-885 Telnet End-of-Record Option
J. Postel

USC/Information Sciences Institute
December 1983

This RFC specifies a standard for the ARPA Internet community.    Hosts on the ARPA Internet 
that need to mark record boundaries within Telnet protocol data are expected to adopt and 
implement this standard. 
Command Name and Code

END-OF-RECORD 25
Default

WON'T END-OF-RECORD
DON'T END-OF-RECORD
End-Of-Record is not transmitted.

Command Meanings
Motivation
Description
Implementation Considerations



RFC-885 Telnet End-of-Record Option

Command Meanings

IAC WILL END-OF-RECORD
The sender of this command requests permission to begin transmission of the 
Telnet END-OF-RECORD (EOR) code when transmitting data characters, or the 
sender of this command confirms it will now begin transmission of EORs with 
transmitted data characters. 

IAC WON'T END-OF-RECORD
The sender of this command demands to stop transmitting, or to refuses to 
begin transmitting, the EOR code when transmitting data characters. 

IAC DO END-OF-RECORD
The sender of this command requests that the sender of data start 
transmitting the EOR code when transmitting data, or the sender of this 
command confirms that the sender of data is expected to transmit EORs. 

IAC DON'T END-OF-RECORD
The sender of this command demands that the receiver of the command stop 
or not start transmitting EORs when transmitting data. 



RFC-885 Telnet End-of-Record Option

Motivation for the Option

Many interactive systems use one (or more) of the normal data characters to indicate the 
end of an effective unit of data (i.e., a record), for example, carriage-return (or line-feed, or 
escape). Some systems, however, have some special means of indicating the end of an 
effective data unit, for example, a special key.    This Telnet option provides a means of 
communicating the end of data unit in a standard way. 



RFC-885 Telnet End-of-Record Option

Description of the Option

When the END-OF-RECORD option is in effect on the connection between a sender of data 
and the receiver of the data, the sender transmits EORs. 
It seems probable that the parties to the Telnet connection will transmit EORs in both 
directions of the Telnet connection if EORs are used at all;    however, the use of EORs must 
be negotiated independently for each direction. 
When the END-OF-RECORD option is not in effect, the IAC EOR command should be treated 
as a NOP if received, although IAC EOR should not normally be sent in this mode. 



RFC-885 Telnet End-of-Record Option

Implementation Considerations

As the EOR code indicates the end of an effective data unit, Telnet should attempt to send 
the data up to and including the EOR code together to promote communication efficiency. 
The end of record is indicated by the IAC EOR 2-octet sequence.    The code for EOR is 239 
(decimal). 



RFC-893 Trailer Encapsulations
Samuel J.    Leffler & Michael J.    Karels

University of California at Berkeley
April 1984

Status of this Memo
When this RFC was originally published in April of 1984 it was for informational purposes 
only.    It has since become an official protocol of the Internet community, although its use is 
optional.    It may only be used when it has been verified that both systems (host or 
gateway) involved in the link-layer communication implement trailers.    If a system does not 
dynamically negotiate use of the trailer protocol on a per-destination basis, the default 
configuration must disable the protocol.

Introduction
Motivation
Trailer Encapsulation Packet Formats
Trailer Format
Trailer Encapsulation Negotiation
Summary



RFC-893 Trailer Encapsulations

Introduction

A trailer encapsulation is a link level packet format employed by 4.2BSD UNIX (among 
others) in which the data contents of packets sent on the physical network are rearranged.    
A trailer encapsulation, or "trailer", may be generated by a system under certain conditions 
in an effort to minimize the number and size of memory-to-memory copy operations 
performed by a receiving host when processing a data packet.    Trailers are strictly a link 
level packet format and are not visible (when properly implemented) in any higher level 
protocol processing.    This note cites the motivation behind the trailer encapsulation and 
describes the trailer encapsulation packet formats currently in use on 3 Mb/s Experimental 
Ethernet, 10 Mb/s Ethernet, and 10 Mb/s V2LNI ring networks.    
The use of a trailer encapsulation was suggested by Greg Chesson, and the encapsulation 
described here was designed by Bill Joy.    



RFC-893 Trailer Encapsulations

Motivation

Trailers are motivated by the overhead which may be incurred during protocol processing 
when one or more memory to memory copies must be performed.    Copying can be required
at many levels of processing, from moving data between the network medium and the host's
memory, to passing data between the operating system and user address spaces.    An 
optimal network implementation would expect to incur zero copy operations between 
delivery of a data packet into host memory and presentation of the appropriate data to the 
receiving process.    While many packets may not be processed without some copying 
operations, when the host computer provides suitable memory management support it may 
often be possible to avoid copying simply by manipulating the appropriate virtual memory 
hardware.    
In a page mapped virtual memory environment, two prerequisites are usually required to 
achieve the goal of zero copy operations during packet processing.    Data destined for a 
receiving agent must be aligned on a page boundary and must have a size which is a 
multiple of the hardware page size (or filled to a page boundary).    The latter restriction 
assumes virtual memory protection is maintained at the page level; different architectures 
may alter these prerequisites.    
Data to be transmitted across a network may easily be segmented in the appropriate size, 
but unless the encapsulating protocol header information is fixed in size, alignment to a 
page boundary is virtually impossible.    Protocol header information may vary in size due to 
the use of multiple protocols (each with a different header), or it may vary in size by 
agreement (for example, when optional information is included in the header).    To insure 
page alignment the header information which prefixes data destined for the receiver must 
be reduced to a fixed size; this is normally the case at the link level of a network.    By taking 
all (possibly) variable length header information and moving it after the data segment a 
sending host may "do its best" in allowing the receiving host the opportunity to receive data 
on a page aligned boundary.    This rearrangement of data at the link level to force variable 
length header information to "trail" the data is the substance of the trailer encapsulation.    
There are several implicit assumptions in the above argument.    

1 The receiving host must be willing to accept trailers.
2 The cost of receiving data on a page aligned boundary should be 

comparable to receiving data on a non-page aligned boundary.    If the 
overhead of insuring proper alignment is too high, the savings in 
avoiding copy operations may not be cost effective.    

3 The size of the variable length header information should be 
significantly less than that of the data segment being transmitted.    It 
is possible to move trailing information without physically copying it, 
but often implementation constraints and the characteristics of the 
underlying network hardware preclude merely remapping the 
header(s).    

4 The memory to memory copying overhead which is expected to be 
performed by the receiver must be significant enough to warrant the 
added complexity in the both the sending and receiving host software.  

The first point is addressed by negotiating for the use of trailers at the time of 
an initial ARP exchange( as defined in RFC-826).
The second point is (to our knowledge) insignificant.    While a host may not be



able to take advantage of the alignment and size properties of a trailer packet,
it should nonetheless never hamper it.    
Regarding the third point, let us assume the trailing header information is 
copied and not remapped, and consider the header overhead in the TCP/IP 
protocols as a representative example.    If we assume both the TCP and IP 
protocol headers are part of the variable length header information, then the 
smallest trailer packet (generated by a VAX) would have 512 bytes of data and
40+ bytes of header information (plus the trailer header described later).    
While the trailing header could have IP and/or TCP options included this would 
normally be rare (one would expect most TCP options, for example, to be 
included in the initial connection setup exchange) and certainly much smaller 
than 512 bytes.    If the data segment is larger, the ratio decreases and the 
expected gain due to fewer copies on the receiving end increases.    Given the 
relative overheads of a memory to memory copy operation and that of a page 
map manipulation (including translation buffer invalidation), the advantage is 
obvious.    
The fourth issue, we believe, is actually a non-issue.    In our implementation 
the additional code required to support the trailer encapsulation amounts to 
about a dozen lines of code in each link level "network interface driver".    The 
resulting performance improvement more than warrants this minor 
investment in software.    

It should be recognized that modifying the network (and normal link) level format of a packet
in the manner described forces the receiving host to buffer the entire packet before 
processing.    Clever implementations may parse protocol headers as the packet arrives to 
find out the actual size (or network level packet type) of an incoming message.    This allows 
these implementations to avoid preallocating maximum sized buffers to incoming packets 
which it can recognize as unacceptable.    Implementations which parses the network level 
format on the fly are violating layering principles which have been extolled in design for 
some time (but often violated in implementation).    The problem of postponing link level 
type recognition is a valid criticism.    In the case of network hardware which supports DMA, 
however, the entire packet is always received before processing begins.    



RFC-893 Trailer Encapsulations

Trailer Encapsulation Packet Formats

In this section we describe the link level packet formats used on the 3 Mb/s Experimental 
Ethernet, and 10 Mb/s Ethernet networks as well as the 10 Mb/s V2LNI ring network.    The 
formats used in each case differ only in the format and type field values used in each of the 
local area network headers.    
The format of a trailer packet is shown in the following diagram.

LH:
The fixed-size local network header.    For 10 a Mb/s Ethernet, the 16-byte 
Ethernet header.    The type field in the header indicates that both the packet 
type (trailer) and the length of the data segment.    
For the 10 Mb/s Ethernet, the types are between 1001 and 1010 hexadecimal 
(4096 and    4112 decimal).    The type is calculated as 1000 (hex) plus the 
number of 512-byte pages of data.    A maximum    of 16 pages of data may be 
transmitted in a single trailer packet (8192 bytes).    

data:
The "data" portion of the packet.    This is normally only data to be delivered to
the receiving processes (i.e.    it contains no TCP or IP header information).    
Data size is always a multiple of 512 bytes.    

TH:
The "trailer".    This is actually a composition of the original protocol headers 
and a fixed size trailer prefix which defines the type and size of the trailing 
data.    The format of a trailer is shown below.    
The arrows indicate the page boundaries on which the receiving host would 
place its input buffer for optimal alignment when receiving a trailer packet.    
The link level receiving routine is able to locate the trailer using the size 
indicated in the link level header's type field.    The receiving routine is 
expected to discard the link level header and trailer prefix, and remap the 
trailing data segment to the front of the packet to regenerate the original 
network level packet format.    



RFC-893 Trailer Encapsulations

Trailer Format

Type:                16 bits
The type field encodes the original link level type of the transmitted packet.    
This is the value which would normally be placed in the link level header if a 
trailer were not generated.    

Header length:              16 bits
The header length field of the trailer data segment.    This specifies the length 
in bytes of the following header data.    

Original headers: <variable length>
The header information which logically belongs before the data segment.    
This is normally the network and transport level protocol headers.    



RFC-893 Trailer Encapsulations

Negotiation

On an Ethernet, packets encapsulated with trailers use a distinct Ethernet type, and trailer 
negotiation is performed at the time that ARP is used to discover the link-layer address of a 
destination system.
Specifically, the ARP exchange is completed in the usual manner using the normal IP 
protocol type, but a host that wants to speak trailers will send an additional "trailer ARP 
reply" packet, i.e., an ARP reply that specifies the trailer encapsulation protocol type but 
otherwise has the format of a normal ARP reply.    If a host configured to use trailers receives 
a trailer ARP reply message from a remote machine, it can add that machine to the list of 
machines that understand trailers, e.g., by marking the corresponding entry in the ARP 
cache.
Hosts wishing to receive trailer encapsulations send trailer ARP replies whenever they 
complete exchanges of normal ARP messages for IP.    Thus, a host that received an ARP 
request for its IP protocol address would send a trailer ARP reply in addition to the normal IP 
ARP reply; a host that sent the IP ARP request would send a trailer ARP reply when it 
received the corresponding IP ARP reply. In this way, either the requesting or responding 
host in an IP ARP exchange may request that it receive trailer encapsulations.
This scheme, using extra trailer ARP reply packets rather than sending an ARP request for 
the trailer protocol type, was designed to avoid a continuous exchange of ARP packets with a
misbehaving host that, contrary to any specification or common sense, responded to an ARP
reply for trailers with another ARP reply for IP.    This problem is avoided by sending a trailer 
ARP reply in response to an IP ARP reply only when the IP ARP reply answers an outstanding 
request; this is true when the hardware address for the host is still unknown when the IP ARP
reply is received.    A trailer ARP reply may always be sent along with an IP ARP reply 
responding to an IP ARP request.



RFC-893 Trailer Encapsulations

Summary

A link level encapsulation which promotes alignment properties necessary for the efficient 
use of virtual memory hardware facilities has been described.    This encapsulation format is 
in use on many systems and is a standard facility in 4.2BSD UNIX.    The encapsulation 
provides an efficient mechanism by which cooperating hosts on a local network may obtain 
significant performance improvements.    The use of this encapsulation technique currently 
requires uniform cooperation from all hosts on a network; hopefully a per host negotiation 
mechanism may be added to allow consenting hosts to utilize the encapsulation in a non-
uniform environment.



RFC-894 A Standard for the Transmission
of IP Datagrams

over Ethernet Networks
Charles Hornig

Symbolics Cambridge Research Center
April 1984

Status of this Memo
This RFC specifies a standard method of encapsulating Internet Protocol (IP) datagrams on 
an Ethernet [2].    This RFC specifies a standard protocol for the ARPA-Internet community. 

Introduction
Frame Format
Address Mappings
Trailer Formats
Byte Order



RFC-894 IP Encapsulation for Ethernets

Introduction

This memo applies to the Ethernet (10-megabit/second, 48-bit addresses).    The procedure 
for transmission of IP datagrams on the Experimental Ethernet (3-megabit/second, 8-bit 
addresses) is described in [3]. 



RFC-894 IP Encapsulation for Ethernets

Frame Format

IP datagrams are transmitted in standard Ethernet frames.    The type field of the Ethernet 
frame must contain the value hexadecimal 0800. The data field contains the IP header 
followed immediately by the IP data. 
The minimum length of the data field of a packet sent over an Ethernet is 46 octets.    If 
necessary, the data field should be padded (with octets of zero) to meet the Ethernet 
minimum frame size.    This padding is not part of the IP packet and is not included in the 
total length field of the IP header. 
The minimum length of the data field of a packet sent over an Ethernet is 1500 octets, thus 
the maximum length of an IP datagram sent over an Ethernet is 1500 octets.    
Implementations are encouraged to support full-length packets.    Gateway implementations 
MUST be prepared to accept full-length packets and fragment them if necessary.    If a 
system cannot receive full-length packets, it should take steps to discourage others from 
sending them, such as using the TCP Maximum Segment Size option [4]. 
Note:    Datagrams on the Ethernet may be longer than the general Internet default 
maximum packet size of 576 octets.    Hosts connected to an Ethernet should keep this in 
mind when sending datagrams to hosts not on the same Ethernet.    It may be appropriate to
send smaller datagrams to avoid unnecessary fragmentation at intermediate gateways.    
Please see [4] for further information on this point. 



RFC-894 IP Encapsulation for Ethernets

Address Mappings

The mapping of 32-bit Internet addresses to 48-bit Ethernet addresses can be done several 
ways.    A static table could be used, or a dynamic discovery procedure could be used. 
Static Table

Each host could be provided with a table of all other hosts on the local 
network with both their Ethernet and Internet addresses. 

Dynamic Discovery
Mappings between 32-bit Internet addresses and 48-bit Ethernet addresses 
could be accomplished through the Address Resolution Protocol (ARP).    
Internet addresses are assigned arbitrarily on some Internet network.    Each 
host's implementation must know its own Internet address and respond to 
Ethernet Address Resolution packets appropriately.    It should also use ARP to 
translate Internet addresses to Ethernet addresses when needed. 

Broadcast Address
The broadcast Internet address (the address on that network with a host part 
of all binary ones) should be mapped to the broadcast Ethernet address (of all 
binary ones, FF-FF-FF-FF-FF-FF hex). 

The use of the ARP dynamic discovery procedure is strongly recommended. 



RFC-894 IP Encapsulation for Ethernets

Trailer Formats

Some versions of Unix 4.2bsd use a different encapsulation method in order to get better 
network performance with the VAX virtual memory architecture.    Consenting systems on the
same Ethernet may use this format between themselves.
No host is required to implement it, and no datagrams in this format should be sent to any 
host unless the sender has positive knowledge that the recipient will be able to interpret 
them, such knowledge being gained by negotiation.    Details of the Trailer Encapsulation 
may be found in RFC-893. 



RFC-894 IP Encapsulation for Ethernets

Byte Order

As described in Appendix B of the Internet Protocol specification, the IP datagram is 
transmitted over the Ethernet as a series of 8-bit bytes. 



References

[1]    Postel, J., "Internet Protocol", RFC-791, USC/Information
Sciences Institute, September 1981.

[2]    "The Ethernet - A Local Area Network", Version 1.0, Digital
Equipment Corporation, Intel Corporation, Xerox Corporation,
September 1980.

[3]    Postel, J., "A Standard for the Transmission of IP Datagrams
over Experimental Ethernet Networks", RFC-895, USC/Information
Sciences Institute, April 1984.

[4]    Postel, J., "The TCP Maximum Segment Size Option and Related
Topics", RFC-879, USC/Information Sciences Institute, November 1983.

[5]    Plummer, D., "An Ethernet Address Resolution Protocol", RFC-826,
Symbolics Cambridge Research Center, November 1982.

[6]    Leffler, S., and M. Karels, "Trailer Encapsulations", RFC-893,
University of California at Berkeley, April 1984.



Reverse Address Resolution Protocol (RARP) 

Introduction
Network hosts such as diskless workstations frequently do not know their protocol addresses
when booted; they often know only their hardware interface addresses.    To communicate 
using higher-level protocols like IP, they must discover their protocol address from some 
external source.    Our problem is that there is no standard mechanism for doing so. 
Plummer's "Address Resolution Protocol" (ARP) [RFC-826] is designed to solve a 
complementary problem, resolving a host's hardware address given its protocol address.    As
with ARP, we assume a broadcast medium, such as Ethernet. 

Design Considerations
Protocol Description
Example Implementations



RFC-903 Reverse Address Resolution Protocol

Design Considerations

The following considerations guided our design of the RARP protocol.
A ARP and RARP are different operations.    ARP assumes that every host 

knows the mapping between its own hardware address and protocol 
address(es).    Information gathered about other hosts is accumulated 
in a small cache.    All hosts are equal in status; there is no distinction 
between clients and servers. 
On the other hand, RARP requires one or more server hosts to maintain
a database of mappings from hardware address to protocol address 
and respond to requests from client hosts. 

B As mentioned, RARP requires that server hosts maintain large 
databases. It is undesirable and in some cases impossible to maintain 
such a database in the kernel of a host's operating system.    Thus, 
most implementations will require some form of interaction with a 
program outside the kernel. 

C Ease of implementation and minimal impact on existing host software 
are important.    It would be a mistake to design a protocol that required
modifications to every host's software, whether or not it intended to 
participate. 

D It is desirable to allow for the possibility of sharing code with existing 
software, to minimize overhead and development costs. 



RFC-903 Reverse Address Resolution Protocol

Protocol Description

RARP is specified as a separate protocol at the data-link level.    For example, if the medium 
used is Ethernet, then RARP packets will have an Ethertype (8035H) different from that of 
ARP(806H).    This recognizes that ARP and RARP are two fundamentally different operations, 
not supported equally by all hosts.    The impact on existing systems is minimized; existing 
ARP servers will not be confused by RARP packets. It makes RARP a general facility that can 
be used for mapping hardware addresses to any higher level protocol address. 
This approach provides the simplest implementation for RARP client hosts, but also provides 
the most difficulties for RARP server hosts. However, these difficulties should not be 
insurmountable, as is shown in Examples, where we sketch two possible implementations for
4.2BSD Unix. 

RARP uses the same packet format that is used by ARP, namely: 
ar$hrd (hardware address space) -    16 bits
ar$pro (protocol address space) -    16 bits
ar$hln (hardware address length) - 8 bits
ar$pln (protocol address length) - 8 bits
ar$op    (opcode) - 16 bits
ar$sha (source hardware address) - n bytes,
where n is from the ar$hln field.
ar$spa (source protocol address) - m bytes,
where m is from the ar$pln field.
ar$tha (target hardware address) - n bytes
ar$tpa (target protocol address) - m bytes

ar$hrd, ar$pro, ar$hln and ar$pln are the same as in regular ARP. 
See Discussion.



RFC-903 Reverse Address Resolution Protocol

Protocol Description
Discussion

Suppose, for example, that 'hardware' addresses are 48-bit Ethernet addresses, and 
'protocol' addresses are 32-bit Internet Addresses. That is, we wish to determine Internet 
Addresses corresponding to known Ethernet addresses.    Then, in each RARP packet, ar$hrd 
= 1 (Ethernet), ar$pro = 2048 decimal (the Ethertype of IP packets), ar$hln = 6, and ar$pln 
= 4. 
There are two opcodes: 3 ('request reverse') and 4 ('reply reverse'). An opcode of 1 or 2 has 
the same meaning as in ARP; packets with such opcodes may be passed on to regular ARP 
code.    A packet with any other opcode is undefined.    As in ARP, there are no "not found" or 
"error" packets, since many RARP servers are free to respond to a request.    The sender of a 
RARP request packet should timeout if it does not receive a reply for this request within a 
reasonable amount of time. 
The ar$sha, ar$spa, $ar$tha, and ar$tpa fields of the RARP packet are interpreted as follows:

When the opcode is 3 ('request reverse'):
ar$sha is the hardware address of the sender of the packet.
ar$spa is undefined.
ar$tha is the 'target' hardware address.

In the case where the sender wishes to determine his own protocol address, this, like ar$sha,
will be the hardware address of the sender. 
ar$tpa is undefined.

When the opcode is 4 ('reply reverse'):
ar$sha is the hardware address of the responder (the sender of the reply 
packet). 
ar$spa is the protocol address of the responder (see the note below). 
ar$tha is the hardware address of the target, and should be the same as that 
which was given in the request. 
ar$tpa is the protocol address of the target, that is, the desired address. 

Note that the requirement that ar$spa in opcode 4 packets be filled in with the responder's 
protocol is purely for convenience.    For instance, if a system were to use both ARP and 
RARP, then the inclusion of the valid protocol-hardware address pair (ar$spa, ar$sha) may 
eliminate the need for a subsequent ARP request. 



RFC-903 Reverse Address Resolution Protocol

Two Example Implementations of RARP
for

4.2BSD Unix

The following implementation sketches outline two different approaches to implementing a 
RARP server under 4.2BSD. 

A Provide access to data-link level packets outside the kernel.    The RARP
server is implemented completely outside the kernel and interacts with
the kernel only to receive and send RARP packets.    The kernel has to 
be modified to provide the appropriate access for these packets; 
currently the 4.2 kernel allows access only to IP packets. One existing 
mechanism that provides this capability is the CMU "packet-filter" 
pseudo driver.    This has been used successfully at CMU and Stanford 
to implement similar sorts of "user-level" network servers. 

B Maintain a cache of database entries inside the kernel.    The full RARP 
server database is maintained outside the kernel by a user process.    
The RARP server itself is implemented directly in the kernel and 
employs a small cache of database entries for its responses.    This 
cache could be the same as is used for forward ARP. 
The cache gets filled from the actual RARP database by means of two 
new ioctls.    (These are like SIOCIFADDR, in that they are not really 
associated with a specific socket.)    One means: "sleep until there is a 
translation to be done, then pass the request out to the user process"; 
the other means: "enter this translation into the kernel table".    Thus, 
when the kernel can't find an entry in the cache, it puts the request on 
a (global) queue and then does a wakeup().    The implementation of 
the first ioctl is to sleep() and then pull the first item off of this queue 
and return it to the user process. Since the kernel can't wait around at 
interrupt level until the user process replies, it can either give up (and 
assume that the requesting host will retransmit the request packet 
after a second) or if the second ioctl passes a copy of the request back 
into the kernel, formulate and send a response at that time. 



RFC-904
Exterior Gateway Protocol Formal Specification

D.L.    Mills
April 1984

This RFC is the specification of the Exterior Gateway Protocol (EGP).    This document updates RFCs 827
and 888.    This RFC specifies a standard for the DARPA community.    Interactions between gateways of 
different autonomous systems in the ARPA-Internet must follow this protocol.

Introduction
Summary and Overview

Nomenclature
State Machine
Functional Description
Appendix A.    EGP Message Formats

A.1.    Neighbor Acquisition Messages
A.2. Neighbor Reachability Messages
A.3. Poll Command
A.4. Update Response/Indication
A.5. Error Response/Indication

Appendix B.    Comparison with RFC-888
Appendix C.    Reachability Analysis



RFC-904    Exterior Gateway Protocol Formal Specification

Introduction
This document is a formal specification of the Exterior Gateway Protocol (EGP), which is used to 
exchange net-reachability information between Internet gateways belonging to the same or different 
autonomous systems.    The specification is intended as a reference guide for implementation, testing and
verification and includes suggested algorithmic parameters suitable for operation over a wide set of 
configurations, including the ARPANET and many local-network technologies now part of the Internet 
system.

Specifically excluded in this document is discussion on the background, application and limitations of 
EGP, which have been discussed elsewhere (RFC-827, RFC-888).    If, as expected, EGP evolves to 
include topologies not restricted to tree-structures and to incorporate full routing capabilities, this 
specification will be amended or obsoleted accordingly.    However, it is expected that, as new features are
added to EGP, the basic protocol mechanisms described here will remain substantially unchanged, with 
only the format and interpretation of the Update message (see below) changed.

Section 2 of this document describes the nomenclature used, while Section 3 describes the state-
machine model, including events, actions, parameters and state transitions.    Section 4 contains a 
functional description of the operation of the machine, together with specific procedures and algorithms.    
Appendix A describes the EGP message formats, while Appendix B contains a summary of the minor 
differences between these and the formats described in RFC-888.    Appendix C presents a reachability 
analysis including a table of composite state transitions for a system of two communicating EGP 
gateways.



RFC-904    Exterior Gateway Protocol Formal Specification

Summary and Overview
EGP exists in order to convey net-reachability information between neighboring gateways, possibly in 
different autonomous systems.    The protocol includes mechanisms to acquire neighbors, monitor 
neighbor reachability and exchange net-reachability information in the form of Update messages.    The 
protocol is based on periodic polling using Hello/I-Heard-You (I-H-U) message exchanges to monitor 
neighbor reachability and Poll commands to solicit Update responses.

Specification of EGP is based on a formal model consisting of a finite-state automaton with defined 
events, state transitions and actions.    The following diagram shows a simplified graphical representation 
of this machine (see Section 3.4 for a detailed state transition table).

          +-------+
          |       |---------------+---------------+
    +---->| Idle  |               A               A
    |     |       |-----------+   |               |
    |     +-------+           |   |               |
    |       |   A     Request |   | Cease         | Cease
    | Start |   | Cease       |   |               |
    |       V   | Refuse      V   |               |
    |     +-------+ Confirm +-------+    Up   +-------+
    |     |       |-------->|       |-------->|       |
    |     | Aqsn  |         | Down  |   Down  |  Up   |
    |     |       |----+    |       |<--------|       |
    |     +-------+    |    +-------+         +-------+
    |                  |        |                 |
    | Stop             |        |                 |
    | Cease-ack        | Stop   | Stop            | Stop
    |     +-------+    |        |                 |
    |     |       |    V        V                 V
    +-----| Cease |<---+--------+-----------------+
          |       |
          +-------+

Following is a brief summary and overview of gateway operations by state as determined by this model.

Idle State (0)
In the Idle state the gateway has no resources (table space) assigned to the neighbor and no protocol 
activity of any kind is in progress.    It responds only to a Request command or a Start event (system or 
operator initiated) and ignores all other commands and responses.    The gateway may optionally return a 
Cease-ack response to a Cease command in this state.

Upon receipt of a Request command the gateway initializes the state variables as described in the State 
Variables Section, sends a Confirm response and transitions to the Down state, if resource commitments 
permit, or sends a Refuse response and returns to the Idle state if not.    Upon receipt of a Start event it 
sends a Request command and transitions to the Acquisition state.

Acquisition State (1)
In the Acquisition state the gateway periodically retransmits Request commands.    Upon receiving a 
Confirm response it initializes the state variables and transitions to the Down state.    Upon receiving a 



Refuse response it returns to the Idle state.    The gateway does not send any other commands or 
responses in this state, since not all state variables have yet been initialized.

Down State (2)
In the Down state the gateway has received a Request command or a Confirm response has been 
received for a previously sent Request.    The neighbor-reachability protocol has declared the neighbor to 
be down.    In this state the gateway processes Request, Cease and Hello commands and responds as 
required.    It periodically retransmits Hello commands if enabled.    It does not process Poll commands 
and does not send them, but may optionally process an unsolicited Update indication.

Up State (3)
In the Up state the neighbor-reachability protocol has declared the neighbor to be up.    In this state the 
gateway processes and responds to all commands.    It periodically retransmits Hello commands, if 
enabled, and Poll commands.

Cease State (4)
A Stop event causes a Cease command to be sent and a transition to the Cease state.    In this state the 
gateway periodically retransmits the Cease command and returns to the Idle state upon receiving a 
Cease-ack response or a another Stop event.    The defined state transitions are designed to ensure that 
the neighbor does with high probability receive the Cease command and stop the protocol.

In following sections of this document a state machine which can serve as a model for implementation is 
described.    It may happen that implementators may deviate from this model while conforming to the 
protocol specification;    however, in order to verify conformance to the specification, the state-machine 
model is intended as the reference model.

Although not mentioned specifically in this document, it should be understood that all Internet gateways 
must include support for the Internet Control Message Protocol (ICMP), specifically ICMP Redirect and 
ICMP Destination Unreachable messages.



RFC-904    Exterior Gateway Protocol Formal Specification

Nomenclature
The following EGP message types are recognized in this document.    The format of each of these 
messages is described in Appendix A.

Name Function
Request request acquisition of neighbor and/or initialize polling variables
Confirm confirm acquisition of neighbor and/or initialize polling variables
Refuse refuse acquisition of neighbor
Cease request de-acquisition of neighbor
Cease-ack confirm de-acquisition of neighbor
Hello request neighbor reachability
I-H-U confirm neighbor reachability
Poll request net-reachability update
Update net-reachability update
Error error

EGP messages are classed as commands which request some action, responses, which are sent to 
indicate the status of that action, and indications, which are similar to responses, but may be sent at any 
time.    Following is a list of commands along with their possible responses.

Command Corresponding Responses
Request Confirm, Refuse, Error
Cease Cease-ack, Error
Hello I-H-U, Error
Poll Update, Error

The Update and Error messages are classed both as responses and indications.    When sent in reply to a
previous command, either of these messages is classed as a response.    In some circumstances an 
unsolicited Update message can be sent, in which case it is classed as an indication.    The use of the 
Error message other than as a response to a previous command is a topic for further study.



RFC-904    Exterior Gateway Protocol Formal Specification

State Machine
This section describes the state-machine model for EGP, including the variables and constants which 
establish the state at any time, the events which cause the state transitions, the actions which result from 
these transitions and the state-transition table which defines the behavior.

State Variables
Fixed Parameters
Events
State Transition Table
State Transitions and Actions



RFC-904    Exterior Gateway Protocol Formal Specification

State Variables
The state-machine model includes a number of state variables which establish the state of the protocol 
between the gateway and each of its neighbors.    Thus, a gateway maintaining EGP with a number of 
neighbors must maintain a separate set of these state variables for each neighbor.    The current state, 
events and actions of the state machine apply to each neighbor separately.

The model assumes that system resources, including the set of state variables, are allocated when the 
state machine leaves the Idle state, either because of the arrival of a Request specifying a new neighbor 
addreess, or because of a Start event specifying a new neighbor address.    When either of these events 
occur the values of the state variables are initialized as indicated below.    Upon return to the Idle state all 
resources, including the set of state variables, are deallocated and returned to the system.    
Implementators may, of course, elect to dedicate resources and state variables permananently.

Included among the set of state variables are the following which determine the state transitions of the 
model.    Initial values for all of the variables except the send sequence number S are set during the initial 
Request/Confirm exchange.    The initial value for S is arbitrary.

Name Function
R receive sequence number
S send sequence number
T1 interval between Hello command retransmissions
T2 interval between Poll command retransmissions
T3 interval during which neighbor-reachability indications are counted
M hello polling mode
t1 timer 1 (used to control Request, Hello and Cease command retransmissions)
t2 timer 2 (used to control Poll command retransmissions)
t3 timer 3 (abort timer)

Additional state variables may be necessary to support various timer and similar internal housekeeping 
functions.    The function and management of the cited variables are discussed in Section 4.



RFC-904    Exterior Gateway Protocol Formal Specification

Fixed Parameters
This section defines several fixed parameters which characterize the gateway functions.    Included is a 
suggested value for each parameter based on experimental implementations in the Internet system.    
These values may or may not be appropriate for the individual configuration.

Following is a list of time-interval parameters which control retransmissions and other time-dependent 
functions.

Name Value Description
P1 30 sec minimum interval acceptable between successive Hello commands received
P2 2 min minimum interval acceptable between successive Poll commands recieved
P3 30 sec interval between Request or Cease command retransmissions
P4 1 hr interval during which state variables are maintained in the absence of commands

or responses in the Down and Up states.
P5 2 min interval during which state variables are maintained in the absence of responses 

in the Acquisition and Cease states

Parameters P4 and P5 are used only if the abort-timer option is implemented.    Parameter P4 establishes
how long the machine will remain in the Down and Up states in the absence of commands or responses 
and would ordinarily be set to sustain state information while the neighbor is dumped and restarted, for 
example.    Parameter P5 establishes how long the machine will remain in the Acquisition or Cease states 
in the absence of responses and would ordinarily be set in the same order as the expected value of T3 
variables.

Following is a list of other parameters of interest.

Name Active Passive Description
j 3 1 neighbor-up threshold
k 1 4 neighbor-down threshold

The j and k parameters establish the "noise immunity" of the neighbor-reachability protocol described 
later.    The values in the Active column are suggested if the gateway elects to do hello polling, while the 
values in the Passive column are suggested otherwise.



RFC-904    Exterior Gateway Protocol Formal Specification

Events
Following is a list of events that can cause state transitions in the model.

Name Event
Up At least j neighbor-reachability indications have been received within the last T3 seconds.
Down At most k neighbor-reachabilitiy indications have been received within the last T3 

seconds.
Request Request command has been received.
Confirm Confirm command has been received.
Refuse Refuse response has been received.
Cease Cease command has been received.
Cease-ack Cease-ack response has been received.
Hello Hello command has been received.
I-H-U I-H-U response has been received.
Poll Poll command has been received.
Update Update response has been received.
Start Start event has been recognized due to system or operator intervention.
Stop/t3 Stop event has been recognized due to (a) system or operator intervention or (b) 

expiration of the abort timer t3.
t1 Timer t1 has counted down to zero.
t2 Timer t2 has counted down to zero.

There is one special event, called a neighbor-reachability indication, which occurs when:

o The gateway is operating in the active mode (hello polling enabled) and either a Confirm, I-H-
U or Update response is received.

o The gateway is operating in the passive mode (hello polling disabled) and either a Hello or 
Poll command is received with the "Up state" code in the Status field.



RFC-904    Exterior Gateway Protocol Formal Specification

State Transition Table
The following table summarizes the state transitions that can occur in response to the events listed 
above.    Transitions are shown in the form n/a, where n is the next state and a represents the action.

             0 Idle      1 Aqsn      2 Down       3 Up       4 Cease
          +-----------+-----------+-----------+-----------+-----------+
Up        |0          |1          |3/Poll     |3          |4          |
Down      |0          |1          |2          |2          |4          |
Request   |2/Confirm *|2/Confirm  |2/Confirm  |2/Confirm  |4/Cease    |
Confirm   |0/Cease  **|2          |2          |3          |4          |
Refuse    |0/Cease  **|0          |2          |3          |4          |
Cease     |0/Cease-ack|0/Cease-ack|0/Cease-ack|0/Cease-ack|0/Cease-ack|
Cease-ack |0          |1          |2          |3          |0          |
Hello     |0/Cease  **|1          |2/I-H-U    |3/I-H-U    |4          |
I-H-U     |0/Cease  **|1          |2/Process  |3/Process  |4          |
Poll      |0/Cease  **|1          |2          |3/Update   |4          |
Update    |0/Cease  **|1          |2          |3/Process  |4          |
Start     |1/Request  |1/Request  |1/Request  |1/Request  |4          |
Stop/t3   |0          |0          |4/Cease    |4/Cease    |0          |
t1        |0          |1/Request  |2/Hello    |3/Hello    |4/Cease    |
t2        |0          |1          |2          |3/Poll     |4          |
          +-----------+-----------+-----------+-----------+-----------+

Note *:    The transition shown applies to the case where the neighbor-acquisition request is accepted.    
The transition "0/Refuse" applies to the case where the request is rejected.

Note **:    The Cease action shown is optional.



RFC-904    Exterior Gateway Protocol Formal Specification

State Transitions and Actions
The following table describes in detail the transitions of the state machine and the actions evoked.

                Next    Message
Event           State   Sent            Actions
------------------------------------------------------------------------
Idle State (0)
Request         2       Confirm         Initialize state variables and
                        Hello           reset timer t1 to T1 seconds and
                                        reset timer t3 to P5 seconds.
  (or)          0       Refuse          Return resources.
Cease           0       Cease-ack       Return resources.
Start           1       Request         Reset timer t1 to P3 seconds and
                                        reset timer t3 to P5 seconds.
Acquisition State (1)
Request         2       Confirm         Initialize state variables and
                        Hello           reset timer t1 to T1 seconds and
                                        reset timer t3 to P5 seconds.
Confirm         2       Hello           Initialize state variables and
                                        reset timer t1 to T1 seconds and
                                        reset timer t3 to P5 seconds.
Refuse          0                       Stop timers and return
                                        resources.
Cease           0       Cease-ack       Stop timers and return
                                        resources.
Start           1       Request         Reset timer t1 to P3 seconds and
                                        reset timer t3 to P5 seconds.
Stop/t3         0                       Stop timers and return
                                        resources.
t1              1       Request         Reset timer t1 to P3 seconds.

Down State (2)
Note: Reset timer t3 to P4 seconds on receipt of a reachability indication.

Up              3       Poll            Reset timer t2 to T2 seconds.
Request         2       Confirm         Reinitialize state variables and
                        Hello           reset timer t1 to T1 seconds and
                                        reset timer t3 to P5 seconds.
Cease           0       Cease-ack       Stop timers and return
                                        resources.
Hello           2       I-H-U
I-H-U           2                       Process neighbor-reachability
                                        info.
Start           1       Request         Reset timer t1 to P3 seconds and
                                        reset timer t3 to P5 seconds.
Stop/t3         4       Cease           Reset timer t1 to P3 seconds and
                                        reset timer t3 to P5 seconds.
t1              2       Hello           Reset timer t1 to T1 seconds.

Up State (3)
Note: Reset timer t3 to P4 seconds on receipt of a reachability indication.



Down            2                       Stop timer t2.
Request         2       Confirm         Renitialize state variables and
                        Hello           reset timer t1 to T1 seconds and
                                        reset timer t3 to P5 seconds.
Cease           0       Cease-ack       Stop timers and return
                                        resources.
Hello           3       I-H-U
I-H-U           3                       Process neighbor-reachability
                                        info.
Poll            3       Update
Update          3                       Process net-reachability info.
Start           1       Request         Reset timer t1 to P3 seconds and
                                        reset timer t3 to P5 seconds.
Stop/t3         4       Cease           Reset timer t1 to P3 seconds and
                                        reset timer t3 to P5 seconds.
t1              3       Hello           Reset timer t1 to T1 seconds.
t2              3       Poll            Reset timer t2 to T2 seconds.

Cease State (4)
Request         4       Cease
Cease           0       Cease-ack       Stop timers and return
                                        resources.
Cease-ack       0                       Stop timers and return
                                        resources.
Stop/t3         0                       Stop timers and return
                                        resources.
t1              4       Cease           Reset timer t1 to P3 seconds.



RFC-904    Exterior Gateway Protocol Formal Specification

Functional Description
This section contains detailed descriptions of the various procedures and algorithms used to manage the 
protocol.

Managing the State Variables
Sequence Numbers
Polling Intervals
Hello Polling Mode
Timers
Starting and Stopping the Protocol
Determining Neighbor Reachability
Determining Network Reachability
Error Messages



RFC-904    Exterior Gateway Protocol Formal Specification

Managing the State Variables
The state variables which characterize the protocol are summarized above.    This section describes the 
detailed management of these variables, including sequence numbers, polling intervals and timers.



RFC-904    EGP:    Managing the State Variables

Sequence Numbers
All EGP commands and replies carry a sequence number.    The state variable R records the last 
sequence number received in a command from that neighbor.    The current value of R is used as the 
sequence number for all replies and indications sent to the neighbor until a command with a different 
sequence number is received from that neighbor.

Implementors are free to manage the sequence numbers of the commands sent;    however, it is 
suggested that a separate send state variable S be maintained for each EGP neighbor and that its value 
be incremented just before the time an Poll command is sent and at no other times.    The actions upon 
receipt of a response or indication with sequence number not equal to S is not specified;    however, it is 
recommended these be discarded.



RFC-904    EGP:    Managing the State Variables

Polling Intervals
As part of the Request/Confirm exchange a set of polling intervals are established including T1, which 
establishes the interval between Hello command retransmissions, and T2, which establishes the interval 
between Poll retransmissions.

Each gateway configuration is characterized by a set of fixed parameters, including P1, which specifies 
the minimum polling interval at which it will respond to Hello commands, and P2, which specifies the 
minimum polling interval at which it will respond to Poll commands.    P1 and P2 are inserted in the Hello 
Interval (S1) and Poll Interval (S2) fields, respectively, of Request commands and Confirm responses.

A gateway receiving a Request command or Confirm response uses the S1 and S2 fields in the message 
to calculate its own T1 and T2 state variables, respectively.    Implementors are free to perform this 
calculation in arbitrary ways;    however, the following constraints must be observed:

1) If T1 < S1 the neighbor may discard Hello commands.    If T2 < S2 the neighbor may 
discard Poll commands.

2) The time window T3 in which neighbor-reachability indications are counted is 
dependent on T1.    In the case where two neighbors select widely differing values for 
their T3 state variables, the neighbor-reachability algorithm may not work properly.    
This can be avoided if T1 > max(P1, S1).

3) If either S1 or S2 or both are unacceptable for some reason (e.g.    exceed useful 
limits), the neighbor may either send a Refuse response or declare a Stop event, 
depending on state.

It is suggested that T3 be computed as four times the value of T1, giving a window of four neighbor-
reachability indications, which has been found appropriate in the experimental implementations.    
Implementors may choose to make T3 a fixed parameter in those cases where the path between the 
neighbors has well-known characteristics.

Note that, if a gateway attempts to send Hello commands near the rate max(P1, S1) or Poll commands 
near the rate max(P2, S2), the neighbor may observe their succeeding arrivals to violate the polling 
restrictions due to bunching in the net.    For this reason the gateway should send at rates somewhat 
below these.    Just how much below these rates is appropriate depends on many factors beyond the 
scope of this specification.



RFC-904    EGP:    Managing the State Variables

Hello Polling Mode
The neighbor-reachability algorithm can be used in either the active or passive mode.    In the active mode
Hello commands are sent periodically along with Poll commands, with reachability determined by the 
corresponding I-H-U and Update responses.    In the passive mode Hello commands are not sent and I-H-
U responses are not expected.    Reachability is then determined from the Status field of received Hello or 
Poll commands or Update responses.

The M state variable specifies whether the gateway operates in the active or passive mode.    At least one 
of the two neighbors sharing the protocol must operate in the active mode;    however, the neighbor-
reachability protocol is designed to work even if both neighbors operate in the active mode.    The value of
M is determined from the Status field of a Request command or Confirm response.    The sender sets this 
field according to whether the implementation supports the active mode, passive mode or both:

Status Sender capabilities
0 either active or passive
1 active only
2 passive only

The receiver inspects this field and sets the value of M according to its own capabilities as follows:

Status Receiver capabilities
field 0 1 2
0 * active passive
1 passive active passive
2 active active **

In the case of "*" the mode is determined by comparing the autonomous system numbers of the 
neighbors.    The neighbor with the smallest such number assumes active mode, while the other neighbor 
assumes passive mode.    In the case of "**" the neighbor may either send a Refuse response or declare 
a Stop event, depending on state.



RFC-904    EGP:    Managing the State Variables

Timers
There are three timers defined in the state machine:    t1, used to control retransmission of Request, Hello 
and Cease messages, t2, used to control retransmission of Poll commands, and t3, which serves as an 
abort-timer mechanism should the protocol hang indefinitely.    The timers are set to specified values upon
entry to each state and count down to zero.

In the case of t1 and t2 state-dependent events are declared when the timer counts down to zero, after 
which the timer is reset to the specified value and counts down again.    In the case of t3 a Stop event is 
declared when the timer counts down to zero.    Implementors may choose not to implement t3 or, if so, 
may choose to implement it only in certain states, with the effect that Request, Hello and/or Cease 
commands may be retransmitted indefinitely.

The following table shows the initial values for each of the timers in each state.    A missing value indicates
the timer is not used in that state.    Note that timer t3 is set to P4 upon receipt of a neighbor-reachability 
indication when in either the Down or Up states.

Idle Aqsn Down Up Cease
Timer 0 1 2 3 4
t1 P3 T1 P3
t2                                                            T2
t3 P5 P5 P5



RFC-904    Exterior Gateway Protocol Formal Specification

Starting and Stopping the Protocol
The Start and Stop events are intrinsic to the system environment of the gateway.    They can be declared 
as the result of the gateway process being started and stopped by the operator, for example.    A Start 
event has meaning only in some states;    however, a Stop event has meaning in all states.

In all except the Idle state the abort timer t3 is presumed running.    This timer is initialized at P5 seconds 
upon entry to any state and at P4 seconds upon receipt of a neighbor-reachability indication in the Down 
and Up states.    If it expires a Stop event is declared.    A Stop event can also be declared by an intrinsic 
system action such as a resource problem or operator command.

If the abort timer is not implemented a manually-initiated Stop event can be used to stop the protocol.    If 
this is done in the Down or Up states, the machine will transition to the Cease state and emit a Cease 
command.    If the neighbor does not respond to this command the machine will stay in the Cease state 
indefinitely;    however, a second Stop event can be used in this state to force a transition to the Idle state.

A Cease command received in any state will cause the gateway to immediately send the Cease-ack 
response and transition to the Idle state.    This causes the protocol to be stopped and all system 
resources committed to the gateway process to be released.    The interval between the time the gateway 
enters the Idle state as the result of receiving a Cease command and the time when it next sends a 
Request command to resume the protocol is not specified;    however, it is recommended this interval be 
at least P5 seconds.

It may happen that the Cease-ack response is lost in the network, causing the neighbor to retransmit the 
Cease response indefinitely, at least if it has not implemented the abort-timer option.    In order to reduce 
the likelihood of this happening, it is suggested that a gateway in the Idle state be prepared to reply to a 
Cease command with a Cease-ack response whenever possible.



RFC-904    Exterior Gateway Protocol Formal Specification

Determining Neighbor Reachability
The purpose of the neighbor-reachability algorithm is to confirm that the neighbor can safely be 
considered operational and capable of providing reliable net-reachability information.    An equally 
important purpose is to filter noisy reachability information before sending it on to the remainder of the 
Internet gateway system, thus avoiding unnecessary reachability changes.

As described above, a gateway operating in the active mode sends periodic Hello commands and listens 
for I-H-U responses in order to determine neighbor-reachability indications.    A gateway operating in the 
passive mode determines reachability indications by means of the Status field in received Hello 
commands.    Poll commands and Update responses can be used in lieu of Hello commands and I-H-U 
responses respectively, since they contain the same Status-field information.

The neighbor-reachability algorithm runs continuously while the gateway is in the Down and Up states 
and operates as follows.    Define a moving window in time starting at the present and extending 
backwards for t seconds.    Then count the number n of neighbor-reachability indications which have 
occurred in that window.    If n increases to j, then declare a Up event.    If n decreases to k, then declare a
Down event.    The number n is set to zero upon entering the Down state from any state other than the Up
state.

The window t in this algorithm is defined as T3 seconds, the value of which is suggested as four times T1,
which itself is determined during the Request/Confirm exchange.    For proper operation of the algorithm 
only one neighbor-reachability indication is significant in any window of T1 seconds and additional ones 
are ignored.    Note that the only way n can increase is as the result of a new neighbor-reachability 
indication and the only way it can decrease is as the result of an old neighbor-reachability indication 
moving out of the window.

The behavior of the algorithm described above and using the suggested fixed parameters j and k differs 
depending on whether the gateway is operating in the active or passive mode.    In the active mode (j = 3, 
k = 1 and T3/T1 = 4), once the neighbor has been declared down it will be forced down for at least two T1
intervals and, once it has been declared up it will be forced up for at least two T1 intervals.    It will not 
change state unless at least three of the last four determinations of reachability have indicated that 
change.

In the passive mode (j = 1, k = 4 and T3/T1 = 4), the neighbor will be considered up from the first time the 
Status field of a Hello or Poll command or Update response indicates "Up state" until four successive T1 
intervals have passed without such indication.    This design, suggested by similar designs used in the 
ARPANET, has proven effective in the experimental implementations, but may need to be adjusted for 
other configurations.

It is convenient for the active gateway to send Hello commands at a rate of one every T1 seconds and 
substitute a Poll command for a Hello command approximately once every T2 seconds, with the 
neighbor-reachability indication generated by the corresponding I-H-U or Update responses.    Its passive 
neighbor generates neighbor-reachability indications from the Status field of received Hello and Poll 
commands and Update responses.

Implementors may find the following model useful in the understanding and implementation of this 
algorithm.    Consider an n-bit shift register that shifts one bit to the right each T1-second interval.    If a 
neighbor-reachability indication was received during the preceding T1-second interval a one bit is shifted 
into the register at the end of the interval;    otherwise, a zero bit is shifted.    A table of 2**n entries indexed
by the contents of the register can be used to calculate the number of one bits, which can then be used to
declare the appropriate event to the state machine.    A value of n equal to four has been found useful in 
the experimental implementations.



RFC-904    Exterior Gateway Protocol Formal Specification

Determining Network Reachability
Network reachability information is encoded into Update messages in the form of lists of nets and 
gateways.    The IP Source Address field of the Poll command is used to specify a network common to the
autonomous systems of each of the neighbors, which is usually, but not necessarily, the one common to 
the neighbors themselves.    The Update response includes a list of gateways on the common net.    
Associated with each gateway is a list of the networks reachable via that gateway together with 
corresponding hop counts.

It is important to understand that, at the present state of development as described in RFC-827 and RFC-
888, the EGP architectural model restricts the interpretation of "reachable" in this context.    This 
consideration, as well as the implied topological restrictions, are beyond the scope of discussion here.    
The reader is referred to the RFCs for further discussion.

Two types of gateway lists can be included in the Update response, the format of which is described in 
Appendix A.    Both lists include only those gateways directly connected to the net specified in the IP 
Source Network field of the last-received Poll command.    The internal list includes some or all of the 
gateways in the same autonomous system as the sender, together with the nets which are reachable via 
these gateways, with the sending gateway listed first.    A net is reachable in this context if a path exists to 
that net including only gateways in the system.    The external list includes those gateways in other 
autonomous systems known to the sender.    It is important to realize that the hop counts do not represent 
a routing metric and are comparable between different gateways only if those gateways belong to the 
same autonomous system;    that is, are in the internal list.

According to the current system architectural model, only gateways belonging to a designated system, 
called the core system, may include the external list in their Update responses.    All other gateways may 
include only those gateways belonging to the same system and can claim reachability for a particular net 
only if that net is reachable in the same system.

The interval between successive Poll commands T2 is determined during the Request/Confirm exchange.
However, the specification permits at most one unsolicited Update indication between succeeding Poll 
commands received from the neighbor.    It is the intent of the model here that an Update indication is sent
(a) upon entry to the Up state and (b) when a change in the reachability data base is detected, subject to 
this limitation.

Occasionally it may happen that a Poll command or Update response is lost in the network, with the effect
that net-reachability information may not be available until after another T2 interval.    As an 
implementation option, the gateway sending a Poll command and not receiving an Update response after 
T1 seconds may send another Poll.    The gateway receiving this Poll may either (a) send an Update 
response if it never received the original Poll for that interval, (b) send a second Update response (which 
counts as the unsolicited Update indication mentioned in the preceding paragraph) or (c) send an Error 
response or not respond at all in other cases.



RFC-904    Exterior Gateway Protocol Formal Specification

Error Messages
Error messages can be used to report problems such as described in Appendix A in connection with the 
Error Response/Indication message format.    In general, an Error message is sent upon receipt of 
another command or response with bad format, content or ordering, but never in response to another 
Error message.    Receipt of an Error message should be considered advisory and not result in change of 
state, except possibly to evoke a Stop event.



RFC-904    Exterior Gateway Protocol Formal Specification

Appendix A.    EGP Message Formats
The formats for the various EGP messages are described in this section.    All EGP messages include a 
ten-octet header of six fields, which may be followed by additional fields depending on message type.    
The format of the header is shown below along with a description of its fields.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | EGP Version # |     Type      |     Code      |    Status     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Checksum               |       Autonomous System #     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Sequence #             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

EGP Version # assigned number identifying the EGP version (currently 2)

Type identifies the message type

Code identifies the message code (subtype)

Status                        contains message-dependent status information

Checksum The EGP checksum is the 16-bit one's complement of the one's complement sum
of the EGP message starting with the EGP version number field. When 
computing the checksum the checksum field itself should be zero.

Autonomous System # assigned number identifying the particular autonomous system

Sequence # send state variable (commands) or receive state variable (responses and 
indications)

Following sections describe each of the message formats.    Note that the above description applies to all 
formats and will not be repeated.



RFC-904    EGP:    Appendix A.    EGP Message Formats

Neighbor Acquisition Messages
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | EGP Version # |     Type      |     Code      |    Status     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Checksum               |       Autonomous System #     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Sequence #             |          Hello Interval       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Poll Interval          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Note:    the Hello Interval and Poll Interval fields are present only in Request and Confirm messages.

Type 3

Code 0 Request command
1 Confirm response
2 Refuse response
3 Cease command
4 Cease-ack response

Status (see below) 0 unspecified
1 active mode
2 passive mode
3 insufficient resources
4 administratively prohibited
5 going down
6 parameter problem
7 protocol violation

Hello Interval minimum Hello command polling interval (seconds)

Poll Interval minimum Poll command polling interval (seconds)

Following is a summary of the assigned Status codes along with a list of scenarios in which they might be 
used.

Code Status Scenarios
0 unspecified when nothing else fits

1 active mode Request/Confirm only

2 passive mode Request/Confirm only

3 insufficient resources 1. out of table space
2. out of system resources

4 administratively 1. unknown Autonomous System
prohibited 2. use another gateway



5 going down 1. operator initiated Stop
2. abort timeout

6 parameter problem 1. nonsense polling parameters
2. unable to assume compatible mode

7 protocol violation 1. Invalid command or response received in this state



RFC-904    EGP:    Appendix A.    EGP Message Formats

Neighbor Reachability Messages
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | EGP Version # |     Type      |     Code      |    Status     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Checksum                   |    Autonomous System #        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      Sequence #               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Type 5

Code 0 Hello command
1 I-H-U response

Status 0 indeterminate
1 Up state
2 Down state



RFC-904    EGP:    Appendix A.    EGP Message Formats

Poll Command
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | EGP Version # |    Type       |     Code      |    Status     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         Checksum              |       Autonomous System #     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         Sequence #            |           Reserved            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       IP Source Network                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Type 2

Code 0

Status 0 indeterminate
1 Up state
2 Down state

IP Source Network IP network number of the network about which reachability information is being 
requested (coded as 1, 2 or 3 octets, left justified with trailing zeros)



RFC-904    EGP:    Appendix A.    EGP Message Formats

Update Response/Indication
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | EGP Version # |    Type       |     Code      |    Status     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Checksum                   |       Autonomous System #     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Sequence #                 | # of Int Gwys | # of Ext Gwys |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       IP Source Network                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Gateway 1 IP address (without network #)      | (1-3 octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  # Distances  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Distance 1   |   # Nets      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   net 1,1,1   ||||||||||||||||||||||||||||||||| (1-3 octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   net 1,1,2   ||||||||||||||||||||||||||||||||| (1-3 octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Distance 2   |   # Nets      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   net 1,2,1   ||||||||||||||||||||||||||||||||| (1-3 octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   net 1,2,2   ||||||||||||||||||||||||||||||||| (1-3 octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Gateway  n IP address (without network #)         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  # Distances  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Distance 1   |  # Nets       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   net n,1,1   |||||||||||||||||||||||||||||||||  (1-3 octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   net n,1,2   |||||||||||||||||||||||||||||||||  (1-3 octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Distance 2   |  # Nets       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   net n,2,1   |||||||||||||||||||||||||||||||||  (1-3 octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   net n,2,2   |||||||||||||||||||||||||||||||||  (1-3 octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                      ...

Type 1

Code 0



Status 0 indeterminate
1 Up state
2 Down state
128 unsolicited message bit

# of Int Gwys number of interior gateways appearing in this message

# of Ext Gwys number of exterior gateways appearing in this message

IP Source Network IP network number of the network about which reachability information is being 
supplied (coded as 1, 2 or 3 octets, left justified with trailing zeros)

Gateway IP addresses IP address (without network number) of the gateway block (coded as 1, 2 or 3 
octets)

# of Distances number of distances in the gateway block

Distances numbers depending on autonomous system architecture

# of Nets number of nets at each distance

Nets IP network number reachable via the gateway



RFC-904    EGP:    Appendix A.    EGP Message Formats

Error Response/Indication
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | EGP Version # |    Type       |     Code      |    Status     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Checksum                   |       Autonomous System #     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       Sequence #              |          Reason               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                     Error Message Header                      |
     |            (first three 32-bit words of EGP header)           |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Type 8

Code 0

Status 0 indeterminate
1 Up state
2 Down state
128 unsolicited message bit

Reason (see below) 0 unspecified
1 bad EGP header format
2 bad EGP data field format
3 reachability info unavailable
4 excessive polling rate
5 no response

Error Message Header first three 32-bit words of EGP header

Following is a summary of the assigned Reason codes along with a list of scenarios in which they might 
be used.

Code Reason Scenarios
0 unspecified when nothing else fits

1 bad EGP header format 1. bad message length
2. invalid Type, Code or Status fields

Notes: The recipient can determine which of the above 
hold by inspecting the EGP header included in the 
message. An instance of a wrong EGP version or bad 
checksum should not be reported, since the original 
recipient can not trust the header format. An instance of 
an unknown    autonomous system should be caught at 
acquisition time.

2 bad EGP data field format 1. nonsense polling rates (Request/Confirm)



2. invalid Update message format
3. response IP Net Address field does not match 
command (Update)

Notes: An instance of nonsense polling intervals (e.g. too
long to be useful) specified in a Request or Confirm 
should result in a Refuse or Cease with this cause 
specified.

3 reachability info unavailable 1. no info available on net specified in IP Net Address 
field (Poll)

4 excessive polling rate 1. two or more Hello commands received within 
minimum specified polling interval
2. two or more Poll commands received within minimum 
specified polling interval
3. two or more Request commands received within some
(reasonably short) interval

Notes: The recipient can determine which of the above 
hold by inspecting the EGP header included in the 
message.

5 no response 1. no Update received for Poll within some (reasonably 
long) interval



RFC-904    Exterior Gateway Protocol Formal Specification

Appendix B.    Comparison with RFC-888
Minor functional enhancements are necessary in the RFC-888 message formats to support certain 
features assumed of the state-machine model, in particular the capability to request a neighbor to 
suppress Hello commands.    In addition, the model suggests a mapping between its states and certain 
status and error indications which clarifies and generalizes the interpretation.

All of the header fields except the Status field (called the Information field at some places in RFC-888) 
remain unchanged.    The following table summarizes the suggested format changes in the Status field for
the various messages by (Type, Code) class.

Class Messages Status Codes
3,0 Request 0 unspecified
3,1 Confirm 1 active mode
3,2 Refuse 2 passive mode
3,3 Cease 3 insufficient resources
3,4 Cease-ack 4 administratively prohibited

5 going down
6 parameter problem

5,0 Hello 0 indeterminate
5,1 I-H-U 1 Up state
2,0 Poll 2 Down state
1,0 Update 128 unsolicited message bit
8,0 Error

The changes from RFC-888 are as follows:

1.    The status codes have been combined in two classes, one for those messages involved in starting 
and stopping the protocol and the other for those messages involved in maintaining the protocol and 
exchanging reachability information.    Some messages of either class may not use all the status codes 
assigned.

2.    The status codes for the Request and Confirm indicate whether the sender can operate in active or 
passive mode.    In RFC-888 this field must be zero;    however, RFC-888 does not specify any mechanism
to decide how the neighbors poll each other.

3.    The status codes for the Cease, Refuse and Cease-ack have the same interpretation.    This provides 
a clear and unambiguous indication when the protocol is terminated due to an unusual situation, for 
instance if the NOC dynamically repartitions the ARPANET.    The assigned codes are not consistent with 
RFC-888, since the codes for the Refuse and Cease were assigned conflicting values;    however, the 
differences are minor and should cause no significant problems.

4.    The status codes for the Hello, I-H-U, Poll, Update and Error have the same interpretation.    Codes 0 
through 2 are mutually exclusive and are chosen solely on the basis of the state of the sender.    In the 
case of the Update (and possibly Error) one of these codes can be combined with the "unsolicited bit," 
which corresponds to code 128.    In RFC-888 this field is unused for the Poll and Error and may contain 
only zero or 128 for the Update, so that the default case is to assume that reciprocal reachability cannot 
be determined by these messages.

5.    Some of the reachability codes defined in RFC-888 have been removed as not applicable.



RFC-904    Exterior Gateway Protocol Formal Specification

Appendix C.    Reachability Analysis
The following table shows the state transitions which can occur in a system of two neighboring EGP 
gateways.    Besides being useful in the design and verification of the protocol, the table is useful for 
implementation and testing.

The system of two neighboring EGP gateways is modelled as a finite-state automaton constructed as the 
Cartesian product of two state machines as defined above.    Each state of this machine is represented as
[i,j], where i and j are states of the original machine.    Each line of the table shows one state transition of 
the machine in the form:

                                                [i1,j1] -> [i2,j2]    E    A

which specifies the machine in state [i1,j1] presented with event E transitions to state [i2,j2] and generates
action A.    Multiple actions are separated by the "/" symbol.    The special symbol "*" represents the set of 
lines where all "*"s in the line take on the (same) values 0 - 4 in turn.

The table shows only those transitions which can occur as the result of events arriving at one of the two 
neighbors.    The full table includes a duplicate set of lines for the other neighbor as well, with each line 
derived from a line of the table below using the transformation:

                  [i1,j1] -> [i2,j2]    E    A    =>    [j1,i1] -> [j2,i2]    E    A

State    State  Event           Actions
---------------------------------------------------
[*,4] -> [0,4]  Cease           Cease-ack

[0,1] -> [2,1]  Request         Confirm/Hello/Up/t1
[0,1] -> [0,1]  Request         Refuse
[0,*] -> [1,*]  Start           Request/t1

[1,1] -> [2,1]  Request         Confirm/Hello/Up/t1
[1,2] -> [2,2]  Confirm         Hello/Up/t1
[1,3] -> [2,3]  Confirm         Hello/Up/t1
[1,0] -> [0,0]  Refuse          Null
[1,*] -> [1,*]  Start           Request/r1
[1,*] -> [0,*]  Stop            Null
[1,*] -> [1,*]  t1              Request/t1

[2,1] -> [3,1]  Up              Down/Hello/Poll/t1/t2
[2,1] -> [2,1]  Request         Confirm/Hello/Up/t1
[2,2] -> [2,2]  Hello           I-H-U
[2,3] -> [2,3]  Hello           I-H-U
[2,2] -> [2,2]  I-H-U           Process



[2,3] -> [2,3]  I-H-U           Process
[2,*] -> [1,*]  Start           Request/r1
[2,*] -> [4,*]  Stop            Cease/t1
[2,1] -> [2,1]  t1              Hello/t1
[2,2] -> [2,2]  t1              Hello/t1
[2,3] -> [2,3]  t1              Hello/t1

[3,1] -> [2,1]  Down            Null
[3,2] -> [2,2]  Down            Null
[3,3] -> [2,3]  Down            Null
[3,1] -> [2,1]  Request         Confirm/Hello/Up/t1
[3,2] -> [3,2]  Hello           I-H-U
[3,3] -> [3,3]  Hello           I-H-U
[3,2] -> [3,2]  I-H-U           Process
[3,3] -> [3,3]  I-H-U           Process
[3,3] -> [3,3]  Poll            Update
[3,3] -> [3,3]  Update          Process
[3,*] -> [1,*]  Start           Request/r1
[3,*] -> [4,*]  Stop            Cease/t1
[3,1] -> [3,1]  t1              Hello/t1
[3,2] -> [3,2]  t1              Hello/t1
[3,3] -> [3,3]  t1              Hello/t1
[3,1] -> [3,1]  t2              Poll/t2
[3,2] -> [3,2]  t2              Poll/t2
[3,3] -> [3,3]  t2              Poll/t2

[4,1] -> [4,1]  Request         Cease
[4,*] -> [0,*]  Cease           Cease-ack
[4,0] -> [0,0]  Cease-ack       Null
[4,*] -> [0,*]  Stop            Null
[4,*] -> [4,*]  t1              Cease/t1

In the state-machine model defined in this document all states of the above machine are reachable;    
however, some are reachable only in extreme cases when one neighbor crashes, for example.    In the 
common case where only one of the neighbors initiates and terminates the protocol and neither one 
crashes, for example, not all states are reachable.    Following is a matrix showing the states which can be
reached in this case, where the neighbor that initiates and terminates the protocol is called the active 
gateway and the other the passive gateway.



                                Passive Gateway
Active     0 Idle      1 Aqsn      2 Down      3 Up        4 Cease
Gateway   +-----------+-----------+-----------+-----------+-----------+
0 Idle    |stable     |           |           |           |unstable   |
1 Aqsn    |unstable   |unstable   |unstable   |unstable   |unstable   |
2 Down    |           |           |stable     |unstable   |           |
3 Up      |           |           |unstable   |stable     |           |
4 Cease   |unstable   |unstable   |unstable   |unstable   |unstable   |
          +-----------+-----------+-----------+-----------+-----------+

In the above matrix the blank entries represent unreachable states, while those marked unstable 
represent transient states which cannot persist for long, due to retransmission of Request and Hello 
messages, for example.



RFC-906 Bootstrap Loading using TFTP
Ross Finlayson

Stanford University
June 1984

Status of this Memo
It is often convenient to be able to bootstrap a computer system from a communications 
network.    This RFC proposes the use of the IP Trivial File Transfer Protocol for bootstrap 
loading in this case. 

Introduction
Network Protocols used by the Booting System
An Example Implementation

Acknowledgements
The ideas presented here are the result of discussions with several other people, in 
particular Jeff Mogul. 



RFC-906 Bootstrap Loading using TFTP

Introduction

Many computer systems, such as diskless workstations, are bootstrapped by loading one or 
more code files across a network. Unfortunately, the protocol used to load these initial files 
has not been standardized - numerous methods have been employed by different computer 
manufacturers. This can make it difficult, for example, for an installation to support several 
different kinds of systems on a local-area network.    Each different booting mechanism that 
is used must be supported, for example by implementing a number of servers on one or 
more host machines.    This is in spite of the fact that these heterogeneous systems may be 
able to communicate freely (all using the same protocol) once they have been booted. 
We propose that TFTP (Trivial File Transfer Protocol) [RFC-783] be used as a standard protocol
for bootstrap loading.    This protocol is well-suited for our purpose, being based on the 
standard Internet Protocol (IP) [RFC-791].    It is easily implemented, both in the machines to 
be booted, and in bootstrap servers elsewhere on the net.    (In addition, many popular 
operating systems already support TFTP servers.)    The fact that TFTP is a rather slow 
protocol is not a serious concern, due to the fact that it need be used only for the primary 
bootstrap.    A secondary bootstrap could use a faster protocol. 
This RFC describes how system to be booted (called the "booter" below) would use TFTP to 
load a desired code file.    It also describes an existing implementation (in ROM) for Ethernet. 
Note that we are specifying only the network protocols that would be used by the booting 
system.    We do not attempt to mandate the method by which a user actually boots a 
system (such as the format of a command typed at the console).    In addition, our proposal 
does not    presuppose the use of any particular data-link level network architecture 
(although the example that we describe below uses Ethernet). 



RFC-906 Bootstrap Loading using TFTP

Network Protocols used by the Booting System
To load a file, the booter sends a standard TFTP read request (RRQ) packet, containing the 
name of the file to be loaded.    The file name should not assume any operating system 
dependent naming conventions (file names containing only alphanumeric characters should 
suffice). Thereafter, the system receives TFTP DATA packets, and sends TFTP ACK and/or 
ERROR packets, in accordance with the TFTP specification [RFC-783]. 
TFTP is implemented using the User Datagram Protocol (UDP) [RFC-768], which is in turn 
implemented using IP.    Thus, the booter must be able to receive IP datagrams containing up
to 524 octets (excluding the IP header), since TFTP DATA packets can be up to 516 octets 
long, and UDP headers are 8 octets long.    The booting machine is not required to respond to
incoming TFTP read or write requests. 
We allow for the use of two additional protocols.    These are ARP (Address Resolution 
Protocol) [RFC-826], and RARP (Reverse Address Resolution Protocol) [RFC-903]. The possible
use of these protocols is described below.    The booter could also use other protocols (such 
as for name lookup), but they should be IP-based, and an internet standard. 
The IP datagram containing the initial TFTP RRQ (and all other IP datagrams sent by the 
booter) must of course contain both a source internet address and a destination internet 
address in its IP header. It is frequently the case, however, that the booter does not initially 
know its own internet address, but only a lower-level (e.g. Ethernet) address.    The Reverse 
Address Resolution Protocol (RARP) [RFC-903] may be used by the booter to find its internet 
address (prior to sending the TFTP RRQ).    RARP was motivated by Plummer's Address 
Resolution Protocol (ARP) [RFC-826].    Unlike ARP, which is used to find the 'hardware' 
address corresponding to a known higher-level protocol (e.g. internet) address, RARP is used 
to determine a higher-level protocol address, given a known hardware address.    RARP uses 
the same packet format as ARP, and like ARP, can be used for a wide variety of data-link 
protocols. 
ARP may also be used.    If the destination internet address is known, then an ARP request 
containing this address may be broadcast, to find a corresponding hardware address to 
which to send the subsequent TFTP RRQ.    It may not matter if this request should fail, 
because the RRQ can also be broadcast (at the data-link level).    However, because such an 
ARP request packet also contains the sender's (that is, the booter's) internet and hardware 
addresses, this information is made available to the rest of the local subnet, and could be 
useful for routing, for instance. 
If a single destination internet address is not known, then a special 'broadcast' internet 
address could be used as the destination address in the TFTP RRQ, so that it will be received 
by all 'local' internet hosts. 



RFC-906 Bootstrap Loading using TFTP

An Example Implementation

The author has implemented TFTP booting as specified above.    The resulting code resides in
ROM.    (This implementation is for a Motorola 68000 based workstation, booting over an 
Ethernet.)    A user wishing to boot such a machine types a file name, and (optionally) the 
internet address of the workstation, and/or the internet address of a server machine from 
which the file is to be loaded.    The bootstrap code proceeds as follows: 

(1) The workstation's Ethernet address is found (by querying the Ethernet 
interface). 

(2) If the internet address of the workstation was not given, then a RARP 
request is broadcast, in order to find it.    If this request fails (that is, times 
out), then the bootstrap fails. 

(3) If the internet address of a server host was given, then broadcast an ARP 
request to try to find a corresponding Ethernet address.    If this fails, or if a
server internet address was not given, then the Ethernet broadcast 
address is used. 

(4) If the internet address of a server host was not given, then we use a 
special internet address that represents a broadcast on the "local subnet", 
as described in [2].    (This is not an internet standard.) 

(5) A TFTP RRQ for the requested file is sent to the Ethernet address found in 
step (3).    The source internet address is that found in step (2), and the 
destination internet address is that found in step (4). 

Note that because several TFTP servers may, in general, reply to the RRQ, we do not abort if 
a TFTP ERROR packet is received, because this does not preclude the possibility of some 
other server replying later with the first data packet of the requested file.    When the first 
valid TFTP DATA packet is received in response to the RRQ, the source internet and Ethernet 
addresses of this packet are used as the destination addresses in subsequent TFTP ACK 
packets.    Should another server later respond with a DATA packet, an ERROR packet is sent 
back in response. 
An implementation of TFTP booting can take up a lot of space if care is not taken.    This can 
be a significant problem if the code is to fit in a limited amount of ROM.    However, the 
implementation described above consists of less than 4K bytes of code (not counting the 
Ethernet device driver). 



RFC-917 Internet Subnets
Jeffrey Mogul

Computer Science Department
Stanford University

October 1984

Status Of This Memo
This RFC suggests a proposed protocol for the ARPA-Internet community, and requests 
discussion and suggestions for improvements. Distribution of this memo is unlimited.    The 
protocol described here is largely superceded by "Internet Standard Subnetting" [RFC-950].

Introduction
Terminology

Standards for Subnet Addressing
Interpretation of Internet Addresses
Changes to Host Software to Support Subnets
Subnets and Broadcasting
Determining the Width of the Subnet Field

Subnet Routing Methods
Case Studies

Stanford University
MIT
Carnegie-Mellon University

Appendices
Address Format ICMP
Examples

Notes



RFC-917 Internet Subnets

Introduction

Overview
We discuss the utility of "subnets" of Internet networks, which are logically visible sub-
sections of a single Internet network.    For administrative or technical reasons, many 
organizations have chosen to divide one Internet network into several subnets, instead of 
acquiring a set of Internet network numbers. 
We propose procedures for the use of subnets, and discuss approaches to solving the 
problems that arise, particularly that of routing. 
Acknowledgment
This proposal is the result of discussion with several other people. J. Noel Chiappa, Chris 
Kent, and Tim Mann, in particular, provided important suggestions. 
Introduction
The original view of the Internet universe was a two-level hierarchy: the top level the catenet
as a whole, and the level below it a collection of "Internet Networks", each with its own 
Network Number. (We do not mean that the Internet has a hierarchical topology, but that the
interpretation of addresses is hierarchical.) 
While this view has proved simple and powerful, a number of organizations have found it 
inadequate and have added a third level to the interpretation of Internet addresses.    In this 
view, a given Internet Network might (or might not) be divided into a collection of subnets. 
The original, two-level, view carries a strong presumption that, to a host on an Internet 
network, that network may be viewed as a single edge; to put it another way, the network 
may be treated as a "black box" to which a set of hosts is connected.    This is true of the    
ARPANET, because the IMPs mask the use of specific links in that network.    It is also true of 
most local area network (LAN) technologies, such as Ethernet or ring networks. 
However, this presumption fails in many practical cases, because in moderately large 
organizations (e.g., Universities or companies with more than one building) it is often 
necessary to use more than one LAN cable to cover a "local area".    For example, at this 
writing there are eighteen such cables in use at Stanford University, with more planned. 
There are several reasons why an organization might use more than one cable to cover a 
campus: 

- Different technologies: Especially in a research environment, there may be
more than one kind of LAN in use; e.g., an organization may have some 
equipment that supports Ethernet, and some that supports a ring network.

- Limits of technologies: Most LAN technologies impose limits, based 
electrical parameters, on the number of hosts connected, and on the total 
length of the cable.    It is easy to exceed these limits, especially those on 
cable length. 

- Network congestion: It is possible for a small subset of the hosts on a LAN 
to monopolize most of the bandwidth.    A common solution to this problem
is to divide the hosts into cliques of high mutual communication, and put 
these cliques on separate cables. 

- Point-to-Point links: Sometimes a "local area", such as a university campus,
is split into two locations too far apart to connect using the preferred LAN 
technology.    In this case, high-speed point-to-point links might connect 



several LANs. 
An organization that has been forced to use more than one LAN has three choices for 
assigning Internet addresses: 

1. Acquire a distinct Internet network number for each cable.
2. Use a single network number for the entire organization, but assign host 

numbers without regard to which LAN a host is on. (We will call this choice 
"transparent subnets".) 

3. Use a single network number, and partition the host address space by 
assigning subnet numbers to the LANs. ("Explicit subnets".) 

Each of these approaches has disadvantages.    The first, although not requiring any new or 
modified protocols, does result in an explosion in the size of Internet routing tables.    
Information about the internal details of local connectivity is propagated everywhere, 
although it is of little or no use outside the local organization. Especially as some current 
gateway implementations do not have much space for routing tables, it would be nice to 
avoid this problem. 
The second approach requires some convention or protocol that makes the collection of 
LANs appear to be a single Internet network.    For example, this can be done on LANs where 
each Internet address is translated to a hardware address using an Address Resolution 
Protocol (ARP), by having the bridges between the LANs intercept ARP requests for non-local 
targets.    However, it is not possible to do this for all LAN technologies, especially those 
where ARP protocols are not currently used, or if the LAN does not support broadcasts.    A 
more fundamental problem is that bridges must discover which LAN a host is on, perhaps by
using a broadcast algorithm.    As the number of LANs grows, the cost of broadcasting grows 
as well; also, the size of translation caches required in the bridges grows with the total 
number of hosts in the network. 
The third approach addresses the key problem: existing standards assume that all hosts on 
an Internet local network are on a single cable.    The solution is to explicitly support subnets.
This does have a disadvantage, in that it is a modification of the Internet Protocol, and thus 
requires changes to IP implementations already in use (if these implementations are to be 
used on a subnetted network.) However, we believe that these changes are relatively minor,
and once made, yield a simple and efficient solution to the problem.    Also, the approach we 
take in this document is to avoid any changes that would be incompatible with existing hosts
on non-subnetted networks. 
Further, when appropriate design choices are made, it is possible for hosts which believe 
they are on a non-subnetted network to be used on a subnetted one, as will be explained 
later.    This is useful when it is not possible to modify some of the hosts to support subnets 
explicitly, or when a gradual transition is preferred.    Because of this, there seems little 
reason to use the second approach listed above. 
The rest of this document describes approaches to subnets of Internet Networks. 



RFC-917 Internet Subnets

Terminology

To avoid either ambiguity or prolixity, we will define a few terms, which will be used in the 
following sections: 

Catenet
The collection of connected Internet Networks

Network
A single Internet network (that may or may not be divided into subnets.) 

Subnet
A subnet of an Internet network.

Network Number
As in [8].

Local Address
The bits in an Internet address not used for the network number; also known 
as "rest field". 

Subnet Number
A number identifying a subnet within a network.

Subnet Field
The bit field in an Internet address used for the subnet number. 

Host Field
The bit field in an Internet address used for denoting a specific host. 

Gateway
A node connected to two or more administratively distinct networks and/or 
subnets, to which hosts send datagrams to be forwarded. 

Bridge
A node connected to two or more administratively indistinguishable but 
physically distinct subnets, that automatically forwards datagrams when 
necessary, but whose existence is not know to other hosts.    Also called a 
"software repeater". 



RFC-917 Internet Subnets

Standards for Subnet Addressing

Following the division presented in [2], we observe that subnets are fundamentally an issue 
of addressing.    In this section, we first describe a proposal for interpretation of Internet 
Addressing to support subnets.    We then discuss the interaction between this address 
format and broadcasting; finally, we present a protocol for discovering what address 
interpretation is in use on a given network. 



RFC-917 Internet Subnets - Standards for Subnet Addressing

Interpretation of Internet Addresses

Suppose that an organization has been assigned an Internet network number, has further 
divided that network into a set of subnets, and wants to assign host addresses: how should 
this be done? Since there are minimal restrictions on the assignment of the "local address" 
part of the Internet address, several approaches have been proposed for representing the 
subnet number: 

1. Variable-width field: Any number of the bits of the local address part are 
used for the subnet number; the size of this field, although constant for a 
given network, varies from network to network.    If the field width is zero, 
then subnets are not in use. 

2. Fixed-width field: A specific number of bits (e.g., eight) is used for the 
subnet number, if subnets are in use. 

3. Self-encoding variable-width field: Just as the width (i.e., class) of the 
network number field is encoded by its high-order bits, the width of the 
subnet field is similarly encoded. 

4. Self-encoding fixed-width field: A specific number of bits is is used for the 
subnet number.    Subnets are in use if the high-order bit of this field is one;
otherwise, the entire local address part is used for host number. 

Since there seems to be no advantage in doing otherwise, all these schemes place the 
subnet field as the most significant field in    the local address part.    Also, since the local 
address part of a Class C address is so small, there is little reason to support subnets of 
other than Class A and Class B networks. 
What criteria can we use to choose one of these four schemes? First, do we want to use a 
self-encoding scheme; that is, should it be possible to tell from examining an Internet 
address if it refers to a subnetted network, without reference to any other information? 
One advantage to self-encoding is that it allows one to determine if a non-local network has 
been divided into subnets.    It is not clear that this would be of any use.    The principle 
advantage, however, is that no additional information is needed for an implementation to 
determine if two addresses are on the same subnet.    However, this can also be viewed as a 
disadvantage: it may cause problems for non-subnetted networks which have existing host 
numbers that use arbitrary bits in the local address part <1>.    In other words, it is useful to 
be able control whether a network is subnetted independently from the assignment of host 
addresses.    Another disadvantage of any self-encoding scheme is that it reduces the local 
address space by at least a factor of two. 
If a self-encoding scheme is not used, it is clear that a variable-width subnet field is 
appropriate.    Since there must in any case be some per-network "flag" to indicate if subnets
are in use, the additional cost of using an integer (the subnet field width) instead of a 
boolean is negligible.    The advantage of using a variable-width subnet field is that it allows 
each organization to choose the best way to allocate relatively scarce bits of local address to
subnet and host numbers. 
Our proposal, therefore, is that the Internet address be interpreted as: 
      <network-number><subnet-number><host-number>
where the <network-number> field is as in [8], the <host-number> field is at least one bit 
wide, and the width of the <subnet-number> field is constant for a given network. No 
further structure is required for the <subnet-number> or <host-number> fields.    If the 
width of the <subnet-number> field is zero, then the network is not subnetted (i.e., the 



interpretation of [8] is used.) 
For example, on a Class A network with an eight bit wide subnet field, an address is broken 
down like this: 
                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |0|    NETWORK    |     SUBNET    |         Host number         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

We expect that, for reasons of simplicity and efficient implementation, that most 
organizations will choose a subnet field width that is a multiple of eight bits.    However, an 
implementation must be prepared to handle other possible widths. 
We reject the use of "recursive subnets", the division of the host field into "sub-subnet" and 
host parts, because: 

- There is no obvious need for a four-level hierarchy.
- The number of bits available in an IP address is not large enough to make 

this useful in general. 
- The extra mechanism required is complex.



RFC-917 Internet Subnets - Standards for Subnet Addressing

Changes to Host Software to Support Subnets

In most implementations of IP, there is    code in the module that handles outgoing packet 
that does something like: 
      IF ip_net_number(packet.ip_dest) = ip_net_number(my_ip_addr)
              THEN
                      send_packet_locally(packet, packet.ip_dest)
              ELSE
                      send_packet_locally(packet,
                            gateway_to(ip_net_number(packet.ip_dest)))

(If the code supports multiple connected networks, it will be more complicated, but this is 
irrelevant to the current discussion.) 
To support subnets, it is necessary to store one more 32-bit quantity, called my_ip_mask.    
This is a bit-mask with bits set in the fields corresponding to the IP network number, and 
additional bits set corresponding to the subnet number field.    For example, on a Class A 
network using an eight-bit wide subnet field, the mask would be 255.255.0.0. 
The code then becomes:
      IF bitwise_and(packet.ip_dest, my_ip_mask)
                                        = bitwise_and(my_ip_addr, my_ip_mask)
              THEN
                      send_packet_locally(packet, packet.ip_dest)
              ELSE
                      send_packet_locally(packet,
                            gateway_to(bitwise_and(packet.ip_dest, my_ip_mask)))

Of course, part of the expression in the conditionally can be pre-computed. 
It may or may not be necessary to modify the "gateway_to" function, so that it performs 
comparisons in the same way. 
To support multiply-connected hosts, the code can be changed to keep    the "my_ip_addr" 
and "my_ip_mask" quantities on a per-interface basis; the expression in the conditional must
then be evaluated for each interface. 



RFC-917 Internet Subnets - Standards for Subnet Addressing

Subnets and Broadcasting

In the absence of subnets, there are only two kinds of broadcast possible within the Internet 
Protocol <2>: broadcast to all hosts on a specific network, or broadcast to all hosts on "this 
network"; the latter is useful when a host does not know what network it is on. 
When subnets are used, the situation becomes slightly more complicated.    First, the 
possibility now exists of broadcasting to a specific subnet.    Second, broadcasting to all the 
hosts on a subnetted network requires additional mechanism; in [6] the use of "Reverse Path
Forwarding" [3] is proposed.    Finally, the interpretation of a broadcast to "this network" is 
that it should not be forwarded outside of the original subnet. 
Implementations must therefore recognize three kinds of broadcast addresses, in addition to
their own host addresses: 

This physical network
A destination address of all ones (255.255.255.255) causes the a datagram to be 
sent as a broadcast on the local physical network; it must not be forwarded by 
any gateway. 
Specific network
The destination address contains a valid network number; the local address part 
is all ones (e.g., 36.255.255.255). 
Specific subnet
The destination address contains a valid network number and a valid subnet 
number; the host field is all ones (e.g., 36.40.255.255). 

For further discussion of Internet broadcasting, see [6].
One factor that may aid in deciding whether to use subnets is that it is possible to broadcast 
to all hosts of a subnetted network with a single operation at the originating host.    It is not 
possible to broadcast, in one step, to the same set of hosts if they are on distinct networks. 



RFC-917 Internet Subnets - Standards for Subnet Addressing

Determining the Width of the Subnet Field

How can a host (or gateway) determine what subnet field width is in use on a network to 
which it is connected?    The problem is analogous to several other "bootstrapping" problems 
for Internet hosts: how a host determines its own address, and how it locates a gateway on 
its local network.    In all three cases, there are two basic solutions: "hardwired" information, 
and broadcast-based protocols. 
"Hardwired" information is that available to a host in isolation from a network.    It may be 
compiled-in, or (preferably) stored in a disk file.    However, for the increasingly common 
case of a diskless workstation that is bootloaded over a LAN, neither hard-wired solution is 
satisfactory.    Instead, since most LAN technology supports broadcasting, a better method is 
for the newly-booted host to broadcast a request for the necessary information.    For 
example, for the purpose of determining its Internet address, a host may use the "Reverse 
Address Resolution Protocol" [4]. 
We propose to extend the ICMP protocol [9] by adding a new pair of ICMP message types, 
"Address Format Request" and "Address Format Reply", analogous to the "Information 
Request" and "Information Reply" ICMP messages.    These are described in detail in 
Appendix I. 
The intended use of these new ICMPs is that a host, when booting, broadcast an "Address 
Format Request" message <3>.    A gateway (or a host acting in lieu of a gateway) that 
receives this message responds with an "Address Format Reply".    If there is no indication in 
the request which host sent it (i.e., the IP Source Address is zero), the reply is broadcast as 
well.    The requesting host will hear the response, and from it determine the width of the 
subnet field. 
Since there is only one possible value that can be sent in an "Address Format Reply" on any 
given LAN, there is no need for the requesting host to match the responses it hears against 
the request it sent; similarly, there is no problem if more than one gateway responds.    We 
assume that hosts reboot infrequently, so the broadcast load on a network from use of this 
protocol should be small. 
If a host is connected to more than one LAN, it must use this protocol on each, unless it can 
determine (from a response on one of the LANs) that several of the LANs are part of the 
same network, and thus must have the same subnet field width. 
One potential problem is what a host should do if it receives no response to its "Address 
Format Request", even after a reasonable number of tries.    Three interpretations can be 
placed on the situation: 

1. The local net exists in (permanent) isolation from all other nets. 
2. Subnets are not in use, and no host supports this ICMP request. 
3. All gateways on the local net are (temporarily) down.

The first and second situations imply that the subnet field width is zero.    In the third 
situation, there is no way to determine what the proper value is; the safest choice is thus 
zero. Although this might later turn out to be wrong, it will not prevent transmissions that 
would otherwise succeed.    It is possible for a host to recover from a wrong choice: when a 
gateway comes up, it should broadcast an "Address Format Reply"; when a host receives 
such a message that disagrees with its guess, it should adjust its data structures to conform 
to the received value.    No host or gateway should send an "Address Format Reply" based on
a "guessed" value. 
Finally, note that no host is required to use this ICMP protocol to discover the subnet field 



width; it is perfectly reasonable for a host with non-volatile storage to use stored 
information. 



RFC-917 Internet Subnets

Subnet Routing Methods

One problem that faces all Internet hosts is how to determine a route to another host.    In 
the presence of subnets, this problem is only slightly modified. 
The use of subnets means that there are two levels to the routing process, instead of one.    
If the destination host is on the same network as the source host, the routing decision 
involves only the subnet gateways between the hosts.    If the destination is on a different 
network, then the routing decision requires the choice both of a gateway out of the source 
host's network, and of a route within the network to that gateway. 
Fortunately, many hosts can ignore this distinction (and, in fact, ignore all routing choices) 
by using a "default" gateway as the initial route to all destinations, and relying on ICMP Host 
Redirect messages to define more appropriate routes.    However, this is not an efficient 
method for a gateway or for a multi-homed host, since a redirect may not make up for a 
poor initial choice of route.    Such hosts should use a routing information exchange protocol, 
but that is beyond the scope of this document; in any case, the problem arises even when 
subnets are not used. 
The problem for a singly-connected host is thus to find at least one neighbor gateway.    
Again, there are basic two solutions to this: use hard-wired information, or use broadcasts.    
We believe that the neighbor-gateway acquisition problem is the same with or without 
subnets, and thus the choice of solution is not affected by the use of subnets. 
However, one problem remains: a source host must determine if datagram to a given 
destination address must be sent via a gateway, or sent directly to the destination host.    In 
other words, is the destination host on the same physical network as the source?    This 
particular phase of the routing process is the only one that requires an implementation to be
explicitly aware of subnets; in fact, if broadcasts are not used, it is the only place where an 
Internet implementation must be modified to support subnets. 
Because of this, it is possible to use some existing implementations without modification in 
the presence of subnets <4>.    For this to work, such implementations must: 

- Be used only on singly-homed hosts, and not as a gateway.
- Be used on a broadcast LAN.
- Use an Address Resolution Protocol (ARP), such [7].
- Not be required to maintain connections in the case of gateway crashes. 

In this case, one can modify the ARP server module in a subnet gateway so that when it 
receives an ARP request, it checks the target Internet address to see if it is along the best 
route to the target. If it is, it sends to the requesting host an ARP response indicating its own
hardware address.    The requesting host thus believes that it knows the hardware address of
the destination host, and sends packets to that address.    In fact, the packets are received 
by the gateway, and forwarded to the destination host by the usual means. 
This method requires some blurring of the layers in the gateways, since the ARP server and 
the Internet routing table would normally not have any contact.    In this respect, it is 
somewhat unsatisfactory.    Still, it is fairly easy to implement, and does not have significant 
performance costs.    One problem is that if the original gateway crashes, there is no way for 
the source host to choose an alternate route even if one exists; thus, a connection that 
might otherwise have been maintained will be broken. 
One should not confuse this method of "ARP-based subnetting" with the superficially similar 
use of ARP-based bridges.    ARP-based subnetting is based on the ability of a gateway to 



examine an IP address and deduce a route to the destination, based on explicit subnet 
topology. In other words, a small part of the routing decision has been moved from the 
source host into the gateway.    An ARP-based bridge, in contrast, must somehow locate each
host without any assistance from a mapping between host address and topology.    Systems 
built out of ARP-based bridges should not be referred to as "subnetted". 
N.B.: the use of ARP-based subnetting is complicated by the use of broadcasts.    An ARP 
server [7] should never respond to a request whose target is a broadcast address.    Such a 
request can only come from a host that does not recognize the broadcast address as such, 
and so honoring it would almost certainly lead to a forwarding loop. If there are N such hosts
on the physical network that do not recognize this address as a broadcast, then a packet 
sent with a Time-To-Live of T could potentially give rise to T**N spurious re-broadcasts. 



RFC-917 Internet Subnets - Case Studies

Stanford University

At Stanford, subnets were introduced initially for historical reasons.    Stanford had been 
using the Pup protocols [1] on a collection of several Experimental Ethernets [5] since 1979, 
several years before Internet protocols came into use.    There were a number of Pup 
gateways in service, and all hosts and gateways acquired and exchanged routing table 
information using a simple broadcast protocol. 
When the Internet Protocol was introduced, the decision was made to use an eight-bit wide 
subnet number; Internet subnet numbers were chosen to match the Pup network number of 
a given Ethernet, and the Pup host numbers (also eight bits) were used as the host field of 
the Internet address. 
The Pup-only gateways were then modified to forward Internet datagrams according to their 
Pup routing tables; they otherwise had no understanding of Internet packets and in fact did 
not adjust the Time-to-live field in the Internet header.    This seems to be acceptable, since 
bugs that caused forwarding loops have not appeared.    The Internet hosts that are multi-
homed and thus can serve as gateways do adjust the Time-to-live field; since all of the 
currently also serve as Pup gateways, no additional routing information exchange protocol 
was needed. 
Internet host implementations were modified to understand subnets (in several different 
ways, but with identical effects).    Since all already had Pup implementations, the Internet 
routing tables were maintained by the same process that maintained the Pup routing tables, 
simply translating the Pup network numbers into Internet subnet numbers. 
When 10Mbit Ethernets were added, the gateways were modified to use the ARP-based 
scheme described in an earlier section; this allowed unmodified hosts to be used on the 
10Mbit Ethernets. 
IP subnets have been in use since early 1982; currently, there are about 330 hosts, 18 
subnets, and a similar number of subnet gateways in service.    Once the Pup-only gateways 
are converted to be true Internet gateways, an Internet-based routing exchange protocol will
be introduced, and Pup will be phased out. 



RFC-917 Internet Subnets - Case Studies

MIT

MIT was the first IP site to accumulate a large collection of local network links.    Since this 
happened before network numbers were divided into classes, to have assigned each link at 
MIT its own IP network number would have used up a good portion of the available address 
space.    MIT decided to use one IP network number, and to manage the 24-bit "rest" field 
itself, by dividing it into three 8-bit fields; "subnet", "reserved, must be zero", and "host".      
Since the CHAOS protocol already in use at MIT used an 8-bit subnet number field, it was 
possible to assign each link the same subnet number in both protocols.    The IP host field 
was set to 8 bits since most available local net hardware at that point used 8 bit addresses, 
as did the CHAOS protocol; it was felt that reserving some bits for the future was wise. 
The initial plan was to use a dynamic routing protocol between the IP subnet gateways; 
several such protocols have been mooted but nobody has bothered to implement one; static
routing tables are still used.    It is likely that this change will finally be made soon. 
To solve the problem that imported IP software always needed modification to work in the 
subnetted environment, MIT searched for a model of operation that led to the least change 
in host IP software.    This led to a model where IP gateways send ICMP Host Redirects rather 
than Network Redirects.    All internal MIT IP gateways now do so.    With hosts that can 
maintain IP routing tables for non-local communication on a per host basis, this hides most 
of the subnet structure.    The "minimum adjustment" for host software to work correctly in 
both subnetted and non-subnetted environments is the bit-mask algorithm mentioned 
earlier. 
MIT has no immediate plans to move toward a single "approved" protocol; this is due partly 
to the degree of local autonomy and the amount of installed software, and partly to the lack 
of a single prominent industry standard.    Rather, the approach taken has been to provide a 
single set of physical links and packet switches, and to layer several "virtual" protocol nets 
atop the single set of links.    MIT has had some bad experiences with trying to exchange 
routing information between protocols and wrap one protocol in another; the general 
approach is to keep the protocols strictly separated except for sharing the basic hardware.    
Using ARP to hide the subnet structure is not much in favor; it is felt that this overloads the 
address resolution operation.    In a complicated system (i.e. one with loops, and variant link 
speeds),    a more sophisticated information interchange will be needed between gateways; 
making this an explicit mechanism (but one insulated from the hosts) was felt to be best. 



RFC-917 Internet Subnets - Case Studies

Carnegie-Mellon University

CMU uses a Class B network currently divided into 11 physical subnets (two 3Mbit 
Experimental Ethernets, seven 10Mbit Ethernets, and two ProNet rings.) Although host 
numbers are assigned so that all addresses with a given third octet will be on the same 
subnet (but not necessarily vice versa), this is essentially an administrative convenience.    
No software currently knows the specifics of this allocation mechanism or depends on it to 
route between cables. 
Instead, an ARP-based bridge scheme is used.    When a host broadcasts an ARP request, all 
bridges which receive it cache the original protocol address mapping and then forward the 
request (after the appropriate adjustments) as an ARP broadcast request onto each of their 
other connected cables.    When a bridge receives a non-broadcast ARP reply with a target 
protocol address not its own, it consults its ARP cache to determine the cable onto which the
reply should be forwarded.    The bridges thus attempt to transparently extend the ARP 
protocol into a heterogenous multi-cable environment.    They are therefore required to turn 
ARP broadcasts on a single cable into ARP broadcasts on all other connected cables even 
when they "know better".    This algorithm works only in the absence of cycles in the network
connectivity graph (which is currently the case).    Work is underway to replace this simple-
minded algorithm with a protocol implemented among the bridges, in support of redundant 
paths and to reduce the collective broadcast load.    The intent is to retain the ARP base and 
host transparency, if possible. 
Implementations supporting the 3Mbit Ethernet and 10Mb proNET ring at CMU use RFC-826 
ARP (instead of some wired-in mapping such as simply using the 8-bit hardware address as 
the the fourth octet of the IP address). 
Since there are currently no redundant paths between cables, the issue of maintaining 
connections across bridge crashes is moot. With about 150 IP-capable hosts on the net, the 
bridge caches are still of reasonable size, and little bandwidth is devoted to ARP broadcast 
forwarding. 
CMU's network is likely to grow from its relatively small, singly-connected configuration 
centered within their CS/RI    facility to a campus-wide intra-departmental configuration with 
5000-10000 hosts and redundant connections between cables.    It is possible that the ARP-
based bridge scheme will not scale to this size, and a system of explicit subnets may be 
required.    The medium-term goal, however, is an environment into which unmodified extant
(especially 10Mb ethernet based) IP implementations can be imported; the intent is to stay 
with a host-transparent (thus ARP-based) routing mechanism as long as possible.    CMU is 
concerned that even if subnets become part of the IP standard they will not be widely 
implemented; this is the major obstacle to their use at CMU. 



RFC-917 Internet Subnets

Address Format ICMP

Address Format Request or Address Format Reply
       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |      Code     |          Checksum             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Identifier          |       Sequence Number         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IP Fields:
Addresses

The address of the source in an address format request message will be the 
destination of the address format reply message.    To form an address format 
reply message, the source address of the request becomes the destination 
address of the reply, the source address of the reply is set to the replier's 
address, the type code changed to A2, the subnet field width inserted into the 
Code field, and the checksum recomputed.    However, if the source address in 
the request message is zero, then the destination address for the reply 
message should denote a broadcast. 

ICMP Fields:
Type

A1 for address format request message
A2 for address format reply message

Code
0 for address format request message
Width of subnet field, in bits, for address format reply message 

Checksum
The checksum is the 16-bit one's complement of the one's complement sum 
of the ICMP message starting with the ICMP Type.    For computing the 
checksum, the checksum field should be zero.    This checksum may be 
replaced in the future. 

Identifier
An identifier to aid in matching request and replies, may be zero. 

Sequence Number
A sequence number to aid in matching request and replies, may be zero. 

Description
A gateway receiving an address format request should return it with the Code field set to 



the number of bits of Subnet number in IP addresses for the network to which the 
datagram was addressed.    If the request was broadcast, the destination network is "this 
network".    The Subnet field width may be from 0 to (31 - N), where N is the width in bits 
of the IP net number field (i.e., 8, 16, or 24). 
If the requesting host does not know its own IP address, it may leave the source field 
zero; the reply should then be broadcast.    Since there is only one possible address 
format for a network, there is no need to match requests with replies. However, this 
approach should be avoided if at all possible, since it increases the superfluous broadcast
load on the network. 

Type A1 may be received from a gateway or a host.
Type A2 may be received from a gateway, or a host acting in lieu of a gateway.



RFC-917 Internet Subnets

Examples

For these examples, we assume that the requesting host has    address 36.40.0.123, that 
there is a gateway at 36.40.0.62, and that on network 36.0.0.0, an 8-bit wide subnet field is 
in use. 
First, suppose that broadcasting is allowed, and that 36.40.0.123 knows    its own address.    
It sends the following datagram: 

Source address: 36.40.0.123
Destination address: 36.255.255.255
Protocol: ICMP = 1
Type: Address Format Request = A1
Code: 0

36.40.0.62 will hear the datagram, and should respond with this datagram: 
Source address: 36.40.0.62
Destination address: 36.40.0.123
Protocol: ICMP = 1
Type: Address Format Reply = A2
Code: 8

For the following examples, assume that address 255.255.255.255 denotes "broadcast to 
this physical network", as described in [6]. 
The previous example is inefficient, because it potentially broadcasts    the request on many 
subnets.    The most efficient method, and the one we recommend, is for a host to first 
discover its own address (perhaps    using the "Reverse ARP" protocol described in [4]), and 
then to send    the ICMP request to 255.255.255.255: 

Source address: 36.40.0.123
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Format Request = A1
Code: 0

The gateway can then respond directly to the requesting host.
Suppose that 36.40.0.123 is a diskless workstation, and does not know even its own host 
number.    It could send the following datagram: 

Source address: 0.0.0.0
Destination address: 255.255.255.255
Protocol: ICMP = 1
Type: Address Format Request = A1
Code: 0

36.40.0.62 will hear the datagram, and should respond with this datagram: 
      Source address: 36.40.0.62
      Destination address: 36.40.255.255
      Protocol: ICMP = 1
      Type: Address Format Reply = A2



      Code: 8

Note that the gateway uses the narrowest possible broadcast to reply (i.e., sending the reply
to 36.255.255.255 would mean that it is transmitted on many subnets, not just the one on 
which it is needed.) Even so, the overuse of broadcasts presents an unnecessary load to all 
hosts on the subnet, and so we recommend that use of the "anonymous" (0.0.0.0) source 
address be kept to a minimum. 
If    broadcasting is not allowed, we assume that hosts have wired-in information about 
neighbor gateways; thus, 36.40.0.123 might send this datagram: 

Source address: 36.40.0.123
Destination address: 36.40.0.62
Protocol: ICMP = 1
Type: Address Format Request = A1
Code: 0

36.40.0.62 should respond exactly as in the previous case.



RFC-917 Internet Subnets

Notes

<1> For example, some host have addresses assigned by concatenating 
their Class A network number with the low-order 24 bits of a 48-bit 
Ethernet hardware address. 

<2> Our discussion of Internet broadcasting is based on [6].
<3> If broadcasting is not supported, them presumably a host "knows" the 

address of a neighbor gateway, and should send the ICMP to that gateway.
<4> This is what was referred to earlier as the coexistence of transparent 

and explicit subnets on a single network. 



References

      1.    D.R. Boggs, J.F. Shoch, E.A. Taft, and R.M. Metcalfe. "Pup: An
              Internetwork Architecture."    IEEE Transactions on Communications
              COM-28, 4, pp612-624, April 1980.

      2.    David D. Clark.    Names, Addresses, Ports, and Routes.    RFC-814,
              MIT-LCS, July 1982.

      3.    Yogan K. Dalal and Robert M. Metcalfe. "Reverse Path Forwarding
              of Broadcast Packets."    Comm. ACM 21, 12, pp1040-1048, December
              1978.

      4.    Ross Finlayson, Timothy Mann, Jeffrey Mogul, Marvin Theimer. A
              Reverse Address Resolution Protocol. RFC-903, Stanford
              University, June 1984.

      5.    R.M. Metcalfe and D.R. Boggs. "Ethernet: Distributed Packet
              Switching for Local Computer Networks."    Comm. ACM 19, 7,
              pp395-404, July 1976.    Also CSL-75-7, Xerox Palo Alto Research
              Center, reprinted in CSL-80-2.

      6.    Jeffrey Mogul. Broadcasting Internet Datagrams. RFC-919, Stanford
              University, October 1984.

      7.    David Plummer. An Ethernet Address Resolution Protocol. RFC-826,
              Symbolics, September 1982.

      8.    Jon Postel. Internet Protocol. RFC-791, USC-ISI, September 1981.

      9.    Jon Postel. Internet Control Message Protocol. RFC-792, USC-ISI,
              September 1981.



RFC-919 Broadcasting Internet Datagrams
Jeffrey Mogul

Computer Science Department; Stanford University
October 1974

Status of this Memo
We describe simple rules for broadcasting Internet datagrams on local 
networks that support broadcast, for addressing broadcasts, and for how 
gateways should handle them. 
This RFC describes a required protocol of the Internet Community as of 
January 1991.    Distribution of this memo is unlimited.    RFC-922 is a superset 
of this RFC.

Introduction
Terminology
Why Broadcast ?
Broadcast Classes
Broadcast Methods
Gateways and Broadcasts
Broadcast IP Addressing - Standards

ARP Servers and Broadcasts

Acknowledgement
This proposal is the result of discussion with several other people, especially J. 
Noel Chiappa and Christopher A. Kent, both of whom both pointed me at 
important references. 



RFC-919 Broadcasting Internet Datagrams

Introduction

The use of broadcasts, especially on high-speed local area networks, is a good base for 
many applications.    Since broadcasting is not covered in the basic IP specification [RFC-
791], there is no agreed-upon way to do it, and so protocol designers have not made use of 
it. (The issue has been touched upon before, e.g. [IEN-212], but has not been the subject of 
a standard.) 
We consider here only the case of unreliable, unsequenced, possibly duplicated datagram 
broadcasts (for a discussion of TCP broadcasting, see [IEN-10].) Even though unreliable and 
limited in length, datagram broadcasts are quite useful [1]. 
We assume that the data link layer of the local network supports efficient broadcasting.    
Most common local area networks do support broadcast; for example, Ethernet [7, 5], 
ChaosNet [10], token ring networks [2], etc. 
We do not assume, however, that broadcasts are reliably delivered. (One might consider 
providing a reliable broadcast protocol as a layer above IP.) It is quite expensive to 
guarantee delivery of broadcasts; instead, what we assume is that a host will receive most 
of the broadcasts that are sent.    This is important to avoid excessive use of broadcasts; 
since every host on the network devotes at least some effort to every broadcast, they are 
costly. 
When a datagram is broadcast, it imposes a cost on every host that hears it.    Therefore, 
broadcasting should not be used indiscriminately, but rather only when it is the best solution
to a problem. 
Note: some organizations have divided their IP networks into subnets, for which a standard 
[RFC-917] has been proposed.    This RFC does not cover the numerous complications arising 
from the interactions between subnets and broadcasting; see [RFC-922] for a complete 
discussion. 



RFC-919 Broadcasting Internet Datagrams

Terminology

Because broadcasting depends on the specific data link layer in use on a local network, we 
must discuss it with reference to both physical networks and logical networks. 
The terms we will use in referring to physical networks are, from the point of view of the host
sending or forwarding a broadcast: 
Local Hardware Network

The physical link to which the host is attached.
Remote Hardware Network

A physical network which is separated from the host by at least one gateway. 
Collection of Hardware Networks

A set of hardware networks (transitively) connected by gateways.

The IP world includes several kinds of logical network.    To avoid ambiguity, we will use the 
following terms: 
Internet

The DARPA Internet collection of IP networks.
IP Network

One or a collection of several hardware networks that have one specific IP 
network number. 



RFC-919 Broadcasting Internet Datagrams

Why Broadcast?

Broadcasts are useful when a host needs to find information without knowing exactly what 
other host can supply it, or when a host wants to provide information to a large set of hosts 
in a timely manner. 
When a host needs information that one or more of its neighbors might have, it could have a
list of neighbors to ask, or it could poll all of its possible neighbors until one responds.    Use 
of a wired-in list creates obvious network management problems (early binding is inflexible). 
On the other hand, asking all of one's neighbors is slow if one must generate plausible host 
addresses, and try them until one works.    On the ARPANET, for example, there are roughly 
65 thousand plausible host numbers.    Most IP implementations have used wired-in lists (for 
example, addresses of "Prime" gateways.) Fortunately, broadcasting provides a fast and 
simple way for a host to reach all of its neighbors. 
A host might also use a broadcast to provide all of its neighbors with some information; for 
example, a gateway might announce its presence to other gateways. 
One way to view broadcasting is as an imperfect substitute for multicasting, the sending of 
messages to a subset of the hosts on a network.    In practice, broadcasts are usually used 
where multicasts are what is wanted; packets are broadcast at the hardware level, but 
filtering software in the receiving hosts gives the effect of multicasting. 
For more examples of broadcast applications, see [1, 3].



RFC-919 Broadcasting Internet Datagrams

Broadcast Classes

There are several classes of IP broadcasting:

- Single-destination datagram broadcast on the local IP net: A datagrams
is destined for a specific IP host, but the sending host broadcasts it at 
the data link layer, perhaps to avoid having to do routing.    Since this is
not an IP broadcast, the IP layer is not involved, except that a host 
should discard datagrams not meant for it without becoming flustered 
(i.e., printing an error message). 

- Broadcast to all hosts on the local IP net: A distinguished value for the 
host-number part of the IP address denotes broadcast instead of a 
specific host.    The receiving IP layer must be able to recognize this 
address as well as its own. 
However, it might still be useful to distinguish at higher levels between 
broadcasts and non-broadcasts, especially in gateways. This is the 
most useful case of broadcast; it allows a host to discover gateways 
without wired-in tables, it is the basis for address resolution protocols, 
and it is also useful for accessing such utilities as name servers, time 
servers, etc., without requiring wired-in addresses. 

- Broadcast to all hosts on a remote IP network: It is occasionally useful 
to send a broadcast to all hosts on a non-local network; for example, to
find the latest version of a hostname database, to bootload a host on 
an IP network without a bootserver, or to monitor the timeservers on 
the IP network. This case is the same as local-network broadcasts; the 
datagram is routed by normal mechanisms until it reaches a gateway 
attached to the destination IP network, at which point it is broadcast. 
This class of broadcasting is also known as "directed broadcasting", or 
quaintly as sending a "letter bomb" [1]. 

- Broadcast to the entire Internet: This is probably not useful, and almost
certainly not desirable. 

For reasons of performance or security, a gateway may choose not to forward broadcasts; 
especially, it may be a good idea to ban broadcasts into or out of an autonomous group of 
networks. 



RFC-919 Broadcasting Internet Datagrams

Broadcast Methods

A host's IP receiving layer must be modified to support broadcasting. In the absence of 
broadcasting, a host determines if it is the recipient of a datagram by matching the 
destination address against all of its IP addresses.    With broadcasting, a host must compare 
the destination address not only against the host's addresses, but also against the possible 
broadcast addresses for that host. 
The problem of how best to send a broadcast has been extensively discussed [1, 3, 4, 14, 
15].    Since we assume that the problem has already been solved at the data link layer, an IP
host wishing to send either a local broadcast or a directed broadcast need only specify the 
appropriate destination address and send the datagram as usual.    Any sophisticated 
algorithms need only reside in gateways. 



RFC-919 Broadcasting Internet Datagrams

Gateways and Broadcasts

Most of the complexity in supporting broadcasts lies in gateways.    If a gateway receives a 
directed broadcast for a network to which it is not connected, it simply forwards it using the 
usual mechanism. Otherwise, it must do some additional work. 
When a gateway receives a local broadcast datagram, there are several things it might have
to do with it.    The situation is unambiguous, but without due care it is possible to create 
infinite loops. 
The appropriate action to take on receipt of a broadcast datagram depends on several 
things: the subnet it was received on, the destination network, and the addresses of the 
gateway. 

- The primary rule for avoiding loops is "never broadcast a datagram on 
the hardware network it was received on". It is not sufficient simply to 
avoid repeating datagrams that a gateway has heard from itself; this 
still allows loops if there are several gateways on a hardware network. 

- If the datagram is received on the hardware network to which it is 
addressed, then it should not be forwarded.    However, the gateway 
should consider itself to be a destination of the datagram (for example,
it might be a routing table update.) 

- Otherwise, if the datagram is addressed to a hardware network to 
which the gateway is connected, it should be sent as a (data link layer)
broadcast on that network.    Again, the gateway should consider itself 
a destination of the datagram. 

- Otherwise, the gateway should use its normal routing procedure to 
choose a subsequent gateway, and send the datagram along to it. 



RFC-919 Broadcasting Internet Datagrams

Broadcast IP Addressing - Standards

If different IP implementations are to be compatible, there must be a distinguished number 
to denote "all hosts". 
Since the local network layer can always map an IP address into data link layer address, the 
choice of an IP "broadcast host number" is somewhat arbitrary.    For simplicity, it should be 
one not likely to be assigned to a real host.    The number whose bits are all ones has this 
property; this assignment was first proposed in [IEN-212].    In the few cases where a host 
has been assigned an address with a host-number part of all ones, it does not seem onerous 
to require renumbering. 
The address 255.255.255.255 denotes a broadcast on a local hardware network, which must
not be forwarded.    This address may be used, for example, by hosts that do not know their 
network number and are asking some server for it. 
Thus, a host on net 36, for example, may:

- broadcast to all of its immediate neighbors by using 255.255.255.255 
- broadcast to all of net 36 by using 36.255.255.255

(Note that unless the network has been broken up into subnets, these two methods have 
identical effects.) 
If the use of "all ones" in a field of an IP address means "broadcast", using "all zeros" could 
be viewed as meaning "unspecified".    There is probably no reason for such addresses to 
appear anywhere but as the source address of an ICMP Information Request datagram.    
However, as a notational convention, we refer to networks (as opposed to hosts) by using 
addresses with zero fields. For example, 36.0.0.0 means "network number 36" while 
36.255.255.255 means "all hosts on network number 36". 



RFC-919 Broadcasting Internet Datagrams - Standards

ARP Servers and Broadcasts

The Address Resolution Protocol (ARP) described in [RFC-826] can, if incorrectly 
implemented, cause problems when broadcasts are used on a network where not all hosts 
share an understanding of what a broadcast address is.    The temptation exists to modify the
ARP server so that it provides the mapping between an IP broadcast address and the 
hardware broadcast address. 
This temptation must be resisted.    An ARP server should never respond to a request whose 
target is a broadcast address.    Such a request can only come from a host that does not 
recognize the broadcast address as such, and so honoring it would almost certainly lead to a
forwarding loop.    If there are N such hosts on the physical network that do not recognize 
this address as a broadcast, then a datagram sent with a Time-To-Live of T could potentially 
give rise to T**N spurious re-broadcasts. 



8. References
      1.      David Reeves Boggs.    Internet Broadcasting.    Ph.D. Th., Stanford
                University, January 1982.
      2.      D.D. Clark, K.T. Pogran, and D.P. Reed.    "An Introduction to
                Local Area Networks".    Proc. IEEE 66, 11, pp1497-1516, 1978.
      3.      Yogan Kantilal Dalal.    Broadcast Protocols in Packet Switched
                Computer Networks.    Ph.D. Th., Stanford University, April 1977.
    4.      Yogan K. Dalal and Robert M. Metcalfe.    "Reverse Path Forwarding
                of Broadcast Packets".    Comm. ACM 21, 12, pp1040-1048, December
                1978.
    5.      The Ethernet, A Local Area Network: Data Link Layer and Physical
                Layer Specifications.    Version 1.0, Digital Equipment
                Corporation, Intel, Xerox, September 1980.
      6.      Robert Gurwitz and Robert Hinden.    IP - Local Area Network
                Addressing Issues.    IEN-212, Bolt Beranek and Newman, September
                1982.
      7.        R.M. Metcalfe and D.R. Boggs. "Ethernet: Distributed Packet
                Switching for Local Computer Networks".    Comm. ACM 19, 7,
                pp395-404, July 1976.    Also CSL-75-7, Xerox Palo Alto Research
                Center, reprinted in CSL-80-2.
      8.      Jeffrey Mogul.    Internet Subnets.    RFC-917, Stanford University,
                October 1984.
      9.      Jeffrey Mogul.    Broadcasting Internet Packets in the Presence of
                Subnets.    RFC-922, Stanford University, October 1984.
      10.    David A. Moon.    Chaosnet.    A.I. Memo 628, Massachusetts
                Institute of Technology Artificial Intelligence Laboratory, June
                1981.
      11.    William W. Plummer.    Internet Broadcast Protocols.    IEN-10, Bolt
                Beranek and Newman, March 1977.
      12.    David Plummer.    An Ethernet Address Resolution Protocol.
                RFC-826, Symbolics, September 1982.
      13.    Jon Postel.    Internet Protocol.    RFC 791, ISI, September 1981.
      14.    David W. Wall.    Mechanisms for Broadcast and Selective
                Broadcast.    Ph.D. Th., Stanford University, June 1980.
      15.    David W. Wall and Susan S. Owicki.    Center-based Broadcasting.
                Computer Systems Lab Technical Report TR189, Stanford
                University, June 1980.





RFC-922 Broadcasting Internet Datagrams
in the

Presence of Subnets
Jeffrey Mogul

Computer Science Department; Stanford University
October 1984

Status of this Memo
We specify simple rules for broadcasting Internet datagrams on local networks that support 
broadcast, for addressing broadcasts, and for how gateways should handle them. 
This RFC describes a standard of the Internet Community.    As of April 1991 the IAB lists this 
protocol as required. Distribution of this memo is unlimited.    RFC-919 presents nearly 
identical material without mention of subnets.    All references to RFC-919 can be resolved by
referring to the material contained in this RFC.

Introduction
Terminology
Why Broadcast ?
Broadcast Classes
Broadcast Methods
Gateways and Broadcasts

Local Broadcasts
Multi-subnet Broadcasts
Pseudo-Algol Routing Algorithm

Broadcast IP Addressing - Standards
ARP Servers and Broadcasts

Acknowledgement
This proposal here is the result of discussion with several other people, especially J. Noel 
Chiappa and Christopher A. Kent, both of whom both pointed me at important references. 



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets

Introduction

The use of broadcasts, especially on high-speed local area networks, is a good base for 
many applications.    Since broadcasting is not covered in the basic IP specification [RFC-
791], there is no agreed-upon way to do it, and so protocol designers have not made use of 
it. (The issue has been touched upon before, e.g. [IEN-212], but has not been the subject of 
a standard.) 
We consider here only the case of unreliable, unsequenced, possibly duplicated datagram 
broadcasts (for a discussion of TCP broadcasting, see [IEN-10].) Even though unreliable and 
limited in length, datagram broadcasts are quite useful [1]. 
We assume that the data link layer of the local network supports efficient broadcasting.    
Most common local area networks do support broadcast; for example, Ethernet [7, 5], 
ChaosNet [10], token ring networks [2], etc. 
We do not assume, however, that broadcasts are reliably delivered. (One might consider 
providing a reliable broadcast protocol as a layer above IP.) It is quite expensive to 
guarantee delivery of broadcasts; instead, what we assume is that a host will receive most 
of the broadcasts that are sent.    This is important to avoid excessive use of broadcasts; 
since every host on the network devotes at least some effort to every broadcast, they are 
costly. 
When a datagram is broadcast, it imposes a cost on every host that hears it.    Therefore, 
broadcasting should not be used indiscriminately, but rather only when it is the best solution
to a problem. 
Note: some organizations have divided their IP networks into subnets, for which a standard 
[RFC-917] has been proposed.    This RFC does not cover the numerous complications arising 
from the interactions between subnets and broadcasting; see [RFC-922] for a complete 
discussion. 



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets

Terminology

Because broadcasting depends on the specific data link layer in use on a local network, we 
must discuss it with reference to both physical networks and logical networks. 
The terms we will use in referring to physical networks are, from the point of view of the host
sending or forwarding a broadcast: 
Local Hardware Network

The physical link to which the host is attached.
Remote Hardware Network

A physical network which is separated from the host by at least one gateway. 
Collection of Hardware Networks

A set of hardware networks (transitively) connected by gateways.

The IP world includes several kinds of logical network.    To avoid ambiguity, we will use the 
following terms: 
Internet

The DARPA Internet collection of IP networks.
IP Network

One or a collection of several hardware networks that have one specific IP 
network number. 

Subnet
A single member of the collection of hardware networks that compose an IP 
network.    Host addresses on a given subnet share an IP network number with 
hosts on all other subnets of that IP network, but the local-address part is 
divided into subnet-number and host-number fields to indicate which subnet a
host is on.    We do not assume a particular division of the local-address part; 
this could vary from network to network. 

The introduction of a subnet level in the addressing hierarchy is at variance with the IP 
specification [12], but as the use of addressable subnets proliferates it is obvious that a 
broadcasting scheme should support subnetting.    For more on subnets, see [8]. 
In this paper, the term "host address" refers to the host-on-subnet address field of a 
subnetted IP network, or the host-part field otherwise. 
An IP network may consist of a single hardware network or a collection of subnets; from the 
point of view of a host on another IP network, it should not matter. 



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets

Why Broadcast?

Broadcasts are useful when a host needs to find information without knowing exactly what 
other host can supply it, or when a host wants to provide information to a large set of hosts 
in a timely manner. 
When a host needs information that one or more of its neighbors might have, it could have a
list of neighbors to ask, or it could poll all of its possible neighbors until one responds.    Use 
of a wired-in list creates obvious network management problems (early binding is inflexible). 
On the other hand, asking all of one's neighbors is slow if one must generate plausible host 
addresses, and try them until one works.    On the ARPANET, for example, there are roughly 
65 thousand plausible host numbers.    Most IP implementations have used wired-in lists (for 
example, addresses of "Prime" gateways.) Fortunately, broadcasting provides a fast and 
simple way for a host to reach all of its neighbors. 
A host might also use a broadcast to provide all of its neighbors with some information; for 
example, a gateway might announce its presence to other gateways. 
One way to view broadcasting is as an imperfect substitute for multicasting, the sending of 
messages to a subset of the hosts on a network.    In practice, broadcasts are usually used 
where multicasts are what is wanted; datagrams are broadcast at the hardware level, but 
filtering software in the receiving hosts gives the effect of multicasting. 
For more examples of broadcast applications, see [1, 3].



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets

Broadcast Classes

There are several classes of IP broadcasting:

- Single-destination datagram broadcast on the local IP net: A datagrams
is destined for a specific IP host, but the sending host broadcasts it at 
the data link layer, perhaps to avoid having to do routing.    Since this is
not an IP broadcast, the IP layer is not involved, except that a host 
should discard datagrams not meant for it without becoming flustered 
(i.e., printing an error message). 

- Broadcast to all hosts on the local IP net: A distinguished value for the 
host-number part of the IP address denotes broadcast instead of a 
specific host.    The receiving IP layer must be able to recognize this 
address as well as its own. 
However, it might still be useful to distinguish at higher levels between 
broadcasts and non-broadcasts, especially in gateways. This is the 
most useful case of broadcast; it allows a host to discover gateways 
without wired-in tables, it is the basis for address resolution protocols, 
and it is also useful for accessing such utilities as name servers, time 
servers, etc., without requiring wired-in addresses. 

- Broadcast to all hosts on a remote IP network: It is occasionally useful 
to send a broadcast to all hosts on a non-local network; for example, to
find the latest version of a hostname database, to bootload a host on 
an IP network without a bootserver, or to monitor the timeservers on 
the IP network. This case is the same as local-network broadcasts; the 
datagram is routed by normal mechanisms until it reaches a gateway 
attached to the destination IP network, at which point it is broadcast. 
This class of broadcasting is also known as "directed broadcasting", or 
quaintly as sending a "letter bomb" [1]. 

- Broadcast to the entire Internet: This is probably not useful, and almost
certainly not desirable. 

For reasons of performance or security, a gateway may choose not to forward broadcasts; 
especially, it may be a good idea to ban broadcasts into or out of an autonomous group of 
networks. 



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets

Broadcast Methods

A host's IP receiving layer must be modified to support broadcasting. In the absence of 
broadcasting, a host determines if it is the recipient of a datagram by matching the 
destination address against all of its IP addresses.    With broadcasting, a host must compare 
the destination address not only against the host's addresses, but also against the possible 
broadcast addresses for that host. 
The problem of how best to send a broadcast has been extensively discussed [1, 3, 4, 13, 
14].    Since we assume that the problem has already been solved at the data link layer, an IP
host wishing to send either a local broadcast or a directed broadcast need only specify the 
appropriate destination address and send the datagram as usual.    Any sophisticated 
algorithms need only reside in gateways. 
The problem of broadcasting to all hosts on a subnetted IP network is apparently somewhat 
harder.    However, even in this case it turns out that the best known algorithms require no 
additional complexity in non-gateway hosts.    A good broadcast method will meet these 
additional criteria: 

- No modification of the IP datagram format.
- Reasonable efficiency in terms of the number of excess copies 

generated and the cost of paths chosen. 
- Minimization of gateway modification, in both code and data space. 
- High likelihood of delivery.

The algorithm that appears best is the Reverse Path Forwarding (RPF) method [4].    While 
RPF is suboptimal in cost and reliability, it is quite good, and is extremely simple to 
implement, requiring no additional data space in a gateway. 



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets

Gateways and Broadcasts

Most of the complexity in supporting broadcasts lies in gateways.    If a gateway receives a 
directed broadcast for a network to which it is not connected, it simply forwards it using the 
usual mechanism. Otherwise, it must do some additional work. 



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets - Gateways

Local Broadcasts

When a gateway receives a local broadcast datagram, there are several things it might have
to do with it.    The situation is unambiguous, but without due care it is possible to create 
infinite loops. 
The appropriate action to take on receipt of a broadcast datagram depends on several 
things: the subnet it was received on, the destination network, and the addresses of the 
gateway. 

- The primary rule for avoiding loops is "never broadcast a datagram on 
the hardware network it was received on". It is not sufficient simply to 
avoid repeating datagram that a gateway has heard from itself; this 
still allows loops if there are several gateways on a hardware network. 

- If the datagram is received on the hardware network to which it is 
addressed, then it should not be forwarded.    However, the gateway 
should consider itself to be a destination of the datagram (for example,
it might be a routing table update.) 

- Otherwise, if the datagram is addressed to a hardware network to 
which the gateway is connected, it should be sent as a (data link layer)
broadcast on that network.    Again, the gateway should consider itself 
a destination of the datagram. 

- Otherwise, the gateway should use its normal routing procedure to 
choose a subsequent gateway, and send the datagram along to it.    



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets - Gateways

Multi-subnet broadcasts

When a gateway receives a broadcast meant for all subnets of an IP network, it must use the
Reverse Path Forwarding algorithm to decide what to do.    The method is simple: the 
gateway should forward copies of the datagram along all connected links, if and only if the 
datagram arrived on the link which is part of the best route between the gateway and the 
source of the datagram. Otherwise, the datagram should be discarded. 
This algorithm may be improved if some or all of the gateways exchange among themselves
additional information; this can be done transparently from the point of view of other hosts 
and even other gateways.    See [4, 3] for details. 



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets

Pseudo-Algol Routing Algorithm

This is a pseudo-Algol description of the routing algorithm a gateway should use.    The 
algorithm is shown in figure 1.    Some definitions are: 
RouteLink(host)

A function taking a host address as a parameter and returning the first-hop 
link from the gateway to the host. 

RouteHost(host)
As above but returns the first-hop host address.

ResolveAddress(host)
Returns the hardware address for an IP host.

IncomingLink
The link on which the packet arrived.

OutgoingLinkSet
The set of links on which the packet should be sent.

OutgoingHardwareHost
The hardware host address to send the packet to.

Destination.host
The host-part of the destination address.

Destination.subnet
The subnet-part of the destination address.

Destination.ipnet
The IP-network-part of the destination address.

BEGIN
IF Destination.ipnet IN AllLinks THEN

BEGIN
IF IsSubnetted(Destination.ipnet) THEN

BEGIN
IF Destination.subnet = BroadcastSubnet THEN

BEGIN            /* use Reverse Path Forwarding algorithm */
IF IncomingLink = RouteLink(Source) THEN

BEGIN IF Destination.host = BroadcastHost THEN
OutgoingLinkSet <- AllLinks -
IncomingLink;
OutgoingHost <- BroadcastHost;
Examine packet for possible internal use;

END
ELSE    /* duplicate from another gateway, discard */

Discard;
END



ELSE
IF Destination.subnet = IncomingLink.subnet THEN

BEGIN                      /* forwarding would cause a loop */
IF Destination.host = BroadcastHost THEN

Examine packet for possible internal use;
Discard;

END
ELSE BEGIN        /* forward to (possibly local) subnet */

OutgoingLinkSet <- RouteLink(Destination);
OutgoingHost <- RouteHost(Destination);

END
END

ELSE BEGIN                  /* destined for one of our local networks */
IF Destination.ipnet = IncomingLink.ipnet THEN

BEGIN                            /* forwarding would cause a loop */
IF Destination.host = BroadcastHost THEN

Examine packet for possible internal use;
Discard;

END
ELSE BEGIN                                          /* might be a broadcast */

OutgoingLinkSet <- RouteLink(Destination);
OutgoingHost <- RouteHost(Destination);
END

END
END

ELSE BEGIN                                        /* forward to a non-local IP network */
OutgoingLinkSet <- RouteLink(Destination);
OutgoingHost <- RouteHost(Destination);
END

OutgoingHardwareHost <- ResolveAddress(OutgoingHost);
END

Figure 1: Pseudo-Algol algorithm for routing broadcasts by gateways



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets

Broadcast IP Addressing - Conventions

If different IP implementations are to be compatible, there must be convention distinguished 
number to denote "all hosts" and "all subnets". 
Since the local network layer can always map an IP address into data link layer address, the 
choice of an IP "broadcast host number" is somewhat arbitrary.    For simplicity, it should be 
one not likely to be assigned to a real host.    The number whose bits are all ones has this 
property; this assignment was first proposed in [6].    In the few cases where a host has been 
assigned an address with a host-number part of all ones, it does not seem onerous to require
renumbering. 
The "all subnets" number is also all ones; this means that a host wishing to broadcast to all 
hosts on a remote IP network need not know how the destination address is divided up into 
subnet and host fields, or if it is even divided at all.    For example, 36.255.255.255 may 
denote all the hosts on a single hardware network, or all the hosts on a subnetted IP network
with 1 byte of subnet field and 2 bytes of host field, or any other possible division. 
The address 255.255.255.255 denotes a broadcast on a local hardware network that must 
not be forwarded.    This address may be used, for example, by hosts that do not know their 
network number and are asking some server for it. 
Thus, a host on net 36, for example, may:

- broadcast to all of its immediate neighbors by using 255.255.255.255 
- broadcast to all of net 36 by using 36.255.255.255

without knowing if the net is subnetted; if it is not, then both addresses have the same 
effect. A robust application might try the former address, and if no response is received, 
then try the latter. See [1] for a discussion of such "expanding ring search" techniques. 
If the use of "all ones" in a field of an IP address means "broadcast", using "all zeros" could 
be viewed as meaning "unspecified".    There is probably no reason for such addresses to 
appear anywhere but as the source address of an ICMP Information Request datagram.    
However, as a notational convention, we refer to networks (as opposed to hosts) by using 
addresses with zero fields. For example, 36.0.0.0 means "network number 36" while 
36.255.255.255 means "all hosts on network number 36". 



RFC-922 Broadcasting IP Datagrams in the Presence of Subnets - Conventions

ARP Servers and Broadcasts

The Address Resolution Protocol (ARP) described in [RFC_826] can, if incorrectly 
implemented, cause problems when broadcasts are used on a network where not all hosts 
share an understanding of what a broadcast address is.    The temptation exists to modify the
ARP server so that it provides the mapping between an IP broadcast address and the 
hardware broadcast address. 
This temptation must be resisted.    An ARP server should never respond to a request whose 
target is a broadcast address.    Such a request can only come from a host that does not 
recognize the broadcast address as such, and so honoring it would almost certainly lead to a
forwarding loop.    If there are N such hosts on the physical network that do not recognize 
this address as a broadcast, then a datagram sent with a Time-To-Live of T could potentially 
give rise to T**N spurious re-broadcasts. 



8. References
      1.      David Reeves Boggs.    Internet Broadcasting.    Ph.D. Th., Stanford
                University, January 1982.
      2.      D.D. Clark, K.T. Pogran, and D.P. Reed.    "An Introduction to
                Local Area Networks".    Proc. IEEE 66, 11, pp1497-1516,
                November 1978.
      3.      Yogan Kantilal Dalal.    Broadcast Protocols in Packet Switched
                Computer Networks.    Ph.D. Th., Stanford University, April 1977.
      4.      Yogan K. Dalal and Robert M. Metcalfe.    "Reverse Path Forwarding
                of Broadcast Packets".    Comm. ACM 21, 12, pp1040-1048,
                December 1978.
      5.      The Ethernet, A Local Area Network: Data Link Layer and Physical
                Layer Specifications.    Version 1.0, Digital Equipment
                Corporation, Intel, Xerox, September 1980.
      6.      Robert Gurwitz and Robert Hinden.    IP - Local Area Network
                Addressing Issues.    IEN-212, BBN, September 1982.
      7.      R.M. Metcalfe and D.R. Boggs.    "Ethernet: Distributed Packet
                Switching for Local Computer Networks".    Comm. ACM 19, 7,
                pp395-404, July 1976.    Also CSL-75-7, Xerox Palo Alto Research
                Center, reprinted in CSL-80-2.
      8.      Jeffrey Mogul.    Internet Subnets.    RFC-917, Stanford University,
                October 1984.
      9.      David A. Moon.    Chaosnet.    A.I. Memo 628, Massachusetts
                Institute of Technology Artificial Intelligence Laboratory,
                June 1981.
      10.    William W. Plummer.    Internet Broadcast Protocols.    IEN-10, BBN,
                March 1977.
      11.    David Plummer.    An Ethernet Address Resolution Protocol.
                RFC-826, Symbolics, September 1982.
      12.    Jon Postel.    Internet Protocol.    RFC-791, ISI, September 1981.
      13.    David W. Wall.    Mechanisms for Broadcast and Selective
                Broadcast.    Ph.D. Th., Stanford University, June 1980.
      14.    David W. Wall and Susan S. Owicki.    Center-based Broadcasting.
                Computer Systems Lab Technical Report TR189, Stanford
                University, June 1980.



Output Marking Telnet Option
S. Silverman MITRE - Washington

January 1985

Status of this Memo
This RFC proposes a new option for Telnet for the ARPA-Internet community, and requests 
discussion and suggestions for improvements. Distribution of this memo is unlimited. 
Overview
This proposed option would allow a Server-Telnet to send a banner to a User-Telnet so that 
this banner would be displayed on the workstation screen independently of the application 
software running in the Server-Telnet. 
Command Name and Code

OUTMRK        27
Default

WON'T OUTMRK
DON'T OUTMRK

Output marking information will not be exchanged.
Command Meanings
Motivation
Description



RFC-933 Output Marking Telnet Option

Command Meanings

IAC WILL OUTMRK
Sender is willing to send output marking information in a subsequent sub-
negotiation. 

IAC WON'T OUTMRK
Sender refuses to send output marking information.

IAC DO OUTMRK
Sender is willing to receive output marking information in a subsequent sub-
negotiation. 

IAC DON'T OUTMRK
Sender refuses to accept output marking information.

IAC SB OUTMRK CNTL data IAC SE
The sender requests receiver to use the data in this subnegotiation as a 
marking for the normally transmitted Telnet data until further notice.    The 
CNTL octet indicates the position of the marking. 

IAC SB OUTMRK ACK IAC SE
The sender acknowledges the data and agrees to use it to perform output 
marking. 

IAC SB OUTMRK NAK IAC SE
The sender objects to using the data to perform output marking. 



RFC-933 Output Marking Telnet Option

Motivation for the Option

The security architecture of some military systems identifies a security level with each Telnet
connection.    There is a corresponding need to display a security banner on visual display 
devices. (Reference: Department of Defense Trusted Computer System Evaluation Criteria, 
Section 3.1.1.3.2.3, Labeling Human-Readable Output.) 
The output marking is currently done by transmitting the banner as data within each screen 
of data.    It would be more efficient to transmit the data once with instructions and have 
User-Telnet maintain the banner automatically without any additional Server-Telnet action.    
This frees Server-Telnet from needing to know the output device page size. 
Under this proposal Server-Telnet would send an option sequence with the command, a 
control flag, and the banner to be used.    While current systems use the top of the screen, it 
is conceivable other systems would want to put the banner at the bottom or perhaps even 
the side of the screen.    This is the reason for the control flag. 



RFC-933 Output Marking Telnet Option

Description of the Option

Either side of the session can initiate the option; however, normally it will be the server side 
that initiates the request to perform output marking.    Either the Server-Telnet sends "WILL 
OUTMRK" or the User-Telnet sends a "DO OUTMRK".    The party receiving the initial "WILL" 
(or "DO") would respond with "DO" (or "WILL") to accept the option.    Then Server-Telnet 
responds with the marking data.    The format of this is: 

"IAC SB OUTMRK CNTL data IAC SE"
CNTL is the Control Flag described below, the data is in ASCII. 

If this is satisfactory, User-Telnet responds:
"IAC SB OUTMRK ACK IAC SE"

ACK is the ASCII ACK (6).
From this point, User-Telnet will have to translate any command which uses cursor controls 
so that the application data is mapped to the application part of the screen. 
If the data passed in the subnegotiation field is unacceptable to User-Telnet, then it responds
with: 

"IAC SB OUTMRK NAK IAC SE"
NAK is the ASCII NAK (21).

It is now up to Server-Telnet to start the sequence over again and use "more acceptable" 
data (or possibly take other action such as connection termination). 
To terminate output marking, Server-Telnet transmits "WON'T OUTMRK".
If necessary, User-Telnet would notify Server-Telnet about the new effective page size.    User-
Telnet would then map the output data to the allowed usable space on the screen. 
User-Telnet may request OUTMRK data or initiate setup of this convention at anytime by 
transmitting "DO OUTMRK".    If a WILL, DO OUTMRK exchange is not followed by the 
OUTMRK subnegotiation of the marking data, the User-Telnet may terminate the output 
marking option by sending a "DON'T OUTMRK". 
Control Flag

The CNTL flag is defined as:
D = Default, the placement of the markings is up to User-Telnet.    This is the

expected mode for most interactions. 
T =Top, this banner is to be used as the top of the screen. If multiple output 

markings are desired, then T and B (or R & L ) are to be used. 
B = Bottom, this banner is to be used at the bottom of the screen. 
L =Left, markings on the left.    (The precise meaning of this is to be defined.) 
R =Right, marking on right.    (The precise meaning of this is to be defined.) 

Banner Data
The use of Carriage Return and Line Feed (CRLF) will be interpreted as a end of line in the 
marking banner text.    If the user wants a multiline banner, CRLF will be used between each 
line.    No CRLF is needed at the end of the marking data. 
To use multiple banners, all of the banners will be included in one subnegotiation command 



of the form: 
"IAC SB OUTMRK CNTL data GS CNTL data IAC SE"

where GS is the ASCII Group Separator (29) character.
User-Telnet will be responsible for positioning the marking banner data on the screen. 



Post Office Protocol - Version 2
M. Butler, J. Postel, D. Chase, J. Goldberger, J. K. Reynolds

USC/Information Sciences Institute
February 1985

Status of this Memo
This RFC suggests a simple method for workstations to dynamically access mail from a 
mailbox server.    This RFC specifies a proposed protocol for the ARPA-Internet community, 
and requests discussion and suggestions for improvement.    This memo is a revision of RFC 
918. Distribution of this memo is unlimited. 

Introduction
System Model and Philosophy
The Protocol
The Normal Scenario
Conventions
Definitions of Commands and Replies

Timeouts
Implementation Discussion
Extensions Not Supported
Examples
Formal Syntax
State Diagrams
Acknowledgements



RFC-937 Post Office Protocol - Version 2

Introduction
The intent of the Post Office Protocol Version 2 (POP2) is to allow a user's workstation to 
access mail from a mailbox server.    It is expected that mail will be posted from the 
workstation to the mailbox server via the Simple Mail Transfer Protocol (SMTP).    For further 
information see RFC-821 [RFC-821] and RFC-822 [RFC-822]. 
This protocol assumes a reliable data stream such as provided by TCP or any similar 
protocol.    When TCP is used, the POP2 server listens on port 109 [RFC-1060]. 



RFC-937 Post Office Protocol - Version 2

System Model and Philosophy

While we view the workstation as an Internet host in the sense that it implements IP, we do 
not expect the workstation to contain the user's mailbox.    We expect the mailbox to be on a
server machine. 
We believe it is important for the mailbox to be on an "always up" machine and that a 
workstation may be frequently powered down, or otherwise unavailable as an SMTP server. 
POP2 is designed for an environment of workstations and servers on a low-delay, high-
throughput, local networks (such as Ethernets).    POP2 may be useful in other environments 
as well, but if the environment is substantially different, a different division of labor between 
the client and server may be appropriate, and a different protocol required. 
Suppose the user's real name is John Smith, the user's machine is called FIDO, and that the 
mailbox server is called DOG-HOUSE.    Then we expect the user's mail to be addressed to 
JSmith@DOG-HOUSE.ARPA (not JSmith@FIDO.ARPA). 
That is, the destination of the mail is the mailbox on the server machine.    The POP2 protocol
and the workstation are merely a mechanism for viewing the messages in the mailbox. 
The user is not tied to any particular workstation for accessing his mail.    The workstation 
does not appear as any part of the mailbox address. 
This is a very simple protocol.    This is not a user interface.    We expect that there is a 
program in the workstation that is friendly to the user.    This protocol is not "user friendly".    
One basic rule of this protocol is "if anything goes wrong close the connection". Another 
basic rule is to have few options. 
POP2 does not parse messages in any way.    It does not analyze message headers (Date:, 
From:, To:, Cc:, or Subject:).    POP2 simply transmits whole messages from a mailbox server 
to a client workstation. 



RFC-937 Post Office Protocol - Version 2

The Protocol

The POP2 protocol is a sequence of commands and replies.    The design draws from many 
previous protocols of the ARPA-Internet community. 

The server must be listening for a connection.    When a connection is opened the 
server sends a greeting message and waits for commands.    When commands are 
received the server acts on them and responds with replies. 
The client opens a connection, waits for the greeting, then sends the HELO command 
with the user name and password arguments to establish authorization to access 
mailboxes.    The server returns the number of messages in the default mailbox. 
The client may read the default mailbox associated with the user name or may select 
another mailbox by using the FOLD command.    The server returns the number of 
messages in the mailbox selected. 
The client begins a message reading transaction with a READ command.    The read 
command may optionally indicate which message number to read, the default is the 
current message (incremented when a message is read and set to one when a new 
folder is selected).    The server returns the number of characters in the message. 
The client asks for the content of the message to be sent with the RETR command.    
The server sends the message data. 
When all the data has been received the client sends an acknowledgment command.  
This is one of ACKS, ACKD, and NACK. 

ACKS means "I've received the message successfully and please keep it in the 
mailbox". 
ACKD means "I've received the message successfully and please delete it from
the mailbox". 
NACK means "I did not receive the message and please keep it in the 
mailbox". 

In the case of ACKS or ACKD the server increments the current message indicator.    In
the case of NACK the current message indicator stays the same. 
In all cases the server returns the number of characters in the (now) current 
message. 
The client terminates the session with the QUIT command.    The server returns an ok.



RFC-937 Post Office Protocol - Version 2

The Normal Scenario

            Client                                   Server  
Wait for Connection

Open Connection -->
<-- + POP2 Server Ready

Wait for Command
HELO Fred Secret -->

<-- #13 messages for you
Wait for Command

READ 13 -->
<-- =537 characters in that message

Wait for Command
RETR -->      

<-- (send the message data)
Wait for Command

ACKS -->      
<-- =0 no more messages

Wait for Command
QUIT -->

<-- + OK
Close connection --> <-- Close connection

Wait for Connection (go back to start)



RFC-937 Post Office Protocol - Version 2

Conventions

Arguments
These arguments have system specific definitions.

user - A login account name.
password - The password for the login account.
mailbox - A mailbox name (also called a mail folder).

Default Mailboxes
TOPS-20

MAIL.TXT.1 - from login directory
UNIX

both
/usr/spool/mail/user
and
/usr/user/Mail/inbox/*
where "user" is the user value supplied in the HELO command.

End of Line
End of Line is Carriage Return (CR) followed by Line Feed (LF). This sequence is indicated 
by "CRLF" in this document.    This end of line convention must be used for commands 
and replies. 

Message Length
The reply to the READ command or an acknowledgment command (ACKS, ACKD, NACK) 
is the length (a character count) of the next message to be transmitted.    This includes 
all the characters in the data transmitted.    CRLF counts as two characters.    A length of 
zero means the message does not exist or is empty.    A request to transmit a message of
zero length will result in the server closing the connection.    The message is transmitted 
in the standard internet format described in RFC-822 [2] and NVT-ASCII. This may be 
different from the storage format and may make computing the message length from the
stored message non-trivial. 

Message Numbers
The reply to the HELO and FOLD commands is a count of the number of messages in a 
the selected mailbox.    The READ command has a message number as an optional 
argument.    These numbers are decimal, start at one, and computed with respect to the 
current mailbox.    That is, the first message in a mailbox is message number 1. 

Numbers
All numbers in this memo and protocol are decimal.

Quoting
In a few cases, there may be a need to have a special character in an argument (user, 
password, or mailbox) that is not allowed by the syntax.    For example, a space in a 
password. To allow for this, a quoting convention is defined.    Unfortunately, such quoting
conventions "use up" another otherwise uninteresting character.    In this protocol the 



back slash "\" is used as the quote character.    To include a space in an argument the two
character sequence "back-slash, space" is transmitted.    To include a back-slash in an 
argument the two character sequence "back-slash, back-slash" is transmitted.    This 
quoting convention is used in the command arguments only, it is not used in the mail 
data transmitted in response to a RETR command. 

Reply Strings
The first character is required to be as specified (i.e., "+", "-", "=", "#").    The optional 
strings that follow can be whatever the implementer thinks is appropriate. 



RFC-937 Post Office Protocol - Version 2

Definitions of Commands and Replies

Commands                      Replies  
HELO user password Greeting
FOLD mailbox + OK
READ [n] - Error
RETR #xxx
ACKS =yyy
ACKD
NACK
QUIT



RFC-937 Post Office Protocol - Version 2: Commands

HELO user password

The Hello command identifies the user to the server and carries the password authenticating
this user.    This information is used by the server to control access to the mailboxes.    The 
Hello command is the "HELO" keyword, followed by the user argument, followed by the 
password argument, followed by CRLF. 
Possible responses:

"#nnn"
where nnn is the number of messages in the default mailbox," 

"- error report" and Close the connection.



RFC-937 Post Office Protocol - Version 2: Commands

FOLD mailbox

The Folder command selects another mailbox or mail folder.    The server must check that 
the user is permitted read access to this mailbox.    If the mailbox is empty or does not exist, 
the number of messages reported is zero.    The Folder command is the "FOLD" keyword, 
followed by the mailbox argument, followed by CRLF. 
Possible responses:

"#nnn"
where nnn is the number of messages in this mailbox.



RFC-937 Post Office Protocol - Version 2: Commands

READ [nnn]

The Read command begins a message reading transaction.    If the Read command is given 
without an argument the current message is    implied (the current message indicator is 
incremented    by the ACKS or ACKD commands).    If an argument is used with the Read 
command it is the message number to be read, and this command sets the current message
indicator to that value.    The server returns the count of characters in the message to be 
transmitted.    If there is no message to be read, the count of zero is returned.    If the 
message was previously deleted with the ACKD command, the count of zero is returned.    
The Read command is followed by the RETR command, the READ command, the FOLD 
command, or the QUIT command.    Do not attempt to RETR a message of zero characters.    
The Read command is the "READ" keyword, optionally followed by the message number 
argument, followed by CRLF. 
Possible responses:

"=ccc"
where ccc is the number of characters in this message.



RFC-937 Post Office Protocol - Version 2: Commands

RETR

The Retrieve command confirms that the client is ready to receive the mail data.    It must be
followed by an acknowledgment command.    The server will close the connection if asked to 
transmit a message of zero characters (i.e., transmit a non-existent message).    The 
message is transmitted according to the Internet mail format standard RFC-822 [RFC-822] in
NVT-ASCII.    The Retrieve command is the "RETR" keyword, followed by CRLF. 
Possible responses:

the message data
Close the connection



RFC-937 Post Office Protocol - Version 2: Commands

ACKS

The Acknowledge and Save command confirms that the client has received and accepted 
the message.    The ACKS command ends the message reading transaction.    The message is
kept in the mailbox.    The current message indicator is incremented.    The server returns the
count of characters in the now current message to be transmitted.    If there is no message 
to be read or the message is marked deleted, the count of zero is returned.    The 
Acknowledge and Save command is the "ACKS" keyword, followed by CRLF. 
Possible responses:

"=ccc"
where ccc is the number of characters in the next message. 



RFC-937 Post Office Protocol - Version 2: Commands

ACKD

The Acknowledge and Delete command confirms that the client has received and accepted 
the message.    The ACKD command ends the message reading transaction.    If the user is 
authorized to have write access to the mailbox, the message is deleted from the mailbox.    
Actually, the message is only marked for deletion. The actual change is made    when the 
mailbox is released at the end of the session or when the client selects another mailbox with
the FOLD command.    The messages are not renumbered until the mailbox is released.    If 
the user does not have write access to the mailbox no change is made to the mailbox.    The 
response is the same whether or not the message was actually deleted.    The current 
message indicator is incremented.    The server returns the count of characters in the now 
current message to be transmitted.    If there is no message to be read or the message is 
marked deleted, the count of zero is returned.    The Acknowledge and Delete command is 
the "ACKD" keyword, followed by CRLF. 
Possible responses:

"=ccc"
where ccc is the number of characters in the next message. 



RFC-937 Post Office Protocol - Version 2: Commands

NACK

The Negative Acknowledge command reports that the client did not receive the message.    
The NACK command ends the message reading transaction.    The message is kept in the 
mailbox.    The current message indicator remains the same.    The server returns the count of
characters in the current message.    Since the count to be returned is for the message just 
transmitted it the message must exist and not be marked deleted, and the count must be 
positive (non-zero).    The Negative Acknowledge command is the "NACK" keyword, followed 
by CRLF. 
Possible responses:

"=ccc"
where ccc is the number of characters in this message.



RFC-937 Post Office Protocol - Version 2: Commands

QUIT

The Quit command indicates the client is done with the session. The server sends an OK 
response and then closes the connection. The Quit command is the "QUIT" keyword, 
followed by CRLF. 
Possible responses:

"+ OK" and Close the connection



RFC-937 Post Office Protocol - Version 2: Replies

Greeting

The greeting is sent by the server as soon as the connection is established.    The greeting is 
a plus sign, followed by the protocol name ("POP2"), followed by the server host name, 
optionally followed by text, and ending with a CRLF. 



RFC-937 Post Office Protocol - Version 2: Replies

+ OK

The success or plus sign response indicates successful completion of the operation specified 
in the command.    The success response is a plus sign, optionally followed by text, and 
ending with a CRLF. 



RFC-937 Post Office Protocol - Version 2: Replies

- Error

The failure or minus sign response indicates the failure of the operation specified in the 
command.    The failure response is a minus sign, optionally followed by text, and ending 
with a CRLF. 



RFC-937 Post Office Protocol - Version 2: Replies

#xxx

The count or number sign response tells the number of messages in a folder or mailbox 
referenced by the command.    The count response is a number sign, followed by a number, 
optionally followed by text, and ending with a CRLF. 



RFC-937 Post Office Protocol - Version 2: Replies

=yyy

The length or equal sign response tells the length in characters of the message referenced 
by the command.    The length response is a equal sign, followed by a number, optionally 
followed by text, and ending with a CRLF. 



RFC-937 Post Office Protocol - Version 2

Timeouts

In any protocol of this type there have to be timeouts.    Neither side wants to get stuck 
waiting forever for the other side (particularly is the other side has gone crazy or crashed). 
The client expects a reply to a command fairly quickly and so should have a short timeout 
for this.    This timeout is called T1. 
For some servers, it may take some processing to compute the number of messages in a 
mailbox, or the length of a message, or to reformat a stored message for transmission, so 
this time out has to allow for such processing time.    Also care must be taken not to timeout 
waiting for the completion of a RETR reply while a long message is in fact being transfered. 
The server expects the session to progress with some but not excessive delay between 
commands and so should have a long timeout waiting for the next command.    This time out
is T2. 
One model of use of this protocol is that any number of different types of clients can be built
with different ways of interacting with the human user and the server, but still expecting the
client to open the connection to the server, present a sequence of commands, and close the 
connection, without waiting for intervention by the human user.    With such client 
implementations, it is reasonable for the server to have a fairly small value for timeout T2. 
On the other hand, one could easily have the client be very human user directed with the 
user making decisions between commands.    This would cause arbitrary delays between 
client commands to the server, and require the value of timeout T2 to be quite large. 



RFC-937 Post Office Protocol - Version 2

Implementation Discussion

Comments on a Server on TOPS-20
On TOPS-20, a mailbox is a single file.    New messages are appended to the file.    There is a 
separator line between messages. 
The tricky part of implementing a POP2 server on TOPS-20 is to provide for deleting 
messages.    This only has to be done for the mailboxes (files) for which the user has write 
access.    The problem is to avoid both (1) preventing other users from accessing or updating
the mailbox for long periods, and (2) accidentally deleting a message the user has not seen. 
One suggestion is as follows:
When a mailbox is first selected, if the user has write access, rename the mailbox file to 
some temporary name.    Thus new messages will be placed in a new instance of the mailbox
file. Conduct all POP2 operation on the temporary mailbox file (including deleting messages).
When the POP2 session is over or another mailbox is selected, prepend any messages left 
undeleted in the temporary file to the new instance of the mailbox file. 
Sizes
The maximum length of a command line is 512 characters (including the command word 
and the CRLF). 
The maximum length of a reply line is 512 characters (including the success indicator (+, -, 
=, #) and the CRLF). 
The maximum length of a text line is 1000 characters (including CRLF). 
ISI has developed a POP2 server for TOPS-20 and for Berkeley 4.2 Unix, and a POP2 client for
an IBM-PC and for Berkeley 4.2 Unix. 



RFC-937 Post Office Protocol - Version 2

Extensions Not Supported

POP2 does not examine the internal data of messages.    In particular, the server does not 
parse message headers. 
The server doesn't have any state information (i.e., it doesn't know from one session to the 
next what has happened).    For example, the server doesn't know which messages were 
received since the last time the user used POP2, so it can't send just the "new" messages. 



RFC-937 Post Office Protocol - Version 2

Examples

Example 1 - Simple case; Read default mailbox
Example 2 - Change folders
Example 3 - No messages waiting



RFC-937 Post Office Protocol - Version 2: Examples

Example 1 - Read default mailbox

Client                                      Server  
Wait for connection

Open connection -->
<-- + POP2 USC-ISIF.ARPA Server

HELO POSTEL SECRET -->
<-- #2 messages in your mailbox

READ -->      
<-- =537 characters in message 1

RETR -->      
<-- [data of message 1]

ACKD -->      
<-- =234 characters in message 2

RETR -->      
<-- [data of message 2]

ACKD -->      
<-- =0 no more messages

QUIT -->
<-- + OK, bye, bye

Close connection --> <-- Close connection
Go back to start



RFC-937 Post Office Protocol - Version 2: Examples

Example 2:

Client                                      Server  
Wait for connection

Open connection -->
<-- + POP2 ISI-VAXA.ARPA server here

HELO smith secret -->
<-- #35 messages

FOLD /usr/spool/mail/smith -->
<-- #27 messages

READ    27 -->
<-- =10123 characters in that message

RETR -->      
<-- [data of message 27]

ACKS -->      
<-- =0 no more messages

QUIT -->
<-- + bye, call again sometime.

Close connection --> <-- Close connection
Go back to start



RFC-937 Post Office Protocol - Version 2

Example 3:

Client                                      Server  
Wait for connection

Open connection -->
<-- + POP2 ISI-VAXA.ARPA server here

HELO Jones secret -->
<-- #0 messages

READ -->      
<-- Close connection

Close connection -->
Go back to start



RFC-937 Post Office Protocol - Version 2

Formal Syntax

 <digit> = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 <letter> = A | B | C | ... | Z

  a | b | c | ... | z
 <punct> = ! | " | # | $ | % | & | ' | ( | ) | * |

  + | , | - | / | : | < | = | > | ? | @ |
  [ | ] | ^ | _ | ` | { | | | } | ~

<quote> = \
<any> = any one of the 128 ASCII codes
<CR> = carriage return, code 10
<LF> = line feed, code 13
<SP> = space, code 32
<CRLF> = <CR> <LF>
<print> = <letter> | <digit> | <punct> | <quote> <any>
<char> = <print> | <SP>
<word> = <print> | <print> <word>
<string> = <char> | <char> <string>
<ld> = <letter> | <digit>
<ldh> = <letter> | <digit> | -
<ldhs> = <ldh> | <ldh> <ldhs>
<name> = <letter> [ [ <ldhs> ] <ld> ]
<host> = <name> | <name> . <host>
<user> = <word>
<password>

= <word>
<mailbox> = <string>
<number> = <digit> | <digit> <number>
<helo> = HELO <SP> <user> <SP> <password> <CRLF>
<fold> = FOLD <SP> <mailbox> <CRLF>
<read> = READ [<SP> <number>] <CRLF>
<retr> = RETR <CRLF>
<acks> = ACKS <CRLF>
<ackd> = ACKD <CRLF>
<nack> = NACK <CRLF>
<quit> = QUIT <CRLF>
<ok> = + [<SP> <string>] <CRLF>
<err> = - [<SP> <string>] <CRLF>
<count> = # <number> [<SP> <string>] <CRLF>
<greet> = + <SP> POP2 <SP> <host> [<SP> <string>] <CRLF>
<length> = = <number> [<SP> <string>] <CRLF>
<command>

= <helo> | <fold> | <read> | <retr> |
  <acks> | <ackd> | <nack> | <quit>

<reply> = <ok> | <err> | <count> | <length> | <greet>



RFC-937 Post Office Protocol - Version 2

State Diagrams

Client State Diagram
Server State Diagram
Combined Flow Diagram
Client Decision Table
Server Decision Table



RFC-937 Post Office Protocol - Version 2: State Diagrams

Client State Diagram

      
                          |                    ^  + BYE  
                          |  Open              |  -----  
                          |           Greet    |  Close  
                          V           -----    |         
                      +-------+       QUIT    +-------+  
                      | CALL  |-------------->| EXIT  |  
                      +-------+               +-------+  
                          |                       ^      
                          |  Greet                |      
                          |  -----                |      
                          |  HELO                 |      
              +---->+     |                       |      
        #NNN  ^     |     |        #NNN           |      
        ----  |     V     V        ----           |      
        FOLD  |    +-------+       QUIT           |      
              +<---| NMBR  |--------------------->+      
                   +-------+                      ^      
                    ^     |                       |      
                    |     |  #NNN                 |      
                    |     |  ----                 |      
              =CCC  |     |  READ                 |      
              ----  |     |                       |      
              FOLD  |     |        =CCC           |      
                    |     V        ----           |      
        =CCC  +--->+-------+       QUIT           |      
        ----  ^    | SIZE  |--------------------->+      
        READ  +<---+-------+                             
                    ^     |                              
                    |     |  =CCC                        
              data  |     |  ----                        
              ----  |     |  RETR                        
              ack   |     |                              
                    |     V                              
                   +-------+                             
                   | XFER  |                             
                   +-------+                             



RFC-937 Post Office Protocol - Version 2

Server State Diagram

                          +<----------------------+  Close  
                       |                       |  -----  
               Listen  |                       |  Close  
                       V                       |         
                   +-------+                  +-------+  
                   | LSTN  |                  | DONE  |  
                   +-------+                  +-------+  
                       |                          ^      
                       |  Open                    |      
                       |  -----                   |      
                       |  Greet                   |      
                       |                          |      
                       |           QUIT           |      
                       V           -----          |      
                   +-------+       + BYE          |      
                   | AUTH  |--------------------->+      
                   +-------+                      ^      
                       |                          |      
                       |  HELO                    |      
                       |  ----                    |      
                       |  #NNN                    |      
                       |                          |      
                       |           QUIT           |      
                       V           -----          |      
        FOLD  +--->+-------+       + BYE          |      
        ----  ^    | MBOX  |--------------------->+      
        #NNN  +<---+-------+                      ^      
                    ^     |                       |      
                    |     |  READ                 |      
              FOLD  |     |  ----                 |      
              ----  |     |  =CCC                 |      
              #NNN  |     |        QUIT           |      
                    |     V        -----          |      
        READ  +--->+-------+       + BYE          |      
        ----  ^    | ITEM  |--------------------->+      
        =CCC  +<---+-------+                             
                    ^     |                              
                    |     |  RETR                        
              ack   |     |  ----                        
              ----  |     |  data                        
              =CCC  |     |                              
                    |     V                              
                   +-------+                             
                   | NEXT  |                             
                   +-------+                             



RFC-937 Post Office Protocol - Version 2: State Diagrams

Combined Flow Diagram
      
   +----+                                                              
   |CALL|<------------------------------------------------------------+
   |LSTN|                                                             ^
   +----+                                                             |
    | Greet                                                           |
    |                                                                 |
    |  +----------------------------------------------------->+       |
    |  ^ QUIT                                                 |       |
    V  |                                                      V       |
   +----+        +----+                                      +----+   |
   |CALL| HELO   |NMBR|                                      |EXIT|   |
   |AUTH|------->|AUTH|                                      |AUTH|   |
   +----+        +----+                                      +----+   |
                  | #NNN                                   + Bye |    |
                  |                                              |    |
                  |  +------------------------------------>+     |    |
                  |  ^ QUIT                                |     |    |
                  V  |                                     V     |    |
            +--->+----+        +----+                     +----+ |    |
       FOLD ^    |NMBR| READ   |SIZE|                     |EXIT| |    |
       ---- |    |MBOX|------->|MBOX|                     |MBOX| |    |
       #NNN +<---+----+        +----+                     +----+ |    |
                     ^           | =CCC                 + Bye |  |    |
                     |           |                            |  |    |
                FOLD +<--------+ | +------------------->+     |  |    |
                ----           ^ | ^ QUIT               |     |  |    |
                #NNN           | V |                    V     |  |    |
                         +--->+-----+        +----+    +----+ |  |    |
                    READ ^    |SIZE | RETR   |XFER|    |EXIT| |  |    |
                    ---- |    | ITEM|------->|ITEM|    |ITEM| |  |    |
                    =CCC +<---+-----+        +----+    +----+ |  |    |
                                 ^             | data      |  |  |    |
                                 |             |           |  |  |    |
                            =CCC |             V     + Bye |  |  |    |
                               +----+        +----+        |  |  |    |
                               |SIZE|    Ack |XFER|        |  |  |    |
                               |NEXT|<-------|NEXT|        |  |  |    |
                               +----+        +----+        |  |  |    |
                                                           |  |  |    |
                                                           |  |  |    |
                                                           V  V  V    |
                                                          +-------+   |
                                                          | EXIT  |-->+
                                                          | DONE  |    
                                                          +-------+    



RFC-937 Post Office Protocol - Version 2: Decision Tables

Client Decision Table
      
          |            STATE                 |
   -------+----------------------------------|
   INPUT  | CALL | NMBR | SIZE | XFER | EXIT |
   -------+----------------------------------|
   Greet  |  2   |  1   |  1   |  1   |  6   |
   -------+----------------------------------|
   #NNN   |  1   |  3   |  1   |  1   |  6   |
   -------+----------------------------------|
   =CCC   |  1   |  1   |  4   |  1   |  6   |
   -------+----------------------------------|
   data   |  1   |  1   |  1   |  5   |  6   |
   -------+----------------------------------|
   + Bye  |  1   |  1   |  1   |  1   |  6   |
   -------+----------------------------------|
   Close  |  1   |  1   |  1   |  1   |  6   |
   -------+----------------------------------|
   other  |  1   |  1   |  1   |  1   |  6   |
   -------+----------------------------------|
   Timeout|  1   |  1   |  1   |  1   |  6   |
   -------+----------------------------------|

Actions:
1. This is garbage.    Send "QUIT", and go to EXIT state.
2. (a) If the greeting is right then send "HELO" and go to NMBR state, 

(b) Else send "QUIT" and go to EXIT state.
3. (a) If user wants this folder and NNN > 0 then send "READ" and go to SIZE 

state, 
(b) If user wants a this folder and NNN = 0 then send "QUIT" and go to 
EXIT state, 
(c) If user wants a different folder then send "FOLD" and go to NMBR state.

4. (a) If user wants this message and CCC > 0 then send "RETR" and go to 
XFER state, 
(b) If user wants a this message and CCC = 0 then send "QUIT" and go to 
EXIT state, 
(c) If user wants a different message then send "READ" and go to SIZE 
state. 

5. (a) If user wants this message kept then send "ACKS" and go to SIZE state,
(b) If user wants a this message deleted then send "ACKD" and go to SIZE 
state, 
(c) If user wants a this message again then send "NACK" and go to SIZE 
state. 

6. Close the connection.



RFC-937 Post Office Protocol - Version 2: Decision Tables

Server Decision Table

          |              STATE                       
   -------+----------------------------------------- 
   INPUT  | LSTN | AUTH | MBOX | ITEM | NEXT | DONE |
   -------+-----------------------------------------|
   Open   |  2   |  1   |  1   |  1   |  1   |  1   |
   -------+-----------------------------------------|
   HELO   |  1   |  3   |  1   |  1   |  1   |  1   |
   -------+-----------------------------------------|
   FOLD   |  1   |  1   |  5   |  5   |  1   |  1   |
   -------+-----------------------------------------|
   READ   |  1   |  1   |  6   |  6   |  1   |  1   |
   -------+-----------------------------------------|
   RETR   |  1   |  1   |  1   |  7   |  1   |  1   |
   -------+-----------------------------------------|
   ACKS   |  1   |  1   |  1   |  1   |  8   |  1   |
   -------+-----------------------------------------|
   ACKD   |  1   |  1   |  1   |  1   |  8   |  1   |
   -------+-----------------------------------------|
   NACK   |  1   |  1   |  1   |  1   |  8   |  1   |
   -------+-----------------------------------------|
   QUIT   |  1   |  4   |  4   |  4   |  1   |  1   |
   -------+-----------------------------------------|
   Close  |  1   |  1   |  1   |  1   |  1   |  9   |
   -------+-----------------------------------------|
   other  |  1   |  1   |  1   |  1   |  1   |  1   |
   -------+-----------------------------------------|
   Timeout|      |  1   |  1   |  1   |  1   |  1   |
   -------+-----------------------------------------|

Actions:
1. This is garbage.    Send "- error", and Close the connection.
2. Send the greeting. Go to AUTH state.
3. (a) If authorized user then send "#NNN" and go tp MBOX state,

(b) Else send "- error" and Close the connection.
4. Send "+ Bye" and go to DONE state.
5. Send "+NNN" and go to MBOX state.
6. Send "=CCC" and go to ITEM state.
7. If message exists then send the data and got to NEXT state, Else Close the 

connection. 
8. Do what ACKS/ACKD/NACK require and go to ITEM state.
9. Close the connection.



RFC-937 Post Office Protocol - Version 2

Acknowledgments

We would like to acknowledge the helpful comments that we received on the first version of 
POP described in RFC 918, and the draft of POP2 distributed to interested parties. 



RFC-950 Internet Standard Subnetting Procedure
J. Mogul Stanford University

J. Postel USC/ISI
August 1985

Status Of This Memo
This RFC specifies a protocol for the ARPA-Internet community.    As of May 1990 the IAB lists 
this protocol as a required standard.    Distribution of this memo is unlimited. 

Introduction
Motivation
Standards for Subnet Addressing

Interpretation of Internet Addresses
Changes to Host Software to Support Subnetting
Finding the Address Mask



RFC-950 Internet Standard Subnetting Procedure

Introduction

Overview
This memo discusses the utility of "subnets" of Internet networks, which are logically visible 
sub-sections of a single Internet network.    For administrative or technical reasons, many 
organizations have chosen to divide one Internet network into several subnets, instead of 
acquiring a set of Internet network numbers.    This memo specifies procedures for the use of
subnets.    These procedures are for hosts (e.g., workstations).    The procedures used in and 
between subnet gateways are not fully described.    Important motivation and background 
information for a subnetting standard is provided in "Toward an Internet Standard Scheme 
for Subnetting" [RFC-940]. 

Acknowledgment
This memo is based on "Internet Subnets" [RFC-917] and largely supercedes it.    Many 
people contributed to the development of the concepts described here.    J. Noel Chiappa, 
Chris Kent, and Tim Mann, in particular, provided important suggestions. Additional 
contributions in shaping this memo were made by Zaw-Sing Su, Mike Karels, and the 
Gateway Algorithms and Data Structures Task Force (GADS). 



RFC-950 Internet Standard Subnetting Procedure

Motivation

The original view of the Internet universe was a two-level hierarchy: the top level the 
Internet as a whole, and the level below it individual networks, each with its own network 
number.    The Internet does not have a hierarchical topology, rather the interpretation of 
addresses is hierarchical.    In this two-level model, each host sees its network as a single 
entity; that is, the network may be treated as a "black box" to which a set of hosts is 
connected. 
While this view has proved simple and powerful, a number of organizations have found it 
inadequate, and have added a third level to the interpretation of Internet addresses.    In this 
view, a given Internet network is divided into a collection of subnets. 
The three-level model is useful in networks belonging to moderately large organizations 
(e.g., Universities or companies with more than one building), where it is often necessary to 
use more than one LAN cable to cover a "local area".    Each LAN may then be treated as a 
subnet. 
There are several reasons why an organization might use more than one cable to cover a 
campus: 

- Different technologies:    Especially in a research environment, there 
may be more than one kind of LAN in use; e.g., an organization may 
have some equipment that supports Ethernet, and some that supports 
a ring network. 

- Limits of technologies:    Most LAN technologies impose limits, based on
electrical parameters, on the number of hosts connected, and on the 
total length of the cable.    It is easy to exceed these limits, especially 
those on cable length. 

- Network congestion:    It is possible for a small subset of the hosts on a 
LAN to monopolize most of the bandwidth.    A common solution to this 
problem is to divide the hosts into cliques of high mutual 
communication, and put these cliques on separate cables. 

- Point-to-Point links:    Sometimes a "local area", such as a university 
campus, is split into two locations too far apart to connect using the 
preferred LAN technology.    In this case, high-speed point-to-point links 
might connect several LANs. 

An organization that has been forced to use more than one LAN has three choices for 
assigning Internet addresses: 

1. Acquire a distinct Internet network number for each cable;    subnets 
are not used at all. 

2. Use a single network number for the entire organization, but    assign 
host numbers without regard to which LAN a host is on    ("transparent 
subnets"). 

3. Use a single network number, and partition the host address space by 
assigning subnet numbers to the LANs ("explicit subnets"). 

Each of these approaches has disadvantages.    The first, although not requiring any new or 
modified protocols, results in an explosion in the size of Internet routing tables.    Information
about the internal details of local connectivity is propagated everywhere, although it is of 



little or no use outside the local organization.    Especially as some current gateway 
implementations do not have much space for routing tables, it would be good to avoid this 
problem. 
The second approach requires some convention or protocol that makes the collection of 
LANs appear to be a single Internet network.    For example, this can be done on LANs where 
each Internet address is translated to a hardware address using an Address Resolution 
Protocol (ARP), by having the bridges between the LANs intercept ARP requests for non-local 
targets, see "Multi-LAN Address Resolution" [RFC-925].    However, it is not possible to do this
for all LAN technologies, especially those where ARP protocols are not currently used, or if 
the LAN does not support broadcasts.    A more fundamental problem is that bridges must 
discover which LAN a host is on, perhaps by using a broadcast algorithm.    As the number of 
LANs grows, the cost of broadcasting grows as well; also, the size of translation caches 
required in the bridges grows with the total number of hosts in the network. 
The third approach is to explicitly support subnets.    This does have a disadvantage, in that 
it is a modification of the Internet Protocol, and thus requires changes to IP implementations 
already in use (if these implementations are to be used on a subnetted network). However, 
these changes are relatively minor, and once made, yield a simple and efficient solution to 
the problem.    Also, the approach avoids any changes that would be incompatible with 
existing hosts on non-subnetted networks. 
Further, when appropriate design choices are made, it is possible for hosts which believe 
they are on a non-subnetted network to be used on a subnetted one, as explained in 
"Internet Subnets" [RFC-917].    This is useful when it is not possible to modify some of the 
hosts to support subnets explicitly, or when a gradual transition is preferred. 



RFC-950 Internet Standard Subnetting Procedure
Standards for Subnet Addressing
This section first describes a proposal for interpretation of Internet addresses to support 
subnets.    Next it discusses changes to host software to support subnets.    Finally, it presents
a procedures for discovering what address interpretation is in use on a given network (i.e., 
what address mask is in use). 

Interpretation of Internet Addresses
Changes to Host Software to Support Subnetting
Finding the Address Mask



RFC-950 Internet Standard Subnetting Procedure - Standards

Interpretation of Internet Addresses

Suppose that an organization has been assigned an Internet network number, has further 
divided that network into a set of subnets, and wants to assign host addresses: how should 
this be done? Since there are minimal restrictions on the assignment of the "local address" 
part of the Internet address, several approaches have been proposed for representing the 
subnet number: 

1. Variable-width field:    Any number of the bits of the local address part 
are used for the subnet number; the size of this field, although 
constant for a given network, varies from network to network.    If the 
field width is zero, then subnets are not in use. 

2. Fixed-width field:    A specific number of bits (e.g., eight) is used for the 
subnet number, if subnets are in use. 

3. Self-encoding variable-width field:    Just as the width    (i.e., class) of the
network number field is encoded by its    high-order bits, the width of 
the subnet field is similarly    encoded. 

4. Self-encoding fixed-width field:    A specific number of bits is used for 
the subnet number. 

5. Masked bits:    Use a bit mask ("address mask") to identify which bits of 
the local address field indicate the subnet number. 

What criteria can be used to choose one of these five schemes? First, should we use a self-
encoding scheme?    And, should it be possible to tell from examining an Internet address if it
refers to a subnetted network, without reference to any other information? 

An interesting feature of self-encoding is that it allows the address space of a network
to be divided into subnets of different sizes, typically one subnet of half the address 
space and a set of small subnets. 

For example, consider a class C network that uses a self-encoding 
scheme with one bit to indicate if it is the large subnet or not and an 
additional three bits to identify the small subnet.    If the first bit is zero 
then this is the large subnet, if the first bit is one then the following bits
(3 in this example) give the subnet number.    There is one subnet with 
128 host addresses, and eight subnets with 16 hosts each. 

To establish a subnetting standard the parameters and interpretation of the self-
encoding scheme must be fixed and consistent throughout the Internet. 
It could be assumed that all networks are subnetted.    This would allow addresses to 
be interpreted without reference to any other information. 

This is a significant advantage, that given the Internet address no 
additional information is needed for an implementation to determine if 
two addresses are on the same subnet.    However, this can also be 
viewed as a disadvantage: it may cause problems for networks which 
have existing host numbers that use arbitrary bits in the local address 
part. In other words, it is useful to be able to control whether a network
is subnetted independently from the assignment of host addresses. 

The alternative is to have the fact that a network is subnetted kept separate from the
address.    If one finds, somehow, that the network is subnetted then the standard 



self-encoded subnetted network address rules are followed, otherwise the non-
subnetted network addressing rules are followed. 

If a self-encoding scheme is not used, there is no reason to use a fixed-width field scheme: 
since there must in any case be some per-network "flag" to indicate if subnets are in use, 
the additional cost of using an integer (a subnet field width or address mask) instead of a 
boolean is negligible.    The advantage of using the address mask scheme is that it allows 
each organization to choose the best way to allocate relatively scarce bits of local address to
subnet and host numbers.    Therefore, we choose the address-mask scheme: it is the most 
flexible scheme, yet costs no more to implement than any other. 

For example, the Internet address might be interpreted as:
<network-number><subnet-number><host-number>

where the <network-number> field is as defined by the "Internet Protocol Specification" 
[RFC-791], the <host-number> field is at least 1-bit wide, and the width of the <subnet-
number> field is constant for a given network.    No further structure is required for the 
<subnet-number> or <host-number> fields.    If the width of the <subnet-number> field is 
zero, then the network is not subnetted (i.e., the interpretation of the "Internet Protocol 
Specification" [RFC-791] is used). 
For example, on a Class B network with a 6-bit wide subnet field, an address would be 
broken down like this: 

Since the bits that identify the subnet are specified by a bitmask, they need not be adjacent 
in the address.    However, we recommend that the subnet bits be contiguous and located as 
the most significant bits of the local address. 
Special Addresses:

From the Assigned Numbers memo [RFC-1060]:
"In certain contexts, it is useful to have fixed addresses with functional 
significance rather than as identifiers of specific hosts.    When such 
usage is called for, the address zero is to be interpreted as meaning 
"this", as in "this network".    The address of all ones are to be 
interpreted as meaning "all", as in "all hosts".    For example, the 
address 128.9.255.255 could be interpreted as meaning all hosts on 
the network 128.9.    Or, the address 0.0.0.37 could be interpreted as 
meaning host 37 on this network." 

It is useful to preserve and extend the interpretation of these special addresses in 
subnetted networks.    This means the values of all zeros and all ones in the subnet 
field should not be assigned to actual (physical) subnets. 

In the example above, the 6-bit wide subnet field may have any value 
except 0 and 63. 

Please note that there is no effect or new restriction on the addresses of hosts on 
non-subnetted networks. 



RFC-950 Internet Standard Subnetting Procedure - Standards
Changes to Host Software to Support Subnets

In most implementations of IP, there is code in the module that handles outgoing datagrams 
to decide if a datagram can be sent directly to the destination on the local network or if it 
must be sent to a gateway. 
Generally the code is something like this:
      IF ip_net_number(dg.ip_dest) = ip_net_number(my_ip_addr)
              THEN
                      send_dg_locally(dg, dg.ip_dest)
              ELSE
                      send_dg_locally(dg, gateway_to(ip_net_number(dg.ip_dest)))

(If the code supports multiply-connected networks, it will be more complicated, but this is 
irrelevant to the current discussion.) 
To support subnets, it is necessary to store one more 32-bit quantity, called my_ip_mask.    
This is a bit-mask with bits set in the fields corresponding to the IP network number, and 
additional bits set corresponding to the subnet number field. 
The code then becomes:
      IF bitwise_and(dg.ip_dest, my_ip_mask)
                                                          = bitwise_and(my_ip_addr, my_ip_mask)
              THEN
                      send_dg_locally(dg, dg.ip_dest)
              ELSE
                      send_dg_locally(dg, gateway_to(bitwise_and(dg.ip_dest, my_ip_mask)))

Of course, part of the expression in the conditional can be pre-computed. 
It may or may not be necessary to modify the "gateway_to" function, so that it too takes the 
subnet field bits into account when performing comparisons. 
To support multiply-connected hosts, the code can be changed to keep    the "my_ip_addr" 
and "my_ip_mask" quantities on a per-interface basis; the expression in the conditional must
then be evaluated for each interface. 



RFC-950 Internet Standard Subnetting Procedure - Standards
Finding the Address Mask

How can a host determine what address mask is in use on a subnet to which it is connected? 
The problem is analogous to several other "bootstrapping" problems for Internet hosts: how 
a host determines its own address, and how it locates a gateway on its local network.    In all 
three cases, there are two basic solutions: "hardwired" information, and broadcast-based 
protocols. 
Hardwired information is that available to a host in isolation from a network.    It may be 
compiled-in, or (preferably) stored in a disk file.    However, for the increasingly common 
case of a diskless workstation that is bootloaded over a LAN, neither hardwired solution is 
satisfactory. 
Instead, since most LAN technology supports broadcasting, a better method is for the newly-
booted host to broadcast a request for the necessary information.    For example, for the 
purpose of determining its Internet address, a host may use the "Reverse Address Resolution
Protocol (RARP)" [RFC-903]. 
However, since a newly-booted host usually needs to gather several facts (e.g., its IP 
address, the hardware address of a gateway, the IP address of a domain name server, the 
subnet address mask), it would be better to acquire all this information in one request if 
possible, rather than doing numerous broadcasts on the network. The mechanisms designed
to boot diskless workstations can also load per-host specific configuration files that contain 
the required information (e.g., see "Bootstrap Protocol" [RFC-951]).    It is possible, and 
desirable, to obtain all the facts necessary to operate a host from a boot server using only 
one broadcast message. 
In the case where it is necessary for a host to find the address mask as a separate operation 
the following mechanism is provided: 

To provide the address mask information the ICMP protocol is extended by adding a 
new pair of ICMP message types, "Address Mask Request" and "Address Mask Reply", 
analogous to the "Information Request" and "Information Reply" ICMP messages. 
The intended use of these new ICMP messages is that a host, when booting, 
broadcast an "Address Mask Request" message.    A gateway (or a host acting in lieu 
of a gateway) that receives this message responds with an "Address Mask Reply".    If 
there is no indication in the request which host sent it (i.e., the IP Source Address is 
zero), the reply is broadcast as well. The requesting host will hear the response, and 
from it determine the address mask. 
Since there is only one possible value that can be sent in an "Address Mask Reply" on
any given LAN, there is no need for the requesting host to match the responses it 
hears against the request it sent; similarly, there is no problem if more than one 
gateway responds.    We assume that hosts reboot infrequently, so the broadcast load
on a network from use of this protocol should be small. 

If a host is connected to more than one LAN, it might have to find the address mask for 
each. 
One potential problem is what a host should do if it can not find out the address mask, even 
after a reasonable number of tries. Three interpretations can be placed on the situation: 

1. The local net exists in (permanent) isolation from all other nets. 
2. Subnets are not in use, and no host can supply the address mask. 
3. All gateways on the local net are (temporarily) down.



The first and second situations imply that the address mask is identical with the Internet 
network number mask.    In the third situation, there is no way to determine what the proper 
value is; the safest choice is thus a mask identical with the Internet network number mask.    
Although this might later turn out to be wrong, it will not prevent transmissions that would 
otherwise succeed.    It is possible for a host to recover from a wrong choice: when a gateway
comes up, it should broadcast an "Address Mask Reply"; when a host receives such a 
message that disagrees with its guess, it should change its mask to conform to the received 
value.    No host or gateway should send an "Address Mask Reply" based on a "guessed" 
value. 
Finally, note that no host is required to use this ICMP protocol to discover the address mask; 
it is perfectly reasonable for a host with non-volatile storage to use stored information 
(including a configuration file from a boot server). 



RFC-951 Bootstrap Protocol (BOOTP)

Overview
Description
Packet Format
Chicken/Egg Issues
Client Use
Comparison to RARP
Packet Processing

Client Transmission
Client Retransmission Strategy
Server Receives BOOTREQUEST
Server/Gateway Receives BOOTREPLY
Client Reception

Booting Through Gateways
Sample BOOTP Server Database



RFC-951 Bootstrap Protocol

Overview

BOOTP is an IP/UDP bootstrap protocol which allows a diskless client machine to discover its 
own IP address, the address of a server host, and the name of a file to be loaded into 
memory and executed.    The bootstrap operation can be thought of as consisting of TWO 
PHASES.    This describes the first phase, which could be labeled 'address determination and 
bootfile selection'.    After this address and filename information is obtained, control passes 
to the second phase of the bootstrap where a file transfer occurs.    The file transfer will 
typically use the TFTP protocol, since it is intended that both phases reside in PROM on the 
client.    However BOOTP could also work with other protocols such as SFTP or FTP. 
We suggest that the client's PROM software provide a way to do a complete bootstrap 
without 'user' interaction.    This is the type of boot that would occur during an unattended 
power-up.    A mechanism should be provided for the user to manually supply the necessary 
address and filename information to bypass the BOOTP protocol and enter the file transfer 
phase directly.    If non-volatile storage is available, we suggest keeping default settings 
there and bypassing the BOOTP protocol unless these settings cause the file transfer phase 
to fail.    If the cached information fails, the bootstrap should fall back to phase 1 and use 
BOOTP. 



RFC-951 Bootstrap Protocol

Description

1. A single packet exchange is performed.    Timeouts are used to retransmit until
a reply is received.    The same packet field layout is used in both directions.    
Fixed length fields of maximum reasonable length are used to simplify 
structure definition and parsing. 

2. An 'opcode' field exists with two values.    The client broadcasts a 'bootrequest'
packet.    The server then answers with a 'bootreply' packet.    The bootrequest 
contains the client's hardware address and its IP address, if known. 

3. The request can optionally contain the name of the server the client wishes to 
respond.    This is so the client can force the boot to occur from a specific host 
(e.g. if multiple versions of the same bootfile exist or if the server is in a far 
distant net/domain).    The client does not have to deal with name / domain 
services; instead this function is pushed off to the BOOTP server. 

4. The request can optionally contain the 'generic' filename to be booted.    For 
example 'unix' or 'ethertip'.    When the server sends the bootreply, it replaces 
this field with the fully qualified path name of the appropriate boot file.    In 
determining this name, the server may consult his own database correlating 
the client's address and filename request, with a particular boot file 
customized for that client.    If the bootrequest filename is a null string, then 
the server returns a filename field indicating the 'default' file to be loaded for 
that client. 

5. In the case of clients who do not know their IP addresses, the server must also
have a database relating hardware address to IP address.    This client IP 
address is then placed into a field in the bootreply. 

6. Certain network topologies (such as Stanford's) may be such that a given 
physical cable does not have a TFTP server directly attached to it (e.g. all the 
gateways and hosts on a certain cable may be diskless).    With the 
cooperation of neighboring gateways, BOOTP can allow clients to boot off of 
servers several hops away, through these gateways.    See the section 'Booting
Through Gateways' below.    This part of the protocol requires no special action
on the part of the client.    Implementation is optional and requires a small 
amount of additional code in gateways and servers. 



RFC-951 Bootstrap Protocol

Packet Format

All numbers shown are decimal, unless indicated otherwise.    The BOOTP packet is enclosed 
in a standard IP UDP datagram.    For simplicity it is assumed that the BOOTP packet is never 
fragmented. Any numeric fields shown are packed in 'standard network byte order', i.e. high 
order bits are sent first. 
In the IP header of a bootrequest, the client fills in its own IP source address if known, 
otherwise zero.    When the server address is unknown, the IP destination address will be the 
'broadcast address' 255.255.255.255.    This address means 'broadcast on the local cable, (I 
don't know my net number)'. 
The UDP header contains source and destination port numbers.    The BOOTP protocol uses 
two reserved port numbers, 'BOOTP client' (68) and 'BOOTP server' (67).    The client sends 
requests using 'BOOTP server' as the destination port; this is usually a broadcast.    The 
server sends replies using 'BOOTP client' as the destination port; depending on the kernel or 
driver facilities in the server, this may or may not be a broadcast (this is explained further in 
'Chicken/Egg issues').    The reason two reserved ports are used, is to avoid 'waking up' and 
scheduling the BOOTP server daemons, when a bootreply must be broadcast to a client.    
Since the server and other hosts won't be listening on the 'BOOTP client' port, any such 
incoming broadcasts will be filtered out at the kernel level.    We could not simply allow the 
client to pick a 'random' port number for the UDP source port field; since the server reply 
may be broadcast, a randomly chosen port number could confuse other hosts that happened
to be listening on that port. 
The UDP length field is set to the length of the UDP plus BOOTP portions of the packet.    The 
UDP checksum field can be set to zero by the client (or server) if desired, to avoid this extra 
overhead in a PROM implementation.    See Field Bytes Description. 



RFC-951 Bootstrap Protocol

Field Bytes Description

op 1 packet op code / message type.    1 = BOOTREQUEST, 2 = 
BOOTREPLY 

htype 1 hardware address type,    see ARP section in "Assigned 
Numbers" RFC.    '1' = 10mb ethernet 

hlen 1 hardware address length    (eg '6' for 10mb ethernet). 
hops 1 client sets to zero,    optionally used by gateways    in cross-

gateway booting. 
xid 4 transaction ID, a random number,    used to match this boot 

request with the    responses it generates. 
secs 2 filled in by client, seconds elapsed since    client started trying to

boot. 
ciaddr 4 client IP address;    filled in by client in bootrequest if known. 
yiaddr 4 'your' (client) IP address;    filled by server if client doesn't    

know its own address (ciaddr was 0). 
siaddr 4 server IP address;    returned in bootreply by server. 
giaddr 4 gateway IP address,    used in optional cross-gateway booting. 
chaddr 16 client hardware address,    filled in by client. 
sname 64 optional server host name,    null terminated string. 
file 128 boot file name, null terminated string;    'generic' name or null in

bootrequest,    fully qualified directory-path    name in bootreply. 
vend 64 optional vendor-specific area,    e.g. could be hardware 

type/serial on request,    or 'capability' / remote file system 
handle    on reply.    This info may be set aside for use    by a third
phase bootstrap or kernel. 



RFC-951 Bootstrap Protocol

Chicken / Egg Issues

How can the server send an IP datagram to the client, if the client doesnt know its own IP 
address (yet)?    Whenever a bootreply is being sent, the transmitting machine performs the 
following operations: 

1. If the client knows its own IP address ('ciaddr' field is nonzero), then 
the IP can be sent 'as normal', since the client will respond to ARPs [5]. 

2. If the client does not yet know its IP address (ciaddr zero), then the 
client cannot respond to ARPs sent by the transmitter of the bootreply.  
There are two options: 

a. If the transmitter has the necessary kernel or driver 
hooks to 'manually' construct an ARP address cache 
entry, then it can fill in an entry using the 'chaddr' and 
'yiaddr' fields.    Of course, this entry should have a 
timeout on it, just like any other entry made by the 
normal ARP code itself.    The transmitter of the bootreply
can then simply send the bootreply to the client's IP 
address.    UNIX (4.2 BSD) has this capability. 

b. If the transmitter lacks these kernel hooks, it can simply 
send the bootreply to the IP broadcast address on the 
appropriate interface.    This is only one additional 
broadcast over the previous case. 



RFC-951 Bootstrap Protocol

Client Use of ARP

The client PROM must contain a simple implementation of ARP, e.g. the address cache could 
be just one entry in size.    This will allow a second-phase-only boot (TFTP) to be performed 
when the client knows the IP addresses and bootfile name. 
Any time the client is expecting to receive a TFTP or BOOTP reply, it should be prepared to 
answer an ARP request for its own IP to hardware address mapping (if known). 
Since the bootreply will contain (in the hardware encapsulation) the hardware source 
address of the server/gateway, the client MAY be able to avoid sending an ARP request for 
the server/gateway IP address to be used in the following TFTP phase.    However this should 
be treated only as a special case, since it is desirable to still allow a second-phase-only boot 
as described above. 



RFC-951 Bootstrap Protocol

Comparison of BOOTP to RARP

An earlier protocol, Reverse Address Resolution Protocol (RARP) was established to allow a 
client to determine its IP address, given that it knew its hardware address.    However RARP 
had the disadvantage that it was a hardware link level protocol (not IP/UDP based).    This 
means that RARP could only be implemented on hosts containing special kernel or driver 
modifications to access these 'raw' packets.    Since there are many network kernels existent 
now, with each source maintained by different organizations, a boot protocol that does not 
require kernel modifications is a decided advantage. 
BOOTP provides this hardware to IP address lookup function, in addition to the other useful 
features described in the sections above. 



RFC-951 Bootstrap Protocol

Client Transmission

Before setting up the packet for the first time, it is a good idea to clear the entire packet 
buffer to all zeros; this will place all fields in their default state.    The client then creates a 
packet with the following fields. 
The IP destination address is set to 255.255.255.255.    (the broadcast address) or to the 
server's IP address (if known).    The IP source address and 'ciaddr' are set to the client's IP 
address if known, else 0.    The UDP header is set with the proper length; source port = 
'BOOTP client' port destination port = 'BOOTP server' port. 
'op' is set to '1', BOOTREQUEST.    'htype' is set to the hardware address type as assigned in 
the ARP section of the "Assigned Numbers" RFC. 'hlen' is set to the length of the hardware 
address, e.g. '6' for 10mb ethernet. 
'xid' is set to a 'random' transaction id.    'secs' is set to the number of seconds that have 
elapsed since the client has started booting.    This will let the servers know how long a client
has been trying.    As the number gets larger, certain servers may feel more 'sympathetic' 
towards a client they don't normally service. If a client lacks a suitable clock, it could 
construct a rough estimate using a loop timer.    Or it could choose to simply send this field 
as always a fixed value, say 100 seconds. 
If the client knows its IP address, 'ciaddr' (and the IP source address) are set to this value.    
'chaddr' is filled in with the client's hardware address. 
If the client wishes to restrict booting to a particular server name, it may place a null-
terminated string in 'sname'.    The name used should be any of the allowable names or 
nicknames of the desired host. 
The client has several options for filling the 'file' name field. If left null, the meaning is 'I 
want to boot the default file for my machine'.    A null file name can also mean 'I am only 
interested in finding out client/server/gateway IP addresses, I dont care about file names'. 
The field can also be a 'generic' name such as 'unix' or 'gateway'; this means 'boot the 
named program configured for my machine'.    Finally the field can be a fully directory 
qualified path name. 
The 'vend' field can be filled in by the client with vendor-specific strings or structures.    For 
example the machine hardware type or serial number may be placed here.    However the 
operation of the BOOTP server should not DEPEND on this information existing. 
If the 'vend' field is used, it is recommended that a 4 byte 'magic number' be the first item 
within 'vend'.    This lets a server determine what kind of information it is seeing in this field.  
Numbers can be assigned by the usual 'magic number' process --you pick one and it's 
magic.    A different magic number could be used for bootreply's than bootrequest's to allow 
the client to take special action with the reply information. 
A UDP checksum should be computed.



RFC-951 Bootstrap Protocol

Client Retransmission Strategy

If no reply is received for a certain length of time, the client should retransmit the request.    
The time interval must be chosen carefully so as not to flood the network.    Consider the 
case of a cable containing 100 machines that are just coming up after a power failure.    
Simply retransmitting the request every four seconds will inundate the net. 
As a possible strategy, you might consider backing off exponentially, similar to the way 
ethernet backs off on a collision.    So for example if the first packet is at time 0:00, the 
second would be at :04, then :08, then :16, then :32, then :64.    You should also randomize 
each time; this would be done similar to the ethernet specification by starting with a mask 
and 'and'ing that with with a random number to get the first backoff. On each succeeding 
backoff, the mask is increased in length by one bit.    This doubles the average delay on each
backoff. 
After the 'average' backoff reaches about 60 seconds, it should be increased no further, but 
still randomized. 
Before each retransmission, the client should update the 'secs' field and recompute the UDP 
checksum.



RFC-951 Bootstrap Protocol

Server Receives BOOTREQUEST

If the UDP destination port does not match the 'BOOTP server' port, discard the packet. 
If the server name field (sname) is null (no particular server specified), or sname is specified 
and matches our name or nickname, then continue with packet processing. 
If the sname field is specified, but does not match 'us', then there are several options: 

1. You may choose to simply discard this packet.

2. If a name lookup on sname shows it to be on this same cable, discard 
the packet. 

3. If sname is on a different net, you may choose to forward the packet to 
that address.    If so, check the 'giaddr' (gateway address) field.    If 
'giaddr' is zero, fill it in with my address or the address of a gateway 
that can be used to get to that net.    Then forward the packet. 

If the client IP address (ciaddr) is zero, then the client does not know its own IP address.    
Attempt to lookup the client hardware address (chaddr, hlen, htype) in our database.    If no 
match is found, discard the packet.    Otherwise we now have an IP address for this client; fill 
it into the 'yiaddr' (your IP address) field. 
We now check the boot file name field (file).    The field will be null if the client is not 
interested in filenames, or wants the default bootfile.    If the field is non-null, it is used as a 
lookup key in a database, along with the client's IP address.    If there is a default file or 
generic file (possibly indexed by the client address) or a fully-specified path name that 
matches, then replace the 'file' field with the fully-specified path name of the selected boot 
file.    If the field is non-null and no match was found, then the client is asking for a file we 
dont have; discard the packet, perhaps some other BOOTP server will have it. 
The 'vend' vendor-specific data field should now be checked and if a recognized type of data 
is provided, client-specific actions should be taken, and a response placed in the 'vend' data 
field of the reply packet.    For example, a workstation client could provide an authentication 
key and receive from the server a capability for remote file access, or a set of configuration 
options, which can be passed to the operating system that will shortly be booted in. 
Place my (server) IP address in the 'siaddr' field.    Set the 'op' field to BOOTREPLY.    The UDP 
destination port is set to 'BOOTP client'.    If the client address 'ciaddr' is nonzero, send the 
packet there; else if the gateway address 'giaddr' is nonzero, set the UDP destination port to 
'BOOTP server' and send the packet to 'giaddr'; else the client is on one of our cables but it 
doesnt know its own IP address yet --use a method described in the 'Egg' section above to 
send it to the client. If 'Egg' is used and we have multiple interfaces on this host, use the 
'yiaddr' (your IP address) field to figure out which net (cable/interface) to send the packet to. 
[UDP checksum.] 



RFC-951 Bootstrap Protocol

Server/Gateway Receives BOOTREPLY

If 'yiaddr' (your [the client's] IP address) refers to one of our cables, use one of the 'Egg' 
methods to forward it to the client.    Be sure to send it to the 'BOOTP client' UDP destination 
port.



RFC-951 Bootstrap Protocol

Client Reception

Don't forget to process ARP requests for my own IP address (if I know it).    The client should 
discard incoming packets that: are not IP/UDPs addressed to the boot port; are not 
BOOTREPLYs; do not match my IP address (if I know it) or my hardware address; do not 
match my transaction id.    Otherwise we have received a successful reply. 'yiaddr' will 
contain my IP address, if I didnt know it before.    'file' is the name of the file name to TFTP 
'read request'.    The server address is in 'siaddr'.    If 'giaddr' (gateway address) is nonzero, 
then the packets should be forwarded there first, in order to get to the server. 



RFC-951 Bootstrap Protocol

Booting Through Gateways

This part of the protocol is optional and requires some additional code in cooperating 
gateways and servers, but it allows cross-gateway booting.    This is mainly useful when 
gateways are diskless machines. Gateways containing disks (e.g. a UNIX machine acting as 
a gateway), might as well run their own BOOTP/TFTP servers. 
Gateways listening to broadcast BOOTREQUESTs may decide to forward or rebroadcast these
requests 'when appropriate'.    For example, the gateway could have, as part of his 
configuration tables, a list of other networks or hosts to receive a copy of any broadcast 
BOOTREQUESTs.    Even though a 'hops' field exists, it is a poor idea to simply globally 
rebroadcast the requests, since broadcast loops will almost certainly occur. 
The forwarding could begin immediately, or wait until the 'secs' (seconds client has been 
trying) field passes a certain threshold. 
If a gateway does decide to forward the request, it should look at the 'giaddr' (gateway IP 
address) field.    If zero, it should plug its own IP address (on the receiving cable) into this 
field.    It may also use the 'hops' field to optionally control how far the packet is reforwarded.
Hops should be incremented on each forwarding.    For example, if hops passes '3', the 
packet should probably be discarded.
Here we have recommended placing this special forwarding function in the gateways.    But 
that does not have to be the case.    As long as some 'BOOTP forwarding agent' exists on the 
net with the booting client, the agent can do the forwarding when appropriate.    Thus this 
service may or may not be co-located with the gateway. 
In the case of a forwarding agent not located in the gateway, the agent could save himself 
some work by plugging the broadcast address of the interface receiving the bootrequest into
the 'giaddr' field. Thus the reply would get forwarded using normal gateways, not involving 
the forwarding agent.    Of course the disadvantage here is that you lose the ability to use 
the 'Egg' non-broadcast method of sending the reply, causing extra overhead for every host 
on the client cable. 



RFC-951 Bootstrap Protocol

Sample Server Database

As a suggestion, we show a sample text file database that the BOOTP server program might 
use.    The database has two sections, delimited by a line containing an percent in column 1.  
The first section contains a 'default directory' and mappings from generic names to 
directory/pathnames.    The first generic name in this section is the 'default file' you get when
the bootrequest contains a null 'file' string. 
The second section maps hardware addresstype/address into an ipaddress. Optionally you 
can also overide the default generic name by supplying a ipaddress specific genericname.    
A 'suffix' item is also an option; if supplied, any generic names specified by the client will be 
accessed by first appending 'suffix' to the 'pathname'    appropriate to that generic name.    If
that file is not found, then the plain 'pathname' will be tried.    This 'suffix' option allows a 
whole set of custom generics to be setup without a lot of effort. Below is shown the general 
format; fields are delimited by one or more spaces or tabs; trailing empty fields may be 
omitted; blank lines and lines beginning with '#' are ignored. 

# comment line
homedirectory
genericname1 pathname1
genericname2 pathname2
...
% end of generic names, start of address mappings
hostname1 hardwaretype hardwareaddr1 ipaddr1 genericname suffix
hostname2 hardwaretype hardwareaddr2 ipaddr2 genericname suffix
...

Here is a specific example.    Note the 'hardwaretype' number is the same as that shown in 
the ARP section of the 'Assigned Numbers' RFC. The 'hardwaretype' and 'ipaddr' numbers 
are in decimal; 'hardwareaddr' is in hex. 

# last updated by smith
/usr/boot
vmunix vmunix
tip ethertip
watch    /usr/diag/etherwatch
gategate.

% end of generic names, start of address mappings

hamilton    1 02.60.8c.06.34.98    36.19.0.5



burr1 02.60.8c.34.11.78    36.44.0.12
101-gateway    1 02.60.8c.23.ab.35    36.44.0.32gate 101
mjh-gateway    1 02.60.8c.12.32.bc    36.42.0.64gate mjh
welch-tipa1 02.60.8c.22.65.32    36.47.0.14tip
welch-tipb1 02.60.8c.12.15.c8    36.46.0.12tip

In the example above, if 'mjh-gateway' does a default boot, it will
get the file '/usr/boot/gate.mjh'.



RFC-952 DoD Internet Host Table Specification
K. Harrenstien, M. Stahl, E. Feinler

SRI
October 1985

Status Of This Memo
This RFC is the official specification of the format of the Internet Host Table.    Distribution of 
this memo is unlimited.    Use of Host Tables in this format has been largely replaced by the 
Domain Name System as defined in RFC-1034 and RFC-1035.

Introduction
Assumptions
Example of Host Table Format
Syntax and Conventions
Grammatical Host Table Specification



RFC-952 DoD Internet Host Table Specification

Introduction

The DoD Host Table is utilized by the DoD Hostname Server maintained by the DDN Network 
Information Center (NIC) on behalf of the Defense Communications Agency (DCA) described 
in RFC-953. 

Location Of The Standard Dod Online Host Table
A machine-translatable ASCII text version of the DoD Host Table is online in the file 
NETINFO:HOSTS.TXT on the SRI-NIC host.    It can be obtained via FTP from your local host by
connecting to host SRI-NIC.ARPA (26.0.0.73 or 10.0.0.51), logging in as user = ANONYMOUS,
password = GUEST, and retrieving the file "NETINFO:HOSTS.TXT".    The same table may also
be obtained via the NIC Hostname Server, as described in RFC-953.    The latter method is 
faster and easier, but requires a user program to make the necessary connection to the 
Name Server. 



RFC-952 DoD Internet Host Table Specification

Assumptions

1. A "name" (Net, Host, Gateway, or Domain name) is a text string up to 24 
characters drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and 
period (.).    Note that periods are only allowed when they serve to delimit 
components of "domain style names". ("Domain Name System", for 
background).    No blank or space characters are permitted as part of a 
name. No distinction is made between upper and lower case.    The first 
character must be an alpha character.    The last character must not be a 
minus sign or period.    A host which serves as a GATEWAY should have "-
GATEWAY" or "-GW" as part of its name.    Hosts which do not serve as 
Internet gateways should not use "-GATEWAY" and "-GW" as part of their 
names. A host which is a TAC should have "-TAC" as the last part of its host
name, if it is a DoD host.    Single character names or nicknames are not 
allowed. 

2. Internet Addresses are 32-bit addresses as described in "Address 
Mappings" RFC-796.    In the host table described herein each address is 
represented by four decimal numbers separated by a period.    Each 
decimal number represents 1 octet. 

3. If the first bit of the first octet of the address is 0 (zero), then the next 7 
bits of the first octet indicate the network number (Class A Address).    If 
the first two bits are 1,0 (one,zero), then the next 14 bits define the net 
number (Class B Address).    If the first 3 bits are 1,1,0 (one,one,zero), then 
the next 21 bits define the net number (Class C Address) as described in 
the Internet Protocol Specification (RFC-791). 
This is depicted in the following diagram:

4. The LOCAL ADDRESS portion of the internet address identifies a host 
within the network specified by the NET portion of the address. 

5. The ARPANET and MILNET are both Class A networks.    The NET portion is 
10 decimal for ARPANET, 26 decimal for MILNET, and the LOCAL ADDRESS 
maps as follows: the second octet identifies the physical host, the third 
octet identifies the logical host, and the fourth identifies the Packet 
Switching Node (PSN), formerly known as an Interface Message Processor 
(IMP). 

(NOTE:    RFC-796 also describes the local address mappings for several 
other networks.) 

6. It is the responsibility of the users of this host table to translate it into 
whatever format is needed for their purposes. 



7. Names and addresses for DoD hosts and gateways will be negotiated and 
registered with the DDN PMO, and subsequently with the NIC,    before 
being used and before traffic is passed by a DoD host.    Names and 
addresses for domains and networks are to be registered with the DDN 
Network Information Center (HOSTMASTER@SRI-NIC.ARPA) or 800-235-
3155. 

The NIC will attempt to keep similar information for non-DoD networks and hosts, if this 
information is provided, and as long as it is needed, i.e., until intercommunicating network 
name servers are in place. 



RFC-952 DoD Internet Host Table Specification

Example Of Host Table Format

NET : 10.0.0.0 : ARPANET :
NET : 128.10.0.0 : PURDUE-CS-NET :
GATEWAY : 10.0.0.77, 18.10.0.4 : MIT-GW.ARPA,MIT-GATEWAY : PDP-11 :

MOS : IP/GW,EGP :
HOST : 26.0.0.73, 10.0.0.51 : SRI-NIC.ARPA,SRI-NIC,NIC : DEC-2060 :

TOPS20 :TCP/TELNET,TCP/SMTP,TCP/TIME,TCP/FTP,TCP/ECHO,ICMP :
HOST : 10.2.0.11 : SU-TAC.ARPA,SU-TAC : C/30 : TAC : TCP :



RFC-952 DoD Internet Host Table Specification

Syntax And Conventions

; (semicolon)      is used to denote the beginning of a comment. Any text on a given line 
following a ';' is a comment, and not part of the host table. 

NET keyword introducing a network entry
GATEWAY keyword introducing a gateway entry
HOST keyword introducing a host entry
DOMAIN keyword introducing a domain entry
:(colon) is used as a field delimiter
::(2 colons) indicates a null field
,(comma) is used as a data element delimiter
XXX/YYY indicates protocol information of the type TRANSPORT/SERVICE. 

where TRANSPORT/SERVICE options are specified as:
"FOO/BAR" both transport and service known
"FOO" transport known; services not known
"BAR" service is known, transport not known

NOTE:    See "Assigned Numbers" for specific options and acronyms for machine types, 
operating systems, and protocol/services. 
Each host table entry is an ASCII text string comprised of 6 fields, where 

Field 1 KEYWORD indicating whether this entry pertains to a NET, GATEWAY, 
HOST, or DOMAIN.    NET entries are assigned and cannot have alternate 
addresses or nicknames.    DOMAIN entries do not use fields 4, 5, or 6. 

Field 2 Internet Address of Network, Gateway, or Host followed by alternate 
addresses.    Addresses for a Domain are those where a Domain Name 
Server exists for that domain. 

Field 3 Official Name of Network, Gateway, Host, or Domain (with optional 
nicknames, where permitted). 

Field 4 Machine Type
Field 5 Operating System
Field 6 Protocol List

Fields 4, 5 and 6 are optional.    For a Domain they are not used.
Fields 3-6, if included, pertain to the first address in Field 2.
'Blanks' (spaces and tabs) are ignored between data elements or fields, but are disallowed 
within a data element. 
Each entry ends with a colon.
The entries in the table are grouped by types in the order Domain, Net, Gateway, and Host.   
Within each type the ordering is unspecified. 
Note that although optional nicknames are allowed for hosts, they are discouraged, except 
in the case where host names have been changed and both the new and the old names are 
maintained for a suitable period of time to effect a smooth transition.    Nicknames are not 
permitted for NET names. 



RFC-952 DoD Internet Host Table Specification

Grammatical Host Table Specification

      A. Parsing grammar
<entry> ::= <keyword> ":" <addresses> ":" <names> [":" [<cputype>]
[":" [<opsys>]    [":" [<protocol list>] ]]] ":"
<addresses> ::= <address> *["," <address>]
<address> ::= <octet> "." <octet> "." <octet> "." <octet>
<octet> ::= <0 to 255 decimal>
<names> ::= <netname> | <gatename> | <domainname> *[","
<nicknames>]
| <official hostname> *["," <nicknames>]
<netname>    ::= <name>
<gatename> ::= <hname>
<domainname> ::= <hname>
<official hostname> ::= <hname>
<nickname> ::= <hname>
<protocol list> ::= <protocol spec> *["," <protocol spec>]
<protocol spec> ::= <transport name> "/" <service name>
| <raw protocol name>

      B. Lexical grammar
<entry-field> ::= <entry-text> [<cr><lf> <blank> <entry-field>]
<entry-text>    ::= <print-char> *<text>
<blank> ::= <space-or-tab> [<blank>]
<keyword> ::= NET | GATEWAY | HOST | DOMAIN
<hname> ::= <name>*["."<name>]
<name>    ::= <let>[*[<let-or-digit-or-hyphen>]<let-or-digit>]
<cputype> ::= PDP-11/70 | DEC-1080 | C/30 | CDC-6400...etc.
<opsys>      ::= ITS | MULTICS | TOPS20 | UNIX...etc.
<transport name> ::= TCP | NCP | UDP | IP...etc.
<service name> ::= TELNET | FTP | SMTP | MTP...etc.
<raw protocol name> ::= <name>
<comment> ::= ";" <text><cr><lf>
<text>        ::= *[<print-char> | <blank>]
<print-char>    ::= <any printing char (not space or tab)>

Notes:
1. Zero or more 'blanks' between separators " , : " are allowed. 'Blanks' are 

spaces and tabs. 
2. Continuation lines are lines that begin with at least one blank.    They may 

be used anywhere 'blanks' are legal to split an entry across lines. 



RFC-953 Hostname Server
K Harrenstien, M. Stahl, E. Feinler

SRI
October 1985

Status Of This Memo
This RFC is the official specification of the Hostname Server Protocol.    As of May 1990 the 
IAB lists this protocol as elective.    Distribution of this memo is unlimited. 

Introduction
Protocol
Query/Response Format
Command/Response Keys
Query/Response Examples
Error Handling



RFC-953 Hostname Server

Introduction

The NIC Internet Hostname Server is a TCP-based host information program and protocol 
running on the SRI-NIC machine.    It is one of a series of internet name services maintained 
by the DDN Network Information Center (NIC) at SRI International on behalf of the Defense 
Communications Agency (DCA).    The function of this particular server is to deliver machine-
readable name/address information describing networks, gateways, hosts, and eventually 
domains, within the internet environment.    As currently implemented, the server provides 
the information outlined in the DoD Internet Host Table Specification [RFC-952].    This 
protocol has been largely replaced by the Domain Name Service described in RFC-1034 and 
RFC-1035. 



RFC-953 Hostname Server

Protocol

To access this server from a program, establish a TCP connection to port 101 (decimal) at 
the service host, SRI-NIC.ARPA (26.0.0.73 or 10.0.0.51).    Send the information request (a 
single line), and read the resulting response.    The connection is closed by the server upon 
completion of the response, so only one request can be made for each connection. 



RFC-953 Hostname Server

Query/Response Format

The name server accepts simple text query requests of the form:
<command key> <argument(s)> [<options>]

where square brackets ("[]") indicate an optional field.    The command key is a keyword 
indicating the nature of the request.    The defined keys are explained below. 
The response, on the other hand, is of the form

<response key> : <rest of response>
where <response key> is a keyword indicating the nature of the response, and the rest of 
the response is interpreted in the context of the key. 
NOTE:    Care should be taken to interpret the nature of the reply (e.g, single record or 
multiple record), so that no confusion about the state of the reply results.    An "ALL" request 
will likely return several hundred or more records of all types, whereas "HNAME" or "HADDR"
will usually return one HOST record. 



RFC-953 Hostname Server

Command/Response Keys

The currently defined command keywords are listed below.    NOTE: Because the server and 
the features available will evolve with time, the HELP command should be used to obtain the
most recent summary of implemented features, changes, or new commands. 

Keyword             Response  
HELP This information.
VERSION "VERSION: <string>" where <string> will be different for 

each version of the host table. 
HNAME <hostname>

One or more matching host table entries.
HADDR <hostaddr>

One or more matching host table entries.
ALL The entire host table.
ALL-OLD The entire host table without domain style names.
DOMAINS The entire top-level domain table (domains only).
ALL-DOM Both the entire domain table and the host table.
ALL-INGWAY All known gateways in TENEX/TOPS-20 INTERNET.GATEWAYS 

format. 
Remember that the server accepts only a single command line and returns only a single 
response before closing the connection.    HNAME and HADDR are useful for looking up a 
specific host by name or address; VERSION can be used by automated processes to see 
whether a "new" version of the host table exists without having to transfer the whole table.   
Note, however, that the returned version string is only guaranteed to be unique to each 
version, and nothing should currently be assumed about its format. 

Response Keys:
ERR entry not found, nature of error follows
NET entry found, rest of entry follows
GATEWAY entry found, rest of entry follows
HOST entry found, rest of entry follows
DOMAIN entry found, rest of entry follows
BEGIN followed by multiple entries
END done with BEGIN block of entries

More keywords will be added as new needs are recognized.    A more detailed description of 
the allowed requests/responses follows. 



RFC-953 Hostname Server

Query/Response Examples

1. HNAME Query - Given a name, find the entry or entries that match the 
name.    For example: 

HNAME SRI-NIC.ARPA <CRLF>
where <CRLF> is a carriage return/ linefeed, and 'SRI-NIC.ARPA' is a 
host name.    The likely response is:

HOST : 26.0.0.73, 10.0.0.51 : SRI-NIC.ARPA,SRI-NIC,NIC :
DEC-2060 : TOPS20 : TCP/TELNET,TCP/SMTP,TCP/TIME,TCP/FTP, 
TCP/ECHO,ICMP :

A response may stretch across more than one line.    Continuation lines always begin with at 
least one space. 

2. HADDR Query - Given an internet address (as specified in RFC 796) find
the entry or entries that match that address. For example: 

HADDR 26.0.0.73 <CRLF>
where <CRLF> is a carriage return/ linefeed, and '26.0.0.73' is a host 
address.    The likely response is the same as for the previous HNAME 
request.

3. ALL Query - Deliver the entire internet host table in a machine-readable
form.    For example: 

ALL <CRLF>; where <CRLF> is a carriage return/linefeed
The likely response is the keyword 'BEGIN' followed by a colon ':', 
followed by the entire internet host table in the format specified in 
RFC-952, followed by 'END:'. 



RFC-953 Hostname Server

Error Handling

ERR Reply - may occur on any query, and should be permitted in any access program using 
the name server.    Errors are of the form 

ERR : <code> : <string> :
as in

ERR : NAMNFD : Name not found :
The error code is a unique descriptor, limited to 8 characters in length for any given error.    It
may be used by the access program to identify the error and, in some cases, to handle it 
automatically. The string is an accompanying message for a given error for that case where 
the access program simply logs the error message.    Current codes and their associated 
interpretations are:

NAMNFD Name not found; name not in table
ADRNFD Address not found; address not in table
ILLCOM Illegal command; command key not recognized
TMPSYS Temporary system failure, try again later



RFC-954 NICName/WhoIs
K. Harrenstien, M. Stahl, E. Feinler

SRI
October 1985

Status Of This Memo
This RFC is the official specification of the NICNAME/WHOIS protocol. This memo describes 
the protocol and the service.    As of May 1990 the IAB lists this protocol as elective.    
Distribution of this memo is unlimited. 

Introduction
Who Should be in the Database
Protocol
Existing User Programs
Command Lines and Replies



RFC-954 NICName/WhoIs

Introduction

The NICNAME/WHOIS Server is a TCP transaction based query/response server, running on 
the SRI-NIC machine (26.0.0.73 or 10.0.0.51), that provides netwide directory service to 
internet users.    It is one of a series of internet name services maintained by the DDN 
Network Information Center (NIC) at SRI International on behalf of the Defense 
Communications Agency (DCA).    The server is accessible across the Internet from user 
programs running on local hosts, and it delivers the full name, U.S. mailing address, 
telephone number, and network mailbox for DDN users who are registered in the NIC 
database. 
This server, together with the corresponding WHOIS Database can also deliver online look-up
of individuals or their online mailboxes, network organizations, DDN nodes and associated 
hosts, and TAC telephone numbers.    The service is designed to be user-friendly and the 
information is delivered in human-readable format.    DCA strongly encourages network hosts
to provide their users with access to this network service. 



RFC-954 NICName/WhoIs

Who Should Be In The Database

DCA requests that each individual with a directory on an ARPANET or MILNET host, who is 
capable of passing traffic across the DoD Internet, be registered in the NIC WHOIS Database. 
MILNET TAC users must be registered in the database.    To register, send via electronic mail 
to REGISTRAR@SRI-NIC.ARPA your full name, middle initial, U.S. mailing address (including 
mail stop and full explanation of abbreviations and acronyms), ZIP code, telephone 
(including Autovon and FTS, if available), and one network mailbox.    Contact the DDN 
Network Information Center, REGISTRAR@SRI-NIC.ARPA or (800) 235-3155, for assistance 
with registration. 



RFC-954 NICName/WhoIs

Protocol

To access the NICNAME/WHOIS server:
Connect to the SRI-NIC service host at TCP service port 43 (decimal). 
Send a single "command line", ending with <CRLF> (ASCII CR and LF). 
Receive information in response to the command line.    The server closes its 
connection as soon as the output is finished. 



RFC-954 NICName/WhoIs

Existing User Programs

NICNAME is the global name for the user program, although many sites have chosen to use 
the more familiar name of "WHOIS".    There are versions of the NICNAME user program for 
TENEX, TOPS-20, and UNIX. The TENEX and TOPS-20 programs are written in assembly 
language (FAIL/MACRO), and the UNIX version is written in C. They are easy to invoke, taking
one argument which is passed directly to the NICNAME server at SRI-NIC.    Contact NIC@SRI-
NIC.ARPA for copies of the program. 



RFC-954 NICName/WhoIs

Command Lines And Replies

A command line is normally a single name specification.    Note that the specification formats
will evolve with time; the best way to obtain the most recent documentation on name 
specifications is to give the server a command line consisting of "?<CRLF>" (that is, a 
question-mark alone as the name specification).    The response from the NICNAME server 
will list all possible formats that can be used. The responses are not currently intended to be 
machine-readable; the information is meant to be passed back directly to a human user.    
The following three examples illustrate the use of NICNAME as of October 1985. 

Command line: ?
Response:

Please enter a name or a NIC handle, such as "Smith" or "SRI-NIC". Starting 
with a period forces a name-only search; starting with exclamation point 
forces handle-only.    Examples: 

Smith [looks for name or handle SMITH]
!SRI-NIC [looks for handle SRI-NIC only]
.Smith, John [looks for name JOHN SMITH only]

Adding "..." to the argument will match anything from that point, e.g. "ZU..." 
will match ZUL, ZUM, etc. 
To search for mailboxes, use one of these forms:

Smith@ [looks for mailboxes with username SMITH]
@Host [looks for mailboxes on HOST]
Smith@Host[Looks for mailboxes with username SMITH on HOST]

To obtain the entire membership list of a group or organization, or a list of all 
authorized users of a host, precede the name of the host or organization by an
asterisk, i.e. *SRI-NIC. [CAUTION: If there are a lot of members, this will take a 
long time!]    You may use exclamation point and asterisk, or a period and 
asterisk together. 

Command line: fischer
Response:

Fischer, Charles (CF17) fischer@UWISC (608) 262-1204
Fischer, Herman (HF) HFischer@USC-ECLB (818) 902-5139
Fischer, Jeffery H. (JHF1) FISCHER@LL-XN (617) 863-5500 ext 

4403 or 4689
Fischer, Kenneth (KF8) SAC.SIUBO@USC-ISIE (402) 294-5161 (AV) 

271-5161
Fischer, Marty (MF28) MFISCHER@DCA-EMS (703) 437-2344
Fischer, Michael J. (MJF) FISCHER@YALE (203) 436-0744
Fischer, Nancy C. (NANCY) FISCHER@SRI-NIC (415) 859-2539
Fischer, Richard A. (RAF4) Fisher Richa@LLL-MFE(415) 422-5032
To single out any individual entry, repeat the command using the 



argument "!HANDLE" instead of "NAME", where the handle is in 
parentheses following the name. 

Command line: !nancy
Response:

Fischer, Nancy C. (NANCY)        FISCHER@SRI-NIC SRI International
Telecommunication Sciences Center
333 Ravenswood Avenue, EJ289
Menlo Park, California 94025
Phone: (415) 859-2539
MILNET TAC user



RFC-959 File Transfer Protocol (FTP)
J. Postel & J. Reynolds

USC/Information Sciences Instiitute
October 1985

Status of this Memo
This memo is the official specification of the File Transfer Protocol (FTP).    Distribution of this 
memo is unlimited. 
This version of the specification includes the original text plus additions and corrections that 
have been made since its publication.

Introduction
Overview
Data Transfer Functions
File Transfer Functions
Declarative Specifications
State Diagrams
Typical FTP Scenario
Connection Establishment
Appendix I - Page Structure
Appendic II - Directory Commands



RFC-959 File Transfer Protocol (FTP)

Introduction

The objectives of FTP are 1) to promote sharing of files (computer programs and/or data), 2) 
to encourage indirect or implicit (via programs) use of remote computers, 3) to shield a user 
from variations in file storage systems among hosts, and 4) to transfer data reliably and 
efficiently.    FTP, though usable directly by a user at a terminal, is designed mainly for use by
programs. 
The attempt in this specification is to satisfy the diverse needs of users of maxi-hosts, mini-
hosts, personal workstations, and TACs, with a simple, and easily implemented protocol 
design. 
This paper assumes knowledge of the Transmission Control Protocol (TCP) as described in 
RFC-793 and the Telnet Protocol as described in RFC-854.



RFC-959 File Transfer Protocol (FTP)

Overview

In this section, the history, the terminology, and the FTP model are discussed.    The terms 
defined in this section are only those that have special significance in FTP.    Some of the 
terminology is very specific to the FTP model; some readers may wish to turn to the section 
on the FTP model while reviewing the terminology. 

History
Terminology
The FTP Model



RFC-959 File Transfer Protocol (FTP) -- Overview

History

FTP has had a long evolution over the years and has evolved through a long series of RFCS.   
These original specifications are not included in this document, nor are the complete 
bibliographic references, since the current specification supercedes all of them.
These early specifications include the first proposed file transfer mechanisms in 1971 that 
were developed for implementation on hosts at M.I.T. (RFC 114), plus comments and 
discussion in RFC 141. 
RFC 172 provided a user-level oriented protocol for file transfer between host computers 
(including terminal IMPs).    A revision of this as RFC 265, restated FTP for additional review, 
while RFC 281 suggested further changes.    The use of a "Set Data Type" transaction was 
proposed in RFC 294 in January 1982. 
RFC 354 obsoleted RFCs 264 and 265.    The File Transfer Protocol was now defined as a 
protocol for file transfer between HOSTs on the ARPANET, with the primary function of FTP 
defined as transfering files efficiently and reliably among hosts and allowing the convenient 
use of remote file storage capabilities. RFC 385 further commented on errors, emphasis 
points, and additions to the protocol, while RFC 414 provided a status report on the working 
server and user FTPs.    RFC 430, issued in 1973, (among other RFCs too numerous to 
mention) presented further comments on FTP.    Finally, an "official" FTP document was 
published as RFC 454. 
By July 1973, considerable changes from the last versions of FTP were made, but the general
structure remained the same.    RFC 542 was published as a new "official" specification to 
reflect these changes.    However, many implementations based on the older specification 
were not updated. 
In 1974, RFCs 607 and 614 continued comments on FTP.    RFC 624 proposed further design 
changes and minor modifications.    In 1975, RFC 686 entitled, "Leaving Well Enough Alone", 
discussed the differences between all of the early and later versions of FTP. RFC 691 
presented a minor revision of RFC 686, regarding the subject of print files. 
Motivated by the transition from the NCP to the TCP as the underlying protocol, a phoenix 
was born out of all of the above efforts in RFC 765 as the specification of FTP for use on TCP. 
This current edition of the FTP specification is intended to correct some minor 
documentation errors, to improve the explanation of some protocol features, and to add 
some new optional commands. 
In particular, the following new commands are included in this edition of the specification: 

CDUP - Change to Parent Directory
SMNT - Structure Mount
STOU - Store Unique
RMD - Remove Directory
MKD - Make Directory
PWD - Print Directory
SYST - System

This specification is compatible with the previous edition.    A program implemented in 
conformance to the previous specification should automatically be in conformance to this 
specification. 





RFC-959 File Transfer Protocol (FTP) -- Overview

Terminology

ASCII
The ASCII character set is as defined in the ARPA-Internet Protocol Handbook.   
In FTP, ASCII characters are defined to be the lower half of an eight-bit code 
set (i.e., the most significant bit is zero). 

access controls
Access controls define users' access privileges to the use of a system, and to 
the files in that system.    Access controls are necessary to prevent 
unauthorized or accidental use of files. It is the prerogative of a server-FTP 
process to invoke access controls. 

byte size
There are two byte sizes of interest in FTP:    the logical byte size of the file, 
and the transfer byte size used for the transmission of the data.    The transfer 
byte size is always 8 bits.    The transfer byte size is not necessarily the byte 
size in which data is to be stored in a system, nor the logical byte size for 
interpretation of the structure of the data. 

control connection
The communication path between the USER-PI and SERVER-PI for the 
exchange of commands and replies.    This connection follows the Telnet 
Protocol. 

data connection
A full duplex connection over which data is transferred, in a specified mode 
and type. The data transferred may be a part of a file, an entire file or a 
number of files.    The path may be between a server-DTP and a user-DTP, or 
between two server-DTPs. 

data port
The passive data transfer process "listens" on the data port for a connection 
from the active transfer process in order to open the data connection. 

DTP
The data transfer process establishes and manages the data connection.    The
DTP can be passive or active. 

End-of-Line
The end-of-line sequence defines the separation of printing lines.    The 
sequence is Carriage Return, followed by Line Feed. 

EOF
The end-of-file condition that defines the end of a file being transferred. 

EOR
The end-of-record condition that defines the end of a record being transferred.

error recovery
A procedure that allows a user to recover from certain errors such as failure of 



either host system or transfer process.    In FTP, error recovery may involve 
restarting a file transfer at a given checkpoint. 

FTP commands
A set of commands that comprise the control information flowing from the 
user-FTP to the server-FTP process. 

file
An ordered set of computer data (including programs), of arbitrary length, 
uniquely identified by a pathname. 

mode
The mode in which data is to be transferred via the data connection.    The 
mode defines the data format during transfer including EOR and EOF.    The 
transfer modes defined in FTP are described in the Section on Transmission 
Modes. 

NVT
The Network Virtual Terminal as defined in the Telnet Protocol.

NVFS
The Network Virtual File System.    A concept which defines a standard network
file system with standard commands and pathname conventions. 

page
A file may be structured as a set of independent parts called pages.    FTP 
supports the transmission of discontinuous files as independent indexed 
pages. 

pathname
Pathname is defined to be the character string which must be input to a file 
system by a user in order to identify a file. Pathname normally contains device
and/or directory names, and file name specification.    FTP does not yet specify 
a standard pathname convention.    Each user must follow the file naming 
conventions of the file systems involved in the transfer. 

PI
The protocol interpreter.    The user and server sides of the protocol have 
distinct roles implemented in a user-PI and a server-PI. 

record
A sequential file may be structured as a number of contiguous parts called 
records.    Record structures are supported by FTP but a file need not have 
record structure. 

reply
A reply is an acknowledgment (positive or negative) sent from server to user 
via the control connection in response to FTP commands.    The general form of
a reply is a completion code (including error codes) followed by a text string.    
The codes are for use by programs and the text is usually intended for human 
users. 

server-DTP
The data transfer process, in its normal "active" state, establishes the data 
connection with the "listening" data port. It sets up parameters for transfer 



and storage, and transfers data on command from its PI.    The DTP can be 
placed in a "passive" state to listen for, rather than initiate a connection on 
the data port. 

server-FTP process
A process or set of processes which perform the function of file transfer in 
cooperation with a user-FTP process and, possibly, another server.    The 
functions consist of a protocol interpreter (PI) and a data transfer process 
(DTP). 

server-PI
The server protocol interpreter "listens" on Port L for a connection from a user-
PI and establishes a control communication connection.    It receives standard 
FTP commands from the user-PI, sends replies, and governs the server-DTP. 

type
The data representation type used for data transfer and storage.    Type 
implies certain transformations between the time of data storage and data 
transfer.    The representation types defined in FTP are described in the Section
on Establishing Data Connections. 

user
A person or a process on behalf of a person wishing to obtain file transfer 
service.    The human user may interact directly with a server-FTP process, but 
use of a user-FTP process is preferred since the protocol design is weighted 
towards automata. 

user-DTP
The data transfer process "listens" on the data port for a connection from a 
server-FTP process.    If two servers are transferring data between them, the 
user-DTP is inactive. 

user-FTP process
A set of functions including a protocol interpreter, a data transfer process and 
a user interface which together perform the function of file transfer in 
cooperation with one or more server-FTP processes.    The user interface allows
a local language to be used in the command-reply dialogue with the user. 

user-PI
The user protocol interpreter initiates the control connection from its port U to 
the server-FTP process, initiates FTP commands, and governs the user-DTP if 
that process is part of the file transfer. 



RFC-959 File Transfer Protocol (FTP) -- Overview

The FTP Model

With the above definitions in mind, the following model (shown in Figure 1) may be 
diagrammed for an FTP service. 

NOTES: 1. The data connection may be used in either direction.
2. The data connection need not exist all of the time.

Figure 1    Model for FTP Use

In the model described in Figure 1, the user-protocol interpreter initiates the control 
connection.    The control connection follows the Telnet protocol.    At the initiation of the user,
standard FTP commands are generated by the user-PI and transmitted to the server process 
via the control connection.    (The user may establish a direct control connection to the 
server-FTP, from a TAC terminal for example, and generate standard FTP commands 
independently, bypassing the user-FTP process.) Standard replies are sent from the server-PI
to the user-PI over the control connection in response to the commands. 
The FTP commands specify the parameters for the data connection (data port, transfer 
mode, representation type, and structure) and the nature of file system operation (store, 
retrieve, append, delete, etc.).    The user-DTP or its designate should "listen" on the 
specified data port, and the server initiate the data connection and data transfer in 
accordance with the specified parameters.    It should be noted that the data port need not 
be in    the same host that initiates the FTP commands via the control connection, but the 
user or the user-FTP process must ensure a "listen" on the specified data port.    It ought to 
also be noted that the data connection may be used for simultaneous sending and receiving.
In another situation a user might wish to transfer files between two hosts, neither of which is
a local host. The user sets up control connections to the two servers and then arranges for a 
data connection between them.    In this manner, control information is passed to the user-PI 
but data is transferred between the server data transfer processes.    Following is a model of 
this server-server interaction. 



Figure 2

The protocol requires that the control connections be open while data transfer is in progress. 
It is the responsibility of the user to request the closing of the control connections when 
finished using the FTP service, while it is the server who takes the action.    The server may 
abort data transfer if the control connections are closed without command. 
The Relationship between FTP and Telnet:
The FTP uses the Telnet protocol on the control connection. This can be achieved in two 
ways: first, the user-PI or the server-PI may implement the rules of the Telnet Protocol 
directly in their own procedures; or, second, the user-PI or the server-PI may make use of the
existing Telnet module in the system. 
Ease of implementaion, sharing code, and modular programming argue for the second 
approach.    Efficiency and independence argue for the first approach.    In practice, FTP relies
on very little of the Telnet Protocol, so the first approach does not necessarily involve a large
amount of code. 



RFC-959 File Transfer Protocol (FTP)

Data Transfer Functions

Files are transferred only via the data connection.    The control connection is used for the 
transfer of commands, which describe the functions to be performed, and the replies to 
these commands.    Several commands are concerned with the transfer of data between 
hosts.    These data transfer commands include the MODE command which specify how the 
bits of the data are to be transmitted, and the STRUcture and TYPE commands, which are 
used to define the way in which the data are to be represented.    The transmission and 
representation are basically independent but the "Stream" transmission mode is dependent 
on the file structure attribute and if "Compressed" transmission mode is used, the nature of 
the filler byte depends on the representation type. 

Data Representation and Storage
Establishing Data Connections
Data Connection Management
Transmission Modes
Error Recovery and Restart



RFC-959 File Transfer Protocol (FTP) -- Data Transfer Functions

Data Representation And Storage

Data is transferred from a storage device in the sending host to a storage device in the 
receiving host.    Often it is necessary to perform certain transformations on the data 
because data storage representations in the two systems are different.    For example, NVT-
ASCII has different data storage representations in different systems.    DEC TOPS-20s's 
generally store NVT-ASCII as five 7-bit ASCII characters, left-justified in a 36-bit word. IBM 
Mainframe's store NVT-ASCII as 8-bit EBCDIC codes.    Multics stores NVT-ASCII as four 9-bit 
characters in a 36-bit word.    It is desirable to convert characters into the standard NVT-ASCII
representation when transmitting text between dissimilar systems.    The sending and 
receiving sites would have to perform the necessary transformations between the standard 
representation and their internal representations. 
A different problem in representation arises when transmitting binary data (not character 
codes) between host systems with different word lengths.    It is not always clear how the 
sender should send data, and the receiver store it.    For example, when transmitting 32-bit 
bytes from a 32-bit word-length system to a 36-bit word-length system, it may be desirable 
(for reasons of efficiency and usefulness) to store the 32-bit bytes right-justified in a 36-bit 
word in the latter system.    In any case, the user should have the option of specifying data 
representation and transformation functions.    It should be noted that FTP provides for very 
limited data type representations. Transformations desired beyond this limited capability 
should be performed by the user directly. 

Data Types
Data Structures



RFC-959 File Transfer Protocol (FTP) -- Data Representation and Storage

Data Types

Data representations are handled in FTP by a user specifying a representation type.    This 
type may implicitly (as in ASCII or EBCDIC) or explicitly (as in Local byte) define a byte size 
for interpretation which is referred to as the "logical byte size." Note that this has nothing to 
do with the byte size used for transmission over the data connection, called the "transfer 
byte size", and the two should not be confused.    For example, NVT-ASCII has a logical byte 
size of 8 bits.    If the type is Local byte, then the TYPE command has an obligatory second 
parameter specifying the logical byte size.    The transfer byte size is always 8 bits. 

ASCII Type
EBCDIC Type
Image Type
Local Type
Format Control

Non-Print
Telnet Format Controls
Carriage Control (ASA)



RFC-959 File Transfer Protocol (FTP) -- Data Types

ASCII Type (A)

This is the default type and must be accepted by all FTP implementations.    It is intended 
primarily for the transfer of text files, except when both hosts would find the EBCDIC type 
more convenient. 
The sender converts the data from an internal character representation to the standard 8-bit
NVT-ASCII representation (see the Telnet specification).    The receiver will convert the data 
from the standard form to his own internal form. 
In accordance with the NVT standard, the <CRLF> sequence should be used where 
necessary to denote the end of a line of text.    (See the discussion of file structure at the end
of the Section on Data Representation and Storage.) 
Using the standard NVT-ASCII representation means that data must be interpreted as 8-bit 
bytes. 



RFC-959 File Transfer Protocol (FTP) -- Data Types

EBCDIC Type (E)

This type is intended for efficient transfer between hosts which use EBCDIC for their internal 
character representation. 
For transmission, the data are represented as 8-bit EBCDIC characters.    The character code 
is the only difference between the functional specifications of EBCDIC and ASCII types. 
End-of-line (as opposed to end-of-record--see the discussion of structure) will probably be 
rarely used with EBCDIC type for purposes of denoting structure, but where it is necessary 
the <NL> character should be used. 



RFC-959 File Transfer Protocol (FTP) -- Data Types

IMAGE Type (I)

The data are sent as contiguous bits which, for transfer, are packed into the 8-bit transfer 
bytes.    The receiving site must store the data as contiguous bits.    The structure of the 
storage system might necessitate the padding of the file (or of each record, for a record-
structured file) to some convenient boundary (byte, word or block).    This padding, which 
must be all zeros, may occur only at the end of the file (or at the end of each record) and 
there must be a way of identifying the padding bits so that they may be stripped off if the 
file is retrieved.    The padding transformation should be well publicized to enable a user to 
process a file at the storage site. 
Image type is intended for the efficient storage and retrieval of files and for the transfer of 
binary data.    An FTP program must support this type.



RFC-959 File Transfer Protocol (FTP) -- Data Types

LOCAL Type (L)

The data is transferred in logical bytes of the size specified by the obligatory second 
parameter, Byte size. The value of Byte size must be a decimal integer; there is no default 
value.    The logical byte size is not necessarily the same as the transfer byte size.    If there is
a difference in byte sizes, then the logical bytes should be packed contiguously, disregarding
transfer byte boundaries and with any necessary padding at the end. 
When the data reaches the receiving host, it will be transformed in a manner dependent on 
the logical byte size and the particular host.    This transformation must be invertible (i.e., an 
identical file can be retrieved if the same parameters are used) and should be well 
publicized by the FTP implementors. 
For example, a user sending 36-bit floating-point numbers to a host with a 32-bit word could 
send that data as Local byte with a logical byte size of 36.    The receiving host would then 
be expected to store the logical bytes so that they could be easily manipulated; in this 
example putting the 36-bit logical bytes into 64-bit double words should suffice. 
In another example, a pair of hosts with a 36-bit word size may send data to one another in 
words by using TYPE L 36. The data would be sent in the 8-bit transmission bytes packed so 
that 9 transmission bytes carried two host words. 
An FTP program must support TYPE L 8.    A machine whose memory is organized into m-bit 
words, where m is not a multiple of 8, may also support TYPE L m.

Discussion
The command "TYPE L 8" is often required to transfer binary data between a 
machine whose memory is organized into (e.g.) 36-bit words and a 
machinewith an 8-bit byte organization.    For an 8-bit byte machine, TYPE L 8 
is equivalent to IMAGE.
"TYPE L m" is sometimes specified to the FTP programs on two m-bit word 
machines to ensure the correct transfer of a native-mode binary file from one 
machine to the other.    However, this command should have the same effect 
on these machines as "TYPE I".



RFC-959 File Transfer Protocol (FTP) -- Data Types

Format Control

The types ASCII and EBCDIC also take a second (optional) parameter; this is to indicate what
kind of vertical format control, if any, is associated with a file.    The following data 
representation types are defined in FTP: 
A character file may be transferred to a host for one of three purposes: for printing, for 
storage and later retrieval, or for processing.    If a file is sent for printing, the receiving host 
must know how the vertical format control is represented.    In the second case, it must be 
possible to store a file at a host and then retrieve it later in exactly the same form.    Finally, 
it should be possible to move a file from one host to another and process the file at the 
second host without undue trouble.    A single ASCII or EBCDIC format does not satisfy all 
these conditions.    Therefore, these types have a second parameter specifying one of the 
following three formats: 



RFC-959 File Transfer Protocol (FTP) -- Data Types

Non Print (N)

This is the default format to be used if the second (format) parameter is omitted.    Non-print 
format must be accepted by all FTP implementations. The file need contain no vertical 
format information.    If it is passed to a printer process, this process may assume standard 
values for spacing and margins. 
Normally, this format will be used with files destined for processing or just storage. 



RFC-959 File Transfer Protocol (FTP) -- Data Types

Telnet Format Controls (T)

The file contains ASCII/EBCDIC vertical format controls (i.e., <CR>, <LF>, <NL>, <VT>, 
<FF>) which the printer process will interpret appropriately.    <CRLF>, in exactly this 
sequence, also denotes end-of-line. 
A host that makes no distinction between TYPE N and TYPE T should implement TYPE T to 
be identical to TYPE N.

Discussion
This provision should ease interoperation with hosts that do make this 
distinction.
Many hosts represent text files internally as strings of ASCII characters, using 
the embedded ASCII format effector characters (LF, BS, FF, ...) to control 
theformat when a file is printed.    For such hosts, there is no distinction 
between "print" files and other files.    However, systems that use record 
structured files typically need a special format for printable files (e.g., ASA 
carriage control).    For the latter hosts, FTP allows a choice of TYPE N or TYPE 
T.



RFC-959 File Transfer Protocol (FTP) -- Data Types

Carriage Control (C)

The file contains ASA (FORTRAN) vertical format control characters.    (See RFC 740 Appendix
C; and Communications of the ACM, Vol. 7, No. 10, p. 606, October 1964.)    In a line or a 
record formatted according to the ASA Standard, the first character is not to be printed.    
Instead, it should be used to determine the vertical movement of the paper which should 
take place before the rest of the record is printed. 
The ASA Standard specifies the following control characters: 

Character      Vertical Spacing  
blank Move paper up one line

0 Move paper up two lines
1 Move paper to top of next page
+ No movement, i.e., overprint

Clearly there must be some way for a printer process to distinguish the end of the structural 
entity.    If a file has record structure (see below) this is no problem; records will be explicitly 
marked during transfer and storage.    If the file has no record structure, the <CRLF> end-of-
line sequence is used to separate printing lines, but these format effectors are overridden by
the ASA controls. 



RFC-959 File Transfer Protocol (FTP) -- Data Representation and Storage

Data Structures

In addition to different representation types, FTP allows the structure of a file to be specified.
Three file structures are defined in FTP: 

file-structure where there is no internal structure and the file is considered to 
be a continuous sequence of data bytes, 

record-structure where the file is made up of sequential records,
page-structure where the file is made up of independent indexed pages.

File-structure is the default to be assumed if the STRUcture command has not been used but
both file and record structures must be accepted for "text" files (i.e., files with TYPE ASCII or 
EBCDIC) by all FTP implementations.    The structure of a file will affect both the transfer 
mode of a file (see the Section on Transmission Modes) and the interpretation and storage of
the file. 
The "natural" structure of a file will depend on which host stores the file.    A source-code file 
will usually be stored on an IBM Mainframe in fixed length records but on a DEC TOPS-20 as 
a stream of characters partitioned into lines, for example by <CRLF>.    If the transfer of files
between such disparate sites is to be useful, there must be some way for one site to 
recognize the other's assumptions about the file. 
With some sites being naturally file-oriented and others naturally record-oriented there may 
be problems if a file with one structure is sent to a host oriented to the other.    If a text file is
sent with record-structure to a host which is file oriented, then that host should apply an 
internal transformation to the file based on the record structure.
An FTP transformation between record-structure and file- structure should be invertible, to 
the extent possible while making the result useful on the target host.

Discussion
There are two different objectives for transferring a file: processing it on the 
target host, or just storage.    For storage, strict invertibility is important.    For 
processing, the file created on the target host needs to be in the format 
expected by application programs on that host.
As an example of the conflict, imagine a record- oriented operating system 
that requires some data files to have exactly 80 bytes in each record.    While 
STORing a file on such a host, an FTP Server must be able to pad each line or 
record to 80 bytes; a later retrieval of such a file cannot be strictly invertible.

 
In the case of a file being sent with file-structure to a record-oriented host, there exists the 
question of what criteria the host should use to divide the file into records which can be 
processed locally.    If this division is necessary, the FTP implementation should use the end-
of-line sequence,    <CRLF> for ASCII, or <NL> for EBCDIC text files, as the delimiter.    If an 
FTP implementation adopts this technique, it must be prepared to reverse the 
transformation if the file is retrieved with file-structure. 



RFC-959 File Transfer Protocol (FTP) -- Data Structures

File Structure

File structure is the default to be assumed if the STRUcture command has not been used. 
In file-structure there is no internal structure and the file is considered to be a continuous 
sequence of data bytes. 



RFC-959 File Transfer Protocol (FTP) -- Data Structures

Record Structure

Record structures must be accepted for "text" files (i.e., files with TYPE ASCII or EBCDIC) by 
all FTP implementations. 
In record-structure the file is made up of sequential records. 



RFC-959 File Transfer Protocol (FTP) -- Data Structures

Page Structure

Implementation of page structure is not recommended in general. However, if a host 
system does need to implement FTP for "random access" or "holey" files, it must use the 
defined page structure format rather than define a new private FTP format.
To transmit files that are discontinuous, FTP defines a page structure.    Files of this type are 
sometimes known as "random access files" or even as "holey files".    In these files there is 
sometimes other information associated with the file as a whole (e.g., a file descriptor), or 
with a section of the file (e.g., page access controls), or both. In FTP, the sections of the file 
are called pages.
To provide for various page sizes and associated information, each page is sent with a page 
header.    The page header has the following defined fields: 
Header Length

The number of logical bytes in the page header including this byte.    The 
minimum header length is 4. 

Page Index
The logical page number of this section of the file. This is not the transmission 
sequence number of this page, but the index used to identify this page of the 
file. 

Data Length
The number of logical bytes in the page data.    The minimum data length is 0. 

Page Type
The type of page this is.    The following page types are defined: 
0 = Last Page

This is used to indicate the end of a paged structured transmission.    The 
header length must be 4, and the data length must be 0. 

1 = Simple Page
This is the normal type for simple paged files with no page level associated
control information.    The header length must be 4. 

2 = Descriptor Page
This type is used to transmit the descriptive information for the file as a 
whole. 

3 = Access Controlled Page
This type includes an additional header field for paged files with page level
access control information.    The header length must be 5. 

Optional Fields
Further header fields may be used to supply per page control information, 
for example, per page access control. 

All fields are one logical byte in length.    The logical byte size is specified by the TYPE 
command.    See Appendix I for further details and a specific case at the page structure. 



A note of caution about parameters:    a file must be stored and retrieved with the same 
parameters if the retrieved version is to be identical to the version originally transmitted.    
Conversely, FTP implementations must return a file identical to the original if the parameters
used to store and retrieve a file are the same. 



RFC-959 File Transfer Protocol (FTP) -- Data Transfer Functions

Establishing Data Connections

The mechanics of transferring data consists of setting up the data connection to the 
appropriate ports and choosing the parameters for transfer.    Both the user and the server-
DTPs have a default data port.    The user-process default data port is the same as the 
control connection port (i.e., U).    The server-process default data port is the port adjacent to
the control connection port (i.e., L-1). 
The transfer byte size is 8-bit bytes.    This byte size is relevant only for the actual transfer of 
the data; it has no bearing on representation of the data within a host's file system. 
The passive data transfer process (this may be a user-DTP or a second server-DTP) shall 
"listen" on the data port prior to sending a transfer request command.    The FTP request 
command determines the direction of the data transfer.    The server, upon receiving the 
transfer request, will initiate the data connection to the port.    When the connection is 
established, the data transfer begins between DTP's, and the server-PI sends a confirming 
reply to the user-PI. 
Every FTP implementation must support the use of the default data ports, and only the 
USER-PI can initiate a change to non-default ports. 
It is possible for the user to specify an alternate data port by use of the PORT command.    
The user may want a file dumped on a TAC line printer or retrieved from a third party host.    
In the latter case, the user-PI sets up control connections with both server-PI's.    One server 
is then told (by an FTP command) to "listen" for a connection which the other will initiate.    
The user-PI sends one server-PI a PORT command indicating the data port of the other.    
Finally, both are sent the appropriate transfer commands.    The exact sequence of 
commands and replies sent between the user-controller and the servers is defined in the 
Section on FTP Replies. 
In general, it is the server's responsibility to maintain the data connection--to initiate it and 
to close it.    The exception to this    is when the user-DTP is sending the data in a transfer 
mode that requires the connection to be closed to indicate EOF.    The server must close the 
data connection under the following conditions: 

1. The server has completed sending data in a transfer mode that requires a 
close to indicate EOF. 

2. The server receives an ABORT command from the user.
3. The port specification is changed by a command from the user. 
4. The control connection is closed legally or otherwise.
5. An irrecoverable error condition occurs.

Otherwise the close is a server option, the exercise of which the server must indicate to the 
user-process by either a 250 or 226 reply only. 



RFC-959 File Transfer Protocol (FTP) -- Data Transfer Functions

Data Connection Management

Default Data Connection Ports:    All FTP implementations must support use of the default 
data connection ports, and only the User-PI may initiate the use of non-default ports. 
Negotiating Non-Default Data Ports:      The User-PI may specify a non-default user side data 
port with the PORT command.    The User-PI may request the server side to identify a non-
default server side data port with the PASV command.    Since a connection is defined by the 
pair of addresses, either of these actions is enough to get a different data connection, still it 
is permitted to do both commands to use new ports on both ends of the data connection. 
Reuse of the Data Connection:    When using the stream mode of data transfer the end of the
file must be indicated by closing the connection.    This causes a problem if multiple files are 
to be transfered in the session, due to need for TCP to hold the connection record for a time 
out period to guarantee the reliable communication.    Thus the connection can not be 
reopened at once. 
There are two solutions to this problem.    The first is to negotiate a non-default port.    The 
second is to use another transfer mode. 
A comment on transfer modes.    The stream transfer mode is inherently unreliable, since 
one can not determine if the connection closed prematurely or not.    The other transfer 
modes (Block, Compressed) do not close the connection to indicate the end of file.    They 
have enough FTP encoding that the data connection can be parsed to determine the end of 
the file. Thus using these modes one can leave the data connection open for multiple file 
transfers. 
A User-FTP that uses STREAM mode should send a PORT command to assign a non-default 
data port before each transfer command is issued.

Discussion
This is required because of the long delay after a TCP connection is closed 
until its socket pair can be reused, to allow multiple transfers duringa single 
FTP session.    Sending a port command can avoided if a transfer mode other 
than stream is used, by leaving the data transfer connection open between 
transfers.



RFC-959 File Transfer Protocol (FTP) -- Data Transfer Functions

Transmission Modes

The next consideration in transferring data is choosing the appropriate transmission mode.    
There are three modes: one which formats the data and allows for restart procedures; one 
which also compresses the data for efficient transfer; and one which passes the data with 
little or no processing.    In this last case the mode interacts with the structure attribute to 
determine the type of processing.    In the compressed mode, the representation type 
determines the filler byte. 
All data transfers must be completed with an end-of-file (EOF) which may be explicitly stated
or implied by the closing of the data connection.    For files with record structure, all the end-
of-record markers (EOR) are explicit, including the final one. For files transmitted in page 
structure a "last-page" page type is used. 
Note: In the rest of this section, byte means "transfer byte" except where explicitly stated 

otherwise. 
For the purpose of standardized transfer, the sending host will translate its internal end of 
line or end of record denotation into the representation prescribed by the transfer mode and 
file structure, and the receiving host will perform the inverse translation to its internal 
denotation.    An IBM Mainframe record count field may not be recognized at another host, so
the end-of-record information may be transferred as a two byte control code in Stream mode
or as a flagged bit in a Block or Compressed mode descriptor.    End-of-line in an ASCII or 
EBCDIC file with no record structure should be indicated by <CRLF> or <NL>, respectively.    
Since these transformations imply extra work for some systems, identical systems 
transferring non-record structured text files might wish to use a binary representation and 
stream mode for the transfer. 

Stream Mode
Block Mode
Compressed Mode



RFC-959 File Transfer Protocol (FTP) -- Transmission Modes

Stream Mode

The data is transmitted as a stream of bytes.    There is no restriction on the representation 
type used; record structures are allowed. 
In a record structured file EOR and EOF will each be indicated by a two-byte control code.    
The first byte of the control code will be all ones, the escape character.    The second byte 
will have the low order bit on and zeros elsewhere for EOR and the second low order bit on 
for EOF; that is, the byte will have value 1 for EOR and value 2 for EOF.    EOR and EOF may 
be indicated together on the last byte transmitted by turning both low order bits on (i.e., the 
value 3).    If a byte of all ones was intended to be sent as data, it should be repeated in the 
second byte of the control code. 
If the structure is a file structure, the EOF is indicated by the sending host closing the data 
connection and all bytes are data bytes. 



RFC-959 File Transfer Protocol (FTP) -- Transmission Modes

Block Mode

The file is transmitted as a series of data blocks preceded by one or more header bytes.    
The header bytes contain a count field, and descriptor code.    The count field indicates the 
total length of the data block in bytes, thus marking the beginning of the next data block 
(there are no filler bits). The descriptor code defines:    last block in the file (EOF) last block in
the record (EOR), restart marker or suspect data (i.e., the data being transferred is 
suspected of errors and is not reliable). This last code is not intended for error control within
FTP. It is motivated by the desire of sites exchanging certain types of data (e.g., seismic or 
weather data) to send and receive all the data despite local errors (such as "magnetic tape 
read errors"), but to indicate in the transmission that certain portions are suspect).    Record 
structures are allowed in this mode, and any representation type may be used. 
The header consists of the three bytes.    Of the 24 bits of header information, the 16 low 
order bits shall represent byte count, and the 8 high order bits shall represent descriptor 
codes as shown below. 
Block Header

The descriptor codes are indicated by bit flags in the descriptor byte.    Four 
codes have been assigned, where each code number is the decimal value of 
the corresponding bit in the byte. 

         Code           Meaning  
128 End of data block is EOR
64 End of data block is EOF
32 Suspected errors in data block
16 Data block is a restart marker

With this encoding, more than one descriptor coded condition may exist for a particular 
block.    As many bits as necessary may be flagged. 
The restart marker is embedded in the data stream as an integral number of 8-bit bytes 
representing printable characters in the language being used over the control connection 
(e.g., default--NVT-ASCII).    <SP> (Space, in the appropriate language) must not be used 
within a restart marker. 
For example, to transmit a six-character marker, the following would be sent: 





RFC-959 File Transfer Protocol (FTP) -- Transmission Modes

Compressed Mode

There are three kinds of information to be sent:    regular data, sent in a byte string; 
compressed data, consisting of replications or filler; and control information, sent in a two-
byte escape sequence.    If n>0 bytes (up to 127) of regular data are sent, these n bytes are 
preceded by a byte with the left-most bit set to 0 and the right-most 7 bits containing the 
number n. 
Byte string:

String of n data bytes d(1),..., d(n)
Count n must be positive.

To compress a string of n replications of the data byte d, the following 2 bytes are sent: 
Replicated Byte:

A string of n filler bytes can be compressed into a single byte, where the 
filler byte varies with the representation type.    If the type is ASCII or 
EBCDIC the filler byte is <SP> (Space, ASCII code 32, EBCDIC code 64).    If 
the type is Image or Local byte the filler is a zero byte. 

Filler String:

The escape sequence is a double byte, the first of which is the escape byte
(all zeros) and the second of which contains descriptor codes as defined in 
Block mode.    The descriptor codes have the same meaning as in Block 
mode and apply to the succeeding string of bytes. 
Compressed mode is useful for obtaining increased bandwidth on very 
large network transmissions at a little extra CPU cost. It can be most 
effectively used to reduce the size of printer files such as those generated 
by RJE hosts. 



RFC-959 File Transfer Protocol (FTP) -- Data Transfer Functions

Error Recovery And Restart

There is no provision for detecting bits lost or scrambled in data transfer; this level of error 
control is handled by the TCP. However, a restart procedure is provided to protect users from
gross system failures (including failures of a host, an FTP-process, or the underlying 
network). 
The restart procedure is defined only for the block and compressed modes of data transfer.    
It requires the sender of data to insert a special marker code in the data stream with some 
marker information.    The marker information has meaning only to the sender, but must 
consist of printable characters in the default or negotiated language of the control 
connection (ASCII or EBCDIC). The marker could represent a bit-count, a record-count, or any
other information by which a system may identify a data checkpoint.    The receiver of data, 
if it implements the restart procedure, would then mark the corresponding position of this 
marker in the receiving system, and return this information to the user. 
In the event of a system failure, the user can restart the data transfer by identifying the 
marker point with the FTP restart procedure.    The following example illustrates the use of 
the restart procedure. 
The sender of the data inserts an appropriate marker block in the data stream at a 
convenient point.    The receiving host marks the corresponding data point in its file system 
and conveys the last known sender and receiver marker information to the user, either 
directly or over the control connection in a 110 reply (depending on who is the sender).    In 
the event of a system failure, the user or controller process restarts the server at the last 
server marker by sending a restart command with server's marker code as its argument.    
The restart command is transmitted over the control    connection and is immediately 
followed by the command (such as RETR, STOR or LIST) which was being executed when the 
system failure occurred. 
When an FTP that implements restart receives a Restart Marker in the data stream, it 
should force the data to that point to be written to stable storage beforeencoding the 
corresponding position rrrr.    An FTP sending Restart Markers must not assume that 110 
replies will be returned synchronously with the data, i.e., it must not await a 110 reply before
sending more data.
Two new reply codes are hereby defined for errors encountered in restarting a transfer:
554 Requested action not taken: invalid REST parameter.

A 554 reply may result from a FTP service command that follows a REST 
command.    The reply indicates that the existing file at the Server-FTP cannot 
be repositioned as specified in the REST.

555 Requested action not taken: type or stru mismatch.
A 555 reply may result from an APPE command or from any FTP service 
command following a REST command.    The reply indicates that there is some 
mismatch between the current transfer parameters (type and stru) and the 
attributes of the existing file.

Restart Markers mark a place in the data stream, but the receiver may be performing some 
transformation on the data as it is stored into stable storage.    In general, the receiver's 
encoding must include any state information necessary to restart this transformation at any 
point of the FTP data stream.    For example, in TYPE A transfers, some receiver hosts 
transform CR LF sequences into a single LF character on disk.    If a Restart Marker happens 



to fall between CR and LF, the receiver must encode in rrrr that the transfer must be 
restarted in a "CR has been seen and discarded" state.
Note that the Restart Marker is required to be encoded as a string of printable ASCII 
characters, regardless of the type of the data.
The discussion above mentions that restart information is to be returned "to the user".    This 
should not be taken literally.    In general, the User-FTP should save the restart information 
(ssss,rrrr) in stable storage, e.g., append it to a restart control file.    An empty restart control
file should be created when the transfer first starts and deleted automatically when the 
transfer completes successfully.    It is suggested that this file have a name derived in an 
easily-identifiable manner from the name of the file being transferred and the remote host 
name; this is analogous to the means used by many text editors for naming "backup" files.
There are three cases for FTP restart:

(1) User-to-Server Transfer
The User-FTP puts Restart Markers <ssss> at convenient places in the data
stream.    When the Server-FTP receives a Marker, it writes all prior data to 
disk, encodes its file system position and transformation state as rrrr, and 
returns a "110 MARK ssss = rrrr" reply over the control connection.    The 
User-FTP appends the pair (ssss,rrrr) to its restart control file.
To restart the transfer, the User-FTP fetches the last (ssss,rrrr) pair from 
the restart control file, repositions its local file system and transformation 
state using ssss, and sends the command "REST rrrr" to the Server-FTP.

(2) Server-to-User Transfer
The Server-FTP puts Restart Markers <ssss> at convenient places in the 
data stream.    When the User-FTP receives a Marker, it writes all prior data 
to disk, encodes its file system position and transformation state as rrrr, 
and appends the pair (rrrr,ssss) to its restart control file.
To restart the transfer, the User-FTP fetches the last (rrrr,ssss) pair from 
the restart control file, repositions its local file system and transformation 
state using rrrr, and sends the command "REST ssss" to the Server-FTP.

(3) Server-to-Server ("Third-Party") Transfer
The sending Server-FTP puts Restart Markers <ssss> at convenient places 
in the data stream.    When it receives a Marker, the receiving Server-FTP 
writes all prior data to disk, encodes its file system position and 
transformation state as rrrr, and sends a "110 MARK ssss = rrrr" reply over 
the control connection to theUser.    The User-FTP appends the pair 
(ssss,rrrr) to its restart control file.
To restart the transfer, the User-FTP fetches the last (ssss,rrrr) pair from 
the restart control file, sends "REST ssss" to the sending Server-FTP, and 
sends "REST rrrr" to the receiving Server-FTP.



RFC-959 File Transfer Protocol (FTP)

File Transfer Functions

The communication channel from the user-PI to the server-PI is established as a TCP 
connection from the user to the standard server port.    The user protocol interpreter is 
responsible for sending FTP commands and interpreting the replies received; the server-PI 
interprets commands, sends replies and directs its DTP to set up the data connection and 
transfer the data.    If the second party to the data transfer (the passive transfer process) is 
the user-DTP, then it is governed through the internal protocol of the user-FTP host; if it is a 
second server-DTP, then it is governed by its PI on command from the user-PI.    The FTP 
replies are discussed in the next section.    In the description of a few of the commands in 
this section, it is helpful to be explicit about the possible replies. 

FTP Commands
FTP Replies



RFC-959 File Transfer Protocol (FTP)

FTP Commands

Access Control Commands
Transfer Parameter Commands
FTP Service Commands

The File Transfer Protocol follows the specifications of the Telnet protocol for all 
communications over the control connection.    Since the language used for Telnet 
communication may be a negotiated option, all references in the next two sections will be to
the "Telnet language" and the corresponding "Telnet end-of-line code". Currently, one may 
take these to mean NVT-ASCII and <CRLF>.    No other specifications of the Telnet protocol 
will be cited. 
FTP commands are "Telnet strings" terminated by the "Telnet end of line code".    The 
command codes themselves are alphabetic characters terminated by the character <SP> 
(Space) if parameters follow and Telnet-EOL otherwise.    The command codes and the 
semantics of commands are described in this section; the detailed syntax of commands is 
specified in Commands, the reply sequences are discussed in Sequencing of Commands and 
Replies, and scenarios illustrating the use of commands are provided in Typical FTP 
Scenarios. 
FTP commands may be partitioned as those specifying access-control identifiers, data 
transfer parameters, or FTP service requests. Certain commands (such as ABOR, STAT, QUIT)
may be sent over the control connection while a data transfer is in progress.    Some    
servers may not be able to monitor the control and data connections simultaneously, in 
which case some special action will be necessary to get the server's attention.    The 
following ordered format is tentatively recommended: 

1. User system inserts the Telnet "Interrupt Process" (IP) signal    in the Telnet 
stream. 

2. User system sends the Telnet "Synch" signal.
3. User system inserts the command (e.g., ABOR) in the Telnet stream. 
4. Server PI, after receiving "IP", scans the Telnet stream for exactly one FTP

command. 
(For other servers this may not be necessary but the actions listed above should have no 
unusual effect.) 
Implementors must not assume any correspondence between READ boundaries on the 
control connection and the Telnet EOL sequences (CR LF).

Discussion
Thus, a server-FTP (or User-FTP) must continue reading characters from the 
control connection until a complete Telnet EOL sequence is encountered, 
before processing the command (or response, respectively).    Conversely, a 
single READ from the control connection may include more than one FTP 
command.



RFC-959 File Transfer Protocol (FTP) -- Commands

Access Control Commands

The following commands specify access control identifiers (command codes are shown in 
parentheses). 

User Name
Password
Account
Change Working Directory
Change to Parent Directory
Structure Mount
Reinitialize
Logout



RFC-959 File Transfer Protocol (FTP) -- Access Control Commands

USER NAME (USER)
The argument field is a Telnet string identifying the user. The user 
identification is that which is required by the server for access to its file 
system.    This command will normally be the first command transmitted by 
the user after the control connections are made (some servers may require 
this).    Additional identification information in the form of a password and/or 
an account command may also be required by some servers.    Servers may 
allow a new USER command to be entered at any point in order to change the 
access control and/or accounting information.    This has the effect of flushing 
any user, password, and account information already supplied and beginning 
the login sequence again.    All transfer parameters are unchanged and any file
transfer in progress is completed under the old access control parameters. 



RFC-959 File Transfer Protocol (FTP) -- Access Control Commands

PASSWORD (PASS)
The argument field is a Telnet string specifying the user's password.    This 
command must be immediately preceded by the user name command, and, 
for some sites, completes the user's identification for access control.    Since 
password information is quite sensitive, it is desirable in general to "mask" it 
or suppress typeout.    It appears that the server has no foolproof way to 
achieve this.    It is therefore the responsibility of the user-FTP process to hide 
the sensitive password information. 



RFC-959 File Transfer Protocol (FTP) -- Access Control Commands

ACCOUNT (ACCT)
The argument field is a Telnet string identifying the user's account.    The 
command is not necessarily related to the USER command, as some sites may
require an account for login and others only for specific access, such as 
storing files.    In the latter case the command may arrive at any time. 
There are reply codes to differentiate these cases for the automation: when 
account information is required for login, the response to a successful 
PASSword command is reply code 332.    On the other hand, if account 
information is NOT required for login, the reply to a successful PASSword 
command is 230; and if the account information is needed for a command 
issued later in the dialogue, the server should return a 332 or 532 reply 
depending on whether it stores (pending receipt of the ACCounT command) or
discards the command, respectively. 



RFC-959 File Transfer Protocol (FTP) -- Access Control Commands

CHANGE WORKING DIRECTORY (CWD)
This command allows the user to work with a different directory or dataset for 
file storage or retrieval without altering his login or accounting information.    
Transfer parameters are similarly unchanged.    The argument is a pathname 
specifying a directory or other system dependent file group designator. 



RFC-959 File Transfer Protocol (FTP) -- Access Control Commands

CHANGE TO PARENT DIRECTORY (CDUP)
This command is a special case of CWD, and is included to simplify the 
implementation of programs for transferring directory trees between operating
systems having different syntaxes for naming the parent directory.    The reply 
codes shall be identical to the reply codes of CWD.    See Appendix II for 
further details. 



RFC-959 File Transfer Protocol (FTP) -- Access Control Commands

STRUCTURE MOUNT (SMNT)
This command allows the user to mount a different file system data structure 
without altering his login or accounting information.    Transfer parameters are 
similarly unchanged.    The argument is a pathname specifying a directory or 
other system dependent file group designator. 



RFC-959 File Transfer Protocol (FTP) -- Access Control Commands

REINITIALIZE (REIN)
This command terminates a USER, flushing all I/O and account information, 
except to allow any transfer in progress to be completed.    All parameters are 
reset to the default settings and the control connection is left open.    This is 
identical to the state in which a user finds himself immediately after the 
control connection is opened.    A USER command may be expected to follow. 



RFC-959 File Transfer Protocol (FTP) -- Access Control Commands

LOGOUT (QUIT)
This command terminates a USER and if file transfer is not in progress, the 
server closes the control connection.    If file transfer is in progress, the 
connection will remain open for result response and the server will then close 
it. If the user-process is transferring files for several USERs but does not wish 
to close and then reopen connections for each, then the REIN command 
should be used instead of QUIT. 
An unexpected close on the control connection will cause the server to take 
the effective action of an abort (ABOR) and a logout (QUIT). 



RFC-959 File Transfer Protocol (FTP) -- Commands

Transfer Parameter Commands

All data transfer parameters have default values, and the commands specifying data 
transfer parameters are required only if the default parameter values are to be changed.    
The default value is the last specified value, or if no value has been specified, the standard 
default value is as stated here.    This implies that the server must "remember" the 
applicable default values.    The commands may be in any order except that they must 
precede the FTP service request.    The following commands specify data transfer 
parameters: 

Data Port
Passive
Representation Type
FIle Structure
Transfer Mode



RFC-959 File Transfer Protocol (FTP) -- Transfer Parameter Commands

DATA PORT (PORT)
The argument is a HOST-PORT specification for the data port to be used in 
data connection.    There are defaults for both the user and server data ports, 
and under normal circumstances this command and its reply are not needed.   
If this command is used, the argument is the concatenation of a 32-bit 
internet host address and a 16-bit TCP port address. This address information 
is broken into 8-bit fields and the value of each field is transmitted as a 
decimal number (in character string representation).    The fields are separated
by commas.    A port command would be: 
PORT h1,h2,h3,h4,p1,p2
where h1 is the high order 8 bits of the internet host address. 



RFC-959 File Transfer Protocol (FTP) -- Transfer Parameter Commands

PASSIVE (PASV)
This command requests the server-DTP to "listen" on a data port (which is not 
its default data port) and to wait for a connection rather than initiate one upon
receipt of a transfer command.    The response to this command includes the 
host and port address this server is listening on. 

A server-FTP must implement the PASV command.
If multiple third-party transfers are to be executed during the same session, a new PASV 
command must be issued before each transfer command, to obtain a unique port pair.

Implementation
The format of the 227 reply to a PASV command is not well standardized.    In 
particular, an FTP client cannot assume that the parentheses shown on page 
40 of RFC-959 will be present (and in fact, Figure 3 on page 43 omits them).    
Therefore, a User-FTP program that interprets the PASV reply must scan the 
reply for the first digit of the host and port numbers.
Note that the host number h1,h2,h3,h4 is the IP address of the server host 
that is sending the reply, and that p1,p2 is a non-default data transfer port 
that PASV has assigned.



RFC-959 File Transfer Protocol (FTP) -- Transfer Parameter Commands

REPRESENTATION TYPE (TYPE)
The argument specifies the representation type as described in the Section on
Data Representation and Storage.    Several types take a second parameter.    
The first parameter is denoted by a single Telnet character, as is the second 
Format parameter for ASCII and EBCDIC; the second parameter for local byte 
is a decimal integer to indicate Bytesize. The parameters are separated by a 
<SP> (Space, ASCII code 32). 
The following codes are assigned for type:

A - ASCII | | N - Non-print
|-><-|T - Telnet format effectors

E - EBCDIC | | C - Carriage Control (ASA)
I - Image
L <byte size> - Local byte Byte size
The default representation type is ASCII Non-print.    If the Format parameter is
changed, and later just the first argument is changed, Format then returns to 
the Non-print default. 



RFC-959 File Transfer Protocol (FTP) -- Transfer Parameter Commands

FILE STRUCTURE (STRU)
The argument is a single Telnet character code specifying file structure 
described in the Section on Data Representation and Storage. 
The following codes are assigned for structure:

F - File (no record structure)
R - Record structure
P - Page structure

The default structure is File.



RFC-959 File Transfer Protocol (FTP) -- Transfer Parameter Commands

TRANSFER MODE (MODE)
The argument is a single Telnet character code specifying the data transfer 
modes described in the Section on Transmission Modes. 
The following codes are assigned for transfer modes:

S - Stream
B - Block
C - Compressed

The default transfer mode is Stream.



RFC-959 File Transfer Protocol (FTP) -- Commands

FTP Service Commands

The FTP service commands define the file transfer or the file system function requested by 
the user.    The argument of an FTP service command will normally be a pathname.    The 
syntax of pathnames must conform to server site conventions (with standard defaults 
applicable), and the language conventions of the control connection.    The suggested default
handling is to use the last specified device, directory or file name, or the standard default 
defined for local users.    The commands may be in any order except that a "rename from" 
command must be followed by a "rename to" command and the restart command must be 
followed by the interrupted service command (e.g., STOR or RETR).    The data, when 
transferred in response to FTP service    commands, shall always be sent over the data 
connection, except for certain informative replies.    The following commands specify FTP 
service requests: 

Retrieve Store
Store Unique Append
Allocate Restart
Rename From Rename To
Abort Delete
Remove Directory Make Directory
Print Working Directory List
Name List Site Parameters
System Status
Help NoOp
Quote



RFC-959 File Transfer Protocol (FTP) -- Service Commands

RETRIEVE (RETR)
This command causes the server-DTP to transfer a copy of the file, specified in
the pathname, to the server- or user-DTP at the other end of the data 
connection.    The status and contents of the file at the server site shall be 
unaffected. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

STORE (STOR)
This command causes the server-DTP to accept the data transferred via the 
data connection and to store the data as a file at the server site.    If the file 
specified in the pathname exists at the server site, then its contents shall be 
replaced by the data being transferred.    A new file is created at the server 
site if the file specified in the pathname does not already exist. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

STORE UNIQUE (STOU)
This command behaves like STOR except that the resultant file is to be 
created in the current directory under a name unique to that directory.    When 
it receives an STOU command, a Server-FTP must return the actual file name 
in the "125 Transfer Starting" or the "150 Opening Data Connection" message 
that precedes the transfer.    The exact format of thesemessages is hereby 
defined to be as follows:

125 FILE: pppp
150 FILE: pppp
where pppp represents the unique pathname of the file that will be written.



RFC-959 File Transfer Protocol (FTP) -- Service Commands

APPEND (with create) (APPE)
This command causes the server-DTP to accept the data transferred via the 
data connection and to store the data in a file at the server site.    If the file 
specified in the pathname exists at the server site, then the data shall be 
appended to that file; otherwise the file specified in the pathname shall be 
created at the server site. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

ALLOCATE (ALLO)
This command may be required by some servers to reserve sufficient storage 
to accommodate the new file to be transferred.    The argument shall be a 
decimal integer representing the number of bytes (using the logical byte size) 
of storage to be reserved for the file.    For files sent with record or page 
structure a maximum record or page size (in logical bytes) might also be 
necessary; this is indicated by a decimal integer in a second argument field of 
the command.    This second argument is optional, but when present should be
separated from the first by the three Telnet characters <SP> R <SP>.    This 
command shall be followed by a STORe or APPEnd command.    The ALLO 
command should be treated as a NOOP (no operation) by those servers which 
do not require that the maximum size of the file be declared beforehand, and 
those servers interested in only the maximum record or page size should 
accept a dummy value in the first argument and ignore it. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

RESTART (REST)
The argument field represents the server marker at which file transfer is to be 
restarted.    This command does not cause file transfer but skips over the file 
to the specified data checkpoint.    This command shall be immediately 
followed by the appropriate FTP service command which shall cause file 
transfer to resume. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

RENAME FROM (RNFR)
This command specifies the old pathname of the file which is to be renamed.   
This command must be immediately followed by a "rename to" command 
specifying the new file pathname. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

RENAME TO (RNTO)
This command specifies the new pathname of the file specified in the 
immediately preceding "rename from" command.    Together the two 
commands cause a file to be renamed. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

ABORT (ABOR)
This command tells the server to abort the previous FTP service command and
any associated transfer of data.    The abort command may require "special 
action", as discussed in the Section on FTP Commands, to force recognition by
the server.    No action is to be taken if the previous command has been 
completed (including data transfer).    The control connection is not to be 
closed by the server, but the data connection must be closed. 
There are two cases for the server upon receipt of this command: (1) the FTP 
service command was already completed, or (2) the FTP service command is 
still in progress. 
In the first case, the server closes the data connection (if it is open) and 
responds with a 226 reply, indicating that the abort command was 
successfully processed. 
In the second case, the server aborts the FTP service in progress and closes 
the data connection, returning a 426 reply to indicate that the service request 
terminated abnormally.    The server then sends a 226 reply, indicating that 
the abort command was successfully processed. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

DELETE (DELE)
This command causes the file specified in the pathname to be deleted at the 
server site.    If an extra level of protection is desired (such as the query, "Do 
you really wish to delete?"), it should be provided by the user-FTP process. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

REMOVE DIRECTORY (RMD)
This command causes the directory specified in the pathname to be removed 
as a directory (if the pathname is absolute) or as a subdirectory of the current 
working directory (if the pathname is relative).    See Appendix II. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

MAKE DIRECTORY (MKD)
This command causes the directory specified in the pathname to be created 
as a directory (if the pathname is absolute) or as a subdirectory of the current 
working directory (if the pathname is relative).    See Appendix II. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

PRINT WORKING DIRECTORY (PWD)
This command causes the name of the current working directory to be 
returned in the reply.    See Appendix II. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

LIST (LIST)
This command causes a list to be sent from the server to the passive DTP.    If 
the pathname specifies a directory or other group of files, the server should 
transfer a list of files in the specified directory.    If the pathname specifies a 
file then the server should send current information on the file.    A null 
argument implies the user's current working or default directory.    The data 
transfer is over the data connection in type ASCII or type EBCDIC.    (The user 
must ensure that the TYPE is appropriately ASCII or EBCDIC). Since the 
information on a file may vary widely from system to system, this information 
may be hard to use automatically in a program, but may be quite useful to a 
human user. 

The data returned by a LIST or NLST command should use an implied TYPE AN, unless the 
current type is EBCDIC, in which case an implied TYPE EN should be used.

Discussion
Many FTP clients support macro-commands that will get or put files matching 
a wildcard specification, using NLST to obtain a list of pathnames.    The 
expansion of "multiple-put" is local to the client, but "multiple- get" requires 
cooperation by the server.
The implied type for LIST and NLST is designed to provide compatibility with 
existing User-FTPs, and in particular with multiple-get commands.



RFC-959 File Transfer Protocol (FTP) -- Service Commands

NAME LIST (NLST)
This command causes a directory listing to be sent from server to user site.    
The pathname should specify a directory or other system-specific file group 
descriptor; a null argument implies the current directory.    The server will 
return a stream of names of files and no other information.    The data will be 
transferred in ASCII or EBCDIC type over the data connection as valid 
pathname strings separated by <CRLF> or <NL>.    (Again the user must 
ensure that the TYPE is correct.)    This command is intended to return 
information that can be used by a program to further process the files 
automatically.    For example, in the implementation of a "multiple get" 
function. 

The data returned by an NLST command must contain only a simple list of legal pathnames,
such that the server can use them directly as the arguments of subsequent data transfer 
commands for the individual files.
The data returned by a LIST or NLST command should use an implied TYPE AN, unless the 
current type is EBCDIC, in which case an implied TYPE EN should be used.

Discussion
Many FTP clients support macro-commands that will get or put files matching 
a wildcard specification, using NLST to obtain a list of pathnames.    The 
expansion of "multiple-put" is local to the client, but "multiple- get" requires 
cooperation by the server.
The implied type for LIST and NLST is designed to provide compatibility with 
existing User-FTPs, and in particular with multiple-get commands.



RFC-959 File Transfer Protocol (FTP) -- Service Commands

SITE PARAMETERS (SITE)
This command is used by the server to provide services specific to his system 
that are essential to file transfer but not sufficiently universal to be included 
as commands in the protocol.    The nature of these services and the 
specification of their syntax can be stated in a reply to the HELP SITE 
command. 

A Server-FTP should use the SITE command for non-standard features, rather than invent 
new private commands or unstandardized extensions to existing commands.



RFC-959 File Transfer Protocol (FTP) -- Service Commands

SYSTEM (SYST)
This command is used to find out the type of operating system at the server.    
The reply shall have as its first word one of the system names listed in the 
current version of the Assigned Numbers document [4]. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

STATUS (STAT)
This command shall cause a status response to be sent over the control 
connection in the form of a reply.    The command may be sent during a file 
transfer (along with the Telnet IP and Synch signals--see the Section on FTP 
Commands) in which case the server will respond with the status of the 
operation in progress, or it may be sent between file transfers.    In the latter 
case, the command may have an argument field.    If the argument is a 
pathname, the command is analogous to the "list" command except that data 
shall be transferred over the control connection.    If a partial pathname is 
given, the server may respond with a list of file names or attributes associated
with that specification. If no argument is given, the server should return 
general status information about the server FTP process.    This should include 
current values of all transfer parameters and the status of connections. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

HELP (HELP)
This command shall cause the server to send helpful information regarding its 
implementation status over the control connection to the user.    The command
may take an argument (e.g., any command name) and return more specific 
information as a response.    The reply is type 211 or 214. It is suggested that 
HELP be allowed before entering a USER command. The server may use this 
reply to specify site-dependent parameters, e.g., in response to HELP SITE. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

NOOP (NOOP)
This command does not affect any parameters or previously entered 
commands. It specifies no action other than that the server send an OK reply. 



RFC-959 File Transfer Protocol (FTP) -- Service Commands

Quote
A User-FTP program must implement a "QUOTE" command that will pass an 
arbitrary character string to the server and display all resulting response 
messages to the user.
To make the "QUOTE" command useful, a User-FTP should send transfer 
control commands to the server as the user enters them, rather than saving 
all the commandsand sending them to the server only when a data transfer is 
started.
Discussion
The "QUOTE" command is essential to allow the user to access servers that 
require system-specific commands (e.g., SITE or ALLO), or to invoke new or 
optional features that are not implemented by the User-FTP.    For example, 
"QUOTE" may be used to specify "TYPE A T" to send a print file to hosts that 
require the distinction, even if the User-FTP does not recognize that TYPE.



RFC-959 File Transfer Protocol (FTP)

FTP Replies

Formal Specification
General Notes
Reply Codes by Function Group
Numeric Order List of Reply Codes

Replies to File Transfer Protocol commands are devised to ensure the synchronization of 
requests and actions in the process of file transfer, and to guarantee that the user process 
always knows the state of the Server.    Every command must generate at least one reply, 
although there may be more than one; in the latter case, the multiple replies must be easily 
distinguished.    In addition, some commands occur in sequential groups, such as USER, PASS
and ACCT, or RNFR and RNTO.    The replies show the existence of an intermediate state if all
preceding commands have been successful. A failure at any point in the sequence 
necessitates the repetition of the entire sequence from the beginning. 

The details of the command-reply sequence are made explicit in a set of state 
diagrams below. 

An FTP reply consists of a three digit number (transmitted as three alphanumeric characters)
followed by some text.    The number is intended for use by automata to determine what 
state to enter next; the text is intended for the human user.    It is intended that the three 
digits contain enough encoded information that the user-process (the User-PI) will not need 
to examine the text and may either discard it or pass it on to the user, as appropriate. In 
particular, the text may be server-dependent, so there are likely to be varying texts for each 
reply code. 
A reply is defined to contain the 3-digit code, followed by Space <SP>, followed by one line 
of text (where some maximum line length has been specified), and terminated by the Telnet 
end-of-line code.    There will be cases however, where the text is longer than a single line.    
In these cases the complete text must be bracketed so the User-process knows when it may 
stop reading the reply (i.e. stop processing input on the control connection) and go do other 
things.    This requires a special format on the first line to indicate that more than one line is 
coming, and another on the last line to designate it as the last.    At least one of these must 
contain the appropriate reply code to indicate the state of the transaction.    To satisfy all 
factions, it was decided that both the first and last line codes should be the same. 

Thus the format for multi-line replies is that the first line will begin with the 
exact required reply code, followed immediately by a Hyphen, "-" (also known 
as Minus), followed by text.    The last line will begin with the same code, 
followed immediately by Space <SP>, optionally some text, and the Telnet 
end-of-line code. 
For example:

123-First line
Second line

234 A line beginning with numbers
123 The last line

The user-process then simply needs to search for the second occurrence of the
same reply code, followed by <SP> (Space), at the beginning of a line, and 
ignore all intermediary lines.    If an intermediary line begins with a 3-digit 
number, the Server must pad the front    to avoid confusion. 
This scheme allows standard system routines to be used for reply information 



(such as for the STAT reply), with "artificial" first and last lines tacked on.    In 
rare cases where these routines are able to generate three digits and a Space 
at the beginning of any line, the beginning of each text line should be offset 
by some neutral text, like Space. 
This scheme assumes that multi-line replies may not be nested.



RFC-959 File Transfer Protocol (FTP) -- Reply Codes

Formal Specification

The three digits of the reply each have a special significance. This is intended to allow a 
range of very simple to very sophisticated responses by the user-process.    The first digit 
denotes whether the response is good, bad or incomplete. (Referring to the state diagram), 
an unsophisticated user-process will be able to determine its next action (proceed as 
planned,    redo, retrench, etc.) by simply examining this first digit.    A user-process that 
wants to know approximately what kind of error occurred (e.g. file system error, command 
syntax error) may examine the second digit, reserving the third digit for the finest gradation 
of information (e.g., RNTO command without a preceding RNFR). 
There are five values for the first digit of the reply code:

1yz      Positive Preliminary reply
The requested action is being initiated; expect another reply before 
proceeding with a new command.    (The user-process sending another 
command before the completion reply would be in violation of protocol; but 
server-FTP processes should queue any commands that arrive while a 
preceding command is in progress.)    This type of reply can be used to 
indicate that the command was accepted and the user-process may now pay 
attention to the data connections, for implementations where simultaneous 
monitoring is difficult.    The server-FTP process may send at most, one 1yz 
reply per command. 
2yz      Positive Completion reply
The requested action has been successfully completed.    A new request may 
be initiated. 
3yz      Positive Intermediate reply
The command has been accepted, but the requested action is being held in 
abeyance, pending receipt of further information.    The user should send 
another command specifying this information.    This reply is used in command
sequence groups. 
4yz      Transient Negative Completion reply
The command was not accepted and the requested action did not take place, 
but the error condition is temporary and the action may be requested again.    
The user should return to the beginning of the command sequence, if any. It is
difficult to assign a meaning to "transient", particularly when two distinct sites
(Server- and User-processes) have to agree on the interpretation. Each reply in
the 4yz category might have a slightly different time value, but the intent is 
that the user-process is encouraged to try again.    A rule of thumb in 
determining if a reply fits into the 4yz or the 5yz (Permanent Negative) 
category is that replies are 4yz if the commands can be repeated without any 
change in command form or in properties of the User or Server (e.g., the 
command is spelled the same with the same arguments used; the user does 
not change his file access or user name; the server does not put up a new 
implementation.) 
5yz      Permanent Negative Completion reply
The command was not accepted and the requested action did not take place.   
The User-process is discouraged from repeating the exact request (in the 



same sequence).    Even some "permanent" error conditions can be corrected, 
so the human user may want to direct his User-process to reinitiate the 
command sequence by direct action at some point in the future (e.g., after the
spelling has been changed, or the user has altered his directory status.) 

The following function groupings are encoded in the second digit: 
x0zSyntax - These replies refer to syntax errors, syntactically correct 

commands that don't fit any functional category, unimplemented or 
superfluous commands. 

x1zInformation -    These are replies to requests for information, such as status
or help. 

x2zConnections - Replies referring to the control and data connections. 
x3zAuthentication and accounting - Replies for the login process and 

accounting procedures. 
x4zUnspecified as yet.
x5zFile system - These replies indicate the status of the Server file system vis-

a-vis the requested transfer or other file system action. 
The third digit gives a finer gradation of meaning in each of the function categories, 
specified by the second digit.    The list of replies below will illustrate this.    Note that the text 
associated with each reply is recommended, rather than mandatory, and may even change 
according to the command with which it is associated.    The reply codes, on the other hand, 
must strictly follow the specifications in the last section; that is, Server implementations 
should not invent new codes for situations that are only slightly different from the ones 
described here, but rather should adapt codes already defined. 
A command such as TYPE or ALLO whose successful execution does not offer the user-
process any new information will cause a 200 reply to be returned.    If the command is not 
implemented by a particular Server-FTP process because it has no relevance to that 
computer system, for example ALLO at a TOPS20 site, a Positive Completion reply is still 
desired so that the simple User-process knows it can proceed with its course of action.    A 
202 reply is used in this case with, for example, the reply text:    "No storage allocation 
necessary."    If, on the other hand, the command requests a non-site-specific action and is 
unimplemented, the response is 502.    A refinement of that is the 504 reply for a command 
that is implemented, but that requests an unimplemented parameter. 



RFC-959 File Transfer Protocol (FTP) -- Reply Codes

General Notes

A Server-FTP must send only correctly formatted replies on the control connection.    Note 
that this specification (unlike earlier versions of the FTP spec) contains no provision for a 
"spontaneous" reply message.
A Server-FTP should use the reply codes defined in Formal Specification whenever they 
apply.    However, a server-FTP MAY use a different reply code when needed, as long as the 
general rules of the specification are followed. When the implementor has a choice between 
a 4xx and 5xx reply code, a Server-FTP should send a 4xx (temporary failure) code when 
there is any reasonable possibility that a failed FTP will succeed a few hours later.
A User-FTP should generally use only the highest-order digit of a 3-digit reply code for 
making a procedural decision, to prevent difficulties when a Server-FTP uses non-standard 
reply codes.
A User-FTP must be able to handle multi-line replies.    If the implementation imposes a limit 
on the number of lines and if this limit is exceeded, the User-FTPmust recover, e.g., by 
ignoring the excess lines until the end of the multi-line reply is reached.
A User-FTP should not interpret a 421 reply code ("Service not available, closing control 
connection") specially, but should detect closing of the control connection by the server.

Discussion
Server implementations that fail to strictly follow the reply rules often cause 
FTP user programs to hang.    Note that RFC-959 resolved ambiguities in the 
reply rules found in earlier FTP specifications and must be followed.
It is important to choose FTP reply codes that properly distinguish between 
temporary and permanent failures, to allow the successful use of file transfer 
client daemons.    These programs depend on the reply codes to decide 
whether or not to retry a failed transfer; using a permanent failure code (5xx) 
for a temporaryerror will cause these programs to give up unnecessarily.
When the meaning of a reply matches exactly the text shown in RFC-959, 
uniformity will be enhanced by using the RFC-959 text verbatim.    However, a 
Server-FTP implementor is encouraged to choose reply text that conveys 
specific system-dependent information, when appropriate.



RFC-959 File Transfer Protocol (FTP) -- Reply Codes

Reply Codes by Function Groups

200 Command okay.
500 Syntax error, command unrecognized. This may include errors such as 

command line too long.
501 Syntax error in parameters or arguments.
202 Command not implemented, superfluous at this site.
502 Command not implemented.
503 Bad sequence of commands.
504 Command not implemented for that parameter.                        
110 Restart marker reply.

110 MARK ssss = rrrr
Here:
* ssss is a text string that appeared in a Restart Marker in the data 

stream and encodes a position in the sender's file system;
* rrrr encodes the corresponding position in the receiver's file system.
The encoding, which is specific to a particular file system and network 
implementation, is always generated and interpreted by the same system, either 
sender or receiver.

211 System status, or system help reply.
212 Directory status.
213 File status.
214 Help message.

On how to use the server or the meaning of a particular non-standard command.   
This reply is useful only to the human user. 

215 NAME system type.
Where NAME is an official system name from the list in the Assigned Numbers 
document.

120 Service ready in nnn minutes.
220 Service ready for new user.
221 Service closing control connection.

Logged out if appropriate.
421 Service not available, closing control connection.

This may be a reply to any command if the service knows it must shut down. 
125 Data connection already open; transfer starting.
225 Data connection open; no transfer in progress.
425 Can't open data connection.
226 Closing data connection.

Requested file action successful (for example, file transfer or file abort).
426 Connection closed; transfer aborted.
227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).
230 User logged in, proceed.
530 Not logged in.
331 User name okay, need password.
332 Need account for login.
532 Need account for storing files.                        
150 File status okay; about to open data connection.
250 Requested file action okay, completed.
257 "PATHNAME" created.



350 Requested file action pending further information.
450 Requested file action not taken.

File unavailable (e.g., file busy).
550 Requested action not taken.

File unavailable (e.g., file not found, no access).
451 Requested action aborted. Local error in processing.
551 Requested action aborted. Page type unknown.
452 Requested action not taken.

Insufficient storage space in system.
552 Requested file action aborted.

Exceeded storage allocation (for current directory or dataset). 
553 Requested action not taken.

File name not allowed.



RFC-959 File Transfer Protocol (FTP) -- Reply Codes

Numeric Order List of Reply Codes

110 Restart marker reply.
In this case, the text is exact and not left to the particular implementation; it must
read: 

MARK yyyy = mmmm
Where yyyy is User-process data stream marker, and mmmm server's equivalent 
marker (note the spaces between markers and "="). 

120 Service ready in nnn minutes.
125 Data connection already open; transfer starting.
150 File status okay; about to open data connection.
200 Command okay.
202 Command not implemented, superfluous at this site.
211 System status, or system help reply.
212 Directory status.
213 File status.
214 Help message.

On how to use the server or the meaning of a particular non-standard command.   
This reply is useful only to the human user. 

215 NAME system type.
Where NAME is an official system name from the list in the Assigned Numbers 
document. 

220 Service ready for new user.
221 Service closing control connection.

Logged out if appropriate.
225 Data connection open; no transfer in progress.
226 Closing data connection.

Requested file action successful (for example, file transfer or file abort). 
227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).
230 User logged in, proceed.
250 Requested file action okay, completed.
257 "PATHNAME" created.
 331 User name okay, need password.
332 Need account for login.
350 Requested file action pending further information.
421 Service not available, closing control connection.

This may be a reply to any command if the service knows it must shut down. 
425 Can't open data connection.
426 Connection closed; transfer aborted.
450 Requested file action not taken.

File unavailable (e.g., file busy).
451 Requested action aborted: local error in processing.
452 Requested action not taken.

Insufficient storage space in system.
500 Syntax error, command unrecognized.

This may include errors such as command line too long.
501 Syntax error in parameters or arguments.
502 Command not implemented.
503 Bad sequence of commands.
504 Command not implemented for that parameter.
530 Not logged in.



532 Need account for storing files.
550 Requested action not taken.

File unavailable (e.g., file not found, no access).
551 Requested action aborted: page type unknown.
552 Requested file action aborted.

Exceeded storage allocation (for current directory or dataset).
553 Requested action not taken.

File name not allowed.



RFC-959 File Transfer Protocol (FTP)

Declarative Specifications

Minimum Implementation
Connections
Commands



RFC-959 File Transfer Protocol (FTP) -- Declarative Specifications

Minimum Implementation

The following commands and options must be supported by every server-FTP and user-FTP, 
except in cases where the underlying file system or operating system does not allow or 
support a particular command.    This list reflects the requirements as of January 1991.

Type: ASCII Non-print, IMAGE, LOCAL 8
Mode: Stream
Structure: File, Record
Commands: USER, PASS, ACCT,

PORT, PASV,
TYPE, MODE, STRU,
RETR, STOR, APPE,
RNFR, RNTO, DELE,
CWD,    CDUP, RMD,    MKD,    PWD,
LIST, NLST,
SYST, STAT,
HELP, NOOP, QUIT.

Discussion
Vendors are encouraged to implement a larger subset of the protocol.    For 
example, there are important robustness features in the protocol (e.g., 
Restart, ABOR, block mode) that would be an aid to some Internet users but 
are not widely implemented.
A host that does not have record structures in its file system may still accept 
files with STRU R, recording the byte stream literally.

The default values for transfer parameters are:
TYPE - ASCII Non-print
MODE - Stream
STRU - File

All hosts must accept the above as the standard defaults.



RFC-959 File Transfer Protocol (FTP) -- Declarative Specifications

Connections

The server protocol interpreter shall "listen" on Port L.    The user or user protocol interpreter 
shall initiate the full-duplex control connection.    Server- and user- processes should follow 
the conventions of the Telnet protocol as in RFC-854 "Telnet Protocol", with the exception 
that Telnet Option Negotiation is not used.    Servers are under no obligation to provide for 
editing of command lines and may require that it be done in the user host.    The control 
connection shall be closed by the server at the user's request after all transfers and replies 
are completed. 
On a multihomed server host, the default data transfer port (L-1) must be associated with 
the same local IP address as the corresponding control connection to port L.
A user-FTP must not send any Telnet controls other than SYNCH and IP on an FTP control 
connection. In particular, it must not attempt to negotiate Telnet options on the control 
connection.    However, a server-FTP must be capable of accepting and refusing Telnet 
negotiations (i.e., sending DONT/WONT).
The user-DTP must "listen" on the specified data port; this may be the default user port (U) 
or a port specified in the PORT command. The server shall initiate the data connection from 
his own default data port (L-1) using the specified user data port.    The direction of the 
transfer will be determined by the FTP service command. 
Note that all FTP implementation must support data transfer using the default port, and that 
only the USER-PI may initiate the use of non-default ports. 
When data is to be transferred between two servers, A and B (refer to Figure 2), the user-PI, 
C, sets up control connections with both server-PI's.    One of the servers, say A, is then sent 
a PASV command telling him to "listen" on his data port rather than initiate a connection 
when he receives a transfer service command. When the user-PI receives an 
acknowledgment to the PASV command, which includes the identity of the host and port 
being listened on, the user-PI then sends A's port, a, to B in a PORT command; a reply is 
returned.    The user-PI may then send the corresponding service commands to A and B.    
Server B initiates the connection and the transfer proceeds.    The command-reply sequence 
is listed below where the messages are vertically synchronous but horizontally 
asynchronous: 

User-PI - Server A                     User-PI - Server B  
C->A : Connect C->B : Connect
C->A : PASV
A->C : 227 Entering Passive Mode. A1,A2,A3,A4,a1,a2

C->B : PORT A1,A2,A3,A4,a1,a2
B->C : 200 Okay

C->A : STOR C->B : RETR
B->A : Connect to HOST-A, PORT-a
Figure 3

The data connection shall be closed by the server under the conditions described in the 
Section on Establishing Data Connections.    If the data connection is to be closed following a 
data transfer where closing the connection is not required to indicate the end-of-file, the 
server must do so immediately. Waiting until after a new transfer command is not permitted 
because the user-process will have already tested the data connection to see if it needs to 
do a "listen"; (remember that the user must "listen" on a closed data port BEFORE sending 
the transfer request).    To prevent a race condition here, the server sends a reply (226) after 



closing the data connection (or if the connection is left open, a "file transfer completed" 
reply (250) and the user-PI should wait for one of these replies before issuing a new transfer 
command). 
Any time either the user or server see that the connection is being closed by the other side, 
it should promptly read any remaining data queued on the connection and issue the close on
its own side. 



RFC-959 File Transfer Protocol (FTP) -- Declarative Specifications

Commands

The commands are Telnet character strings transmitted over the control connections as 
described in FTP Commands. The command functions and semantics are described in Access
Control Commands, Transfer Parameter Commands, and FTP Service Commands.    The 
command syntax is specified here. 
The commands begin with a command code followed by an argument field.    The command 
codes are four or fewer alphabetic characters. Upper and lower case alphabetic characters 
are to be treated identically.    Thus, any of the following may represent the retrieve 
command: 
                                    RETR        Retr        retr        ReTr        rETr
This also applies to any symbols representing parameter values, such as A or a for ASCII 
TYPE.    The command codes and the argument fields are separated by one or more spaces. 
The argument field consists of a variable length character string ending with the character 
sequence <CRLF> (Carriage Return, Line Feed) for NVT-ASCII representation; for other 
negotiated languages a different end of line character might be used.    It should be noted 
that the server is to take no action until the end of line code is received. 
The syntax is specified below in NVT-ASCII.    All characters in the argument field are ASCII 
characters including any ASCII represented decimal integers.    Square brackets denote an 
optional argument field.    If the option is not taken, the appropriate default is implied. 

FTP Commands
FTP Command Arguments
Sequencing of Commands and Replies



RFC-959 File Transfer Protocol (FTP) -- Declarative Specifications

FTP Commands

The following are the FTP commands:
USER <SP> <username> <CRLF>
PASS <SP> <password> <CRLF>
ACCT <SP> <account-information> <CRLF>
CWD    <SP> <pathname> <CRLF>
CDUP <CRLF>
SMNT <SP> <pathname> <CRLF>
QUIT <CRLF>
REIN <CRLF>
PORT <SP> <host-port> <CRLF>
PASV <CRLF>
TYPE <SP> <type-code> <CRLF>
STRU <SP> <structure-code> <CRLF>
MODE <SP> <mode-code> <CRLF>
RETR <SP> <pathname> <CRLF>
STOR <SP> <pathname> <CRLF>
STOU <CRLF>
APPE <SP> <pathname> <CRLF>
ALLO <SP> <decimal-integer>
        [<SP> R <SP> <decimal-integer>] <CRLF>
REST <SP> <marker> <CRLF>
RNFR <SP> <pathname> <CRLF>
RNTO <SP> <pathname> <CRLF>
ABOR <CRLF>
DELE <SP> <pathname> <CRLF>
RMD    <SP> <pathname> <CRLF>
MKD    <SP> <pathname> <CRLF>
PWD    <CRLF>
LIST [<SP> <pathname>] <CRLF>
NLST [<SP> <pathname>] <CRLF>
SITE <SP> <string> <CRLF>
SYST <CRLF>
STAT [<SP> <pathname>] <CRLF>
HELP [<SP> <string>] <CRLF>
NOOP <CRLF>



RFC-959 File Transfer Protocol (FTP) -- Declarative Specifications

FTP Command Arguments

The syntax of the above argument fields (using BNF notation where applicable) is: 

<username> ::= <string>
<password> ::= <string>
<account-information> ::= <string>
<string> ::= <char> | <char><string>
<char> ::= any of the 128 ASCII characters except <CR> and
<LF>
<marker> ::= <pr-string>
<pr-string> ::= <pr-char> | <pr-char><pr-string>
<pr-char> ::= printable characters, any
                            ASCII code 33 through 126
<byte-size> ::= <number>
<host-port> ::= <host-number>,<port-number>
<host-number> ::= <number>,<number>,<number>,<number>
<port-number> ::= <number>,<number>
<number> ::= any decimal integer 1 through 255
<form-code> ::= N | T | C
<type-code> ::= A [<sp> <form-code>]
                            | E [<sp> <form-code>]
                            | I
                            | L <sp> <byte-size>
<structure-code> ::= F | R | P
<mode-code> ::= S | B | C
<pathname> ::= <string>
<decimal-integer> ::= any decimal integer



RFC-959 File Transfer Protocol (FTP) -- Declarative Specifications

Sequencing Of Commands And Replies

The communication between the user and server is intended to be an alternating dialogue.    
As such, the user issues an FTP command and the server responds with a prompt primary 
reply.    The user should wait for this initial primary success or failure response before 
sending further commands. 
Certain commands require a second reply for which the user should also wait.    These replies
may, for example, report on the progress or completion of file transfer or the closing of the 
data connection.    They are secondary replies to file transfer commands. 
One important group of informational replies is the connection greetings.    Under normal 
circumstances, a server will send a 220 reply, "awaiting input", when the connection is 
completed.    The user should wait for this greeting message before sending any commands.  
If the server is unable to accept input right away, a 120 "expected delay" reply should be 
sent immediately and a 220 reply when ready.    The user will then know not to hang up if 
there is a delay. 
Spontaneous Replies

Sometimes "the system" spontaneously has a message to be sent to a user 
(usually all users).    For example, "System going down in 15 minutes".    There 
is no provision in FTP for such spontaneous information to be sent from the 
server to the user. It is recommended that such information be queued in the 
server-PI and delivered to the user-PI in the next reply (possibly making it a 
multi-line reply). 
The table below lists alternative success and failure replies for each command.
These must be strictly adhered to; a server may substitute text in the replies, 
but the meaning and action implied by the code numbers and by the specific 
command reply sequence cannot be altered. 

Command-Reply Sequences
In this section, the command-reply sequence is presented.    Each command is 
listed with its possible replies; command groups are listed together.    
Preliminary replies are listed first (with their succeeding replies indented and 
under them), then positive and negative completion, and finally intermediary   
replies with the remaining commands from the sequence following.    This 
listing forms the basis for the state diagrams, which will be presented 
separately. 
Connection Establishment

120
220

220
421

Login
USER

230
530
500, 501, 421
331, 332

PASS
230
202



530
500, 501, 503, 421
332

ACCT
230
202
530
500, 501, 503, 421

CWD
250
500, 501, 502, 421, 530, 550

CDUP
200
500, 501, 502, 421, 530, 550

SMNT
202, 250
500, 501, 502, 421, 530, 550

Logout
REIN

120
220

220
421
500, 502

QUIT
221
500

Transfer parameters
PORT

200
500, 501, 421, 530

PASV
227
500, 501, 502, 421, 530

MODE
200
500, 501, 504, 421, 530

TYPE
200
500, 501, 504, 421, 530

STRU
200
500, 501, 504, 421, 530

File action commands
ALLO

200
202
500, 501, 504, 421, 530

REST
500, 501, 502, 421, 530
350

STOR
125, 150



(110)
226, 250
425, 426, 451, 551, 552

532, 450, 452, 553
500, 501, 421, 530

STOU
125, 150

(110)
226, 250
425, 426, 451, 551, 552

532, 450, 452, 553
500, 501, 421, 530

RETR
125, 150

(110)
226, 250
425, 426, 451

450, 550
500, 501, 421, 530

LIST
125, 150

226, 250
425, 426, 451

450
500, 501, 502, 421, 530

NLST
125, 150

226, 250
425, 426, 451

450
500, 501, 502, 421, 530

APPE
125, 150

(110)
226, 250
425, 426, 451, 551, 552

532, 450, 550, 452, 553
500, 501, 502, 421, 530

RNFR
450, 550
500, 501, 502, 421, 530
350

RNTO
250
532, 553
500, 501, 502, 503, 421, 530

DELE
250
450, 550
500, 501, 502, 421, 530

RMD
250
500, 501, 502, 421, 530, 550

MKD
257



500, 501, 502, 421, 530, 550
PWD

257
500, 501, 502, 421, 550

ABOR
225, 226
500, 501, 502, 421

Informational commands
SYST

215
500, 501, 502, 421

STAT
211, 212, 213
450
500, 501, 502, 421, 530

HELP
211, 214
500, 501, 502, 421

Miscellaneous commands
SITE

200
202
500, 501, 530

NOOP
200
500 421



RFC-959 File Transfer Protocol (FTP)

State Diagrams

Here we present state diagrams for a very simple minded FTP implementation.    Only the 
first digit of the reply codes is used. There is one state diagram for each group of FTP 
commands or command sequences. 
The command groupings were determined by constructing a model for each command then 
collecting together the commands with structurally identical models. 
For each command or command sequence there are three possible outcomes: success (S), 
failure (F), and error (E).    In the state diagrams below we use the symbol B for "begin", and 
the symbol W for "wait for reply". 
We first present the diagram that represents the largest group of FTP commands: 

This diagram models the commands:
ABOR, ALLO, DELE, CWD, CDUP, SMNT, HELP, MODE, NOOP, PASV,
QUIT, SITE, PORT, SYST, STAT, RMD, MKD, PWD, STRU, and TYPE.

The other large group of commands is represented by a very similar diagram: 

This diagram models the commands:
APPE, LIST, NLST, REIN, RETR, STOR, and STOU.

Note that this second model could also be used to represent the first group of commands, 
the only difference being that in the first group the 100 series replies are unexpected and 
therefore treated as error, while the second group expects (some may require) 100 series 
replies. Remember that at most, one 100 series reply is allowed per command. 
The remaining diagrams model command sequences, perhaps the simplest of these is the 
rename sequence: 



The next diagram is a simple model of the Restart command:

Where "cmd" is APPE, STOR, or RETR.
We note that the above three models are similar.    The Restart differs from the Rename two 
only in the treatment of 100 series replies at the second stage, while the second group 
expects (some may require) 100 series replies.    Remember that at most, one 100 series 
reply is allowed per command. 
The most complicated diagram is for the Login sequence:

Finally, we present a generalized diagram that could be used to model the command and 
reply interchange: 





RFC-959 File Transfer Protocol (FTP)

Typical FTP Scenario

User at host U wanting to transfer files to/from host S: In general, the user will communicate 
to the server via a mediating user-FTP process.    The following may be a typical scenario.    
The user-FTP prompts are shown in parentheses, '---->' represents commands from host U to
host S, and '<----' represents replies from host S to host U. 

Local Commands By User              Action Involved  
ftp (host) multics<CR> Connect to host S, port L,

establishing control connections.
<---- 220 Service ready <CRLF>.

username Doe <CR> USER Doe<CRLF>---->
<---- 331 User name ok, need password<CRLF>.

password mumble <CR> PASS mumble<CRLF>---->
<---- 230 User logged in<CRLF>.

retrieve (local type) ASCII<CR>
(local pathname) test 1 <CR> User-FTP opens local file in ASCII.
(for. pathname) test.pl1<CR> RETR test.pl1<CRLF> ---->
<----150 File status okay; about to open data connection<CRLF>.

Server makes data connection to port U.
<---- 226 Closing data connection, file transfer successful<CRLF>.
type Image<CR> TYPE I<CRLF> ---->

<---- 200 Command OK<CRLF>
store (local type) image<CR>
(local pathname) file dump<CR> User-FTP opens local file in Image.
(for.pathname) >ud>cn>fd<CR> STOR >udd>cn>fd<CRLF> ---->

<---- 550 Access denied<CRLF>
terminate QUIT <CRLF> ---->

Server closes all connections.



RFC-959 File Transfer Protocol (FTP)

Connection Establishment

The FTP control connection is established via TCP between the user process port U and the 
server process port L.    This protocol is assigned the service port 21 (25 octal), that is L=21. 



RFC-959 File Transfer Protocol (FTP)

Appendix I -    Page Structure

The need for FTP to support page structure derives principally from the    need to support 
efficient transmission of files between TOPS-20 systems, particularly the files used by NLS. 
Implementation of page structure is not recommended in general. However, if a host 
system does need to implement FTP for "random access" or "holey" files, it must use the 
defined page structure format rather than define a new private FTP format.
The file system of TOPS-20 is based on the concept of pages.    The operating system is most
efficient at manipulating files as pages. The operating system provides an interface to the 
file system so that many applications view files as sequential streams of characters. 
However, a few applications use the underlying page structures directly, and some of these 
create holey files. 
A TOPS-20 disk file consists of four things: a pathname, a page table, a (possibly empty) set 
of pages, and a set of attributes. 
The pathname is specified in the RETR or STOR command.    It includes the directory name, 
file name, file name extension, and generation number. 
The page table contains up to 2**18 entries.    Each entry may be EMPTY, or may point to a 
page.    If it is not empty, there are also some page-specific access bits; not all pages of a file
need have the same access protection. 

A page is a contiguous set of 512 words of 36 bits each.
The attributes of the file, in the File Descriptor Block (FDB), contain such things as creation 
time, write time, read time, writer's byte-size, end-of-file pointer, count of reads and writes, 
backup system tape numbers, etc. 
Note that there is NO requirement that entries in the page table be contiguous.    There may 
be empty page table slots between occupied ones.    Also, the end of file pointer is simply a 
number.    There is no requirement that it in fact point at the "last" datum in the file. Ordinary
sequential I/O calls in TOPS-20 will cause the end of file pointer to be left after the last 
datum written, but other operations may cause it not to be so, if a particular programming 
system so requires. 
In fact, in both of these special cases, "holey" files and end-of-file pointers NOT at the end of 
the file, occur with NLS data files. 
The TOPS-20 paged files can be sent with the FTP transfer parameters: TYPE L 36, STRU P, 
and MODE S (in fact, any mode could be used). 
Each page of information has a header.    Each header field, which is a logical byte, is a TOPS-
20 word, since the TYPE is L 36. 
The header fields are:

Word 0: Header Length.
The header length is 5.

Word 1: Page Index.
If the data is a disk file page, this is the number of that page in the file's page 
map.    Empty pages (holes) in the file are simply not sent.    Note that a hole is 
NOT the same as a page of zeros. 

Word 2: Data Length.



The number of data words in this page, following the header. Thus, the total 
length of the transmission unit is the Header Length plus the Data Length. 

Word 3: Page Type.
A code for what type of chunk this is.    A data page is type 3, the FDB page is 
type 2. 

Word 4: Page Access Control.
The access bits associated with the page in the file's page map.    (This full 
word quantity is put into AC2 of an SPACS by the program reading from net to 
disk.) 

After the header are Data Length data words.    Data Length is currently either 512 for a data
page or 31 for an FDB.    Trailing zeros in a disk file page may be discarded, making Data 
Length less than 512 in that case. 



RFC-959 File Transfer Protocol (FTP)

Appendix II -    Directory Commands

Since UNIX has a tree-like directory structure in which directories are as easy to manipulate 
as ordinary files, it is useful to expand the FTP servers on these machines to include 
commands which deal with the creation of directories.    Since there are other hosts on the 
ARPA-Internet which have tree-like directories (including TOPS-20 and Multics), these 
commands are as general as possible. 
Four directory commands have been added to FTP:

MKD pathname
Make a directory with the name "pathname".

RMD pathname
Remove the directory with the name "pathname".

PWD
Print the current working directory name.

CDUP
Change to the parent of the current working directory.

The    "pathname"    argument should be created (removed) as a subdirectory of the current 
working directory, unless the "pathname" string contains sufficient information to specify 
otherwise to the server, e.g., "pathname" is an absolute pathname (in UNIX and Multics), or 
pathname is something like "<abso.lute.path>" to TOPS-20. 
Reply Codes
The CDUP command is a special case of CWD, and is included to simplify the implementation
of programs for transferring directory trees between operating systems having different 
syntaxes for naming the parent directory.    The reply codes for CDUP be identical to the reply
codes of CWD. 
The reply codes for RMD be identical to the reply codes for its file analogue, DELE. 
The reply codes for MKD, however, are a bit more complicated.    A freshly created directory 
will probably be the object of a future    CWD command.    Unfortunately, the argument to 
MKD may not always be a suitable argument for CWD.    This is the case, for example, when 
a TOPS-20 subdirectory is created by giving just the subdirectory name.    That is, with a 
TOPS-20 server FTP, the command sequence 

MKD MYDIR
CWD MYDIR

will fail.    The new directory may only be referred to by its "absolute" name; e.g., if the MKD 
command above were issued while connected to the directory <DFRANKLIN>, the new 
subdirectory could only be referred to by the name <DFRANKLIN.MYDIR>. 
Even on UNIX and Multics, however, the argument given to MKD may not be suitable.    If it is
a "relative" pathname (i.e., a pathname which is interpreted relative to the current 
directory), the user would need to be in the same current directory in order to reach the 
subdirectory.    Depending on the application, this may be inconvenient.    It is not very robust
in any case. 
To solve these problems, upon successful completion of an MKD command, the server should



return a line of the form: 
257<space>"<directory-name>"<space><commentary>

That is, the server will tell the user what string to use when referring to the created    
directory.    The directory name can contain any character; embedded double-quotes should 
be escaped by double-quotes (the "quote-doubling" convention). 
For example, a user connects to the directory /usr/dm, and creates a subdirectory, named 
pathname: 

CWD /usr/dm
200 directory changed to /usr/dm

MKD pathname
257 "/usr/dm/pathname" directory created

An example with an embedded double quote:
MKD foo"bar

257 "/usr/dm/foo""bar" directory created
CWD /usr/dm/foo"bar

200 directory changed to /usr/dm/foo"bar
The prior existence of a subdirectory with the same name is an error, and the server must 
return an "access denied" error reply in that case. 

CWD /usr/dm
200 directory changed to /usr/dm

MKD pathname
521-"/usr/dm/pathname" directory already exists;
521 taking no action.

The failure replies for MKD are analogous to its file    creating cousin, STOR.    Also, an "access
denied" return is given if a file name with the same name as the subdirectory will conflict 
with the creation of the subdirectory (this is a problem on UNIX, but shouldn't be one on 
TOPS-20). 
Essentially because the PWD command returns the same type of information as the 
successful MKD command, the successful PWD command uses the 257 reply code as well. 
Subtleties
Because these commands will be most useful in transferring subtrees from one machine to 
another, carefully observe that the argument to MKD is to be interpreted as a sub-directory 
of    the current working directory, unless it contains enough information for the destination 
host to tell otherwise.    A hypothetical example of its use in the TOPS-20 world: 

CWD <some.where>
200 Working directory changed

MKD overrainbow
257 "<some.where.overrainbow>" directory created

CWD overrainbow
431 No such directory

CWD <some.where.overrainbow>
200 Working directory changed

CWD <some.where>
200 Working directory changed to <some.where>

MKD <unambiguous>



257 "<unambiguous>" directory created
CWD <unambiguous>

Note that the first example results in a subdirectory of the connected directory.    In contrast, 
the argument in the second example contains enough information for TOPS-20 to tell that    
the <unambiguous> directory is a top-level directory.    Note also that in the first example 
the user "violated" the protocol by attempting to access the freshly created directory with a 
name other than the one returned by TOPS-20.    Problems could have resulted in this case 
had there been an <overrainbow> directory; this is an ambiguity inherent in some TOPS-20 
implementations. Similar considerations apply to the RMD command.    The point is this: 
except where to do so would violate a host's conventions for denoting relative versus 
absolute pathnames, the host should treat the operands of the MKD and RMD commands as 
subdirectories.    The 257 reply to the MKD command must always contain the absolute 
pathname of the created directory. 



Appendix III - RFCs On FTP

Bhushan, Abhay, "A File Transfer Protocol", RFC 114 (NIC 5823), MIT-Project MAC, 16 April 
1971. 
Harslem, Eric, and John Heafner, "Comments on RFC 114 (A File Transfer Protocol)", RFC 141 
(NIC 6726), RAND, 29 April 1971. 
Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 172 (NIC 6794), MIT-Project MAC, 23 
June 1971. 
Braden, Bob, "Comments on DTP and FTP Proposals", RFC 238 (NIC 7663), UCLA/CCN, 29 
September 1971. 
Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 265 (NIC 7813), MIT-Project MAC, 17 
November 1971. 
McKenzie, Alex, "A Suggested Addition to File Transfer Protocol", RFC 281 (NIC 8163), BBN, 8 
December 1971. 
Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File Transfer Protocol", RFC 294 
(NIC 8304), MIT-Project MAC, 25 January 1972. 
Bhushan, Abhay, "The File Transfer Protocol", RFC 354 (NIC 10596), MIT-Project MAC, 8 July 
1972. 
Bhushan, Abhay, "Comments on the File Transfer Protocol (RFC 354)", RFC 385 (NIC 11357), 
MIT-Project MAC, 18 August 1972. 
Hicks, Greg, "User FTP Documentation", RFC 412 (NIC 12404), Utah, 27 November 1972. 
Bhushan, Abhay, "File Transfer Protocol (FTP) Status and Further Comments", RFC 414 (NIC 
12406), MIT-Project MAC, 20 November 1972. 
Braden, Bob, "Comments on File Transfer Protocol", RFC 430 (NIC 13299), UCLA/CCN, 7 
February 1973. 
Thomas, Bob, and Bob Clements, "FTP Server-Server Interaction", RFC 438 (NIC 13770), 
BBN, 15 January 1973. 
Braden, Bob, "Print Files in FTP", RFC 448 (NIC 13299), UCLA/CCN, 27 February 1973. 
McKenzie, Alex, "File Transfer Protocol", RFC 454 (NIC 14333), BBN, 16 February 1973. 
Bressler, Bob, and Bob Thomas, "Mail Retrieval via FTP", RFC 458 (NIC 14378), BBN-NET and 
BBN-TENEX, 20 February 1973. 
Neigus, Nancy, "File Transfer Protocol", RFC 542 (NIC 17759), BBN, 12 July 1973. 
Krilanovich, Mark, and George Gregg, "Comments on the File Transfer Protocol", RFC 607 
(NIC 21255), UCSB, 7 January 1974. 
Pogran, Ken, and Nancy Neigus, "Response to RFC 607 - Comments on the File Transfer 
Protocol", RFC 614 (NIC 21530), BBN, 28 January 1974. 
Krilanovich, Mark, George Gregg, Wayne Hathaway, and Jim White, "Comments on the File 
Transfer Protocol", RFC 624 (NIC 22054), UCSB, Ames Research Center, SRI-ARC, 28 February
1974. 
Bhushan, Abhay, "FTP Comments and Response to RFC 430", RFC 463 (NIC 14573), MIT-
DMCG, 21 February 1973. 
Braden, Bob, "FTP Data Compression", RFC 468 (NIC 14742), UCLA/CCN, 8 March 1973. 
Bhushan, Abhay, "FTP and Network Mail System", RFC 475 (NIC 14919), MIT-DMCG, 6 March 



1973. 
Bressler, Bob, and Bob Thomas "FTP Server-Server Interaction - II", RFC 478 (NIC 14947), 
BBN-NET and BBN-TENEX, 26 March 1973. 
White, Jim, "Use of FTP by the NIC Journal", RFC 479 (NIC 14948), SRI-ARC, 8 March 1973. 
White, Jim, "Host-Dependent FTP Parameters", RFC 480 (NIC 14949), SRI-ARC, 8 March 1973.
Padlipsky, Mike, "An FTP Command-Naming Problem", RFC 506 (NIC 16157), MIT-Multics, 26 
June 1973. 
Day, John, "Memo to FTP Group (Proposal for File Access Protocol)", RFC 520 (NIC 16819), 
Illinois, 25 June 1973. 
Merryman, Robert, "The UCSD-CC Server-FTP Facility", RFC 532 (NIC 17451), UCSD-CC, 22 
June 1973. 
Braden, Bob, "TENEX FTP Problem", RFC 571 (NIC 18974), UCLA/CCN, 15 November 1973. 
McKenzie, Alex, and Jon Postel, "Telnet and FTP Implementation - Schedule Change", RFC 593
(NIC 20615), BBN and MITRE, 29 November 1973. 
Sussman, Julie, "FTP Error Code Usage for More Reliable Mail Service", RFC 630 (NIC 30237), 
BBN, 10 April 1974. 
Postel, Jon, "Revised FTP Reply Codes", RFC 640 (NIC 30843), UCLA/NMC, 5 June 1974. 
Harvey, Brian, "Leaving Well Enough Alone", RFC 686 (NIC 32481), SU-AI, 10 May 1975. 
Harvey, Brian, "One More Try on the FTP", RFC 691 (NIC 32700), SU-AI, 28 May 1975. 
Lieb, J., "CWD Command of FTP", RFC 697 (NIC 32963), 14 July 1975.
Harrenstien, Ken, "FTP Extension: XSEN", RFC 737 (NIC 42217), SRI-KL, 31 October 1977. 
Harrenstien, Ken, "FTP Extension: XRSQ/XRCP", RFC 743 (NIC 42758), SRI-KL, 30 December 
1977. 
Lebling, P. David, "Survey of FTP Mail and MLFL", RFC 751, MIT, 10 December 1978. 
Postel, Jon, "File Transfer Protocol Specification", RFC 765, ISI, June 1980. 
Mankins, David, Dan Franklin, and Buzz Owen, "Directory Oriented FTP Commands", RFC 
776, BBN, December 1980. 
Padlipsky, Michael, "FTP Unique-Named Store Command", RFC 949, MITRE, July 1985. 



REFERENCES

[1] Feinler, Elizabeth, "Internet Protocol Transition Workbook", Network Information 
Center, SRI International, March 1982. 

[2] Postel, Jon, "Transmission Control Protocol - DARPA Internet Program Protocol 
Specification", RFC 793, DARPA, September 1981. 

[3] Postel, Jon, and Joyce Reynolds, "Telnet Protocol Specification", RFC 854, ISI, May 
1983. 

[4] Reynolds, Joyce, and Jon Postel, "Assigned Numbers", RFC 943, ISI, April 1985. 



RFC-974--Mail Routing and the Domain System
Craig Partridge

 CSNET CIC BBN Laboratories Inc
January 1986

This RFC presents a description of how mail systems on the Internet are expected to route 
messages based on information from the domain system described in RFCs 1034 and 1035.

Introduction
What the Domain Servers Know
General Routing Guidelines
Determining Where to Send a Message
Issuing a Query
Interpreting the List of MX RRs
Minor Special Issues
Examples



RFC-974--Mail Routing and the Domain System

Introduction
The purpose of this memo is to explain how mailers are to decide how to route a message 
addressed to a given Internet domain name.    This involves a discussion of how mailers 
interpret MX RRs, which are used for message routing.    Note that this memo makes no 
statement about how mailers are to deal with MB and MG RRs, which are used for 
interpreting mailbox names.

Under the Domain System, certain assumptions about mail addresses have been changed.    
Previously, one could usually assume that if a message was addressed to a mailbox, for 
example, at LOKI.BBN.COM, that one could just open an SMTP connection to LOKI.BBN.COM 
and pass the message along.    This system broke down in certain situations, such as for 
certain UUCP and CSNET hosts which were not directly attached to the Internet, but these 
hosts could be handled as special cases in configuration files (for example, most mailers 
were set up to automatically forward mail addressed to a CSNET host to CSNET-RELAY.ARPA).

Under domains, one cannot simply open a connection to LOKI.BBN.COM, but must instead 
ask the domain system where messages to LOKI.BBN.COM are to be delivered. And the 
domain system may direct a mailer to deliver messages to an entirely different host, such as
SH.CS.NET. Or, in a more complicated case, the mailer may learn that it has a choice of 
routes to LOKI.BBN.COM.    This memo is essentially a set of guidelines on how mailers should
behave in this more complex world.

Readers are expected to be familiar with RFC-1034 and RFC-1035.



RFC-974--Mail Routing and the Domain System

What the Domain Servers Know
The domain servers store information as a series of resource records (RRs), each of which 
contains a particular piece of information about a given domain name (which is usually, but 
not always, a host).    The simplest way to think of a RR is as a typed pair of datum, a domain
name matched with relevant data, and stored with some additional type information to help 
systems determine when the RR is relevant.    For the purposes of message routing, the 
system stores RRs known as MX RRs. Each MX matches a domain name with two pieces of 
data, a preference value (an unsigned 16-bit integer), and the name of a host.    The 
preference number is used to indicate in what order the mailer should attempt deliver to the
MX hosts, with the lowest numbered MX being the one to try first.    Multiple MXs with the 
same preference are permitted and have the same priority.

In addition to mail information, the servers store certain other types of RR's which mailers 
may encounter or choose to use.    These are: the canonical name (CNAME) RR, which simply
states that the domain name queried for is actually an alias for another domain name,which 
is the proper, or canonical, name; and the Well Known Service (WKS) RR, which stores 
information about network services (such as SMTP) a given domain name supports.



RFC-974--Mail Routing and the Domain System

General Routing Guidelines
Before delving into a detailed discussion of how mailers are expected to do mail routing, it 
would seem to make sense to give a brief overview of how this memo is approaching the 
problems that routing poses.

The first major principle is derived from the definition of the preference field in MX records, 
and is intended to prevent mail looping.    If the mailer is on a host which is listed as an MX 
for the destination host, the mailer may only deliver to an MX which has a lower preference 
count than its own host.

It is also possible to cause mail looping because routing information is out of date or 
incomplete.    Out of date information is only a problem when domain tables are changed.    
The changes will not be known to all affected hosts until their resolver caches time out. 
There is no way to ensure that this will not happen short of requiring mailers and their 
resolvers to always send their queries to an authoritative server, and never use data stored 
in a cache.    This is an impractical solution, since eliminating resolver caching would make 
mailing inordinately expensive.    What is more, the out-of-date RR problem should not 
happen if, when a domain table is changed, affected hosts (those in the list of MXs) have 
their resolver caches flushed. In other words, given proper precautions, mail looping as a 
result of domain information should be avoidable, without requiring mailers to query 
authoritative servers.    (The appropriate precaution is to check with a host's administrator 
before adding that host to a list of MXs).

The incomplete data problem also requires some care when handling domain queries.    If the
answer section of a query is incomplete critical MX RRs may be left out.    This may result in 
mail looping, or in a message being mistakenly labelled undeliverable.    As a result, mailers 
may only accept responses from the domain system which have complete answer sections.   
Note that this entire problem can be avoided by only using virtual circuits for queries, but 
since this situation is likely to be very rare and datagrams are the preferred way to interact 
with the domain system, implementors should probably just ensure that their mailer will 
repeat a query with virtual circuits should the truncation bit ever be set.



RFC-974--Mail Routing and the Domain System

Determining Where to Send a Message
The explanation of how mailers should decide how to route a message is discussed in terms 
of the problem of a mailer on a host with domain name LOCAL trying to deliver a message 
addressed to the domain name REMOTE. Both LOCAL and REMOTE are assumed to be 
syntactically correct domain names.    Furthermore, LOCAL is assumed to be the official name
for the host on which the mailer resides (i.e., it is not a alias).



RFC-974--Mail Routing and the Domain System

Issuing a Query
The first step for the mailer at LOCAL is to issue a query for MX RRs for REMOTE.    It is 
strongly urged that this step be taken every time a mailer attempts to send the message.    
The hope is that changes in the domain database will rapidly be used by mailers, and thus 
domain administrators will be able to re-route in-transit messages for defective hosts by 
simply changing their domain databases.

Certain responses to the query are considered errors:

o Getting no response to the query.    The domain server 
the mailer queried never sends anything back.    (This is 
distinct from an answer which contains no answers to 
the query, which is not an error).

o Getting a response in which the truncation field of the 
header is Mail Routing and the Domain System set.    
(Recall discussion of incomplete queries above).    Mailers
may not use responses of this type, and should repeat 
the query using virtual circuits instead of datagrams.

o Getting a response in which the response code is non-
zero.

Mailers are expected to do something reasonable in the face of an error.    The behaviour for 
each type of error is not specified here, but implementors should note that different types of 
errors should probably be treated differently.    For example, a response code of "non-existent
domain" should probably cause the message to be returned to the sender as invalid, while a 
response code of "server failure" should probably cause the message to be retried later.

There is one other special case.    If the response contains an answer which is a CNAME RR, it
indicates that REMOTE is actually an alias for some other domain name. The query should be
repeated with the canonical domain name.

If the response does not contain an error response, and does not contain aliases, its answer 
section should be a (possibly zero length) list of MX RRs for domain name REMOTE (or 
REMOTE's true domain name if REMOTE was a alias).    The next section describes how this 
list is interpreted.



RFC-974--Mail Routing and the Domain System

Interpreting the List of MX RRs
NOTE: This section only discusses how mailers choose which names to try to deliver a 
message to, working from a list of RR's.    It does not discuss how the mailers actually make 
delivery.    Where ever delivering a message is mentioned, all that is meant is that the mailer
should do whatever it needs to do to transfer a message to a remote site, given a domain 
name for that site.    (For example, an SMTP mailer will try to get an address for the domain 
name, which involves another query to the domain system, and then, if it gets an address, 
connect to the SMTP TCP port).    The mechanics of actually transferring the message over 
the network to the address associated with a given domain name is not within the scope of 
this memo.

It is possible that the list of MXs in the response to the query will be empty.    This is a special
case.    If the list is empty, mailers should treat it as if it contained one RR, an MX RR with a 
preference value of 0, and a host name of REMOTE.    (I.e., REMOTE is its only MX).    In 
addition, the mailer should do no further processing on the list, but should attempt to deliver
the message to REMOTE.    The idea here is that if a domain fails to advertise any 
information about a particular name we will give it the benefit of the doubt and attempt 
delivery.

If the list is not empty, the mailer should remove irrelevant RR's from the list according to 
the following steps.    Note that the order is significant.

For each MX, a WKS query should be issued to see if the domain name listed actually 
supports the mail service desired.    MX RRs which list domain names which do not support 
the service should be discarded.    This step is optional, but strongly encouraged.

NOTE:    Experience has shown that WKS is not widely supported, so the WKS step in 
MX processing should not be used.

If the domain name LOCAL is listed as an MX RR, all MX RRs with a preference value greater 
than or equal to that of LOCAL's must be discarded.

After removing irrelevant RRs, the list can again be empty.    This is now an error condition 
and can occur in several ways.    The simplest case is that the WKS queries have discovered 
that none of the hosts listed supports the mail service desired.    The message is thus 
deemed undeliverable, though extremely persistent mail systems might want to try a 
delivery to REMOTE's address (if it exists) before returning the message. Another, more 
dangerous, possibility is that the domain system believes that LOCAL is handling message 
for REMOTE, but the mailer on LOCAL is not set up to handle mail for REMOTE.    For 
example, if the domain system lists LOCAL as the only MX for REMOTE, LOCAL will delete all 
the entries in the list.    But LOCAL is presumably querying the domain system because it 
didn't know what to do with a message addressed to REMOTE. Clearly something is wrong. 
How a mailer chooses to handle these situations is to some extent implementation 
dependent, and is thus left to the implementor's discretion.

If the list of MX RRs is not empty, the mailer should try to deliver the message to the MXs in 
order (lowest preference value tried first).    The mailer is required to attempt delivery to the 
lowest valued MX.    Implementors are encouraged to write mailers so that they try the MXs 
in order until one of the MXs accepts the message, or all the MXs have been tried.    A 
somewhat less demanding system, in which a fixed number of MXs is tried, is also 
reasonable.    Note that multiple MXs may have the same preference value.    In this case, all 



MXs at with a given value must be tried before any of a higher value are tried.    In addition, 
in the special case in which there are several MXs with the lowest preference value,    all of 
them should be tried before a message is deemed undeliverable.



RFC-974--Mail Routing and the Domain System

Minor Special Issues
There are a couple of special issues left out of the preceding section because they 
complicated the discussion.    They are treated here in no particular order.

Wildcard names, those containing the character '*' in them, may be used for mail routing.    
There are likely to be servers on the network which simply state that any mail to a domain is
to be routed through a relay. For example, at the time that this RFC is being written, all mail 
to hosts in the domain IL is routed through RELAY.CS.NET.    This is done by creating a 
wildcard RR, which states that *.IL has an MX of RELAY.CS.NET.    This should be transparent 
to the mailer since the domain servers will hide this wildcard match. (If it matches *.IL with 
HUJI.IL for example, a domain server will return an RR containing HUJI.IL, not *.IL). If by 
some accident a mailer receives an RR with a wildcard domain name in its name or data 
section it should discard the RR.

Note that the algorithm to delete irrelevant RRs breaks if LOCAL has a alias and the alias is 
listed in the MX records for REMOTE.    (E.g. REMOTE has an MX of ALIAS, where ALIAS has a 
CNAME of LOCAL).    This can be avoided if aliases are never used in the data section of MX 
RRs.

Implementors should understand that the query and interpretation of the query is only 
performed for REMOTE.    It is not repeated for the MX RRs listed for REMOTE.    You cannot 
try to support more extravagant mail routing by building a chain of MXs.    (E.g. 
UNIX.BBN.COM is an MX for RELAY.CS.NET and RELAY.CS.NET is an MX for all the hosts in .IL, 
but this does not mean that UNIX.BBN.COM accepts any responsibility for mail for .IL).

Finally, it should be noted that this is a standard for routing on the Internet.    Mailers serving 
hosts which lie on multiple networks will presumably have to make some decisions about 
which network to route through. This decision making is outside the scope of this memo, 
although mailers may well use the domain system to help them decide.    However, once a 
mailer decides to deliver a message via the Internet it must apply these rules to route the 
message.



RFC-974--Mail Routing and the Domain System

Examples
To illustrate the discussion above, here are three examples of how mailers should route 
messages.    All examples work with the following database:

A.EXAMPLE.ORG    IN    MX    10    A.EXAMPLE.ORG
A.EXAMPLE.ORG    IN    MX    15    B.EXAMPLE.ORG
A.EXAMPLE.ORG    IN    MX    20    C.EXAMPLE.ORG
A.EXAMPLE.ORG    IN    WKS   10.0.0.1    TCP    SMTP

B.EXAMPLE.ORG    IN    MX    0      B.EXAMPLE.ORG
B.EXAMPLE.ORG    IN    MX    10     C.EXAMPLE.ORG
B.EXAMPLE.ORG    IN    WKS   10.0.0.2    TCP    SMTP

C.EXAMPLE.ORG    IN    MX    0     C.EXAMPLE.ORG
C.EXAMPLE.ORG    IN    WKS   10.0.0.3    TCP    SMTP

D.EXAMPLE.ORG    IN    MX    0     D.EXAMPLE.ORG
D.EXAMPLE.ORG    IN    MX    0     C.EXAMPLE.ORG
D.EXAMPLE.ORG    IN    WKS   10.0.0.4    TCP    SMTP

In the first example, an SMTP mailer on D.EXAMPLE.ORG is trying to deliver a message 
addressed to A.EXAMPLE.ORG. From the answer to its query, it learns that A.EXAMPLE.ORG 
has three MX RRs.    D.EXAMPLE.ORG s not one of the MX RRs and all three MXs support SMTP 
mail (determined from the WKS entries), so none of the MXs are eliminated. The mailer is 
obliged to try to deliver to A.EXAMPLE.ORG as the lowest valued MX.    If it cannot reach 
A.EXAMPLE.ORG it can (but is not required to) try B.EXAMPLE.ORG. and if B.EXAMPLE.ORG is 
not responding, it can try C.EXAMPLE.ORG.

In the second example, the mailer is on B.EXAMPLE.ORG, and is again trying to deliver a 
message addressed to A.EXAMPLE.ORG.    There are once again three MX RRs for 
A.EXAMPLE.ORG, but in this case the mailer must discard the RRs for itself and 
C.EXAMPLE.ORG (because the MX RR for C.EXAMPLE.ORG has a higher preference value than 
the RR for B.EXAMPLE.ORG).    It is left only with the RR for A.EXAMPLE.ORG, and can only try 
delivery to A.EXAMPLE.ORG.

In the third example, consider a mailer on A.EXAMPLE.ORG trying to deliver a message to 
D.EXAMPLE.ORG.    In this case there are only two MX RRs, both with the same preference 
value.    Either MX will accept messages for D.EXAMPLE.ORG. The mailer should try one MX 
first (which one is up to the mailer, though D.EXAMPLE.ORG seems most reasonable), and if 
that delivery fails should try the other MX (e.g. C.EXAMPLE.ORG).




